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We propose a model for the motion of a single active particle in a heterogeneous environ-

ment where the heterogeneity may arise due to the crowding, conformational fluctuations

and/or slow rearrangement of the surroundings. Describing the active particle in terms of the

Ornstein-Uhlenbeck process (OUP) and incorporating the heterogeneity in the thermal bath

using the two separate models, namely “diffusing diffusivity" and “switching diffusion", we

explore the essential dynamical properties of the particle for its one-dimensional motion. In

addition, we show how the dynamical behavior is controlled by dynamical variables asso-

ciated with the active noise such as strength and persistence time. Our model is relevant in

the context of single particle dynamics in crowded environment, driven by activity.

I. INTRODUCTION

Recent advances in the single-particle tracking technique have promoted the studies on the motion

of single particles which are of great importance as they provide deep insights about the nonequi-

librium physics, in addition to their immense potential applicability in the field of biophysics [1, 2].

In biological systems, from cargo transport by a motor protein to the motion of a microorganism

such as bacteria, a particle moves on its own by harnessing energy from an active process like ATP

hydrolysis. Such system is termed as active and it operates out of equilibrium [3, 4]. One of the

most common ways of modelling an active particle is by describing its propulsion velocity as the

Ornstein-Uhlenbeck process (OUP), and it is termed as the “active Ornstein-Uhlenbeck particle"

(AOUP) model [5–8]. In this model, the velocities at different times are exponentially correlated

[6, 9]. Therefore, the motion has persistence. By construction, in the AOUP framework, the parti-

cle has a Gaussian distribution in space, and it ensures enhanced diffusion in the long-time limit.

http://arxiv.org/abs/2112.13357v2


2

It is worth mentioning here that the OUP model can also be adapted to describe the dynamics

of passive particles immersed in a bath containing active particles, e.g., see Refs. [10–14]. The

above description is well suited for the diffusion in an environment where the diffusivity of the

particle remains unchanged over the time, or in other words, the particle moves in a homogeneous

environment.

Over the past decade, experiments on the dynamics of passive tracers in a crowded environment

as well as computer simulations have been performed by several research groups [15–21]. The ex-

amples include diffusion of lipid vesicles in a solution of entangled filaments [16], tracer diffusion

in an environment consisting of large particles or polymer melts or suspension of polymer chains

[17, 22, 23], mobile biomolecules on a surface [19, 20], in-plane diffusion of drug molecules

in between silica slabs [24], to name but a few. The most notable observation of these studies

is the fact that particle has non-Gaussian position distribution. In many cases, the distribution

has an exponential tail at intermediate times, which vanishes in the long-time limit, exhibiting a

Gaussian behavior, as predicted by the central limit theorem [23, 25]. Interestingly, some studies

have shown that though the distribution is non-Gaussian, the mean square displacement (MSD)

all times grows linearly in time, or in other words, the dynamics is Fickian [15–17, 21]. Such

observations are not consistent with the description of the normal diffusion, and thus the processes

associated with similar features are, in general, termed as “anomalous, yet Brownian diffusion"

(AYBD) [26, 27]. A plausible explanation for AYBD comes from a theoretical formalism where

the tagged particle possesses multiple diffusion coefficients, i.e., the diffusivity is a stochastic

variable and it follows some distribution [26]. The idea of introducing fluctuations into intensive

variables such as energy dissipation can be traced back to the work on atmospheric turbulence

by Obukhov and Kolmogorov [28–31]. Later similar idea was invoked by Beck and Cohen to

show how an effective statistical description can be obtained after averaging over the fluctuations

of intensive variables such as temperature (or thermal diffusivity), and they called it “superstatis-

tics" [32]. However, it was Robert Zwanzig who, in a different context, introduced essentially

the same concept in a more general way while describing the rate process with a rate constant

that fluctuates in time due to fluctuations of the barrier height [33]. It can take discrete values or

it can be a continuous function. Zwanzig called this “dynamical disorder" [23, 34, 35]. In the

context of diffusing particles, a similar formalism named “diffusing diffusivity" (DD) model was

put forward by Chubynsky and Slater [26], and it was further extended by Sebastian’s group and

Metzler’s group independently [36–41]. The model of Chubynsky and Slater is a case of static
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(or quenched) disorder as the diffusivity does not fluctuate with time as it has a stationary distri-

bution. But for the models developed by Sebastian and Metzler, the diffusivity of a particle in a

crowded, heterogeneous surroundings is a time-dependent random variable which is considered

as the square of a random process such as OU process, since the diffusivity can take only positive

values. But when the motion is sampled over all trajectories, it results diffusive motion with the

ensemble-averaged diffusivity. In other words, the mean square displacement is proportional to the

time elapsed, i.e., 〈x2(t)〉=Kt, and the coefficient of proportionality (K) is fully time-independent

quantity which can be expressed in terms of the equilibrium diffusivity. This model is applied to

describe the motion in a heterogeneous environment rearranging with a timescale comparable to

the one corresponding to the diffusing particle. It should be noted here that in the quenched-

disordered media the DD approach can also be applied but only in the limit of rapidly changing

disorder [42–44]. For different random-diffusivity models, readers are referred to Refs. [45–47].

See also Ref. [48] for the derivation of AYBD using the large deviations approach. There are

situations where the particle can have few conformations specified by their diffusivities, or there

are spatial heterogeneity or specific kinds of interaction between the particle and its surroundings

which leads to a motion associated with discrete diffusivities [49–52]. For instance, a freely dif-

fusing particle intermittently trapped due to presence of random binding zones or traps exhibits a

non-Gaussian spatial distribution [53]. Another example includes conformational fluctuations of a

protein called transcription factor which switches between two conformations while searching for

a promoter site to initiate the transcription; in one conformation it moves fast on the DNA track,

but in another conformation it undergoes a slow motion due to strong interaction with the track

[50]. The above dynamics is usually described by the two-state model or the switching diffusion

[35, 54]. Apart from the Brownian dynamics, applications of the switching model in describing

several biochemical processes such as cellular signalling, chemotaxis, synaptic dynamics, growth

of cell population, pattern formation are noteworthy in relation to the present topic [55–59]. In

addition to the AYB diffusion of Brownian particles, stochasticity in diffusivity naturally arises in

the dynamics of macromolecules such as conformational fluctuations of proteins [60, 61] and the

motion of the center of mass of (de)polymerising or shape-shifting molecules [61, 62]. The non-

Gaussian behavior can also be observed for sub-diffusing particles moving in gels or viscoelastic

media such as cytoplasmic environment due to heterogeneity [63–66]. See the theoretical work

of Ref. [67] where unexpected non-Gaussianity occurs for Lennard-Jones mixtures as a result of

intermittent hopping motion.
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In all the examples discussed above on the heterogeneous diffusion, the particle’s motion is mainly

influenced by the thermal fluctuations, or more specifically, no intrinsic energy source or no ex-

ternal stochastic driving is considered, and therefore, the dynamics is in equilibrium. However, as

mentioned earlier, the diffusive motion coupled to an active process is very common in biological

systems, though its theoretical study in heterogeneous environment is largely lacking. Inclusion

of heterogeneity is important to study the activity-driven systems such as self-propelled particles

in the presence of obstacles [68], active soft colloids with switching active interactions [69], run-

and-tumble disks displaying avalanche dynamics [70], transport of active tracers in a polymer

grafted channel [71], etc. For a detailed account on this topic, the reader is referred to Ref. [72].

Along these lines, there have been theoretical investigations of the impact of heterogeneity on the

transport properties of active particles [73, 74]. These studies have mostly considered the active

Brownian particle (ABP) model to describe the dynamics, and the fluctuations are incorporated

either in self-propulsion velocity or both in thermal and active forces. In another study [69], Bley

et. al. have investigated the dynamical properties of a suspension of active colloids where each

particle switches randomly between two states differing in their size as well as mobility. It has

been shown there that this switching induces non-Gaussian behavior at intermediate times.

Drawing motivations from these experimental and simulation based investigations, here we pro-

pose an analytically solvable model to capture the dynamics of a simple one-dimensional active

particle with dynamical disorder. We consider two cases, namely the switching diffusion where

the particle switches between two conformations with two different thermal diffusivities, and the

diffusing diffusivity model in which the particle takes instantaneous thermal diffusivity which

changes randomly over time due to the rearrangement of the environment. In our model, the ac-

tivity does not get affected by the heterogeneity, and it is modeled as Ornstein-Uhlenbeck process.

These models along with the dynamics of the particle is discussed in Sec. II. In Sec. III we

showcase the main results. A summary is given in Sec. IV.

II. DYNAMICS

Here we consider an active particle moving in a heterogeneous media as pictorially depicted in Fig.

1. For simplicity, the motion is restricted to one dimension although it can be in principle extended

to higher dimensions. In the following section, more details about the dynamics is provided.
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A. Model of active noise

Apart from thermal kicks experienced by the particle, it is also subjected to an extra noise termed

as the active noise, and as a result, it executes directed motion. Therefore, the dynamics of the

particle is governed by the following stochastic equation:

ẋ(t) = ηT (t)+ vA(t), (1)

where ηT (t) is the thermal noise modeled as a Gaussian white noise with zero mean. Thus,

〈ηT (t)〉= 0, and the autocorrelation function is

〈ηT (t)ηT (t
′)〉= 2DT (t)δ (t− t ′). (2)

Here it is assumed that either the environment is crowded and stochastically rearranging, that is

to say, the particle explores the heterogeneous environment, or the particle itself alters between

many states, which results only the fluctuations in the thermal diffusivity DT . Following Zwanzig,

it is referred here as the dynamically disorder system. To account for the disorder, two different

models are discussed in Sec. II B.

On the other hand, vA(t) corresponds to the self-propulsion velocity of the particle, and it can be

conceived as the active noise which drives the particle out of equilibrium. As a standard model,

the noise taken here is a Gaussian colored noise, which follows the OUP of the form

v̇A(t) =− 1
τA

vA(t)+
1
τA

ηA(t), (3)

with ηA(t) being the Gaussian white noise having correlation 〈ηA(t)ηA(t
′)〉= 2DAδ (t− t ′). So the

auto-correlation function of vA(t) can be expressed as

〈vA(t)vA(t
′)〉= DA

τA

e
− |t−t′|

τA , (4)

where DA denotes the active diffusivity and τA is the persistence time. Other than the strength

DA, the characteristic timescale τA characterizes the active noise, and higher value of τA means a

long-lived directed motion. In the limit τA → 0, the noise becomes delta-correlated and behaves

like the thermal noise [75].

B. Model of thermal diffusivity

As discussed earlier, the thermal diffusivity of the particle fluctuates in time due to disorder. In the

following sections, two models are considered to describe the time-dependent diffusivity DT (t).
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Figure 1. A typical illustration of a diffusing active particle (green ball) in a disordered or heterogeneous

medium. The blue arrow represents the instantaneous direction of the self-propulsion velocity (vA) of the

particle.

1. Switching diffusion

In the switching diffusion model, the particle switches between two states with two different ther-

mal diffusivities D1 and D2. Let us call the states as state 1 and state 2, respectively. The transition

happens from the state 2 to the state 1 with a rate r21, and vice versa with a rate r12. This is a

simple version of the “Markov additive" model commonly used to capture the protein movement

on a DNA track where it encounters different states of chromatin with variable affinities, and as

a result, its motion accounts for the heterogeneous environment [76]. Here we assume that the

particle has two discrete states and it starts its journey either from the state 1 or state 2 with their

respective steady-state probabilities which are given by

p1,s =
r21

r12 + r21
, p2,s =

r12

r12 + r21
, (5)

where pi,s being the steady-state probability at state i, i = 1, 2. For such a case, the characteristic

functional can be expressed as [77]

〈e−p2
´ t

0 dt ′ D(t ′)〉D(t ′) =
1
2

[

1− φ3

φ2

]

e−(φ1+φ2)t +
1
2

[

1+
φ3

φ2

]

e−(φ1−φ2)t , (6)

where φ1 =
p2

2 (D1+D2)+
1
2(r12+r21), φ2 =

1
2

√

[(D2 −D1)p2 +(r21 − r12)]
2
+4r12r21, and φ3 =

1
2(r12+r21)− p2

2
r12−r21
r12+r21

(D2−D1). The equilibrium diffusivity is given by Deq = 〈D(t)〉= p2,sD2+

p1,sD1. Here, D2 ≥ D1 ≥ 0.
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2. Diffusing diffusivity model

In the diffusing diffusivity model, DT (t) is considered as the position of n−dimensional harmonic

oscillator, i.e., DT (t) = ∑n
i=1 ξ 2

i (t), where the evolution of ξi(t) is governed by the Ornstein-

Uhlenbeck process (OUP), ξ̇i = −ω ξi(t)+ ηi(t). Here ηi(t) is the white Gaussian noise with

correlation 〈ηi(t)η j(t
′)〉= Deqω δi j δ (t − t ′), and Deq is the effective or equilibrium diffusivity of

the particle in the medium. Here, we consider a two-dimensional model, i.e., DT (t) = ∑2
i=1 ξ 2

i (t).

The characteristic functional for such model can be found easily by the path integral technique,

and it reads [36]

〈e−p2
´ t

0 dt1 D(t1)〉D(t1) =
4ωβ e−(β−ω)t

(β +ω)2 − (β −ω)2 e−2β t
, (7)

with β =
√

ω2 +2ωDeq p2. The relaxation timescale for the environment rearrangement is roughly

related to the inverse of ω, which implies that for higher values of ω, the environment relaxes faster

and as a result, the particle visits all possible configurations of the environment comparatively at a

shorter timescale.

III. RESULTS

Here our aim is to find the dynamical properties of the particle. To do so, we first outline the

technique to obtain the probability distribution function (PDF) in space. Using Eq. (1), one can

write

x(t) = x0 +

ˆ t

0
dt1 ηT (t1)+

ˆ t

0
dt1 vA(t1), (8)

with x0 being the initial position of the particle. Now the probability distribution function (PDF)

of finding the particle at position x at time t considering x(0) = x0, can be expressed as

P(x, t|x0,0) = 〈δ (x− x(t))〉, (9)

where 〈· · · 〉 represents the ensemble average over all trajectories of x(t). Writing the definition of

delta functional explicitly in the above and with the aid of Eq. (8), the PDF can be rewritten as

P(x, t|x0,0)

=
1

2π

ˆ ∞

−∞
dpe−ipx〈eipx(t)〉

=
1

2π

ˆ ∞

−∞
dpe−ip(x−x0)〈eip

´ t
0 dt ′ ηT (t

′)〉ηT (t ′) 〈e
ip
´ t

0 dt ′ vA(t
′)〉vA(t ′). (10)
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Now the averages are taken over the noises. As the evolution of the two noises are decoupled to

each other, the ensemble averages now can be computed separately as shown in the above equation.

It is useful to note here that the fourth-order autocorrelation function of any Gaussian noise σG

can be expressed as [78]

〈σG(t1)σG(t2)σG(t3)σG(t4)〉

= 〈σG(t1)σG(t2)〉〈σG(t3)σG(t4)〉+ 〈σG(t1)σG(t3)〉〈σG(t2)σG(t4)〉

+ 〈σG(t1)σG(t4)〉〈σG(t3)σG(t2)〉, (11)

and the characteristic functional of the noise σG can be evaluated using the relation [79]

〈ei
´ t

0 dt ′ p(t ′)σG(t
′)〉σG(t ′) = e−

1
2

´ t
0 dt1
´ t

0 dt2 p(t1)〈σG(t1)σG(t2)〉p(t2). (12)

By the virtue of the above relation and Eq. (4), the average over the active noise can be easily

obtained, and it reads

〈eip
´ t

0 dt ′ vA(t
′)〉vA(t ′) = e−

p2

2

´ t
0 dt1
´ t

0 dt2〈vA(t1)vA(t2)〉 = e
−DA p2

(

t+τA

(

e
− t

τA −1

))

. (13)

Similarly for the thermal noise, the average can be calculated using Eq. (2) as

〈〈eip
´ t

0 dt ′ ηT (t
′)〉〉ηT ,DT

= 〈e−p2
´ t

0 dt ′ DT (t
′)〉DT (t ′). (14)

Since the the diffusivity is also a stochastic variable, one also needs to do the averaging over all

realizations of DT (t), as shown in the above equation. Now we can take different models of DT (t)

as discussed in Sec. II B to do the further analysis.

To get a preliminary idea about the dynamics, we find the mean square displacement (MSD). For

both the models of DT (t), the MSD can be expressed using Eq. (8), and it yields (see Eq. (A1))

〈(x(t)− x0)
2〉

=

ˆ t

0

ˆ t

0
dt1dt2 〈ηT (t1)ηT (t2)〉+

ˆ t

0

ˆ t

0
dt1dt2 〈vA(t1)vA(t2)〉

= 2Deq t +2DA

(

t + τA

(

e
− t

τA −1
))

. (15)

Notice that the first term of the right-hand side (RHS) is a linear function of time and is solely

coming from the thermal contribution, which we denote here as 〈(x(t)− x0)
2〉T . Now we can
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Figure 2. Log-Log plot of the mean square displacement (MSD) [Eq. (15)] scaled by the MSD in a purely

thermal bath as a function of time t for different values of τA. The curves with symbols are the approximate

results for the ballistic regime in the limit t ≪ τA [see Eq. (16)], and two black lines correspond to the very

short-time (lower line) and long-time (upper line) diffusive limits. The other parameters used in the plots

are Deq = 5.0, DA = 25, x0 = 0.

distinguish different time limits for which the MSD can be approximated as follows:

〈(x(t)− x0)
2〉 ≈





































2Deq t if t < 2Deq

DA
τA

DA
t2

τA
if t > 2Deq

DA
τA

if t ≪ τA

{

2(Deq +DA)t if t ≫ τA

. (16)

In the short-time limit, i.e., for t ≪ τA, the motion approaches a ballistic behavior when t > 2Deq

DA
τA,

though at t < 2Deq

DA
τA, the dynamics is Fickian with the thermal diffusivity Deq. On the other hand,

the MSD for the long time limit t ≫ τA is linear in time, clearly suggesting a diffusive regime with

an elevated diffusivity. The results are graphically displayed in Fig. 2 and are equivalent to the

one observed for the case in a homogeneous environment [80].

To know more about the dynamics, particularly the tail behavior, we compute the non-Gaussian

parameter (NGP) defined as γG = 〈x4(t)〉
3〈x2(t)〉2 −1, considering x0 = 0, without any loss of information.

For the switching diffusion, the NGP is given by (see the derivation in Appendix A 1)

γG(t) =
2(D2 −D1)

2

(r12 + r21)
4

r12r21

(

(r12 + r21) t −1+ e−t(r12+r21)
)

(

DA (t − τA)+Deqt + e
− t

τA DAτA

)2 . (17)
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In the regime t ≪ τA, it approximates to

γG(t)≈
2(D2 −D1)

2r12r21

(

(r12 + r21) t −1+ e−t(r12+r21)
)

(r12 + r21)
4
(

Deqt + 1
2DA

t2

τA

)2 , (18)

which implies γG(t) ∝ τ2
A at short times. This can be understood from Fig. 3 (a). In the extremely

short-time limit t → 0, or equivalently for 1 ≫ r12t, 1 ≫ r21t, t ≪ τA, the NGP converges to a

fixed value (D2−D1)
2r12r21

(r12+r21)
2
D2

eq

, which is independent of τA and DA, as can be seen in Figs. 3 (a) and 4

(a). This indicates that the particle was initially at a nonequilibrium state solely due to disorder.

A quick check for the accuracy of our result is to take D2 = D1, and notice that the NGP vanishes

to zero at short times, which correctly reproduces the result for the case without disorder. As time

passes, γG(t) decreases monotonically, and it decays faster for small values of τA and large values

of DA, as illustrated in in Figs. 3 (a) and 4 (a). From Fig. 3 (c) one can also see that the NGP is

a monotonically increasing function of τA, the slope in the short τA limit gradually decreases as t

increases, though its effect at intermediate τA prevails only at a relevant timescale. In the long-time

limit, the NGP can be approximated to

γG(t)≈
2(D2 −D1)

2
r12r21

(r12 + r21)
3

t
(

Deq +DA

)2 , (19)

and it becomes zero at t → ∞, implying the Gaussian behavior, as anticipated.

For the diffusing diffusivity model, the NGP is given by (for detailed calculation see A 2)

γG(t) =
D2

eq

(

2tω −1+ e−2tω
)

2
(

ωt
(

DA +Deq
)

−DAωτA +ωDAτAe
− t

τA

)2 . (20)

The NGP becomes unity and zero in the very short and large time limits, respectively. In the limit

t ≪ τA, it can be approximated to

γG(t)≈
D2

eq

(

2tω −1+ e−2tω
)

2ω2
(

Deqt + 1
2DAt2/τA

)2 . (21)

Like the previous case, the value of γG(t) strongly depends on τA as well as DA, as can be seen

in panels (b) and (d) of Fig. 3 and in Fig. 4 (b). Also, similar dependence of ω on the NGP can

be found, as shown in Fig. 3 (b). As the environment rearranges fast when ω is large, the motion

is sampled over all realizations at a shorter timescale and consequently, the particle achieves a

Gaussian distribution, which is reflected in the plot of γG(t) shown in Fig. 3 (b).
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Figure 3. The non-Gaussian parameter (NGP) is plotted (i) as a function of time t for different values of τA

in panels (a)-(b), and (ii) the plots of NGP scaled by its value at τA = 0 [see Eqs. (A9) and (A16)] are shown

in panels (c)-(d) as a function of the correlation time of the active noise τA at different times. In panels (a)

and (c), the thermal diffusivity is modelled by the switching diffusion, and the curves correspond to Eq.

(17). The parameters used here are given by the set {D1 = 5, D2 = 15, DA = 25, r12 = r21 = 1/2}. In panels

(b) and (d), the diffusing diffusivity model is used to describe the fluctuating diffusivity, and the curves are

obtained using Eq. (20). Here, the values of other parameters are Deq = 5, DA = 25. For panel (d), we take

ω = 1.0. In the insets of panels (a) and (b), the plots are compared with the approximate results for t ≪ τA

(represented by the dashed lines) given by Eqs. (18) and (21), respectively. The plots for large-τA limit are

enlarged in insets of panels (c) and (d) to show that the ratio γG/γ0
G converges to a constant value [see Eq.

(A10)] which is represented by the dashed lines.

Switching diffusion: Here we further investigate the dynamical properties by finding the com-

plete PDF for the model of switching diffusion. By virtue of Eqs. (6) and (13), the PDF given in
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Figure 4. Logarithmic pots of the non-Gaussian parameter (NGP) as a function of time t for different values

of DA in the case of (a) switching diffusion and (b) diffusing diffusivity model. The short-time behavior is

shown in the inset and can be well described by the approximate results (represented by dashed lines) given

by Eqs. (18) and (21), respectively. For both models, we have taken τA = 5. The other parameters used in

panel (a) are D1 = 5, D2 = 15, r12 = r21 =
1
2 , and in panel (b) these are Deq = 5, ω = 1.

Eq. (10) can be written explicitly as

P(x, t|x0 = 0,0)

=
1

2π

ˆ ∞

−∞
dpe−ipx 1

2

[

1− φ3

φ2

]

e−(φ1+φ2)te
−DA p2

(

t+τA

(

e
− t

τA −1

))

+
1

2π

ˆ ∞

−∞
dpe−ipx 1

2

[

1+
φ3

φ2

]

e−(φ1−φ2)t e
−DA p2

(

t+τA

(

e
− t

τA −1

))

. (22)

The integration in the above equation cannot be evaluated exactly. However, we can consider

different limiting cases as demonstrated in Appendix B 1. At a timescale shorter than the inverse

of switching rates, the distribution is the weighted average of two Gaussian functions centered at
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x0, as given by (see Eq. (B1))

P(x, t|x0,0) = p1,s
e
− (x−x0)

2

2〈x2(t)〉1
√

2π〈x2(t)〉1
+ p2,s

e
− (x−x0)

2

2〈x2(t)〉2
√

2π〈x2(t)〉2
, (23)

with 〈x2(t)〉1 = 2
[

D1 t +DA

(

t + τA

(

e
− t

τA −1
))]

, 〈x2(t)〉2 = 2
[

D2 t +DA

(

t + τA

(

e
− t

τA −1
))]

and pi,s being the steady-state probabilities defined in Eq. (5). So it shows a non-Gaussian behavior

with a narrow central peak region which becomes pronounced at higher values of τA and lower

values of DA, as can be seen in Figs. 5 and 6. These results are in consistent with the previous

analysis on the non-Gaussian parameter, and it certainly requires a word of explanation. In our

model, the dynamics solely driven by the active noise always shows a Gaussian behavior due to

the Gaussian characteristics of the noise. However, with the introduction of dynamical disorder

in the form of fluctuating thermal diffusivity, the system tends to deviate from the Gaussianity at

short and intermediate timescales. Therefore, there is a competition between two opposing factors

which determine the (non-)Gaussianity of the system. Naturally, prominent Gaussian behavior

dictated by broader Gaussian central region prevails if the strength of the active noise given by

the ratio DA/τA becomes large. So using this argument all the previous results on the impact of

DA and τA can be inferred. With the progress of time, the height of the peak decreases and the

distribution flattens and eventually, it converges to a single Gaussian as illustrated in Fig. 7. The

Gaussian has the following form

P(x, t|x0 = 0,0) =
e
− x2

2〈x2(t)〉eq

√

2π〈x2(t)〉eq

, (24)

with 〈x2(t)〉eq = 2
[

Deq t +DA

(

t + τA

(

e
− t

τA −1
))]

. The calculations for this limiting case has

been given in Appendix B 1. The above result is not very surprising as in the long-time limit

the particle explores all possible realizations with different diffusivities, thereby displaying Gaus-

sian properties with an equilibrium diffusivity. Unlike the passive-particle case, here the width

〈x2(t)〉eq is enhanced, and it is expressed in terms of the equilibrium thermal diffusivity and active

diffusivity. Note that here the pattern of convergence to a Gaussian is strikingly different from the

one observed in a system with strong static disorder where the peak narrows down to a single point

in the long time [81]. Our model is related to the one in Ref. [69] where a soft colloid diffusing in

response to the gradients in chemical potential and/or concentrations switches between two states

with different masses due to active interactions. Unlike Ref. [69], here we consider the motion of
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Figure 5. Active particle with switching diffusion: spatial distribution computed numerically from Eq. (22)

is plotted with symbols as a function of displacement x for different values of τA at a short time t = 0.10.

The values of other parameters are as follows: D1 = 1, D2 = 14, r12 = 1/2, r21 = 1/2, DA = 25. The solid

lines which correspond to the approximate result given in Eq. (23) are in good agreement with the numerical

ones.
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Figure 6. Active particle with switching diffusion: PDF versus displacement plot for t = 0.50 and τA = 5.0.

The values of other parameters (D1, D2, r12, r21) are same as in Fig. 5, and the solid lines representing the

approximate result [Eq. (23)] are drawn for the purpose of comparison like Fig. 5.

a soft active colloid, which means that the dynamics is not only driven by the chemical or/and con-

centration gradient, but it also moves due to self-propulsion mechanism fueled by ATP hydrolysis.

However, it is interesting to note that both studies capture the non-Gaussian behavior at a shorter

timescale, which further emphasizes the fact that the non-Gaussianity is a very common feature

associated with a disordered system.
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Figure 7. Probability distribution function versus displacement in logarithmic scale at different times for the

case where the thermal diffusivity switches between two values D1 (state 1) and D2 (state 2) at Poisson rates

(from state 2 to 1) r21 and (vice versa) r12. The curves with symbols are obtained numerically using Eq. (22)

by taking the set of parameters as follows: {D1 = 1, D2 = 14, r12 = 3/4, r21 = 1/4, τA = 50, DA = 25}. In

panel (a) the distribution is for small times and is approximately similar to Eq. (23) as depicted by solid

lines. In panel (b) the solid lines correspond to Eq. (24) and match well with the numerical results in the

long-time limit.

Diffusing diffusivity model: From Eq. (10), with aid of Eqs. (13) and (7), the spatial distri-

bution can be expressed as

P(x, t|x0 = 0,0)

=
1

2π

ˆ ∞

−∞
dpe−ipx 4ωβ e−(β−ω)t

(β +ω)2 − (β −ω)2 e−2β t
e
−DA p2

(

t+τA

(

e
− t

τA −1

))

. (25)

The above integration is evaluated numerically and plotted in Figs. 8 and 9. Unlike the switching

diffusion case, the distribution at short times is expressed by double exponential functions of the
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form

P(x, t|x0 = 0,0)

≈ e

DA

(

t+τA

(

e
− t

τA −1

))

Deqt

2
√

Deqt

[

cosh

(

x
√

Deqt

)

− erf













x
√

1

4

[

DA

(

t+τA

(

e
− t

τA −1

))]













sinh

(

x
√

Deqt

)

]

, (26)

which is also non-Gaussian in nature. See the derivation in Appendix B 2. The non-Gaussian na-

ture at short times can also be observed from Fig. 8 (a). It is clear from Fig. 9 that the distribution

for large values of τA has a significantly long exponential tail, which indirectly suggests that the

long persistence strongly enhances the effect of disorder on the particle’s motion. On the other

hand, the nature of non-Gaussianity diminishes as the strength of active noise increases, as can

be comprehended from Fig. 10. This is also complemented by the previous NGP analysis. Sim-

ilar explanations as presented in the case of switching diffusion can be given to understand such

properties in the intermediate-time regime, namely, with increasing the strength of active noise

the Gaussian properties prevail. As time passes, the height of the distribution gets reduced with

flattening of the curve as shown in Fig. 8 (b), and after a long time, the PDF becomes a Gaussian

distribution given by Eq. (B4).

IV. CONCLUSION

In this paper, we have investigated the dynamics of a single active Ornstein-Uhlenbeck particle

(OUP) subjected to the dynamical disorder. Invoking the idea of fluctuating thermal diffusivity,

we have shown that the distribution becomes non-Gaussian at intermediate times, which cannot

be found in the usual OUP model, but the behavior is not very surprising as this is the signature

of a disordered system. However, unlike the passive disordered case, the dynamics is not always

Fickian; we have observed a ballistic behavior at a timescale shorter than its persistence time, sig-

nifying the directed motion of the active particle. Also it has been found that the non-Gaussianity

in the distribution is strongly influenced by the strength of the active noise suggesting that the

longer correlation arising due to activity facilitates the effect of disorder on the dynamics.
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Figure 8. Logarithmic plot of probability distribution function at different times as a function of displace-

ment considering that the thermal diffusivity D(t) is a stochastic variable following the OU process. The

characteristic timescales for thermal diffusivity and active noise are 1/ω = 0.4, τA = 5.0, respectively. The

numerical results obtained from Eq. (25) are plotted using symbols taking DA = 25. In panel (a) the plots

are for small times, and the solid lines correspond to the analytical result given by Eq. (26). In panel (b) the

solid lines correspond to Eq. (B4).

The extensions of this work may be manyfold: In one direction, one can explore the effect of

heterogeneity on several properties of a non-interacting active system which are at certain extent

studied in the context of passive particle. In other direction, it can be extended to higher dimen-

sions which is relevant while to be dealing with real biological systems. In addition, one may

incorporate heterogeneity and interactions together to look into the many-body problem such as

biopolymers and active gels [82, 83].
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Figure 9. Active particle in a heterogeneous medium characterized by the diffusing diffusivity model:

logarithmic plots of the spatial distribution numerically obtained from Eq. (25) and marked by symbols are

compared with the analytical solution [Eq. (26)] represented by the solid curves for different values of τA

at a short time t = 0.10. The values of other parameters are same as in Fig. 8.
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Figure 10. Active particle in a heterogeneous medium characterized by the diffusing diffusivity model:

Like Fig. 9 the numerical plots of PDF are compared with the approximate distribution (solid curve) given

by Eq. (26). The plots are for different values of DA at time t = 0.40 and τA = 1.0. Other parameters are

Deq = 5 and ω = 1.0.
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Appendix A: Computation of moments and non-Gaussian parameter

The second moment of the distribution as given by Eq. (15) can be computed using Eqs. (2) and

(4), and it reads

〈(x(t)− x0)
2〉

=

ˆ t

0

ˆ t

0
dt1dt2 〈ηT (t1)ηT (t2)〉+

ˆ t

0

ˆ t

0
dt1dt2 〈vA(t1)vA(t2)〉

= 2
ˆ t

0

ˆ t

0
dt1dt2 〈DT (t1)〉δ (t1− t2)+

DA

τA

ˆ t

0

ˆ t

0
dt1dt2 e

− |t1−t2|
τA

= 2〈DT (t)〉
ˆ t

0
dt1 +2DA

ˆ t

0
dt1

(

1− e
− t1

τA

)

= 2Deq t +2DA

(

t + τA

(

e
− t

τA −1
))

. (A1)

The fourth moment given in Eq. (11) can be expressed using Eq. (8), as follows:

〈(x(t)− x0)
4〉

=

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)ηT (t3)ηT (t4)〉

+2
ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)〉〈vA(t3)vA(t4)〉

+

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈vA(t1)vA(t2)vA(t3)vA(t4)〉. (A2)

Now, with the aid of Eq. (11) and the autocorrelation function of vA(t) as given in Eq. (4), the last

term of the RHS in the above equation can be computed, and it reads

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈vA(t1)vA(t2)vA(t3)vA(t4)〉

=

ˆ t

0

ˆ t

0
dt1dt2〈vA(t1)vA(t2)〉

ˆ t

0

ˆ t

0
dt3dt4〈vA(t3)vA(t4)〉

+

ˆ t

0

ˆ t

0
dt1dt3〈vA(t1)vA(t3)〉

ˆ t

0

ˆ t

0
dt2dt4〈vA(t2)vA(t4)〉

+

ˆ t

0

ˆ t

0
dt1dt4〈vA(t1)vA(t4)〉

ˆ t

0

ˆ t

0
dt2dt3〈vA(t2)vA(t3)〉

= 3

[

DA

τA

ˆ t

0

ˆ t

0
dt1dt2e

− |t1−t2|
τA × DA

τA

ˆ t

0

ˆ t

0
dt3dt4e

− |t3−t4|
τA

]

= 12
[

DA

(

τA

(

e
− t

τA −1
)

+ t
)]2

. (A3)
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Using the properties of white noise ηT (t), the first term of the RHS in Eq. (A2) can be written as

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)ηT (t3)ηT (t4)〉

=

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4〈〈ηT (t1)ηT (t2)〉〈ηT (t3)ηT (t4)〉〉DT

+

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt3dt2dt4〈〈ηT (t1)ηT (t3)〉〈ηT (t2)ηT (t4)〉〉DT

+

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt4dt2dt3〈〈ηT (t1)ηT (t4)〉〈ηT (t2)ηT (t3)〉〉DT

= 24
ˆ t

0
dt1

ˆ t1

0
dt2〈DT (t1)DT (t2)〉. (A4)

The middle term of the RHS in Eq. (A2) is given by

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)〉〈vA(t3)vA(t4)〉

= 12t

ˆ t

0
dt1

ˆ t1

0
dt2 〈D(t1)〉〈vA(t1)vA(t2)〉. (A5)

For the two models of DT (t), we solve Eqs. (A4) and (A5). The calculations are shown below.

1. Switching diffusion

To perform the integration in Eqs. (A4) and (A5), it is required to know the average and auto-

correlation function of D(t) which are given by [84] 〈D(t)〉 = r12D2+r21D1
r12+r21

, and 〈D(t1)D(t2)〉 =
〈D(t1)〉2 + r12r21

(r12+r21)2 (D2 −D1)
2 e−(r12+r21)|t2−t1|. Using these, one can compute Eq. A4 as

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)ηT (t3)ηT (t4)〉

= 24
ˆ t

0
dt1

ˆ t1

0
dt2

[

(

r12D2 + r21D1

r12 + r21

)2

+
r12r21

(r12 + r21)2 (D2 −D1)
2 e−(r12+r21)(t1−t2)

]

=
12

(r12 + r21)3

[

(r12 + r21) t2 (D2r12 +D1r21)
2

+2(D1 −D2)
2r12r21

(

e(−r12−r21)t −1
r12 + r21

+ t

)

]

. (A6)
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Similarly, one has

2
ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)〉〈vA(t3)vA(t4)〉

=
24DAt (D2r12 +D1r21)e

− t
τA

(

et/τA(t − τA)+ τA

)

r12 + r21
. (A7)

By virtue of Eqs. (A3), (A6), (A7) and (15), the NGP defined by γG = 〈x4(t)〉
3〈x2(t)〉2 −1 can be calcu-

lated, and it yields

γG(t) =
2(D2 −D1)

2

(r12 + r21)
2 ×

r12r21

(

(r12 + r21) t −1+ e−t(r12+r21)
)

(

(r12 + r21)DA (t − τA)+(D2r12 +D1r21)t + e
− t

τA (r12 + r21)DAτA

)2 . (A8)

For τA = 0, the NGP denoted here as γ0
G(t) can be expressed as

γ0
G(t) =

2(D2 −D1)
2r12r21

(

(r12 + r21) t −1+ e−t(r12+r21)
)

(r12 + r21)
4

t2
(

DA +Deq

)2 . (A9)

For τA → ∞ and finite values of t, the ratio γG(t)/γ0
G(t) takes a constant value, viz.,

γG(t)

γ0
G(t)

≈
(

1+
DA

Deq

)2

. (A10)

2. Diffusing diffusivity model

Using the dynamical equation of ξ (t) given in Sec. II B 2, one can write

〈
(

ξ (t1)−ξ (0)e−ωt1
)(

ξ (t2)−ξ (0)e−ωt2
)

〉

= 〈ξ (t1)ξ (t2)〉

−〈ξ (t1)ξ (0)〉e−ωt2 −〈ξ (t2)ξ (0)〉e−ωt1 + 〈ξ (0)ξ (0)〉e−ωt1−ωt2

=

ˆ t1

0

ˆ t2

0
dt ′1dt ′2 e−ω(t1−t ′1)e−ω(t2−t ′2)〈ηA(t

′
1)ηA(t

′
2)〉, (A11)

which implies 〈ξ (t1)ξ (t2)〉= 〈ξ 2(0)〉e−ω|t1−t2|. With these, one can get

2

∑
i, j=1

〈ξ 2
i (t1)ξ

2
j (t2)〉=

2

∑
i, j=1, i 6= j

〈ξ 2
i (t1)〉〈ξ 2

j (t2)〉+
2

∑
i=1

〈ξ 2
i (t1)ξ

2
i (t2)〉

= 2〈ξ 2(0)〉2+
2

∑
i=1

(

〈ξ 2
i (t1)〉2 +2〈ξi(t1)ξi(t2)〉2)

= 4〈ξ 2(0)〉2+4〈ξ 2(0)〉2e−2ω|t1−t2|. (A12)
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Here, 〈D(t)〉 = ∑2
n=1 ξ 2

n (t), and 〈ξ 2
i (t)〉 = 〈ξ 2

i (0)〉 = 1
2Deq. Using Eq. (A12), Eq. (A4) can be

calculated as follows:

ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)ηT (t3)ηT (t4)〉

= 24
ˆ t

0
dt1

ˆ t1

0
dt2〈DT (t1)DT (t2)〉

= 24
ˆ t

0
dt1

ˆ t1

0
dt2

2

∑
i, j=1

〈ξ 2
i (t1)ξ

2
j (t2)〉

= 24
ˆ t

0
dt1

ˆ t1

0
dt2

1
4
〈ξ 2(t1)〉2+24

ˆ t

0
dt1

ˆ t1

0
dt2

1
4
〈ξ 2(0)〉2e−2ω|t1−t2|

=
6D2

eq

[

2tω(tω +1)+ e−2tω −1
]

ω2 . (A13)

Similarly, from Eq. (A5) one can obtain

2
ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
dt1dt2dt3dt4 〈ηT (t1)ηT (t2)〉〈vA(t3)vA(t4)〉

= 24t

ˆ t

0
dt1

ˆ t1

0
dt2 〈D(t1)〉〈vA(t1)vA(t2)〉

= 24DeqDA t
(

τA

(

e
− t

τA −1
)

+ t
)

. (A14)

Using Eqs. (A3), (A13), (A14) and (15), the NGP can be calculated, and it reads

γG(t) =
〈x4(t)〉

3〈x2(t)〉2 −1 =
D2

eq

(

2tω −1+ e−2tω
)

2
(

ωt
(

DA +Deq
)

−DAωτA +ωDAτAe
− t

τA

)2 . (A15)

From the above equation one can find the NGP at τA = 0, which reads

γ0
G(t) =

〈x4(t)〉
3〈x2(t)〉2 −1 =

D2
eq

(

2tω −1+ e−2tω
)

2ω2t2
(

DA +Deq
)2 . (A16)

Like the previous case, the ratio γG(t)/γ0
G(t) for τA → ∞ and finite values of t is well approximated

to Eq. (A10).

Appendix B: Limiting values of PDF

Here we show the calculation of approximate PDFs at different limits. Two models of the fluctu-

ating thermal diffusivity are considered for the analysis.
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1. Switching diffusion

Here one can assign two diffusive timescales D2 p2 and D1p2, to compare them with the switching

rates r12 and r21. For D2
r21

p2 ≫ 1 and D1
r12

p2 ≫ 1, one gets φ2 ≈ 1
2

[

(D2 −D1)p2 +(r21 − r12)
]

+

r12r21
(D2−D1)p2+(r21−r12)

. Clearly, it corresponds to the liming case at shorter times. With the above

approximation, Eq. (22) modifies to

P(x, t|x0,0)

=
1

2π

ˆ ∞

−∞
dpe−ip(x−x0)

r12

r12 + r21
e−D2 p2te

−DA p2
(

t+τA

(

e
− t

τA −1

))

+
1

2π

ˆ ∞

−∞
dpe−ip(x−x0)

r21

r12 + r21
e−D1 p2te

−DA p2
(

t+τA

(

e
− t

τA −1

))

=
r12

r12 + r21

e

− (x−x0)
2

4

[

D2 t+DA

(

t+τA

(

e
− t

τA −1

))]

√

4π
[

D2 t +DA

(

t + τA

(

e
− t

τA −1
))]

+
r21

r12 + r21

e

− (x−x0)
2

4

[

D1 t+DA

(

t+τA

(

e
− t

τA −1

))]

√

4π
[

D1 t +DA

(

t + τA

(

e
− t

τA −1
))]

. (B1)

Notice that, within the short-time regime one can consider two limiting cases, r12 ≫ r21 and

r12 ≪ r21. For r12 ≫ r21, the first term on the RHS in Eq. (B1) dominates and the second term

can be ignored, and therefore, the distribution becomes almost Gaussian with a width containing

only D2 and DA. In the other limiting case, the behavior is mostly dictated by the second term.

In the long-time limit, i.e., for D2
r21

p2 ≪ 1 and D1
r12

p2 ≪ 1, the following approximations can be

done, φ2 ≈ 1
2(r12+r21)− p2

2
r12−r21
r12+r21

(D2−D1), and φ1−φ2 ≈ p2
(

r12
r12+r21

D2 +
r21

r12+r21
D1

)

≈ p2 Deq.

Therefore, Eq. (22) approximates to

P(x, t|x0,0) =
e

− (x−x0)
2

4

[

Deq t+DA

(

t+τA

(

e
− t

τA −1

))]

√

4π
[

Deq t +DA

(

t + τA

(

e
− t

τA −1
))]

. (B2)
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2. Diffusing diffusivity model

In the short-time limit, i.e., for β t ≪ 1, and for small and intermediate displacements (i.e.,

Deq p2/ω ≫ 1), the above can be approximated as

P(x, t|x0 = 0,0)≈ 1
2π

ˆ ∞

−∞
dp

e−ipx

1+Deq p2t
e
−DA p2

(

t+τA

(

e
− t

τA −1

))

≈ 1

2
√

Deqt

√

√

√

√

1

4π
[

DA

(

t + τA

(

e
− t

τA −1
))]

ˆ ∞

−∞
dx′ e

− |x−x′|√
Deqt e

− x′2

4

[

DA

(

t+τA

(

e
− t

τA −1

))]

≈ e

DA

(

t+τA

(

e
− t

τA −1

))

Deqt

2
√

Deqt
cosh

(

x
√

Deqt

)

− e

DA

(

t+τA

(

e
− t

τA −1

))

Deqt

2
√

Deqt
erf













x
√

1

4

[

DA

(

t+τA

(

e
− t

τA −1

))]













sinh

(

x
√

Deqt

)

. (B3)

In the long t limit, i.e., for β t ≫ 1, the PDF [Eq. (25)] can be approximated as

P(x, t|x0 = 0,0)≈ 1
2π

ˆ ∞

−∞
dpe−ipx e−Deq p2te

−DA p2
(

t+τA

(

e
− t

τA −1

))

≈
√

√

√

√

1

4π
[

Deqt +DA

(

t + τA

(

e
− t

τA −1
))]e

− x2

4

[

Deqt+DA

(

t+τA

(

e
− t

τA −1

))]

. (B4)
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