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In this work, we theoretically investigate the motion of an arbitrarily shaped particle
in a linear density stratified fluid with weak stratification and negligible inertia. We
calculate the hydrodynamic force and torque experienced by the particle using the
method of matched asymptotic expansions. We analyze our results for two classes of
particles (non-skew and skew) depending on whether the particle possesses a centre of
hydrodynamic stress. For both classes, we derive general expressions for the modified
resistance tensors in the presence of stratification. We demonstrate the application of
our results by considering some specific examples of particles settling in a direction
parallel to the density gradient by considering both the limits of high (Pe� 1) and low
(Pe� 1) Péclet numbers. We find that, presence of stratification causes a slender body
to rotate and settle along the broader side due to the contribution of the hydrostatic
torque. Our work sheds light regarding the impact of stratification on the transport of
arbitrarily shaped particles in density stratified environments.

1. Introduction

Natural sources of water such as oceans, rivers or lakes often contain dissolved sub-
stances or temperature variations which create gradients in the fluid density. Microparti-
cles such as marine snow, particular organic matter, inorganic dust as well as organisms
living in such environments such as phytoplankton, protists and other swimmers interact
with the density stratified layers in the course of their motion. One example of such
interactions is the process of sedimentation which takes place due to gravity driven
forces and is ubiquitously found in nature. It is an important means for the transport
from the surface to the deep ocean and plays a crucial role in the nutrient transport
between the oceanic layers (Guidi et al. 2016; Kindler et al. 2010). Settling of dense solid
particles in stratified layers of atmosphere is another example where particles interact
with naturally formed isopycnals. In this case, knowledge of the settling rates of these
particles is crucial for understanding their impact on the environment (Kellogg 1980).
It is thus of physical significance to understand the interaction of solid particles with
density stratified environments.

Most of the previous studies involving motion in stratified fluids have focused on
spherical particles (Ardekani et al. 2017; Doostmohammadi & Ardekani 2015). Initial
works in this field primarily focused on the increased drag experienced by the sphere due
to the generation of internal gravity waves in the fluid at high Reynolds numbers (Warren
1960; Lofquist & Purtell 1984; Mowbray & Rarity 1967). In the creeping flow limit,
Chadwick & Zvirin (1974) theoretically studied the horizontal viscous flow past a sphere
immersed in a linearly density stratified and non-diffusive fluid with weak stratification.
They observed that buoyancy becomes important only at a distance of r ∼ Ri−1/3 away
from the sphere, where Ri is the viscous Richardson number. They employed the method
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of matched asymptotic expansions to solve the problem. Later, Zvirin & Chadwick (1975)
extended their analysis for a sphere translating in the vertical direction. In both the cases,
a drag enhancement of the order of Ri1/3 was predicted even for negligible Reynolds
numbers. The experimental validation of drag enhancement at small Reynolds numbers
was done by Yick et al. (2009). They argued that, when viscous forces dominate, the
enhanced drag is induced by the buoyancy force exerted by a region of fluid which is
dragged down by the settling sphere. Ardekani & Stocker (2010) analyzed the flow due
to point force singularities placed in a stratified fluid. They demonstrated the existence
of a fundamental stratification length scale which is governed by a competition between
buoyancy, diffusion and viscosity and found that particles as small as O (100µm− 1 mm)
can be influenced by stratification. Later, Candelier et al. (2014) calculated the unsteady
drag experienced by a slowly descending sphere at low Péclet numbers (Pe). In contrast to
the study by Chadwick & Zvirin (1974) for high Péclet numbers, they noted that, for small
Pe, buoyancy forces become important at a distance of r ∼ (RiPe)−1/4 away from the
sphere, where (RiPe)1/4 is a small parameter in their study which scales with a/ls where a
is the particle length scale and ls is fundamental length scale for stratification (Ardekani
& Stocker 2010). They employed a matching procedure based on series expansions of
generalized functions and found their results to be in good agreement with the numerical
results reported by Yick et al. (2009). More recently, Mehaddi et al. (2018) used the
framework developed by Candelier et al. (2014) to analyze the effect of convective fluid
inertia on the drag experienced by a settling sphere in a density stratified fluid. We note
that most of the above theoretical works use the standard method devised by Childress
(1981) and Saffman (1965) for analyzing the inertial effect of a non-uniform background
flow on the lift force experienced by the particle. The applicability of this method for
arbitrary shaped particles has been demonstrated in the literature, as is evident from
the theoretical works employed to obtain leading order inertial corrections for arbitrary
shaped particles moving in linear flow fields (Harper & Chang 1968).

Particles settling in natural waters often have shapes which deviate from the spherical
geometry, such as cylinders or disks (Turner & Holmes 2011). More generally, organic
aggregates might have arbitrary body structures while settling in the fluid. Although
significant literature exists for spherical objects translating in stratified fluids, there is
a dearth of studies concerning non-spherical particles. For a non-spherical particle, the
orientation might change with time because of the torque exerted by the hydrodynamic
forces. Analysis in this direction was started by Doostmohammadi & Ardekani (2014),
who numerically studied the motion of a spheroid oriented at an arbitrary angle and
translating in a stratified fluid. They observed that, in addition to the extra drag
experienced by the spheroid, stratification causes the long axis of the spheroid to orient
parallel to the settling direction, in contrast to the counterpart in a homogeneous fluid.
Hence, the stratification induced torque is non-zero and affects the settling dynamics of
the spheroid. Experimental studies of settling of disks in a density stratified fluid have
also reported a non-zero stratification induced torque acting on the disk (Mercier et al.
2019; Mrokowska 2018)

Despite the ecological implications of settling particles in stratified environments, there
are no theoretical studies concerning the drag force and change in orientation of a non-
spherical particle settling in a stratified fluid. We thus understand that a more generalized
study is required to shed light upon these problems. Sedimentation of particles in a
homogeneous fluid has been studied extensively. It is known that at zero inertia, a non-
skew particle settling in a homogeneous fluid does not change its orientation (Brenner
1964). However, when weak inertial effects are included, there exists a non-zero torque
acting on the particle, which changes its orientation even if the external torque is zero
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Figure 1: Rigid particle translating with a velocity u and rotating with an angular velocity
Ω. The ambient density is given by ρ∗ = ρ∞−γx3, where gravity g points in the negative

ê3 direction. (ê1− ê2− ê3) is the lab coordinate system, (ê
′

1− ê
′

2− ê
′

3) is the coordinate
system fixed in the particle.

(Cox 1965). Hence, deviations from the homogeneous conditions, however small, might
lead to changes in the settling dynamics of the particle. This motivates us further to
broaden our understanding about the motion of particles in stratified fluids.

In this study, we consider the motion of an arbitrarily shaped particle moving through
a weakly density stratified fluid with a continuous linear stratification and negligible
inertia. We use the method of matched asymptotic expansions to solve the equations
of motion. We provide a general expression for the force and the torque acting on the
particle in the presence of stratification in terms of the Stokes resistance tensors of the
particle. We then apply our results to some specific type of particles and highlight the
impact of stratification on the motion of these particles.

2. Problem Formulation

Consider a rigid particle B of arbitrary shape having density ρp, which is translating
with a velocity u and rotating with an angular velocity Ω in a linearly density stratified

fluid (refer to figure 1). O is a point fixed in the particle and (ê
′

1 − ê
′

2 − ê
′

3) denotes the
system of coordinates fixed in the particle and passing through O. The ambient or the
undisturbed density variations in the fluid are given by,

ρ∗ = ρ∞ − γx3. (2.1)

Here, ρ∞ is the reference fluid density, γ is the density gradient in the vertical direction
and x3 is the third component of the coordinate vector x in the lab frame of reference.
Mehaddi et al. (2018) considered a sphere immersed in a linearly density stratified fluid
and translating parallel to the density gradient. Here we focus on a particle of an arbitrary
shape.
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Governing Equations

We now write the equations of motion for the fluid in a frame of reference translating
with point O. We use the Boussinesq approximation and neglect the density variation in
all the terms of the equations governing flow except the buoyancy force term (Doostmo-
hammadi et al. 2014; Candelier et al. 2014).

∇ ·w = 0, (2.2)

ρ∞

(
∂w

∂t
+w ·∇w

)
= −∇p+ ρg + µ∇2w − ρ∞

du

dt
. (2.3)

w = Ω × r on B, w → −u as r = |r| → ∞. (2.4)

Equations (2.2) and (2.3) represent the continuity equation and the momentum conser-
vation equations in the fluid, respectively. Here, w is the velocity of the fluid measured
in the translating frame of reference.

When the changes in the concentration/temperature are linearly related to the changes
in the density, we can solve for the advection-diffusion equation for the density (equation
(2.5)), instead of such an equation for the temperature or concentration.

∂ρ

∂t
+w ·∇ρ = κ∇2ρ. (2.5)

∇ρ · n = 0 on B, ρ→ ρ∗ as r →∞, (2.6)

where κ is the diffusivity coefficient and n represents the outward normal vector on
the surface of the particle. Here, we have applied a no-flux boundary condition for the
density field on the surface of the particle. If the stratification is induced due to gradients
in concentration, this means that the surface of the particle is impermeable; whereas it
implies an adiabatic boundary condition at the surface in case of thermal gradients.

We non-dimensionalize the equations using the following scales:length scale lc = l
which denotes the characteristic geometric dimension of the particle, velocity scale uc =
2
9
l2cg
ν (

ρp
ρ∞
−1) which denotes the terminal Stokes velocity evaluated for a sphere of radius lc

and density ρp settling in a homogeneous fluid with ambient density ρ∞, time scale tc = τ ,
pressure scale pc = µucl , density scale ρc = γl. Here, τ is the time scale of variations of
the disturbance velocity. We use the same variables to denote the dimensionless variables.
The dimensionless governing equations are thus written as follows,

∇ ·w = 0, (2.7)

ReSl
∂w

∂t
+Re (w ·∇w) = −∇p−Riρê3 +∇2w −ReSldu

dt
, (2.8)

PeSl
∂ρ

∂t
+ Pe (w ·∇ρ) =∇2ρ. (2.9)

Here, Re = ρ∞ucl
µ is the Reynolds number, Pe = ucl

κ is the Péclet number, Ri = γgl3

µuc
is the viscous Richardson number which is the product of the Richardson number, used
in stratified flow literature, denoting the ratio of buoyancy and inertial forces and the
Reynolds number. We use viscous Richardson number because Ri−1/3 represents the
distance at which the buoyancy forces balance the viscous forces at large Pe and it
appears in our solution. Sl = l

ucτ
is the Strouhal number.

We now express the velocity, pressure and the density in terms of disturbed and
undisturbed variables, w = w

′ − u, ρ = ρ∗ + ρ
′
, and p = p∗ + p

′
. We note that the

undisturbed pressure balances the undisturbed density field. Additionally, we note that,
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∂ρ∗

∂t = −u·ê3

Sl and ∇ρ∗ = −ê3. As a result, we obtain,

∇ ·w
′

= 0, (2.10)

ReSl
∂w

′

∂t
+Re

(
(w

′
− u) ·∇w

′
)

= −∇p
′
−Riρ

′
ê3 +∇2w

′
, (2.11)

PeSl
∂ρ
′

∂t
− Pe(w

′
· ê3) + Pe

(
(w

′
− u) ·∇ρ

′
)

=∇2ρ
′
. (2.12)

w
′

= u+Ω × r on B, w
′
→ 0 as r →∞,

∇ρ
′
· n = −∇ρ∗ · n on B, ρ

′
→ 0 as r →∞.

We will solve equations (2.10)-(2.12) by making the following assumptions. Firstly, we
assume that the velocity of the particle is small enough such that the inertial effects are
negligible. Next, we assume that the stratification effects are small but non-negligible.
As a result, we will analyze the problem in the following limits,

Re� min(Ri1/3, (RiPe)1/4), Ri� 1.

For a density stratified fluid, as the particle descends, it encounters a variable fluid
density. Thus, the problem appears to be unsteady as the buoyancy force experienced
by the particle is changing with time. However, if the stratification is weak, then we
expect the time scale of variation for the particle velocity to be long enough such that
the motion of the particle can be assumed to be quasi-steady. Similar to the quasi-steady
state analysis performed by Mehaddi et al. (2018), we expect the time scale of variation

(τ) to scale as τ ∼ ut
u
′
t

, where, ut = 2
9
l2g
ν (

ρp
ρ∗ − 1) denotes the terminal Stokes velocity

evaluated for a sphere settling in a fluid with the ambient density ρ∗, which depends on
the particle position and u

′

t denotes the time derivative of ut. We substitute this scaling
in the expression for Sl and obtain the following,

Sl ∼ Ri ρp
ρ∞

.

Hence, if Ri� 1, the time scale of variation of the particle velocity is long enough such
that the condition Sl� 1 is also satisfied. Thus, the unsteady terms and the convective
inertial terms in equations (2.11) and (2.12) can be neglected.

We note that the Péclet number Pe = RePr, where the Prandtl number (Pr) is the
ratio between the momentum diffusivity and the diffusivity of the stratifying agent in
the fluid. For the sake of brevity, we use the notations of Péclet and Prandtl numbers for
the case of stratification caused by salt transport as well, even though these numbers are
called the Sherwood and Schmidt numbers in the literature. For the limit of negligible Re
considered in our problem, a high Péclet number (Pe� 1) corresponds to a large Prandtl
number (Pr � 1) as is the case for salt stratified water (Pr = 700) or temperature
stratified viscous oils or greases (Pr ∼ 103 − 106) (Leal 2007). A low Péclet number
(Pe � 1) corresponds to a Prandtl number of O(1) or even less as is the case for
temperature stratified air at room temperature (Pr = 0.71) or molten metals (Pr ∼
0.001− 0.01).

3. Solution

For a sphere settling in a linearly stratified fluid, it is known that Stokes solution is
not a uniformly valid first approximation to the flow for small stratification strengths
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(Mehaddi et al. 2018). At sufficiently large distances from the particle, the buoyancy
forces will become important and have to be taken into account. This is an indicator of a
singular asymptotic behavior and a regular perturbation expansion of the field variables in
terms of Ri is not valid. As the scaling analysis involved in these findings is independent
of the shape of the particle, we expect similar behavior even if the particle shape is
arbitrary. For large Péclet numbers, Zvirin & Chadwick (1975) estimated the matching
zone to occur at a distance of r ∼ Ri−1/3 away from the particle. Hence, the appropriate
length scale far away from the particle is lc = lRi−1/3. Even though this scaling is valid
only for high Péclet numbers (Pe > Ri1/3), Zvirin & Chadwick (1975) did not make any
assumptions regarding the Péclet number while solving the equations of motion in the
outer zone (r > Ri−1/3), and reported the drag coefficients for any arbitrary Pe. Later,
Mehaddi et al. (2018) developed a methodology which is uniformly valid for any Prandtl
number (Pr) by considering spherical particles, which confirmed the results reported by
Zvirin & Chadwick (1975) and hence established that their results are more generally
valid for any Pr. This can be rationalized by considering that, the stratification induced
force and torque acting on the particle depends only on the leading order outer solution
which was solved for arbitrary Péclet number by Zvirin & Chadwick (1975). If the outer
solution is expressed in terms of the leading order drag experienced by the particle, it
does not depend on the shape of the particle. Hence, adopting the procedure reported
by Zvirin & Chadwick (1975), we can calculate the stratification induced hydrodynamic
force and torque on an arbitrary shaped particle for any Pr even though the scales used
in such calculation are physically relevant only at large Péclet numbers. We seek to solve
the problem by using the method of matched asymptotic expansions using the small
parameter ε = Ri1/3. We shall start by writing the inner and the outer equations.

3.1. Inner Equations

−∇p
′
+∇2w

′
= ε3ρ

′
ê3 +Re

(
(w
′
− u) ·∇w

′
)
, ∇ ·w

′
= 0, (3.1a)

− Pe(w
′
· ê3) + Pe

(
(w

′
− u) ·∇ρ

′
)

=∇2ρ
′
. (3.1b)

w
′

= u+Ω × r, ∇ρ
′
· n = −∇ρ∗ · n on B. (3.1c)

We express the velocity, pressure and density fields in the following form,

{w
′
, p
′
, ρ
′
} = {w0, p0, ρ0}+ ε{w1, p1, ρ1}+ o(ε).

The gauge functions in this expansion (1, ε, ...) can be rigorously derived for a spherical
particle (Chadwick & Zvirin 1974; Zvirin & Chadwick 1975) and we expect the same
gauge functions to occur for any arbitrary shaped particle. We substitute these expres-
sions in equations (3.1) and collect the terms at various orders of ε to obtain the following.
At O(1),

−∇p0 +∇2w0 = 0, ∇ ·w0 = 0, (3.2a)

− Pe(w0 · ê3) + Pe ((w0 − u) ·∇ρ0) =∇2ρ0. (3.2b)

w0 = u+Ω × r, ∇ρ0 · n = −∇ρ∗ · n on B. (3.2c)

At O(ε),

−∇p1 +∇2w1 = 0, ∇ ·w1 = 0, (3.3a)

− Pe(w1 · ê3) + Pe ((w0 − u) ·∇ρ1 +w1 ·∇ρ0) =∇2ρ1. (3.3b)
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w1 = 0, ∇ρ1 · n = 0 on B. (3.3c)

3.2. Outer equations

For the outer expansion, we rescale the coordinate system such that all terms are of
equal orders of magnitude. We thus use the following transformation,

r̃ = εr, ∇̃ =
∇
ε
.

Based on the method used by Childress (1964); Saffman (1965), in the far field region,
the rigid particle can be replaced by a point force, with a strength equal to negative of
the Stokes drag. We express the non-dimensional Stokes drag acting on the particle as
F 0. As the far field representation of the leading order disturbance flow is a Stokeslet, we
expect that for r � 1, the flow w

′ ∼ 1/r � u. Consequently, we have, w
′ ·∇ρ′ � u ·∇ρ′

and can be neglected in the outer equations. We also rescale the velocity and pressure
fields by writing w

′
= εw̃ and p

′
= ε2p̃. Here, it should be noted that, we have made no

assumptions regarding the Péclet number in the outer equations, which are written for
any arbitrary value of Pe. We can now write the outer equations as follows,

∇̃ · w̃ = 0, (3.4a)

− ∇̃p̃+ ∇̃
2
w̃ = ρ

′
ê3 + F 0δ(r̃), (3.4b)

− εw̃ · ê3 − εu · ∇̃ρ
′

=
ε2

Pe
∇̃

2
ρ
′
. (3.4c)

We shall solve the outer equations in the Fourier space. We begin by defining the Fourier
transforms of w̃, p̃, ρ

′
as follows,

ŵ =

∫
w̃e−ik·r̃dr̃, p̂ =

∫
p̃e−ik·r̃dr̃, ρ̂ =

∫
ρ
′
e−ik·r̃dr̃.

Here, k = (k1, k2, k3) and k · k = k2. We can write the inverse Fourier transforms as
follows,

w̃ =

∫
ŵeik·r̃dk

8π3
, p̃ =

∫
p̂eik·r̃dk

8π3
, ρ

′
=

∫
ρ̂eik·r̃dk

8π3
.

We substitute these expressions in equations (3.4) to obtain a set of linear equations in
ŵ, p̂, ρ̂ as follows,

k · ŵ = 0. (3.5a)

0 = −ikp̂− k2ŵ − ρ̂ê3 − F 0. (3.5b)

ŵ · ê3 + u · ikρ̂ =
ε

Pe
k2ρ̂. (3.5c)

We solve this system of equations, and find the expression for ŵ as follows,

ŵ = −
(
k2I +

ê3ê3
X
− kê3(k · ê3)

Xk2

)−1(
I − kk

k2

)
· F 0. (3.6)

Here, X = εk2

Pe − iu · k.

We know that, a part of the outer solution must match the leading order inner solution
far away from the particle, which corresponds to a Stokeslet. Hence, we now consider a
flow field which corresponds to a Stokeslet which satisfies the Stokes equations with a
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point force F 0 acting at the origin. We again make use of the rescaled variable to obtain
the following equations of motion,

∇̃ ·ws = 0. (3.7a)

0 = −∇̃ps + ε∇̃
2
ws − ε2F 0δ(r̃). (3.7b)

We define,

ŵs =

∫
wse

−ik·r̃dr̃, p̂s =

∫
pse
−ik·r̃dr̃.

We solve equations (3.7) in the Fourier space and obtain the solution for the Stokeslet
as follows,

ŵs = − ε

k2
(I − kk

k2
) · F 0. (3.8)

Based on the methodology of the matched asymptotic expansions, we know that, the
inner and outer expansions should match in the matching zone. We thus have,

lim
r→∞

w0 + εw1 = lim
r̃→0

w
′
. (3.9)

Far away from the particle, w0 asymptotes to a Stokeslet. As a result, we can write,

lim
r→∞

w0 ∼ ws.

We now, express w
′
,ws in terms of their inverse Fourier transforms and substitute in

equation (3.9) to obtain,

lim
r→∞

εw1 = lim
r̃→0

∫
(εŵ − ŵs)e

ik·r̃dk

8π3
. (3.10)

To evaluate the right side of the above equation, we shall adopt a similar approach used
by Childress (1964); Zvirin & Chadwick (1975) and divide the region of integration into
two parts, 0 6 k 6 r̃−σ, (0 < σ < 1) where the exponential is reduced to 1 and k > r̃−σ

for large values of k. Thus, the above equation can be decomposed into two parts as
follows,

lim
r→∞

εw1 =

∫
(εŵ − ŵs)dk

8π3
+ lim
r̃→0

∫
k>r̃−σ

(εŵ − ŵs)e
ik·r̃dk

8π3
(3.11)

We also note that, w1 satisfies the Stokes equation (refer to equation (3.3a)). Hence, we
can express w1 in the form of the Lamb’s general solution for creeping flow as follows,

w1 =
∞∑

n=−∞
(∇× (rχn)+∇ψn+

(n+ 3)

2(n+ 1)(2n+ 3)
r2∇pn−

n

(n+ 1)(2n+ 3)
rpn). (3.12)

Here, χn, ψn and pn are solid spherical harmonics of order n. Hence, we can express the
above velocity field in terms of powers of r as follows,

w1 =
∞∑

n=−∞
Anr

nfn(θ, φ).

Here, (r, θ, φ) represent the spherical coordinates with origin at O, fn(θ, φ) are arbitrary
vector functions of θ, φ and An are constant coefficients. We now replace r by r̃

ε to
express w1 in terms of the outer variables and substitute in equation (3.11) to obtain
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the following expression,

∞∑
n=−∞

Anε
1−nr̃nfn(θ, φ) =

∫
(εŵ − ŵs)dk

8π3
+ lim
r̃→0

∫
k>r̃−σ

(εŵ − ŵs)e
ik·r̃dk

8π3
.

We note that, the right side of the above equation is entirely expressed as a multiple of ε
(note that ŵs has a coefficient of ε). This should be matched with the coefficient of ε in
the expansion of the inner velocity which corresponds to n = 0. Also, An = 0 for n > 0.
We thus obtain to the leading order in ε,

A0εf0(θ, φ) =

∫
(εŵ − ŵs)dk

8π3
+ lim
r̃→0

∫
k>r̃−σ

(εŵ − ŵs)e
ik·r̃dk

8π3
. (3.13)

From equation (3.12), we find that, only χ0 and ψ1 contribute to the coefficient of r0.
Hence we obtain,

A0f0 =∇× (rχ0) +∇ψ1.

As χ0, ψ1 are solid spherical harmonics, we make use of their general expressions, χ0 = b0
and ψ1 = r

∑1
m=0(cmcos(mφ) + dmsin(mφ))Pm1 (cosθ), where b0, cm, dm are arbitrary

constants and Pmn are Associated Legendre polynomials of degree n and order m. After
substituting in the above equation, we obtain,

A0f0 = −c1ê1 − d1ê2 + c0ê3.

We observe that f0 has no dependence on θ, φ and it represents a constant vector. Hence,
the first order inner velocity must be a uniform stream far away from the particle, as
is well known in the case of particles subjected to shear flows in the presence of weak
inertia (Saffman 1965). Now, from equation (3.13), we note that, the first integral on
the right side represents a constant vector as it has no dependence on r̃. However, we
cannot determine the second integral to be a constant vector as it contains the term
eik·r̃, which has an explicit dependence on r̃. As this integral is evaluated at large values
of k, we estimate its order of magnitude to be as follows (detailed calculations are given
in Appendix A), ∫

k>r̃−σ

(εŵ − ŵs)e
ik·r̃dk

8π3
∼ O(r̃3σ).

As 0 < σ < 1, by letting r̃ → 0, r̃3σ can be made arbitrarily small. We thus find that,
the above integral does not contribute to the first order inner velocity far away from the
particle. The matching condition given in equation (3.11) thus simplifies to the following,

lim
r→∞

εw1 =

∫
(εŵ − ŵs)dk

8π3
.

We now use equations (3.6) and (3.8) and substitute in the above expression to obtain,

lim
r→∞

εw1 = V s · F 0. (3.14)

Here,

V s = − 1

8π3

∫
Ri1/3

(
(k2I +

ê3ê3
X
− kê3(k · ê3)

Xk2
)−1 − I

k2

)(
I − kk

k2

)
dk, X =

εk2

Pe
−iu·k.

(3.15)
The tensor V s is calculated in the lab coordinate system. We now express the first order
inner velocity (w1) and the leading order force (F 0) in a coordinate system fixed to the

particle (refer coordinate system (ê
′

1 − ê
′

2 − ê
′

3) in figure 1). Consequently, the tensor
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V s will be modified due to the change in the system of coordinate axes. The modified
tensor, denoted by V is given by the following relation,

V = R · V s · R−1, (3.16)

where, R is the rotation matrix which relates the two coordinate systems such that the
relation x

′
= R ·x is satisfied, where x is a vector expressed in the lab coordinate system

which is transformed to x
′

in the particle fixed coordinate system. We can now write,
the far field first order inner velocity, expressed in a coordinate system attached to the
particle as follows,

lim
r→∞

εw1 = V · F 0. (3.17)

We shall be using equation (3.17) in the subsequent analysis, because it is more convenient
to express the force and the torque experienced by the particle in a coordinate system
attached to the particle as will be clear in the subsequent sections.

4. Hydrodynamic force and torque acting on the particle

We non-dimensionalize the force and torque acting on the particle by ucµl, ucµl
2 and

express them as a series expansion in terms of ε as follows,

{F ,G} = {F 0,G0}+ ε{F 1,G1}+ o(ε).

Here, F ,G represent the hydrodynamic force and torque acting on the particle. It should
be noted that the torque acting on the particle depends on the choice of the origin O.
We shall now proceed to calculate the force and torque upto the first order in ε.

From equations (3.2), we understand that at leading order, the problem represents
that of a Stokes flow past the particle B translating with velocity u, rotating with an
angular velocity of Ω, with the fluid stationary far away from the particle. The leading
order force, torque can be expressed in terms of u,Ω using the Stokes resistance tensors
(Brenner 1963) as follows,

F 0 = A · u+ CT
O ·Ω, G0 = CO · u+ DO ·Ω. (4.1)

Here, A,CO and DO are the translation, coupling and rotation tensors, respectively, and
the subscript O denotes the dependence of these tensors on the choice of origin O. The
expressions for force and torque can also be expressed in terms of a grand resistance
tensor (Rh) as follows, {

F 0

G0

}
= Rh ·

{
u
Ω

}
where,

Rh =

(
A CT

O

CO DO

)
The first order inner equations are given by equations (3.3). As discussed before, the

first order inner velocity approaches a uniform stream far away from the particle (refer
to equation (3.14)). Hence, we infer that the first order inner equations represent Stokes
flow past a stationary particle with a uniform fluid flow far away from the particle. Thus,
we can again express the force and torque acting on the particle at the first order in
terms of the Stokes resistance tensors. We obtain the following expressions,

F 1 = −A · lim
r→∞

w1, G1 = −CO · lim
r→∞

w1. (4.2)

We now substitute the first order inner velocity far away from the particle (refer to
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equation (3.17)) in the above equation and write the overall hydrodynamic force and
torque acting on the particle B upto the first order as follows,

F = F 0 − A · V · F 0. (4.3a)

G = G0 − CO · V · F 0. (4.3b)

The grand resistance tensor for a stratified fluid can be expressed as follows,

Rs = Rh − Rh ·
(

V 0
0 0

)
· Rh.

Here, we would like to note that expressions for hydrodynamic force or torque calcu-
lated for arbitrary particle shapes are reported in the literature, where the background
fluid is homogeneous, the ambient flow is linear (Harper & Chang 1968; Candelier et al.
2019) and the small parameter employed in the perturbation scheme is based on the
Reynolds number.

5. Results and Discussion

In this section, we shall analyze the influence of stratification on the force and torque
experienced by the particle by considering some specific examples. We divide our analysis
into two classes of particles depending on the symmetricity of the particle.
Class (a): Non-skew particles—particles which possess a centre of hydrodynamic stress
(e.g., orthotropic particles, bodies of revolution, spherically isotropic particles etc.)
Class (b): Skew particles—particles which do not possess a centre of hydrodynamic stress.
For both classes of particles, we first analyze general expressions for the force and
the torque experienced by the particle. Then, we consider specific examples and derive
analytical expressions for the force and and the torque experienced by the particle settling
along the density gradient, by considering both the limits of high (Pe � 1) and low
(Pe� 1) Péclet numbers.

5.1. Class (a): Non-skew particles

For this class of particles, we choose the origin (O) to be the centre of hydrodynamic
stress. It is known that the coupling tensor (CO) about the centre of hydrodynamic stress
is identically zero. Examples of such particles include spheres, spheroids, ellipsoids, disks
or regular polyhedrons. We now use equations (4.3) to calculate the general expression
for the force and torque acting on this class of particles as follows,

F = F 0 − A · V · F 0.

G = G0.

We thus find that, although stratification alters the force experienced by the particle,
the torque remains unchanged in the presence of stratification. This implies that, the
hydrodynamic torque induced by stratification is zero. This can be understood by
considering that, stratification induces a uniform velocity far away from the particle.
For a non-skew particle, as there is no coupling between translation and rotation, we
expect the torque exerted by this uniform stream of velocity on the particle to be zero.
We now simplify the force expression by writing F 0 in terms of the Stokes resistance
tensors and obtain the following,

F = (A− A · V · A) · u. (5.1)
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We observe that, the tensor A − A · V · A represents the modified translation tensor in
the presence of stratification. Thus, for non-skew particles, the only effect stratification
has is to modify the translation tensor, while the rotation tensor remain the same. If we
denote the modified resistance tensors in the presence of stratification as As,Ds

O, we can
now write their expressions as,

As = A− A · V · A, Ds
O = DO. (5.2)

For low Péclet numbers (Pe � 1), the particle dynamics is governed by the small
parameter (RiPe)1/4. This parameter can be defined as the ratio of characteristic particle
length scale (l) and the stratification length scale ls = ( νκN2 )1/4 (Ardekani & Stocker
2010), where ν is the kinematic viscosity of the fluid, κ is the diffusivity coefficient and

N =
√

γg
ρ∞

is the Brunt-Väisälä frequency. (RiPe)1/4 does not have any dependence on

the velocity scale (uc), which implies that convection of the stratifying agent does not
contribute to the stratification induced hydrodynamic drag for small Péclet numbers.
Consequently, (RiPe)1/4 can be described a Rayleigh number measuring the relative
importance of buoyancy and diffusion.

In order to demonstrate the application of our results, we discuss the dynamics of
a rigid particle which is settling in a direction parallel to the density gradient. As
discussed before, sedimentation of particles in stratified environments such as oceans
or atmosphere is of physical significance and our analysis will help us obtain crucial
insights regarding this process. We analyze the problem by considering both the limits
of high (Pe� 1) and low (Pe� 1) Péclet numbers.

Unidirectional Settling in a density stratified fluid
We consider the motion of a non-skew particle, translating with a velocity uê3. We

choose the coordinate axes fixed in the particle to be the principal axes of translation

for the particle (refer coordinate system (ê
′

1 − ê
′

2 − ê
′

3) in figure 1). The origin O is the

centre of hydrodynamic stress of the body. For simplicity, we assume that the ê
′

2 axis
of the particle is coincident with the ê2 axis due to which the rotation matrix can be
written as,

R =

cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

 ,
where α is the angle between ê

′

1 and ê1 axes. The translation tensor for a non-skew
particle can be expressed as

A =

a1 0 0
0 a2 0
0 0 a3

 .
Here, a1, a2 and a3 are arbitrary constants which depend on the shape of the particle.
We emphasize that, for a homogeneous fluid, the translation tensor is independent of the
particle’s velocity, orientation and the fluid properties.
1) High Péclet numbers (Pe� 1):

V s is obtained by evaluating the integral in equation (3.15). For the case considered,
the exact expression for V s is given in Appendix B. Here, we numerically evaluate the
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integral to obtain the following,

V s = −Ri
1/3

8π3

−1.7436 0 0
0 −1.7436 0
0 0 −13.9488

 (5.3)

For a sphere moving vertically in a stratified fluid, we substitute the expression for V s

in equation (5.1) to obtain the hydrodynamic force acting on the sphere as follows,

F = F0ê3 + 1.060Ri1/3F0ê3

This expression matches with that derived by Zvirin & Chadwick (1975). Here, it should
be emphasized that, while the general expression for V s is independent of the shape
of the particle, it depends on the particle velocity (refer to equation 3.15). Hence, the
expression for V s obtained above is only valid for particles settling parallel to the density
gradient. We now evaluate the tensor V from equation (3.16) and calculate the modified
translation tensor due to stratification from equation (5.1) to be as follows,

As =

 a1 − a21f1(α)Ri1/3 0 0.049a1a3g(α)Ri1/3

0 a2 − 0.007a22Ri
1/3 0

0.049a1a3g(α)Ri1/3 0 a3 − a23f2(α)Ri1/3

 (5.4)

Here, f1(α) = 0.007cos2α + 0.056sin2α, f2(α) = 0.007sin2α + 0.056cos2α and g(α) =
sinαcosα. We firstly observe that the off-diagonal components of the resistance matrix
are non-zero, as opposed to the homogeneous counterpart. This can be understood from
equation (5.2) by expanding the expression for As and by noting that V s is not isotropic
(refer to equation (5.3)) as the density gradient in the fluid is present only in the
vertical direction. Consequently, in addition to the drag, the particle will experience
lift forces as well. Additionally, we observe that, V s is independent of the orientation
of the particle, which implies that the stratification induced velocity far away from the
particle is independent of its orientation (refer to equation (3.14)). Hence, we expect the
modified translation tensor to be independent of the particle orientation, as in the case
of a homogeneous fluid (refer to equation (3.14)).

For α = 0, g(α) = 0 and the off-diagonal components of the modified translation
tensor are zero. This implies that, the principal axes of translation of the particle remain
the same in the presence of stratification when one of the principal axis of translation
coincides with the gravity direction. However, for α 6= 0, As is not diagonal and we expect
the principal axes of translation of the particle to be modified due to stratification. We
now evaluate the eigen vectors of As to find the modified principal axes of translation for
non-zero α as follows,

ês1 = ê
′

1 +m1ê
′

3, ês2 = ê
′

2, ês3 = m2ê
′

1 + ê
′

3. (5.5)

Here, m1 = −α1−α3−
√

(α1−α3)2+4β2
1

2β1
and m2 = − 2β1

α1−α3+
√

(α1−α3)2+4β2
1

, where, α1 =

a1 − a21f1(α)Ri1/3, α3 = a3 − a23f2(α)Ri1/3 and β1 = 0.049a1a3g(α)Ri1/3. The modified
principal axes are schematically shown in figure 2, where the angle η is given by,

η = cos−1(
1√

1 +m2
1

)

In order to calculate the modified principal translational resistances of the particle, we
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Figure 2: Modified principal axes of translation (depicted by dashed red lines) in the
presence of stratification. O is the centre of hydrodynamic stress.

calculate the eigen values of the tensor As to be as follows,

e1 =
1

2

(
α1 + α3 +

√
(α1 − α3)2 + 4β2

1

)
, e2 = a2 − 0.007a22Ri

1/3,

e3 =
1

2

(
α1 + α3 −

√
(α1 − α3)2 + 4β2

1

)
.

Here, e1, e2, e3 are the eigen values of tensor As. We know that, ai < 0 for i = {1, 2, 3}
as the force exerted on a particle moving through a homogeneous fluid always acts in
a direction opposing its motion. Now, from the eigen value expressions, we can observe
that |e2| > |a2|. It can be easily shown that |e1| > |α1| and |e3| > |α3| by squaring both
the sides of the expressions. Additionally, we observe that, |α1| > |a1| and |α3| > |a3|.
From the above observations, we infer that, |e1| > |a1| and |e3| > |a3|. This implies
that, stratification increases the magnitude of the principal translational resistances of
the particle.

We now proceed to calculate the modified translation tensors for some particles for
which the translation tensors are known, to demonstrate the application of our derivation.
We consider α = 0 in the following examples, which corresponds to the case when the
principal axes of the particle are parallel to the lab fixed axes. However, it should be
noted that, more general expressions in terms of α can be easily derived using equation
(5.4).
a) Thin Circular Disk:
For thin circular disks, with the circular cross-section parallel to the ê1 − ê3 plane, we
have a1 = − 32

3 , a2 = −16 and a3 = − 32
3 (Brenner 1963). We apply our results to obtain

the modified translation tensor for the disk moving through a stratified field as follows,

As =

− 32
3 − 0.796Ri1/3 0 0

0 −16− 1.792Ri1/3 0
0 0 − 32

3 − 6.37Ri1/3


b) Prolate Spheroids:
For the case of prolate spheroids with the longer axis parallel to the ê3 axis, we can write,
a1 = a2 = −32πe3(2e + (3e2 − 1)log( 1+e

1−e ))−1, a3 = −16πe3(−2e + (1 + e2)log( 1+e
1−e ))−1
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(Kim & Karrila 2013), where e is the eccentricity ratio of the spheroid. We now use
equation (5.4) to obtain the modified coefficients of the translation tensor as follows,

as1 = −32πe3(2e+ (3e2 − 1)log(
1 + e

1− e
))−1 − 70.7Ri1/3e6(2e+ (3e2 − 1)log(

1 + e

1− e
))−2,

as2 = −32πe3(2e+ (3e2 − 1)log(
1 + e

1− e
))−1 − 70.7Ri1/3e6(2e+ (3e2 − 1)log(

1 + e

1− e
))−2,

as3 = −16πe3(−2e+ (1 + e2)log(
1 + e

1− e
))−1 − 141.49Ri1/3e6(−2e+ (1 + e2)log(

1 + e

1− e
))−2.

c) Weakly Deformed Spheres:
Particles encountered in nature and in industrial applications often have irregular shapes
which cannot be expressed in a simple coordinate system. As an example of particles
having irregular shapes, Brenner (1963) considered slightly deformed spheres and derived
general expressions for the Stokes resistance tensors for these particles. The surface of
these particles is described by, r = 1 + βh(θ, φ), where β � 1 and r, θ, φ are spherical
coordinates with origin at the center of the undeformed sphere. β signifies the extent of
deviation from the spherical geometry. The function h is expressed as a sum of surface
spherical harmonics, hk(θ, φ). The translation tensor derived by Brenner (1963) for this
particle is given by,

A = −6π

(
I + β(Ih0 −

1

10
∇∇(r2h2)) +O(β2)

)
. (5.6)

We can substitute this expression in equation (5.2) to calculate the modified translation
tensor for a general weakly deformed sphere upto first order in β. In order to illustrate the
application of our method, we now evaluate the modified translation tensor for a weakly
deformed sphere in the shape of a spheroid (h = −cos2θ). We use equation (5.6) to obtain
the coefficients of the translation tensor upto first order in β as, a1 = −6π+ 2.4πβ, a2 =
−6π+ 2.4πβ and a3 = −6π+ 1.2πβ (Brenner 1963). Using equation (5.4), we obtain the
coefficients of the modified translation tensor as follows,

as1 = −6π + 2.4βπ +Ri1/3(−2.48 + 1.99β) +O(β2),

as2 = −6π + 2.4βπ +Ri1/3(−2.48 + 1.99β) +O(β2),

as3 = −6π + 1.2βπ +Ri1/3(−19.8 + 7.96β) +O(β2).

A high value of Pe and low value of Re corresponds to a fluid which has a high Prandtl
number. Hence, the results of this section would be applicable for fluids which have high
values of Prandtl number, such as salt stratified water or temperature stratified viscous
oils or greases (Pr ∼ 103 − 106)(Leal 2007).
2) Low Péclet numbers (Pe� 1):

For particles settling parallel to the density gradient, we numerically evaluate the
matrix V s for the case of low Péclet numbers to be as follows (exact expression is provided
in Appendix B). The components of V s were also reported by Candelier et al. (2014) in
the context of a sphere translating through a stratified fluid at low Péclet numbers. We
obtain the following,

V s = −Ri
1/4Pe1/4

8π3

−1.7427 0 0
0 −1.74327 0
0 0 −8.7138

 (5.7)
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We again calculate the force experienced by a vertically translating sphere in this limit
and obtain the following expression,

F = F0ê3 + 0.662(RiPe)1/4F0ê3

This expression matches with that derived by Candelier et al. (2014). It should be
noted that the expression for V s is not independent of Ri, Pe because our non-
dimensionalization scheme was based on the assumption that Péclet number is large.
The expression for the modified translation tensor can be determined to be as follows,

As =

 a1 − a21f1(α)(RiPe)1/4 0 0.028a1a3g(α)(RiPe)1/4

0 a2 − 0.007a22(RiPe)1/4 0
0.028a1a3g(α)(RiPe)1/4 0 a3 − a23f2(α)(RiPe)1/4


(5.8)

Here, f1(α) = 0.007cos2α + 0.035sin2α, f2(α) = 0.007sin2α + 0.035cos2α and g(α) =
sinαcosα. The structure of the modified translation tensor is similar to that obtained for
high Péclet numbers (refer to equation (5.4)). Consequently, we again expect the principal
axes of translation to be modified in the presence of stratification for non-zero α. We
expect similar expressions for the modified principal axes of translation as provided in
equation (5.5), with the parameter Ri1/3 being replaced by (RiPe)1/4. As in the case of
high Péclet numbers, we expect that, stratification enhances the magnitude of principal
translational resistances of the particle.

For both the cases of high and low Péclet numbers, the coefficients of stratification
induced drag given by Ri1/3 and (RiPe)1/4 are proportional to the characteristic length
scale of the particle (lc). Hence, as opposed to the drag force in a homogeneous fluid
which is proportional to lc, the leading order stratification induced drag scales as the
second power of the characteristic particle dimension (Fstratification ∼ l2c).

We again consider the examples of a circular disk, prolate spheroid and a weakly
deformed sphere settling along the density gradient in a stratified fluid for α = 0 and
calculate the modified translation tensors in each case.
a) Thin Circular Disk :
We obtain the following modified translation tensor for the settling of thin circular disk
at low Péclet numbers,

As =

− 32
3 − 0.796(RiPe)1/4 0 0

0 −16− 1.792(RiPe)1/4 0
0 0 − 32

3 − 3.98(RiPe)1/4


For temperature stratified water (Pr = 7), the Péclet number for slow moving particles
(Re� 1) is almost negligible. We note that, plastic pellets in the form of disks of flattened
cylinders (Turner & Holmes 2011) are a major constituent of debris in oceans. We can thus
apply our results, to study sedimentation rates of plastic disks in temperature stratified
water or even disc shaped particles settling in gaseous environments for which Pr is
usually small. From the modified translation tensor (As), we observe that, the maximum
drag increase occurs in the direction of stratification with a magnitude of ≈ 4(RiPe)1/4.
b) Prolate Spheroids:
We obtain the coefficients of the modified translation tensor for a prolate spheroid
sedimenting at low Péclet numbers as follows,

as1 = −32πe3(2e+ (3e2−1)log(
1 + e

1− e
))−1−70.7(RiPe)1/4e6(2e+ (3e2−1)log(

1 + e

1− e
))−2,
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Particle Pr diag(A) % drag increase
Horizontal

motion
Vertical
motion

Circular Disk
0.7

(-10.66,-16,-10.66)
(0.21,0,0) (0,0,1.62)

7 (0.38,0,0) (0,0,2.84)
700 (0.87,0,0) (0,0,7.72)

Prolate Spheroid (e = 0.5)
0.7

(-17.32,-17.32,-16.83)
(0.34,0,0) (0,0,1.76)

7 (0.60,0,0) (0,0,3.13)
700 (1.38,0,0) (0,0,8.36)

Table 1: % drag increase due to stratification for Ri = 10−3, Re = 10−3 and α = 0.

as2 = −32πe3(2e+ (3e2−1)log(
1 + e

1− e
))−1−70.7(RiPe)1/4e6(2e+ (3e2−1)log(

1 + e

1− e
))−2,

as3 = −16πe3(−2e+(1+e2)log(
1 + e

1− e
))−1−88.43(RiPe)1/4e6(−2e+(1+e2)log(

1 + e

1− e
))−2.

Most of the marine phytoplankton in oceans are not spherical, and more frequently
have needle or rod shaped geometry in which the aspect ratio is much greater than 1
(Bainbridge 1957). We can apply our results for the low Péclet regime to study settling
of needle/rod shaped organisms (e→ 1) in temperature stratified water. We evaluate the
drag coefficients for e = 0.99 and obtain the following matrix,

As =

−7.96− 0.44(RiPe)1/4 0 0
0 −7.96− 0.44(RiPe)1/4 0
0 0 −5.7− 1.15(RiPe)1/4


We obtain a maximum drag increase of 1.15(RiPe)1/4 in the direction parallel to the
density gradient. For Ri = 10−1, P e = 10−2, this corresponds to an increase in drag of
almost 4%.
c) Weakly Deformed Spheres:
The translation tensor for a weakly deformed sphere translating in a homogeneous fluid
is given by equation (5.6). As in the case for high Pe, we consider the example of a
weakly deformed sphere in the shape of a spheroid. We use equation (5.8) to obtain the
coefficients of the modified translation tensor as follows,

as1 = −6π + 2.4βπ + (RiPe)1/4(−2.48 + 1.99β) +O(β2),

as2 = −6π + 2.4βπ + (RiPe)1/4(−2.48 + 1.99β) +O(β2),

as3 = −6π + 1.2βπ + (RiPe)1/4(−12.37 + 4.97β) +O(β2).

The magnitude of stratification is often described by the Brunt-Väisälä frequency

(N =
√

γg
ρ∞

). We note that, the typical values of N range from 10−4 − 0.3 s-1 (Thorpe

2005). Using this estimate, in density stratified water (ρ∞ ≈1000 kg m-3, µ ≈10-3 kg
m-1 s-1), we find that γ ≈ 10-6-10 kg m-4. We now estimate the typical values of Ri
and Re for slowly sedimenting particles (uc ≈ 1 mm s-1) in density stratified water
with γ = 1 kg m-4. Examples include microparticles (lc ≈ 1 − 100µm, Ri ≈ 10−5,
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Re ≈ 10−3), organic particles such as bacteria (lc ≈ 1µm, Ri ≈ 10−10, Re ≈ 10−3) and
phytoplankton (lc ≈ 10 − 100µm, Ri ≈ 10−5, Re ≈ 10−2). We can apply our results to
understand the settling of such arbitrary shaped particles. Here, we again note that, for
larger values of Re, inertia effects may dominate and our analysis is quantitatively valid
for cases where the conditions Re� Ri1/3 or Re� (RiPe)1/4 is satisfied depending on
whether the Péclet number is large or small, respectively. The same condition is valid
for a sphere settling in a stratified fluid as shown in Mehaddi et al. (2018). Table 1
shows the drag increase due to stratification reported for Ri = 0.001, Re = 0.001 and
for various values of Pr. We have considered the cases of horizontal motion (u = uê1)
and vertical motion (u = uê3). The exact value of Prandtl number is a function of
pressure and temperature and the values, Pr = 7 and Pr = 700 correspond to the cases
of temperature stratified water at 180C and salt stratified water, respectively. As we
have considered α = 0, the off-diagonal components of the modified translation tensor
would be zero (refer to equation 5.4) and the principal axes of the particle would not be
modified in the presence of stratification. Consequently, for the cases of horizontal and
vertical motions considered, the drag force would lie along the ê1 and ê3 axis, respectively.
We observe that, for particles settling along the density gradient, the drag enhancement
is maximum as expected. For Ri = 0.001 and Re = 0.001, we find that. for temperature
stratified water, this drag enhancement is ≈ 3% for circular disks and prolate spheroids.
The drag force increases for salt stratification, where the maximum drag enhancement is
≈ 8%.

5.2. Class (b): Skew Particles

This is a class of particles which do not have a centre of hydrodynamic stress. Hence,
irrespective of the choice of the origin O, the coupling tensor will be non-zero (Brenner
1964). Thus, we can write the general expression for the force and the torque experienced
by a particle belonging to this class as described in equations (4.3). We now express
F 0,G0 in terms of the Stokes resistance tensors and substitute in equations 4.3 to obtain
the following,

F = (A− A · V · A) · u+ (CT
O − A · V · CT

O) ·Ω, (5.9)

G = (CO − CO · V · A) · u+ (DO − CO · V · CT
O) ·Ω. (5.10)

We observe that, for this type of particles, along with the force, stratification induces
a non-zero hydrodynamic torque because of the asymmetry in the geometry of the
particle, in contrast to the class (a) counterpart. We additionally note that, all the Stokes
resistance tensors will be modified in the presence of stratification as follows,

As = A− A · V · A Ds
O = DO − CO · V · CT

O , (5.11a)

Cs
O = CO − CO · V · A. (5.11b)

As in the case of non-skew particles, we expect the modified tensors for this class of
particles to depend on the particle velocity and the fluid properties, in contrast to the
homogeneous counterpart. For low Péclet numbers, as in the case of non-skew particles,
we expect the particle dynamics to be governed by the parameter (RiPe)1/4.

From the expressions for the force and torque, we note that, the coupling tensors are
still related by the transpose of each other, even though the fluid is not homogeneous.
Additionally, as in the case of a homogeneous fluid, we also find that the relations,
As = (As)T and Ds

O = (Ds
O)T are satisfied. It can be easily shown that these relations

are satisfied for non-skew particles as well. We shall now consider an example involving
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Figure 3: (a) Screw propeller system translating with a velocity uê3 and (b) Side view
showing the separation between the planes of the disks by an angle 2θ, O denotes the
midpoint of the connecting rod between the two disks.

settling of a particle belonging to this class, in a direction parallel to the density gradient
for both the cases of high (Pe� 1) and low (Pe� 1) Péclet numbers.

Unidirectional settling in a density stratified fluid
We consider the example of a screw propeller system, which consists of two infinitesimally
thin circular disks joined by a rigid rod of negligible hydrodynamic resistance (refer to
figure 3). The radius of each disk is c and the center-to-center spacing between the
disks is 2h. The angle between the planes of the disks is 2θ, 0 6 θ 6 π

2 . We consider
that, this system is settling with a velocity uê3, with the connecting rod parallel to
the ê1 axis. We choose the origin to be located at the midpoint of the connecting rod
(denoted by O in figure 3), with the body fixed axes parallel to the lab fixed coordinate
axes (ê1, ê2, ê3).The resistance tensors for this screw propeller system were derived by
Happel & Brenner (1981) by superimposing the resistance matrices for the individual
disks. They assumed that the disks are sufficiently far apart such that the hydrodynamic
interaction between the disks is zero ( ch � 1) and that the resistance of the connecting
rod is zero. They obtained the following,

A = −32c

3

2 0 0
0 2 + sin2θ 0
0 0 2 + cos2θ

 , DO = −32c

3

2c2 0 0
0 h2(2 + cos2θ) 0
0 0 h2(2 + sin2θ)

 ,

CO = −32ch

3

0 0 0
0 −sinθcosθ 0
0 0 sinθcosθ

 .
As the coupling tensor is non-zero, stratification will induce an additional hydrodynamic
torque on the particle. We now calculate the modified resistance tensors for this particle
by considering the cases of both high and low Péclet numbers.
a) High Péclet numbers (Pe� 1):
We note that, for this case, the expression for V s remains unchanged (refer to equation
5.3). We now use the general expression for the modified resistance tensors given in
equations (5.11) to obtain the following,

As =

− 64c
3 − 3.18Ri1/3c2 0 0

0 − 32c
3 p1(θ)− 0.79Ri1/3c2p21(θ) 0

0 0 − 32c
3 p2(θ)− 6.37Ri1/3c2p22(θ)

 ,
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Ds
O =

− 64c3

3 0 0
0 − 32c

3 h
2p2(θ)− 0.79Ri1/3c2h2p23(θ) 0

0 0 − 32c
3 h

2p1(θ)− 6.37Ri1/3c2h2p23(θ)

 ,
Cs
O =

0 0 0
0 32ch

3 p3(θ) + 0.79Ri1/3c2hp1(θ)p3(θ) 0
0 0 − 32ch

3 p3(θ)− 6.37Ri1/3c2hp2(θ)p3(θ)

 .
Here, p1(θ) = 2 + sin2θ, p2(θ) = 2 + cos2θ and p3(θ) = sinθcosθ. From the expression for
As, we again observe that, stratification augments the drag force acting on the particle.
As we have considered unidirectional settling parallel to the ê3 direction, stratification
induced hydrodynamic torque can be calculated from the expression of the coupling
tensor as,

Gstratified = −6.37Ri1/3c2h(2sinθcosθ + sinθcos3θ)uê3.

b) Low Péclet numbers: (Pe� 1):
Using the expression for V s provided in equation (5.7), for low Péclet numbers, the
resistance tensors change as follows,

As =− 64c
3 − 3.18(RiPe)1/4c2 0 0

0 − 32c
3 p1(θ)− 0.79(RiPe)1/4c2p21(θ) 0

0 0 − 32c
3 p2(θ)− 4(RiPe)1/4c2p22(θ)

 ,

Ds
O =

− 64c3

3 0 0
0 − 32c

3 h
2p2(θ)− 0.79(RiPe)1/4c2h2p23(θ) 0

0 0 − 32c
3 h

2p1(θ)− 4(RiPe)1/4c2h2p23(θ)

 ,
Cs
O =

0 0 0
0 32ch

3 p3(θ) + 0.79(RiPe)1/4c2hp1(θ)p3(θ) 0
0 0 − 32ch

3 p3(θ)− 4(RiPe)1/4c2hp2(θ)p3(θ)

 .
We again observe the existence of the parameter (RiPe)1/4 for the case of low Péclet
numbers as observed for the class (a) type of particles. We determine the hydrodynamic
torque induced due to the presence of stratification as,

Gstratified = −4(RiPe)1/4c2h(2sinθcosθ + sinθcos3θ)uê3.

We finally note that, while evaluating the hydrodynamic forces and the torques on
the screw propeller system, we have assumed that each disk is contained within the
inner zone of the other disk. This condition is satisfied for high Péclet numbers if 2h

c �
Ri−1/3 and for low Péclet numbers if 2h

c � (RiPe)−1/4, which translate to Ri
1/3
2h � 1

and (Ri2hPe2h)1/4 � 1 respectively. Here Ri2h, P e2h represent the viscous Richardson
number and the Péclet number where the length scale is the length of the connecting rod
(2h).

5.3. Trajectory of a slender rod in a density stratified fluid

To further demonstrate the application of our study, we predict the trajectory of a
slender rod of length l and radius a with l � a, sedimenting in a density stratified fluid
(refer figure 4a). We assume that the density of the rod (ρp) is greater than the density
of the ambient fluid evaluated at the rod center. The net force and torque experienced
by the rod can be written through a combination of hydrostatics (including the weight
of the rod) and hydrodynamics. We further assume that the inertia of the particle is
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Figure 4: Forces acting on a slender rod immersed in (a) homogeneous fluid, (b) stratified
fluid (F represents the net hydrodynamic force acting on the rod with F1, F3 being the
components parallel and perpendicular to the rod respectively). Green arrows represent
hydrostatic forces and torques acting on the rod due to gradients in the ambient density,
(c) Trajectories followed by the rod oriented at an initial angle of 45◦in homogeneous and
stratified fluids for Ri = 0.001, Re = 0.01 and l/a = 100, (d) Variation of rod orientation
with time.

negligible and equate the net force and torque acting on the particle to zero. We obtain
the following,

F net = F hydrostatic + F hydrodynamic = 0, (5.12)

T net = T hydrostatic + T hydrodynamic = 0. (5.13)

For the homogeneous case, the hydrostatic force can be evaluated as the difference
between the buoyancy force exerted by the undisturbed fluid and the weight of the
rod to obtain, F hydrostatic = −(ρp − ρ∞)(πa2lg)ê3. Also, for a homogeneous fluid, the
hydrostatic torque acting on the rod is zero, which implies T hydrostatic = 0. The Stokes
translation tensor for a slender rod is given by (Kim & Karrila 2013),

A =

−4π/ln(l/a) 0 0
0 −8π/ln(l/a) 0
0 0 −8π/ln(l/a)
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From equation (5.12), we note that the hydrodynamic force must act in the vertical
direction so as to balance the hydrostatic force. As can be seen from the translation
tensor, the drag coefficient perpendicular to the axis of the rod is twice that of the parallel
drag coefficient. Due to the drag anisotropy, in order to generate a vertical hydrodynamic
force, the rod velocity acts in a direction which is not collinear with the hydrodynamic
force (refer figure 4a). Consequently, after solving the equations of motion, we obtain
a trajectory in which the rod drifts in the lateral direction. as shown in figure 4c for
the case Ri = 0. We also observe that rod translates in a straight line. Additionally,
from equation (5.13), we find that, the hydrodynamic torque exerted on the rod is zero.
This implies that the rod has zero angular velocity at all times and maintains its initial
orientation. As is well known, sedimentation of particles in a homogeneous fluid in the
absence of inertia is an example of indeterminate particle motion, in the sense that, no
preferential configuration is intrinsically favored by the particle (Leal 1980).

In case of a stratified fluid, the points on the rod located above (below) the rod centre
are in contact with fluid elements with density lower (higher) than the fluid density at the
rod center. Consequently, the portion of the rod located above (below) the rod center
will experience lower (higher) buoyancy forces compared to the rod center. Hence, in
addition to a uniform buoyancy force exerted by a fluid of density ρ∞ − γx3p where x3p
is the particle position in the vertical direction, the rod experiences equal and opposite
buoyancy forces acting on points located on either end of the rod center due to gradient
in the ambient density (these forces are shown in green arrows in figure 4b). Hence, the
hydrostatic torque exerted on the rod is non-zero and is given by,

T hydrostatic =
πa2l3γgcosαsinα

12
ê2

Now, from equation (5.13), we expect the orientation of the rod to change with time as
the hydrodynamic torque is non-zero, in contrast to the case of a homogeneous fluid. After
solving the equations of motion, we find that, the rod changes its orientation gradually
such that the longer side eventually becomes horizontal (refer figure 4d). This behavior is
similar to that of a prolate spheroid which settles along its broader side in the presence of
weak inertia (Cox 1965). In the presence of small stratification, the rod thus adopts a final
orientation which is independent of its initial orientation, thus displaying a deterministic
behavior as opposed to the homogeneous counterpart. As the longer side of the rod tilts in
the horizontal direction, we expect the horizontal component of the velocity to decrease
and eventually become zero when α = 0. This can be seen from figure 4c, where we find
that the rod settles in an almost vertical trajectory after some time and departs from
the trajectory followed in a homogeneous fluid. This example demonstrates that, even
sufficiently small values of Ri can lead to significant modifications in the trajectories of
particles.

Most phytoplankton species found in marine environments deviate from a spherical
geometry and display a variety of aspect ratios. A schematic showing such diversity can
be found in Guasto et al. (2012) which displays microorganisms having non-spherical
shapes in the form of pancakes, slender rods, deformed spheres or spheroids. Additionally,
microparticles such as marine snow found in stratified environments can be expected to
have arbitrary shapes. We can use our analysis to quantify the hydrodynamic forces
experienced by such particles as well as their modified trajectories in the presence of
stratification.
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Figure 5: Effect of weak stratification on sedimentation of particles: F h,T h represent
the hydrodynamic force and torque acting on the particle in a homogeneous fluid and
F s,T s represent the stratification induced hydrodynamic force and torque. Dotted circle
represents the matching zone where the buoyancy forces balance the viscous forces andws

represents the stratification induced first order uniform velocity in the outer zone. Rh,Rs
represent the grand resistance tensors for homogeneous and stratified fluid respectively.

6. Conclusion

We considered the motion of a rigid particle of arbitrary shape moving through
a linearly stratified fluid. For weak stratifications, we used the method of matched
asymptotic expansions with Ri1/3 as the small parameter. We derived that, in the
matching zone, the first order velocity reduces to a uniform stream of velocity, irrespective
of the shape of the particle. We then obtain a general expression for the hydrodynamic
force and torque experienced by the particle in terms of the Stokes resistance tensors.
We demonstrated the application of our results by calculating the modified Stokes
resistance tensors for circular disks, prolate spheroids, weakly deformed spheres and a
screw propeller system settling along the density gradient in the limits of high (Pe� 1)
and low (Pe� 1) Péclet numbers.

Figure 5 shows a schematic representation of important conclusions from our study.
For particles having a centre of hydrodynamic stress (non-skew particles), we found that,
stratification only modifies the drag experienced by the particle and does not induce any
additional hydrodynamic torque. This is expected, as stratification induces a uniform flow
far away from the particle, a symmetric particle subjected to this flow will experience no
hydrodynamic torque. Consequently, prediction of the orientation dynamics of a freely
settling non-skew particle in the presence of weak stratification is greatly simplified
as only the hydrostatic torque needs to be evaluated. We found that, a slender rod
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settling in a stratified fluid adopts a final configuration which is independent of its
initial position and orientation. In particular, the rod changes its orientation such that
the longer side eventually becomes horizontal. We derived a general expression for the
modified translation tensor in the presence of stratification. For particles settling parallel
to the density gradient, we found that the off-diagonal components of the translation
tensor are non-zero which causes the particle to experience lift forces, as opposed to the
homogeneous counterpart. For arbitrary particle orientation, we calculated the modified
principal axes of translation in the presence of stratification. Additionally, we found that,
irrespective of the particle shape, stratification increases the magnitude of the principal
translational resistances of the particle. For low Péclet numbers, we observe that the flow
is governed by the parameter (RiPe)1/4 which depends on the fundamental length scale
for stratification.

For particles which do not have a centre of hydrodynamic stress (skew particles), in
addition to the enhanced drag, the stratification induced hydrodynamic torque is non-
zero. We derived a general expression for the modified Stokes resistance tensors for these
particles in the presence of stratification. The results of our study can be used to quantify
the effect of stratification on the hydrodynamic force and torque experienced by arbitrary
shaped particles settling in stratified environments such as oceans and lakes.
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Appendix A

For large values of k, we evaluate εŵ − ŵs to be as follows,

εŵ − ŵs = −Pe(k(F0x
k1k

2
3

k10
+ F0y

k2k
2
3

k10
+ F0z

k33 − k2k3
k10

)+

ê3(
F0xk1k3 + F0yk2k3 + F0z(k

2
3 − k2)

k8
)).

where, F 0 = {F0x, F0y, F0z}. From the above expression, we find that, for k ∼ r̃−σ,

εŵ − ŵs ∼ O(r̃6σ)

We now use this scaling to obtain,∫
k>r̃−σ

(εŵ − ŵs)e
ik·r̃dk

8π3
∼ O(r̃3σ)

Appendix B

For a particle, translating with a velocity uê3, the expressions for V s are given as
follows,

V s =

vs1 0 0
0 vs2 0
0 0 vs3
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High Péclet numbers (Pe� 1):

vs1 = −Ri
1/3

8π3

∫
k21k

2
3

−k6 + ik8k3 + k4k23
dk = Ri1/3

Γ (1/6)Γ (4/3)

80× 22/3 × π3/2
,

vs2 = −Ri
1/3

8π3

∫
k22k

2
3

−k6 + ik8k3 + k4k23
dk = Ri1/3

Γ (1/6)Γ (4/3)

80× 22/3 × π3/2
,

vs3 = −Ri
1/3

8π3

∫
−(k2 − k23)2

−k6 + ik8k3 + k4k23
dk = Ri1/3

Γ (1/3)Γ (7/3)

12× Γ (8/3)× π
.

Here, Γ (.) denotes the Gamma function.
Low Péclet numbers (Pe� 1):

vs1 = −Ri
1/4Pe1/4

8π3

∫
k21k

2
3

−k6 − k10 + k4k23
dk = Ri1/4Pe1/4

K(1/2)

84π
,

vs2 = −Ri
1/4Pe1/4

8π3

∫
k22k

2
3

−k6 − k10 + k4k23
dk = Ri1/4Pe1/4

K(1/2)

84π
,

vs3 = −Ri
1/4Pe1/4

8π3

∫
(k2 − k23)2

−k6 − k10 + k4k23
dk = Ri1/4Pe1/4

5K(1/2)

84π
.

Here, K(.) denotes the complete elliptic integral of the first kind.
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