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Motion of a Vibrating String in the Presence of 
a Convex Obstacle: A Free Boundary Problem 

H. Cabannes, Pans 

Communicated by  H. Neunzert 

Here we study the motion of a vibrating string in the presence of an arbitrary obstacle. 
We show that if the string always rebounds on the concave parts of the obstacle, i t  can either 
rebound or roll on the convex parts. The latter is the case if the velocity of the string is null at 
the contact point just before contact, or if t he  contact point propagates at a characteristic speed. 
Four examples are given. The three first correspond to the same obstacle, a sinusoidal arc. but 
with different initial conditions. In the first case, the string rebounds on the whole of the obstacle 
and the motion is explicitly determined when it is periodic. In the second case. the string rolls 
on the convex part of the obstacle up to the inflexion point and then rebounds on the concave 
part and unwinds on the convex part. In the third case, the string is initially at rest on the 
obstacle; then it  instantaneously leaves the concave part while i t  unwinds progressively on the 
convex part. The fourth case is similar to the third but with a dificrent obstacle; the motion, 
which is periodic, is determined explicitly. 

1 Introduction 

Problems related to the study of the motion of a vibrating string in 
presence of an obstacle were first considered by Amerio and Prouse in 1975 
[3]. Since then about fifty papers devoted to the subject have been published. 
The cases most often considered concerne straight-line or point-mass obsta- 
cles [5], [lo]. In the case of curvilinear obstacles a fundamental difference 
appears between concave obstacles (for an observer on the string) and convex 
obstacles. If the obstacle is concave, the string rebounds instantaneously, 
while if the obstacle is convex the string can either rebound or can roll up 
while remaining in contact with the obstacle for some time. This last behav- 
iour also appears when the string vibrates in the presence of a point-mass 
obstacle [ll], [S). There are only a few papers related to the cases of cur- 
vilinear obstacles, in particular one by Schatzman [12] on concave obstacles, 
while Bumdge et al. [4], and Ameno [2] considered convex obstacles. The 
reference [4] treats an explicit solution of a vibrating string against a par- 
abolic obstacle with an inelastic reflection law; this solution represents the 
behaviour of the strings of an Indian musical instrument. In reference [2] 
Ameno studied in great detail and generality persistent contacts of the string 
with obstacle, contacts which exist only for convex obstacles. 
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Vibrating String in the Presence of a Convex Obstacle 277 

The purpose of the present paper is to contribute to the study of the 
motion of a vibrating string in presence of convex obstacles. In the first part, 
$$ 2,3,4, we study the conditions of rebound and the conditions of wrapping 
of the string on the obstacle. A priori one can think that the string wraps 
around when it comes in contact with the obstacle with a null velocity. We 
will show that even if its velocity is not zero, there are cases in which the 
string wraps around rather that rebounds because rebound is not possible. 
If the obstacle is convex in one region and concave in another, these regions 
being separated by an inflexion point, then when the end of the part of the 
string wrapped on the obstacle crosses the inflexion point and reaches the 
concave part, there is a rebound on the concave part while the string unwraps 
on the convex part. In the second part, $$ 5, 6, 7 and 8, examples are given. 
The obstacle is either a sinusoidal arc corresponding to one period ($$ 5, 6 
and 7), or a portion of a sinusoid corresponding to one and a half period 
(5 8). The first obstacle possesses a centre of symmetry, which is an inflexion 
point; half of the obstacle is convex, the other half is concave. The second 
obstacle possesses an axis of symmetry with two inflexion points. In all cases 
the reflection of the string on the obstacle takes place with conservation of 
energy. For both obstacles, periodic motions have been obtained, the string 
being initially at rest with an appropriate shape ($$ 5 and 8); if the initial 
conditions are different, the periodic character of the motion disappears. In 
4 6, we have obtained a solution for which the string wraps on the convex 
part of the sinusoid, and then unwraps when the extremity of the arc in 
contact reaches the inflexion point. Finally, in $$ 7 and 8, the string is at rest 
at a given time on the obstacles; it then leaves the concave parts instanta- 
neously and the convex parts progressively. The determination of the limits 
of the arcs of the string in contact with the obstacle during the wrapping 
and during the unwrapping is a free boundary problem, as Amerio has 
already shown [2]. 

2 Statement of the problem 

The motion of a string is defined by the position, at time t, of a point 
M with curvilinear abscissa s. The string being assumed inextensible, s is the 
curvilinear abscissa for the initial state, and for any arbitrary state; we then 
have M = M(s, t )  and Iail?/asI = 1. We assume that there is no torque, but 
that external forces of densityfare applied on the string. If the string is also 
assumed perfectly flexible, the constraint at each point is a vector tangent 
to the string; F =  T(aM/as). The equations of motion are 

where e(s) is the density of the string. 
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278 H. Cabannes 

These equations constitute a system of four equations, with four un- 
knowns. The tension is assumed positive, which corresponds to a strained 
string. 

During the motion the string can strike against a fixed obstacle. The 
only force applied on the string is, b assumption, the reaction of the obstacle, 
so that in the absence of contact,!= 0, whereas during a persistent contact 

a a@ a2@ a m @  
as as as 

(1') f= -%( T z )  = - TT - --. 
It follows from relation (1') that the reaction is in the osculator plane, and 
in the case of two dimensional motion it is in the plane of the motion. From 
now on, we will only consider this last case. With respect to the tangent to 
the string the reaction is on the side opposed to (a2i@/as2), that is on the 
side opposite to the concavity (figures 1). To satisfy the laws of action of 
contact, the reaction must be directed from the obstacle to the string; this 
will be the case, by relation (l'), only if the string is on the side opposed to 
(a2A?/as2), that is if the obstacle is convex for an observer on the string 
because we consider only strained strings, what corresponds to positive val- 
ues of T. This means that with a concave obstacle a persistent contact is not 
possible and that the string rebounds instantaneously on the obstacle. 

This possibility or impossibility of a persistent contact is at the origin 
of the fundamental difference between oscillations in the presence of a convex 
obstacle and oscillations in the presence of a concave obstacle. At all regular 
points of the obstacle the second derivative (a2Q/as2) and therefore the force 
densityfhave a fmite modulus. At an angular point the obstacle exerts on 
the string an action which is a concentrated force, 

The notation [Q(s)J = Q(s + 0) - Q(s - 0) denotes the discontinuity of 
the function Q ( s )  at the point abscissa s. 

t 

\ *m 

Figure 1.a Convex obstacle Figure 1.b Concave obstacle 
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Vibrating String in the Presence of a Convex Obstacle 279 

We consider in this paper small motions of a vibrating string. The 
string, assumed homogeneous, oscillates in a plane related to an orthonormal 
reference system Oxu. In its equilibrium position the string is on the segment 
A B  of the x-axis (all the variables are non-dimensional). The points A and 
B, of abscissa x = k0.5, are fixed points of the string. The small motions 
of the string near the equilibrium position are governed by the classical 
equation of vibrating strings, obtained by the linearisation of equation (1). 
Denoting the ordinate of the point with abscissa x, at time t, by u(x,t), we 
have, in the absence of contact, 

0 
a2u a2u 
at2 ax2 

(3) ~ u = - - - =  

(4) u +-,t = O  f o r t 2 0 .  ( 3  
The string is subjected to oscillations above a curvilinear obstacle u = @(x) 
which it can hit during the motion. In the next §§ we will introduce the 
characteristic coordinates = t + x and q = t - x. 

In the linear theory the tension is constant, and from equation (1') 
the density of the reacting forces during a persistent contact is equal to the 
opposite of the second derivative of the function @ ( x ) : f  = -W(x). At an 
angular point of the obstacle the reaction is a concentrated force 

F =  -[@'(x)]. 

3 Condition for the string to rebound on the obstacle 

For an arbitrary obstacle (concave or convex), we assume that the 
string in motion u = u ( x , t )  encounters the obstacle at a point Q of abscissa 
x = a(t). We denote by T(X)  the inverse function of the function Q: Q o t = 
identity. We have of course 

(5) u(x,t(x)) = @(x). 

At the point Q the string rebounds on the obstacle according to a certain 
law of reflection. The velocity of the string at point Q, negative before the 
contact, becomes positive: 

The reflection coeficient A(x)  is given, positive or null. In the x,t plane (figure 
2), the curve x = ~ ( t ) ,  called the contact curve, is a part of the line of influence 
(cf. [l], [4]) on which (dr/dx( ,< 1, that is Icf(t)l 2 1; in other words the 
point Q moves at a supersonic speed, or exceptionally at sonic speed. The 
contact curve is part of the boundary of the domain u(x,t) 6 @(x) and the 
line of influence is formed by arcs of contact and their characteristic tangents. 
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- . 5  fl .5 

Figure 2 Line of influence 

In figure 2, the line of influence A B C D is composed of a characteristic 
segment A B  which is not an arc of contact, an arc of contact BC on which 
Ici(t)l > 1, and an arc of contact C D  which is characteristic and on which 
ci(t)  = 1. The existence of characteristic arcs of contact is an exception and 
corresponds to particular initial conditions. The boundary of the domain 
u ( x , t )  < @(x) is continued by a dotted line on which Ici(t)l c 1. 

On the arc BC of the contact curve one knows the values of u ( x , t )  
and (au/at) (x ,  t ) ;  therefore the function u(x, t )  is determined (Cauchy problem) 
in the domain BCE bounded by the arc BC, the characteristic B E ( t  - x 
= t, - x,), and the characteristic CE(t + x = tc + xc). 

On the characteristic segment CD of the contact curve one always 
has u ( x , t )  = @(x), but relation (6) cannot be satisfied. In fact, the arc CD 
being characteristic, the motion of the string past C D  is determined by the 
values of the function u ( x ,  t )  on the two characteristics issuing from the point 
C ,  C D and C E. We deduce in particular the value of the velocity au/at, and 
(by applying relation (6)), the value of the reflection coefficient A(x), which 
cannot be given, but depends on the motion of the string. 

On the non-characteristic arcs of contact, we will adopt the function 
A(x)  = 1 which corresponds to a perfect elastic reflection; and to include 
the two cases Ici(t)l > 1 and Icf(t)l= 1, we will write the law of reflection of 
the string in the form 

(7) (ci-$)[($J=o. 

We deduce from this law the following result. 

Theorem. During the motion, the total energy of the string (kinetic energy and 
potential energy) remains constant. 

This theorem is expressed by the equation 
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(8) E ( t )  = 'f {(Er + ( E y } d x  = const. 
-112 

We assume first that the string encounters the obstacle in a finite numbers 
of points Ql, Q2, ...en of abscissae ol(t), az(t), ... with -0.5 < ol < c2 ... 
on < 0.5. 

Then 

and, by virtue of equation (3), one has 

so that the last line of the right hand side of equation (9) can also be written 

As (au/at) vanishes for x = k0.5, we obtain by addition of all of equations 
(9), with ao(t) = -0.5 and on+l ( t )  = 0.5, 

aU a U  

dt i-1 at ax 

where the discontinuities are assumed at the points x = a,(t). The function 
being continuous, in particular for x = oi(t), we have u(o, + 0,t) E u(oi - 
0,t) and therefore 

and by virtue of relation (7) (dE/dt) is zero. When the string is in contact 
with the obstacle not only on isolated points, but also on some arcs, the 
result remains valid. We have in fact 
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This formula is exactly formula (9) if we note that on a contact arc, 
cri < x < we have (au/at) = 0 and (&/ax) = @'(x).  

4 Wrapping and unwrapping of the string on the obstacle 

When the string hits a concave obstacle, it always rebounds; when it 
hits a convex obstacle, it can either rebound or wrap up and remain in 
contact with the obstacle for some time. We assume that the motion of the 
string above the obstacle u = @(x) is the free oscillation u ( x , t )  = w ( x , t ) .  If 
@(+0.5) is strickly negative, the domain (a), w ( x , t )  4 @(x), is entirely in 
the region t 2 0, 1x1 < 0.5 and the free oscillation ends on the line of 
influence (line A'ABCDD' in figure 3-a) composed of arcs of the boundary 
t = T ( X )  of the domain (9) (arcs A B  and CD in figure 3-a) and of charac- 
teristic tangents (A'A, BC and DD'). 

On the arcs A B  and CD, on which there is a contact between the 
string and the obstacle, one has Iz ' (x) l  < 1; the contact point of the string 
with the obstacle propagates on the string with supersonic speed; exception- 
ally the boundary of the domain (9) can be composed of characteristic 
segments. 

We assume now that one of the extremities of the string is on the 
obstacle, @( -0.5) = 0. The boundary of the domain (9) can also meet the 
axis x = -0.5, and we assume that this is the case at the point A(x = -0.5, 
t = r A ) :  figure 3-b. If, near the point A, on the boundary t = ~ ( x )  of the 
domain (Q), ~ ' ( x )  is smaller than 1, or equal to 1, the former conclusions 
remain valid: the free oscillation ends on the line of influence. In the opposite 
case (figure 3-b) new phenomena appear. 

E-EA \ A 

D' 

- X  
- . 5  

Figure 3.a 

. 5  - . 5  

Figure 3.b 

. 5  

To study the curve t = ~ ( x )  near the point A,  we note: x = -0.5 + 
6x, t = tA + 6 t  (6x and 6 t  positive) and we expand in series the two sides 
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of the equality w ( x , t )  = @(x). The functions w ( x , t )  and @ ( x )  being assumed 
twice continuously differentiable, we obtain 

aw aw 
ax at 

~ ( - 0 . 5 , t A )  + - a x  + - a t  

(14) 2 j a Z w  ax2 ax  at a2w at I a2w + - ---(SX)* + 2 - 6 x . 6 t  +-+t)2 + ... 
1 
2 

The values of functions are the values at the point A ( x  = -0.5, t = tA ) .  The 
boundary condition satisfied by the function w ( x , t )  for x = -0.5 gives 

=@(-0.5)+@’(-0.5)6~+-@”(-0.5)(6~)~+ .... 

aw 
at ~ ( - 0 . 5 , ~ ) = 0 ,  - ( - 0 . 5 , t ) = O  

We deduce from relations (14) and (15) that 

(16) - ( -0.5,tA) aw = @’(-0.5) 2-(-0.5,tA)-= a2w ds @“(-0 .5) -  
dx ax ax  at 

The first relation (16) determines the time tA  , the second the slope at this 
point of the curve t = ~ ( x ) .  Otherwise, as the string oscillates above the 
obstacle, the velocity of the string just before contact is negative. Taking in 
account the relations (15) one has 

aw a2w 
-(-0.5 + 6 x , t A  + s t )  = - ( - 0 . 5 , t A ) 6 x  + ... < 0. 
at ax at 

As a result, the second derivate @”( -0.5) has a sign opposite to the sign of 
s’(-0.5).  In particular the case s’(-0.5) > 1 can appear only if @”(-0 .5 )  is 
negative, that is to say, if the obstacle is convex near the point x = -0.5, 
u = @(-0 .5 )  = 0. In that case rebound is not possible; in fact if the string 
rebounds, the motion following contact is determined by the rebound con- 
ditions. The determination of the motion is a Cauchy problem, the solution 
of which is defined in a domain of the x , t  plane bounded by the contact 
curve t = s ( x )  and by two characteristics. One of these is the characteristic 
t + x = tA  + x A ,  and the domain contains a portion of the axis x = -0.5; 
except in isolated cases, the condition u ( - 0 . 5 , ~ )  = 0 is not satisfied. We 
deduce from this impossibility that the free oscillation ends, not on the 
boundary of the domain (g), but on the characteristic issuing from the point 
A : t - x = tA  - x A  . On the other side of this characteristic, the function u ( x ,  t )  
= zi((,q) which represents the motion of the string has the form 
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284 H. Cabanncs 

(17) f i ( t9q)  = @ ( ~ , V A  1 + g(q)  with g ( t l A )  = 0; 

the function g ( q )  is determined by the conditions which express the wrapping 
of the string on the obstacle. 

Those conditions are: on an unknown curve, the equation of which 
we write t = r(x), one must have u ( x , T ( x ) )  = @(x) and (au/at)(x,T(x)) = 0: 

This is a free boundary problem, as showed by Amerio [lo]; the solution is 
simple. The system (18) is a system of two equations with two unknowns: 
the functions ~ ( x )  and g(q). Taking the derivative of the first equation, and 
eliminating g‘(t - x), we obtain the equation 

(19) 

which determines the function t(x), the free boundary, that is to say the 
trajectory of the extremity of the arc of the string rolled round the obstacle. 
When the function 7(x) is known, the first equation (18) gives the value of 
the function g(q).  

The unwrapping of the string appears in similar conditions, which 
will be examined in the examples of $§ 6, 7 and 8. 

aG 

a< 2-(2 + x , q ” )  = ip’(x), 

5 First example 

We consider an obstacle formed by a sinusoidal arc: 

1 1 
2 2 

-- e 
(20) u = @ ( x )  = -tan-sinxx-cosnx, < x < -  

where 8 is a constant between 0 and n/n. The obstacle is convex for x < 0, 
concave for x > 0 and has an inflexion point at x = 0. At the initial time 
we assume that the string is at rest in the position u(x,O) = cosnx. In the 
absence of the obstacle the motion is a free oscillation 

(21) u(x,t) = w(x,t) = cosxx~cosxt. 

When 8 = 0 (straight obstacle on the equilibrium position of the string), the 
motion of the string is u(x, t )  = I w (x, t )  I = cosxx I cos xt I. We first assume 
0 < 8 < 4 2 .  At the beginning, the motion of the string is free oscillation 
u(x , t )  = w ( x , t )  up to the first curve of contact 

(22) 
e 

cosm + tan--sinnx = 0. 
2 
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Vibrating String in the Presence of a Convex Obstacle 285 

This curve (figure 4) joins the points A(x = -0.5, cosrtt = tan(8/2)) and 
B(x = -0.5, cosxt = -tan(O/2)); on the arc A B  

dt e cosrtx d t  e 
0 < - < tan- < 1 

2 
(23) -=tan-  - 

dx 2 sinxt dX 

because 

2 e 
cos' xx < I - sin rtx . tan2- = sin2 xt . 

2 

I 

E 

C 

A 

- - 

.-._ 
.... ..... .... . . , 

0 

H 

1 

3 

- x  

The first line of influence is then formed by the arc A B ,  which containts the 
point x = 0, t = 0.5 for all values of the parameter 8. To determine the 
motion of the string u ( x , t )  = ul(x,t) after the first contact we let 

(24) UI b P t )  = u'l( t?tt)  =f(t) + dtt), 
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286 H. Cabannes 

where ( = t + x and q = t - x denote the characteristic variables. On the 
arc AB,  we have 

sinxq - sine d t  1 + sin8asinxq 
(25) sinxt = -- - -  

1 - sin8sinxq ' dq cos e 
Letting u1 = w, (aul/at) = -(aw/at) on the arc A B  the functionsf(() and 
g(q)  are obtained: 

1 f ( t )  + s(q) = T{COS"t + cosxctt) 
(26) 

x f ' ( 0  + g'(q) = -{sinxt + sinxq}. 
2 

Taking the derivative of the arc A B  of the first relation in (26), we obtain, 
by elimination of g'(q), 

with i= tan- xt - l < ( < l .  
2 

One then determines the function g(q), to obtain g(q) = f ( - q ) ,  whence 
u,(x,t) = f(x + t) + f ( x  - t) :  

sin xx + sin 8. cos xt 
(30) u1 (x,t) = W(X,C) + 2cotan8 

cos e - cosXx 

The function ul ( x , t )  represents the motion of the string in the region bounded 
by the arc A 3  and by the characteristics q = q A ,  < = cB . Since ul( k 0 . 5 ~ )  
= 0, it represents the motion of the string after the first rebound, for -0.5 
d x < 0.5. 

The motion of the string is defined by the function u = ul,  up to the 
second line of influence. To define this curve we must first solve the equation 

(31) ul(x,t) = @(x). 

One solution is evidently t = r ( x ) ,  which defines the arc A B .  A second 
solution is t = 2 - ~ ( x )  (arc F G H  in figure 4), since u1(x,2 - t )  = ul(x,t). 
There is in some cases a third line CDE, 

1 I - 2cose 
xc = --, COSXtC = 

2 sin8 * 

11
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This third line exists only when cosxtc is less than 1, that is if tan(8/2) is 
greater than 1/3. In this last case the line of influence is formed by the arc 
CD, the characteristic tangent DG, and the arc GH. The determination of 
the motion past this second line of influence cannot be made explicitly. 

On the other hand, for tan(8/2) < 1/3 the function ul(x,t) represents 
the motion of the string for ~ ( x )  < t < 2 - r ( x ) ,  and following the second 
rebound we have again u(x,t) = w(x , t ) ;  therefore the motion of the string 
is periodic with period 2. 

1 .  
3 

Figure 5 Obstacle u = @(x) = --sinxx-cosxx 

String u(x.0) = cosnx,-(x,O) = 0 

Periodic motion: period T = 2 

aU 
at 

The position of the string for various values of time is illustrated in 
figure 5 ,  which corresponds to the limit case tan(8/2) = 1/3. At time t = 1, 
the string is at rest in the position u = ul(x,l). One can explain the results 
by considering that the obstacle is the sinusoidal arc u = @(x) = -sin xx * 

cosxx, while the string is initially at rest in the position u(x,O) = cotan (8/2) . 
cosscx. For cotan(8/2) 2 3 the motion is periodic with period 2; the periodic 
character of the motion disappears for - 0  < cotan(8/2) < 3. 

In a general way, we can express the following supposition: 

Conjecture. rj- the string, initially at rest in the position u(x,O) = cosxx, 
oscillates in the presence oythe obstacle u = @(x) = Asin2nrcx (n integer), 
the motion is periodic with period 2, when IAl is small enough'). 

') The parameter I, has no relation with the function I(x) introduced in Section 3. 
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288 H. Cabannes 

In fact if lil is small enough, on all the contact curve cosnx * C O S ~  
= Lsin2nnx, one has Idt/dxl < 1 and the computation of the function u(x,t) 
= ul(x,t) following the first rebound can be made by a quadrature; for n = 1 
we have obtained this function explicitly, formula (30). For an arbitrary value 
of n, one has ul(x,t) = f(x + t )  + f ( x  - t )  with 

K f ’ ( t )  =--inn( + 2nnlcos2nnx 
2 

1 5 = x + T ( X )  = x + -Arccos(Lsin2nnx/cosxx) 

f ( t )  = --cosnt + Lsin2nnx - L2 I a(y)dy 

n 
xx 1 

2 0 

2 n c0s22 n y  . (2n + tany - tan2 n y } 
a(y) = 

cosy1/1- (~.sin2ny/cosy)2 * 

Asf(2 + () = f ( t )  = -f(l - t), one has u(x,2 - t )  = u ( x , t )  and, always 
for Ill small enough, there are probably no contacts between t = tl = ~ ( x )  
and t = t2 = 2 - ~ ( x ) ,  and also the curve of the second contact is t = 2 
- ~ ( x ) .  At time t = 1, the string is at rest, and following the second rebound 
one again has u ( x , t )  = cosnx . cosnt. 

6 Second example 

We consider the first example but in the limit case 8 = x/2. The 
contact curve A By which forms the first line of influence, is then the char- 
acteristic q = 0.5. On the convex part of the obstacle ( x  c 0) the string 
cannot rebound and wraps on the obstacle, and thereafter we have u ( x , t )  = 
@(x), whereas on the concave part of the string rebounds, but as the contact 
curve is a characteristic the coefficient of reflection is not equal to 1, but is 
a function A(x), which will be determined. Following the first rebound we 
have u ( x , t )  = uz(x,t), with 

1 
(32) u2(x,t) = C2(t,q) = ~ c o s n (  + g(q)  and g 

One could try to determine the function g(q)  by knowing that on the char- 
acteristic 4: = 0.5 we have ut(x,t) = @(x), that is 

1 
(33) g(q) = (; - +) = -- 

2 cOsxq 
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1 u2(x,t) = -sinxt.sinm, for 5 = ;; 

The velocity of the string on the obstacle (for 5 = 0.5) would be negative, 
which is not possible beyond the contact. Therefore the unwrapping of the 
string after t = 0.5 (figure 6) cannot occur with a characteristic speed. It 
then happens that on a point of abscissa x = o(t), and on the curve x = 
a( t )  or t = 7(x), we must have u~(x,T(x)) = @(x) and, from relation (7), 
(au2/at)(x,7(x)) = 0. This is a free boundary problem. 

0 

E 

2 

B 

Figure 6 Obstacle u = @(x) = sinxx . cosxx 

String u(x ,O)  = cosxs . -(.LO) = 0 
a U  

?I 

The functions 7 ( x )  and g ( q )  must consequently satisfy the two con- 
ditions 

1 
,cosx(r + x)  + g(7 - x )  = -sinxx.cosxx 

x .  --sinx(z + x)  + g’(7 - x)  = 0. 
2 

14
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By taking the derivative of the first relation and eliminating g’(r - x), we 
obtain successively 

sinx(r + x) = COSR - - (r + x) = cos2rcx K I 
1 

r (x )= ,+2k-x+2x ,  k integer. 
L 

As the curve t = r ( x )  passes 
k is zero; and as this curve is 

1 
Z(X) = - - 3~ 

2 (36) 

through the point x = 0, t = 0.5, the integer 
not characteristic, 

(37) g(q)  = -sinx - - - (: ;) 
1 1 + 2 x - 2 t  
2 4 (38) u2(x,t) = -cosn(x + t )  - sinx 

Therefore up to t = 0.5 the string wraps on the convex part of the obstacle 
with the speed ci = 1 (figure 7). At time t = 0.5 the extremity of the arc of 
the string wrapped on the obstacle reaches the inflexion point. The string 

Figure 7 Wrapping of the string on the obstacle 

15
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1“ 

Figure 8 Rebound and unwrapping of the string on the obstacle 

then rebounds on the concave part and- unwraps on the convex part with 
the speed ~ = - 1/3 (figure 8). 

The motion represented by the function u(x,t) = uz(x,t) is valid in 
the triangular region bounded by the two characteristics t - x = 0.5, t + 
x = 10.5 and the “unwrapping curve” 2t = 1 - 6x. Beyond the charac- 
teristic t + x = 10.5, we compute 

xt  1 - 2 x  
u ( x , t )  = u3(x,t) = 2sin-*sinx- 

2 4 -  (39) 

This new motion u = u3 is valid until the second line of influence CDE 
formed by the arc o f  contact CD, which corresponds to a rebound of the 
string on the convex part of the obstacle, and by the characteristic tangent 
DE to the arc CD (figure 6). 

At the first contact on the characteristic t - x = 0.5, 0 < x < 5 ,  
we have 

xsin2xx, A(x) = tan’xx. au2 -= a w  
at  
-- 

at 
- -xcos2xx, 

The value of the reflection coefficient varies from zero to infinity on the arc 
of contact. 

16
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7 Third example 

We again consider the same obstacle u = d(x)  = -sinx:x - cosnx, 
but we assume now that the string is initially at rest on the obstacle. Im- 
mediately after the initial time the string leaves the concave part and the 
motion in the region t 2 0, x < 0.5, t - x < 0 (figure 9) is defined by the 
solution u(x,t) = u ~ ( x , ~ )  of the equation (3), such that 

au4 u4(x,0) = -sinnx.cosxx, -(x,O) = 0 at 
(40) 

1 sin2xq - sin2xr 
(41) u4(x,t) = - -s in2nx~cos2~t  = 

2 4 

On the convex part of the obstacle, the string unwraps progressively, the 
extremity Q of the arc in contact being at abscissa x = a@). Determination 
of the function a(t), or the inverse function ~ ( x ) ,  is still a free boundary 
problem. The function u(x,t) = us(x,t) which represents the motion of the 
string beyond the characteristic t - x = 0 is determined by the conditions 

(42) 
1 
4 

us(x,t) = --sin2x(t + x) + g(q) 

1 
--sin27c(r(x) +) + g ( r ( x )  - x) = -sinnx-cosxx A 

7c 
(43) 

--cos2x(r(x) + x)  + g'(z(x) - x) = 0. 
2 

Taking the derivative of the first relation (43) and 
obtain 

eliminating g'(z + x) we 

3 2x 
4 3  

(44) r(x) = -2x and g(q) = -sin--q. 

Therefore from initial time the string unwraps on the convex part of the 
obstacle with the speed 6 = -(1/2) and we have 

t - x  
(45) 3 

Past the characteristic t + x = 1, we then have u(x,t) = u6(x.r) with 

4uS(x,t) = -sin2x(t + x)  + 3 sin2x-. 

t + x - 1  t - x  + 3sin2n- 
3 3 .  

(46) 4u6(x,t) = -3sin2x 

17
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0 

E 

1 

.5 

-X 
5 

Figure 9 Obstacle u = Q(x) = -sin xx . cosxx 
String initially at rest on thc obstoclc 

-.5 

Figure 10 Obstacle u = Q(x) = -sinnx. cosxx 
String initially at rest on the obstacle 

18
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The positions of the string at diDTerent instants are illustrated on figure 10. 
The regions in which the motion is represented by the functions u5(x,t) an 
u6(x,t) end at the first line of influence formed (figure 9) by the arc CD (which 
corresponds to a rebound of the string on the obstacle) and by the charac- 
teristic tangent D E .  

8 Fourth example 

We consider now a new obstacle, symmetrical with respect to the Ou 
axis: 

1 1 
3 3 (47) u = @(x) = --cos37tx = -cos7Fx'(1 - 2cos2xx). 

At the initial time, the string is at rest in the position u(x,O) = cosxx. The 
free oscillation w (x, t )  = cos 7tx * cos 7tt takes place in all the triangular region 
0 4 t < + x  + 0.5; for all the region one has w(x,t) 2 @(x). 

Beyond the characteristics t k x = 0.5, the equation w(x,t) = @(x), 
that is to say 3coslct = 1 - 2cos2nx, possesses a solution t = z(x) 
(dotted line in figure 11) for which Idz/dxI 2 1, if t is small enough, xt < 
Arc cos (- 1/9). O n  the corresponding arcs, rebound is not possible, as we 
have shown in 5 4, because the solution determined by the reflection con- 
ditions does not satisfy the boundary conditions u(0.5,t) = 0. The motion 
of the string beyond the characteristic t + x = 0.5 is therefore no longer 
free oscillation, but is defined by a function u(x,t) = u,(x,t): 

1 
(48) u7(x,t) = f ( o  + xcosxq, with f(+) = 0. 

The functionf(5) is determined by the wrapping conditions of the 
string on the obstacle. The moving extremity (of the arc of the string in 
contact with the obstacle) has the (free boundary) trajectory t = ~ ( x )  in the 
x,t plane; and the conditions which determine the functionsf(5) and z(x) 
are u7(x,z(x)) = @(x), (au7/at)(x,r(x)) = 0, that is 

1 1 
2 3 

f ( z  + x)  + -cosx(r - x)  = --cos37tx 

7t 
(49) 

f ' ( z  + x )  - -sinn(z - x) = 0. 
2 

Taking the derivative of the first equation and eliminating f ' ( r  + x )  we 
obtain 

1 
6 (50) t = T(X) = 1 - 2x, f ( 5 )  = --CCOS37F4: 
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I t' 

0 - . 5  

L 

- x  

1 
3 Figure 1 1  Obstacle u = O(x) = --cos3xx 

String u(x,O) = COSXX, - = 0 

4 
Periodic motion: period T = - 

3 

au 
at 

The motion u ( x , t )  is valid in the triangular region 0.5 - x < t $ inf 
(0.5 + x ,  1 - 2 x ) .  In the symmetrical region, with respect to the t-axis u ( x , t )  
= u,( - x ,  t )  and therefore beyond the characteristics t x = 0.5, u (x ,  t )  = 
U8 (X, t ) ,  

1 1 
6 3 (52) u ~ = - { c o s ~ x ~  + C O S ~ X ~ )  = - - c o s ~ ~ x * c o s ~ ~ c ~ .  

At time t = 2/3, the string comes, with zero velocity, into contact with the 
concave part of the obstacle, and starts off again instantaneously. It then 
unwraps on the convex parts; the moving ends of the arcs of the string in 
contact with the obstacle have the trajectories (free boundary) 3t  = 1 2 6 x  
in the x , t  plane. In the region sup(20.5 - 3 x ,  1 + 6 x )  < 3 t  < 20.5 -I- 3 x  
we have u ( x , t )  = ug(x,t) = &((,q) and in the region 5 i- 6 x  < 6 t  d 11 
rf: 6 x ,  we have u ( x , t )  = ulo(x , t )  

20
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U 

A 

1 
3 

Figure 12 Obstacle u = @(x) = --cosxx 

String u(x,O) = cosxx , - = 0 

4 
Periodic motion: period T = - 

3 -  

a U  

at 

1 4 
I?o(t.nl = - c o s x L  

u,o(x,t)  = cosxx'cosTt t - - . \ 3 )  
At time t = 4/3 we again find the initial conditions. We can then express 
the following result: 

If; at some time, the string is at rest on the obstacle 3 u + cos 3 xx = 0, 
the motion is periodic with the period T = 413. 

The positions of the string at different times are illustrated in figure 
12. 

9 Conclusion 

The present results do not give a complete and definitive solution for 
the problem of a string vibrating in the presence of obstacles. Nevertheless, 
they contain new solutions for cases involving convex obstacles, cases which 
are much more involved than those involving concave obstacles (those in- 
volving straight or point-mass obstacles of course being simpler still). These 
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new solutions should help provide a deeper understanding of the physics of 
this problem: rebounds, and wrapping and unwrapping of the string. We 
hope they will also help those who will eventually succeed in conceiving and 
writing a general computer program to obtain the motion of the string for 
arbitrary obstacles and arbitrary initial conditions. 
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