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We consider n-dimensional convex Euclidean hypersurfaces
moving with normal velocity proportional to a positive power
α of the Gauss curvature. We prove that hypersurfaces con-
tract to points in finite time, and for α ∈ (1/(n + 2], 1/n] we
also prove that in the limit the solutions evolve purely by ho-
mothetic contraction to the final point. We prove existence
and uniqueness of solutions for non-smooth initial hypersur-
faces, and develop upper and lower bounds on the speed and
the curvature independent of initial conditions. Applications
are given to the flow by affine normal and to the existence of
non-spherical homothetically contracting solutions.

1. Introduction.

Motivation for the study of hypersurfaces moving by their Gauss curvature
comes from several sources:

1.1. Tumbling stones. W.J. Firey introduced the Gauss curvature flow
in 1974, as a model of the wearing process undergone by a pebble on a beach
[Fi]. Consider a stone which occupies an open, bounded convex region of
Rn+1 at time t = 0. The stone tumbles, and collides with a hyperplane (the
beach) with random orientation. We assume for simplicity that the amount
of material removed in a collision at a point x of the stone depends only on
the normal direction νx (thus allowing some anisotropy in the material of
the stone). The number of collisions with a region B of the surface of the
stone is proportional to the measure of the set ν(B) = {νx : x ∈ B} ⊂ Sn

of normal directions to B. This is equal to
∫
B KxdHn(x), where Kx is the

Gauss curvature of the hypersurface at x. The rate at which the stone wears
away at a point x is given by ρ(νx)Kx for some positive function ρ on Sn,
and we have the evolution equation

(1) ẋ = −ρ(νx)Kxνx.

1.2. Affine geometry: Inner parallel surfaces and the affine normal
flow. K. Leichtweiss introduced the notion of inner parallel surfaces for a
convex body in affine geometry in the paper [Le]. Given a convex region Ω,
the idea is to construct a family of related regions PtΩ, by a procedure which
is well-defined in the setting of affine geometry — that is, if we perform
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an area-preserving affine transformation L to get a new region LΩ, then
Pt(LΩ) = L(PtΩ).

The procedure is as follows: For each direction z ∈ Sn, there exists a
unique supporting hyperplane Hz = {〈z, y〉 = h(z)} to Ω with normal di-
rection z pointing outward from Ω. The notion of parallel hyperplanes is
well-defined in affine geometry, as is the notion of the volume of a region.
Hence we can choose a unique hyperplane Hz,t parallel to Hz such that the
volume of the part of Ω between Hz,t and Hz is equal to t(n+2)/2 (in the case
where Ω is the region above a paraboloid, this choice of exponent ensures
that Hz,t moves at constant speed). Equivalently, we can define a function
ht(z) by the requirement

(2) Vol ({y ∈ Ω : ht(z) ≤ 〈y, z〉 ≤ h(z)}) = t(n+2)/2.

Then we define PtΩ to be the convex set

(3)
⋂

z∈Sn

{y ∈ Rn+1 : 〈z, y〉 ≤ ht(z)}.

In contrast to the corresponding situation in Euclidean geometry, this
procedure does not define a semi-group: If we begin with a region Ω, con-
struct the regions PtΩ, and use them to construct the regions PτPtΩ, then
these are not in general given by Pt′Ω for any t′. To remedy this we consider
Pn

t/nΩ, obtained by following the above construction repeatedly over small
intervals, and take the limit n →∞ of infinitesimally small steps to obtain
a region P̃tΩ. This defines a deformation which is clearly well-defined in
affine geometry, and satisfies the semi-group property P̃tP̃τ = P̃t+τ .

To find an explicit description of this deformation in the case where Ω
is smooth and strictly convex, we consider the regions PtΩ in the limit of
small t: Fix z, and choose coordinates for Rn+1 such that e1, . . . , en span the
supporting hyperplane Hz of Ω, and the supporting point is at the origin.
Then M = ∂Ω is locally a graph in these coordinates:

xn+1 = −1
2

n∑
i,j=1

hijxixj + O(|x|3),

where hij is the second fundamental form at the supporting point. There ex-
ists a volume-preserving linear transformation which fixes the en+1 direction
and brings M locally to the form

xn+1 = −1
2
K1/n

n∑
i=1

x2
i + O(|x|3)

where K = dethij is the Gauss curvature at the supporting point. Then

Vol ({y ∈ Ω : h(z)− d ≤ 〈y, z〉 ≤ h(z)})

= 2n/2ωnK−1/2d(n+2)/2 + O(d(n+3)/2)
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where ωn is the volume of the unit ball in Rn, and hence the requirement
(2) implies that

ht(z) = h(z)− K
1

n+2

2
n

n+2 ω
2

n+2
n

t + O(t3/2).

It follows that the limiting deformation is given by the equation

(4) ẋ = −cnK
1

n+2
x νx.

This evolution equation is the simplest invariant flow in affine differential
geometry; up to reparametrisation it is the motion of a hypersurface in the
direction of its affine normal vector. This has been considered in [ST1, ST2]
for the case of convex curves in the plane, and in [A4] more generally. For
nonconvex curves results were recently obtained in [AST].

1.3. Image analysis. Many fundamental problems in image analysis have
been approached using geometric flows: An image represented by a grey-
scale density function u can be processed to remove noise by smoothing the
level sets of u with a parabolic flow. Various candidates have been con-
sidered, but in [AGLM] axioms were proposed which included the natural
requirement of affine invariance. This leads to the evolution Equation (4).
In the case of nonconvex hypersurfaces this is no longer parabolic, and var-
ious authors (see [AGLM], [CS], [NK]) have considered the generalization
(for two-dimensional surfaces)

ẋ = −(sgnH) max{K, 0}1/4ν

where H is the mean curvature. Applications of plane curve evolution equa-
tions to image analysis and computer vision are described in [AGLM],
[OST], and [ST1]-[ST3].

1.4. Gradient flows of the mean width. The width of a convex region
Ω in a direction z ∈ Sn is defined by

w(z) = sup
y1,y2∈Ω

〈y1 − y2, z〉 = h(z) + h(−z)

where h(z) = supy∈Ω〈y, z〉 is the support function of Ω. The mean width
V1(Ω, ϕ) with respect to a measure ϕdµ on Sn is given (up to a constant
factor) by integrating the width over all directions z ∈ Sn:

V1(Ω) =
∫

Sn

w(z)ϕ(z)dµ(z) =
∫

Sn

h(z)(ϕ(z) + ϕ(−z))dµ(z)

=
∫

∂Ω
Khϕ̃ dHn,
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where ϕ̃(z) = ϕ(z) + ϕ(−z). The first variation formula for the mean width
can be calculated as follows: Consider a smooth family Ωt of convex regions,
with support functions ht(z) such that

∂

∂t
ht(z)

∣∣∣
t=0

= f(z),

then
d

dt
V1(Ωt)

∣∣∣
t=0

=
∫

Sn

ϕ̃(z)f(z) dµ =
∫

∂Ω0

Kfϕ̃ dHn.

We consider the flow of steepest descent of the mean width in Lp spaces
on ∂Ω — that is, we seek that variation f for which V1(Ωt, ϕ) decreases
fastest amongst all variations with the same Lp norm

(∫
∂Ω |f |

pσ(ν) dHn
)1/p

(σ is a positive smooth function on Sn): By the Hölder inequality we have
for p > 1∣∣∣∣∫

∂Ω0

Kfϕ̃dHn

∣∣∣∣ = ∣∣∣∣∫
∂Ω0

Kf
ϕ̃

σ
σdHn

∣∣∣∣
≤
(∫

∂Ω0

|f |pσdHn

)1/p
(∫

∂Ω0

(
Kϕ̃

σ

) p
p−1

σdHn

)1−1/p

with equality if and only if f = c (Kϕ̃/σ)1/(p−1). The flow of steepest descent
is therefore

(5) ẋ = −ρ(νx)K1/(p−1)
x νx

where ρ = (ϕ̃/σ)1/(p−1) is a smooth positive function on Sn.

1.5. Evolving hypersurfaces and degenerate fully nonlinear PDE.
The evolution equations derived above are included in a large class of par-
abolic evolution equations for hypersurfaces which have been considered
before. Simplest in this class is the mean curvature flow, in which a hy-
persurface moves in the direction of its inward normal with speed given
by the mean curvature. Huisken [Hu] showed that convex hypersurfaces
moving under such equations contract to points in finite time, and that the
hypersurfaces become spherical in shape in the process. This argument has
since been extended to many processes where convex hypersurfaces move
with speeds given by homogeneous degree one, concave or convex monotone
symmetric functions of the principal curvatures: Chow considered flows by
the nth root of the Gauss curvature [Ch1] and the square root of the scalar
curvature [Ch2], and the author has considered a general class of such evo-
lution equations [A1]. Corresponding results for flows where the speed has
other positive degrees of homogeneity in the curvature seem much harder to
prove. The author has treated the special case of flow by the power 1/(n+2)
of the Gauss curvature, which is the flow by affine normal [A4]. Tso [Ts]



MOTION OF HYPERSURFACES BY GAUSS CURVATURE 5

and Chow [Ch1] have shown that hypersurfaces moving with speed equal to
any positive power of the Gauss curvature contract to points in finite time.

The Gauss curvature flows form a convenient class of examples of par-
abolic equations with varying degeneracy: For large α they become more
degenerate, and for small α they become singularly parabolic. Intermediate
values of α are singular in some situations and degenerate in others. The
precise effect of such degeneracy or singularity on the regularity of solutions
is extremely complicated. In particular, it would be interesting to know
how irregular solutions can be, how the regularity estimates depend on time
(particularly where the initial solution is highly irregular), and how solutions
behave in the neighbourhood of degenerate or singular regions.

There are several other important families of PDE for which similar ques-
tions can be asked — in particular, natural families of parabolic equations
with varying degeneracy include the porous medium equations

u̇ = ∆(|u|m−1u),

and the p-harmonic heat flows

u̇ = ∇ ·
(
|∇u|p−2∇u

)
,

for which there is also a natural generalization to p-harmonic maps between
Riemannian manifolds. The Gauss curvature flows can be considered a
geometric analogue of the porous medium equations.

In the case of curves in the plane, more complete results are known:
Gage [Ga1]-[Ga2] and Hamilton [GH] showed that convex curves contract
to points in finite time and become round under the curve shortening flow
(where the speed of motion equals the curvature), and Grayson [Gr] ex-
tended this by showing that any embedded curve eventually becomes convex.
This was extended to include anisotropic analogues of the curve-shortening
flow by Gage [Ga3] in the convex case, and by Oaks [Oa] for nonconvex
curves. The author considered equations of varying degeneracy in the con-
vex case [A2], [A8], and obtained optimal estimates on the regularity of
solutions, including their initial behaviour. The particular case of the affine
normal flow has also been extended to nonconvex curves [AST].

2. The result.

Our main aim in this paper is to prove results about the regularity and
limiting behaviour of solutions of the Gauss curvature flows of the form

(6)
dx

dt
= −ρ(ν(x))K(x)αν(x),

where α is in the range (1/(n + 2), 1/n]. These particular exponents arise
as follows in the proof: We first prove (in Section 4 of the paper) that the
solutions of Gauss curvature flows have isoperimetric ratio bounded as long
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as they exist, provided α is greater than the critical value 1/(n + 2). This
value is sharp — the flow with ρ ≡ 1 and α = 1/(n + 2) is the affine normal
flow, for which solutions converge to ellipsoids of arbitrary eccentricity [A4],
and so the isoperimetric ratio tends to stay bounded but does not generally
improve; in a separate paper [A9] we prove that for exponents smaller than
this (or equal to this if ρ is nonconstant) there are solutions which have
isoperimetric ratios approaching infinity. Second, we prove (in Sections 5
and 6) that if the hypersurface has bounded isoperimetric ratio, and α ≤
1/n, then a short time later the moving hypersurfaces are strictly convex
and have bounded curvature. The exponent 1/n is again sharp, as there are
solutions of the Gauss curvature flow for any α > 1/n which remain non-
strictly convex and are not C∞ — in fact any initial convex hypersurface
which includes a planar piece will behave this way. This phenomenon was
first noted by Richard Hamilton for the case α = 1 [Ha1]. We describe such
behaviour more fully in Section 12 of this paper.

By combining these results, we obtain the following:

Theorem 1. For any open bounded convex region Ω0, any smooth positive
function ρ : Sn → R, and any α ∈ (1/(n + 2), 1/n], there exists a family of
embeddings x : Sn × [0, T ) → Rn+1 satisfying (6), unique up to composition
with an arbitrary time-independent diffeomorphism, such that Mt = x(Sn, t)
converges in Hausdorff distance to the boundary of the region Ω0 as t ap-
proaches zero. x is smooth and strictly convex for t > 0 and converges to a
point p ∈ Rn+1 as t approaches T . Furthermore, the hypersurfaces

M̃t =
(

Vol(Sn)
Vol(Mt)

)1/(n+1)

(Mt − p)

converge in C∞ as t approaches T , to a smooth, strictly convex limit hyper-
surface M̃T for which 〈x, ν〉 = cρ(ν)Kα for some c > 0.

This means that the evolving hypersurface contracts to a point, and
asymptotically approaches a solution which evolves purely by homotheti-
cally scaling about this limiting point.

We also have the following generalisation for smaller α:

Theorem 2. The result of Theorem 1 also holds for a solution of (6) with
any α ∈ (0, 1/n], provided the isoperimetric ratios of the evolving hypersur-
faces remain bounded.

We deduce in Section 7 the first part of Theorem 1, that solutions contract
to points in finite time (in fact we prove this for any α > 0). This was proved
previously for isotropic cases by Tso [Ts] and Chow [Ch1]. In Section 8 we
prove that solutions exist starting from singular initial hypersurfaces, and
immediately become smooth and strictly convex if α ≤ 1/n — note that we
make no regularity assumptions about the initial hypersurface, other than
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those implied by its convexity. We also prove in Theorem 15 the existence of
unique viscosity solutions for α > 1/n, although this is not required for the
proof of Theorems 1 and 2. In Section 9 we digress from the main argument
of the paper to apply the regularity and convexity estimates in a simple
new proof of the convergence theorem for the affine normal flow. In Section
11 of the paper we use Theorem 2 to deduce the existence of non-spherical
homothetic solutions of Equation (6) for constant ρ and suitable α between
0 and 1/(n + 2).

We remark that Urbas [U2] has considered noncompact solutions of iso-
tropic equations of the form (6), in particular proving the existence of solu-
tions which evolve by homothetically expanding or translating.

3. Notation and preliminaries.

The inradius r− of an open convex region is the supremum of the radii
of all balls contained in it, and the circumradius r+ is the infinum of the
radii of balls containing it. In this paper we refer to the ratio r−/r+ as the
isoperimetric ratio of the body.

For a convex region with boundary given by a smooth embedding x : M →
Rn+1, we have an outward unit normal vector field ν : M → Sn ⊂ Rn+1,
which we use to define the Weingarten map Wx : TxM → TxM by the
formula

W(u) = Duν ∈ Tν(x)S
n ' TxM

for any x ∈ M and u ∈ TxM . The eigenvalues λ1, . . . , λn of W(x) are the
principal curvatures of M at x. The elementary symmetric functions Ej of
these are defined by

(7) Ej =
1(
n
k

) ∑
1≤i1<i2<···<ij≤n

(
j∏

k=1

λik

)
.

In particular, K = En is the Gauss curvature, and H = E1 is the mean
curvature.

The covariant derivative ∇ on the hypersurface is given by the formula

∇uv = Duv + 〈W(u), v〉ν.

We will find it convenient at some points in this paper to describe an
open convex region Ω ⊂ Rn+1 in terms of its support function h : Sn → R,
defined by

(8) h(z) = sup
x∈Ω

〈x, z〉.

The support function completely describes the region Ω — in particular, Ω
can be recovered from h via the expression

Ω = ∩z∈Sn

{
y ∈ Rn+1 : 〈z, y〉 < h(z)

}
.
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Alternatively, in the case where M is strictly convex and smooth, the support
function can be used to define a canonical embedding x̄ of Sn with image
equal to M :

(9) x̄(z) = h(z)z + ∇̄ih(z)ḡij∇̄jz.

This has the property that the outward normalto M at the point x̄(z) is
equal to z, for each z ∈ Sn.

The Weingarten map can also be recovered directly from h:

〈W−1(u), v〉 = ∇̄u∇̄vh + 〈u, v〉h

where ∇̄ is the covariant derivative on Sn, and we identify TxM and Tν(x)S
n.

For convenience we will denote by rij the corresponding symmetric bilinear
form, the eigenvalues of which are the principal radii of curvature ri = λ−1

i ,
i = 1, . . . , n:

(10) rij = ∇̄i∇̄jh + ḡijh.

rij satisfies a Codazzi-type identity:

∇̄krij = ∇̄k∇̄i∇̄jh + ḡij∇̄kh(11)

= ∇̄i∇̄k∇̄jh +
(
ḡkj∇̄ih− ḡij∇̄kh

)
+ ḡij∇̄kh

= ∇̄irkj .

Differentiating (11), commuting derivatives, and applying (11) again to the
result, we obtain a version of the Simons’ identity for the second derivatives
of the second fundamental form [Si]:

(12) ∇̄(i∇̄j)rkl = ∇̄(k∇̄l)rij + ḡijrkl − ḡklrij

where the brackets denote symmetrisation.
For convenience, we will denote by Sk the kth elementary symmetric

function of the eigenvalues of rij . In particular, Sn = K−1. Sk may be
considered as a function of the components of the matrix rij , and we denote
by Ṡij

k and S̈ijpq
k the first and second derivatives:

Ṡij
k =

∂Sk

∂rij

and

S̈ijpq
k =

∂2Sk

∂rij∂rpq
.

Ṡk is a positive definite symmetric bilinear form provided r is positive defi-
nite, and S

1/k
k is a concave function of the components of r for k = 1, . . . , n

[Mi].
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The support function allows the degenerate parabolic system of equation
(6) to be re-written as a parabolic scalar equation (see [U1], [A1], [A4]):

(13)
dh(z)

dt
= −ρ(z) det

(
∇̄2h + Idh

)−α
.

In particular, this implies the existence of a smooth solution of Equation (6)
for a short time for any smooth, strictly convex initial hypersurface.

In a region where a family of hypersurfaces moving under Equation (6) can
be represented as graphs xn+1 = ut(x1, . . . , xn) for some convex functions ut,
we can work with an equivalent scalar parabolic equation for the functions
ut:

(14)
∂

∂t
u = ρ̃(Du)

(
det D2u

)α
(1 + |Du|2)

α(n+2)−1
2

where

ρ̃(Du) = ρ

(∑n
i=1 eiDiu− en+1√

1 + |Du|2

)
.

We note some elementary features of Eq. (6): First, the speed of motion
is given by a homogeneous function of the curvatures, and this homogeneity
leads to a scaling property of solutions. Specifically, if x : M× [0, T ] → Rn+1

satisfies Eq. (6), then for each λ > 0 another solution xλ : M×[0, λ1+nαT ] →
Rn+1 is given by

(15) xλ(p, t) = λx(p, λ−(1+nα)t).

This also implies corresponding scaling invariance properties for the solu-
tions of Equations (13) and (14).

A second important property of solutions of Eq. (6) is the comparison
principle: If {M (i)

t }, i = 1, 2 are two families of smooth, strictly convex hy-
persurfaces moving under Eq. (6), and M

(1)
0 ∩M

(2)
0 = ∅, then M

(1)
t ∩M

(2)
t = ∅

for all t > 0 in the common interval of existence. A local version also holds:
If {M (i)

t }, i = 1, 2 are families of smooth, strictly convex hypersurfaces with
boundary, M

(1)
0 ∩ M

(2)
0 = ∅, and M

(1)
t ∩ ∂Mt(2) = M

(2)
t ∩ ∂Mt(1) = ∅ for

t ∈ [0, T ], then M
(1)
t ∩M

(2)
t = ∅ for t ∈ [0, T ].

4. Monotone quantities and diameter bounds.

In this section we prove that whenever α > 1/(n + 2), the evolving hyper-
surfaces have bounded isoperimetric ratios for as long as the solution exists.
The main tool used here is an integral estimate known as the entropy esti-
mate, which was proved for the case α = 1 by Chow [Ch1], and for other α
by the author [A3].
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We define an integral quantity Zρ,α for any given α and ρ by

Zρ,α = Vol(M)n/(n+1)

(
1∫

Sn ρ dµ

∫
M

ρKα dHn

)1/(α−1)

if α 6= 1, and

Zρ,1 = Vol(M)n/(n+1) exp
{

1∫
Sn ρ dµ

∫
M

ρK log K dHn

}
if α = 1. For convenience, we also denote by Z\,α the same quantity with
ρ ≡ 1.

Theorem 3. For any smooth, strictly convex solution of Equation (6),
d

dt
Zρ,α ≤ 0

with equality if and only if the equation 〈x, ν〉 = cρ(ν)Kα holds for some
c > 0 and some choice of origin in Rn+1.

This integral bound will be combined with the following estimate to de-
duce isoperimetric ratio bounds for solutions of the flow:

Theorem 4. For any smooth, strictly convex hypersurface Mn in Rn+1,
r+(M)
r−(M)

≤ C(α, ρ)Z(n+1)β(α)
ρ,α

for some positive constant β(α), provided α > 1/(n + 2).

Proof. We begin with a bound in terms of Z\,α:
Following [Ha2], we begin by obtaining a lower bound on the n-dimen-

sional areas of projections of M onto hyperplanes: Given a direction z0 ∈ Sn,
the area of the projection on to the plane with normal z0 is given by

Az0 =
1
2

∫
Sn

|〈z, z0〉|Sn dµ.

We apply the Hölder inequality to bound this from below, as follows:

Az0 =
1
2

∫
Sn

|〈z, z0〉|Sn dµ

≥ 1
2

(∫
Sn

S1−α
n dµ

)1/(1−α)(∫
Sn

|〈z, z0〉|1−1/α dµ

)α/(α−1)

provided α ∈ (0, 1). The integral
∫
Sn |〈z, z0〉|β dµ is bounded for β > −1.

Hence for α ∈ (1/2, 1) we have

Az0 ≥ C

(∫
Sn

S1−α
n dµ

)1/(1−α)

= CV n/(n+1)Z−1
\,α .

For α ≥ 1 this inequality still holds, because by the Hölder inequality
Z\,α is increasing in α.
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Finally, we consider the case where α ∈ (1/(n + 2), 1/2]: The Hölder
inequality gives

Z\,α ≥ Z
(n+1)(3/4−α)
4(1−α)(3n+2)

\,1/(n+2) Z
α−1/(n+2)

(1−α)(3−4/(n+2))

\,3/4 .

The affine isoperimetric inequality (see [B], §26 and §73, [Sa] or [A4], The-
orem 7.1) implies that Z\,1/(n+2) ≥ 1. Hence by applying the bound on Az0

in terms of Z\,3/4, which we know from the cases treated above, we have

Az0 ≥ CV n/(n+1)Z−1
\,3/4 ≥ CV n/(n+1)Z

− (1−α)(3−4/(n+2))
α−1/(n+2)

\,α .

Hence for each α ∈ (1/(n+2),∞) we have Az0 ≥ CZ−β(α)
\,α for some constant

C and some positive exponent β(α).
Next we deduce a bound on the maximum width of M (the largest dis-

tance between parallel supporting hyperp lanes): Let z0 be the normal di-
rection of a pair of parallel supporting hyperplanes for M at maximal sep-
aration. Then the points of contact of M with these two planes are joined
by a segment with length equal to the maximum width of M , and which
is entirely contained in M . Choosing the origin to be at the centre of this
segment, we have h(z0) = h(−z0) = w+/2 where w+ is the maximum width
of M , and h(z) ≥ |〈z, z0〉|h(z0) for all z ∈ Sn. But then the enclosed volume
of M is computed by:

Vol(M) =
1

n + 1

∫
Sn

hSn dµ ≥ 1
n + 1

∫
Sn

h(z0)|〈z, z0〉|Sn dµ =
w+

2(n + 1)
Az0 .

Hence w+ ≤ 2(n + 1)Vol(M)/Az0 ≤ CZβ(α)
\,α Vol(M)1/(n+1).

Note that Vol(M) ≤ w−wn
+ where w− is the minimum width of M , since

M in contained between (n + 1) pairs of parallel planes in any set of or-
thonormal directions; and, in particular, in the case where one of the pairs
of planes is at minimal separation. Then the separation of all the other pairs
is bounded by w+. It follows that w− ≥ V w−n

+ ≥ CZ−nβ(α)
\,α Vol(M)1/(n+1).

This gives a bound on the ratio of the minimum and maximum widths of
the hypersurface, and this is sufficient to bound the isoperimetric ratio (see
for example [A1], Lemma 5.4).

Finally, we consider the anisotropic cases ρ 6= const.: For α < 1, Zρ,α is
comparable to Z\,α:

infSn ρ1/(1−α)∫
Sn ρ

Z\,α ≤ Zρ,α ≤
supSn ρ1/(1−α)∫

Sn ρ
Z\,α.

For α ≥ 1 the desired inequality results from the monotonicity of Zρ,α as a
function of α, a consequence of the Hölder inequality. �
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We have shown in particular that for α > 1/(n+2), any solution of Equa-
tion (6) with smooth, strictly convex initial data has uniformly bounded
isoperimetric ratio on the entire interval of its existence.

5. Displacement and speed bounds.

In this section we prove that the ratio of the maximum and minimum values
of the speed remains uniformly bounded for as long as the solution exists.

We will first deduce upper bounds on the displacement of the hypersur-
faces, by using spheres enclosed within M0 as barriers:

Theorem 5. For any α > 0 and smooth positive ρ, and any smooth, strictly
convex solution {Mt}t>0 of Eq. (13),

h(z, t) ≥ h(z, 0)− C
r+(M0)
r−(M0)

t
1

1+nα

for all t ∈ (0, C ′r−(M0)1+nα] in the interval of existence of the solution,
where C and C ′ depend only on α and ρ.

Proof. Choose the origin at the centre of a ball of radius r−(M0) enclosed
by M0. Fix z ∈ Sn, and define for each ε ∈ (0, 1] a sphere

Sε = {y ∈ Rn+1 : |y − (1− ε)x̄(z)| = εr−(M0)}.

Then Sε is contained in the convex hull of x̄(z) and Br−(M0)(0), so by con-
vexity is contained in M0.

Any family of spheres of the form Sr(t)(p) with p ∈ Rn+1 and

r(t) =
(
r(0)1+nα − sup ρ(1 + nα)t

)1/(1+nα)

satisfies 〈ẋ, ν〉 ≤ −ρKα, and hence act as barriers for solutions of Eq. (6),
by the comparison principle.

This gives an estimate on the support function of Mt in direction z: Sε

produces a barrier which shrinks to its centre at time ε1+nαr−(M)1+nα/((1+
nα) sup ρ), and we have

h(z, t)− h(z, 0) ≥ −((1 + nα) sup ρt)
1

1+nα

r−(M)
h(z, 0) ≥ −C(α, ρ)

r+(M0)
r−(M0)

t
1

1+nα .

�

Our next estimate is a speed bound, which we prove using the maximum
principle applied to the evolution equations for the speed and the support
function. The proof is related to that given in [Ts] for the isotropic case of
Eq. (1).
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Theorem 6. For any smooth, strictly convex solution {Mt}[0,T ] of Eq. (13)
with R− ≤ r−(Mt) ≤ r+(Mt) ≤ R+ for t ∈ [0, T ],

ρ(z)S−α
n ≤ C(n, α, ρ)

(
R−nα
− +

(
R+

R−t

) nα
1+nα

)
.

Proof. From the definition (10) and the evolution Equation (13) we obtain

(16)
∂

∂t
rij = −

(
∇̄i∇̄j(ρS−α

n ) + ḡijρS−α
n

)
.

Since Sn = det rij , this implies

(17)
∂

∂t

(
ρS−α

n

)
= αρS−(1+α)

n Ṡkl
n

(
∇̄k∇̄l(ρS−α

n ) + ḡklρS−α
n

)
.

We also have
∂

∂t
h(z, t) = −ρS−α

n(18)

= αρS−(1+α)
n Ṡkl

n

(
∇̄k∇̄lh + ḡklh

)
− (1 + nα)ρS−α

n .

Combining Eqs. (17) and (18), we obtain for q = ρS−α
n

h−R−/2

∂

∂t
q = αρS−(1+α)

n Ṡkl
n ∇̄k∇̄lq +

2αρS
−(1+α)
n Ṡkl

n

h−R−/2
∇̄kh∇̄lq

− q2 (αR−H/2− (1 + nα))

where H =
∑n

i=1 r−1
i = nSn−1/Sn ≥ nS

−1/n
n . By the maximum principle,

this implies the following inequality for Q = supSn q:

dQ

dt
≤ −Q2

(
C(n, α, ρ)R−R

1
nα
+ Q

1
nα − (1 + nα)

)
and we deduce

Q ≤ max
{

C(α)
Rnα
− R+

, C ′(α)R
− nα

1+nα
− R

− 1
1+nα

+ t−
nα

1+nα

}
.

From the definition of Q and the estimate h ≤ 2R+, we have

ρS−α
n ≤ max

{
C(n, α, ρ)R−nα

− , C ′(n, α, ρ)
(

R+

R−

) nα
1+nα

t−
nα

1+nα

}
.

�

We now proceed to obtain lower bounds on the speed and displacement.
It is in this estimate that we require α ≤ 1/n. The argument combines
barrier arguments with a Harnack inequality (proved for isotropic Gauss
curvature flows by Chow [Ch3] and for more general flows by the author
[A7]).
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The Harnack estimate can be stated as follows for any solution of Equation
(13) (see [A7], Theorem 5.6):

Theorem 7. For any smooth, strictly convex solution of (13) on Sn×[0, T ),
d

dt

(
ρS−α

n t
nα

nα+1

)
≥ 0

everywhere on Sn × (0, T ).

Our lower speed estimate is the following:

Theorem 8. For α < 1/n the following holds for any smooth, strictly con-
vex solution of Eq. (13):

h(z, t) ≤ h(z, 0)− C(ρ, n, α)r+(M0)
− 2nα

1−nα t
1

1−nα

and
ρ(z)Sn(z, t)−α ≥ C ′(ρ, n, α)r+(M0)

− 2nα
1−nα t

nα
1−nα

for 0 < t < C ′′(n, ρ, α)r+(M0)1+nα. For α = 1/n we have instead the
estimates for each γ > 0

h(z, t) ≤ h(z, 0)− C(n, ρ, γ)r+(M0)1+2γt−γe−C′(ρ,n,γ)r+(M0)2nt−n

and

ρ(z)Sn(z, t)−1/n ≥ C̄(n, ρ, γ)r+(M0)2γ−1t−γe−C̄′(ρ,n,γ)r+(M0)2nt−n

for 0 < t < C̄ ′′(n, ρ, γ)r+(M0)2.

Proof. For n = 1 these estimates are proved in [A2], Theorem II2.4. Suppose
n ≥ 2.

In the case α < 1/n it suffices to use large spheres as barriers: Fix
z ∈ Sn. Then M0 is enclosed in a hemispherical region obtained by in-
tersecting the sphere of radius 2r+(M0) centred at x̄(z) with the half-space
{y ∈ Rn+1 : 〈y, z〉 ≤ h(z)}. For any ε < 2r+(M) this hemispherical region is
enclosed by the sphere Sε of radius (ε2+4r+(M)2)/(2ε) centred at the point
x̄(z)−(4r+(M)2−ε2)/(2ε)z (this sphere is chosen to have support function in
direction z equal to h(z)+ε). We consider the evolution of these spheres for
suitably small ε: Since ρ ≥ infSn ρ, a sphere of radius r evolves in time t to be
contained inside a sphere of radius

(
r1+nα − (1 + nα) inf ρt

)1/(1+nα) about
the same centre, which is enclosed by the sphere of radius r − inf ρr−nαt.
In particular, this applies for each of the sphere Sε, and by the compari-
son principle Mt is also enclosed by this smaller sphere. This implies the
inequality

h(z, t)− h(z, 0) ≤ ε− (inf ρ)
(

ε2 + 4r+(M)2

2ε

)−nα

t

≤ ε
(
1− inf ρ(4r+(M)2)−nαεnα−1t

)
.
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In particular, choosing

ε =
(

t inf ρ

21+2nαr+(M0)2nα

)1/(1−nα)

we obtain

h(z, t)− h(z, 0) ≤ −
(

inf ρ

21+2nαr+(M0)2nα

)1/(1−nα)

t1/(1−nα)

for t ≤ C(ρ, n, α)r+(M0)1+nα.
This estimate on the change in the support function can be converted

to an estimate on the speed using the Harnack estimate from Theorem 7:
Applying the estimate on the time interval [t/2, t], we have

Cr+(M0)
− 2nα

1+nα t
1

1−nα ≤ h(z, t/2)− h(z, t)

= ρ(z)
∫ t

t/2
Sn(z, τ)−αdτ

≤ t/2 sup
τ∈[t/2,t]

(
ρS−α

n

)
.

Theorem 7 then gives

t
nα

nα+1 ρ(z)Sn(z, t)−α ≥ (t/2)
nα

nα+1 sup
[t/2,t]

ρS−α
n

and hence
ρ(z)Sn(z, t)−α ≥ C ′r+(M0)

− 2nα
1+nα t1/(1−nα)−1.

In the case 1/n the sphere barriers are not sufficient, and we instead work
with graphical barriers. The displacement bound is a consequence of the
following:

Lemma 9. Suppose α = 1/n. If M0 has bounded isoperimetric ratio, and
lies in the region xn+1 ≥ 0 and within the ball ‖x‖ ≤ R, then Mt lies inside
the region

xn+1 ≥ C1R
1+2γt−γ

(
e−C2R2n−2(r−2R)2t−n

+ e−C2R2n−2(r+2R)2t−n
)

for 0 ≤ t ≤ C3R
2, where r2 =

∑n
i=1 x2

i , and C1, C2 and C3 are constants
depending only on n, ρ, and γ.

Proof. We will show that the boundary of the region described is a graphical
subsolution of the evolution Equation (14). In the special case of a radially
symmetric function, we have

K =
u′′(u′)n−1

rn−1(1 + (u′)2)(n+2)/2
,
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and so
(19)

u̇− ρ̃(Du)K1/n
√

1 + |Du|2 ≤ u̇− inf ρ(u′′)1/n

(
u′

r

)1−1/n (
1 + (u′)2

)−1/n
.

A direct computation shows that the function

u(r, t) = C1R
1−2γtγ

(
e−C2R2n−2(r−2R)2t−n

+ e−C2R2n−2(r+2R)2t−n
)

makes the right-hand side of (19) non-positive on the region r < R, t ≤
C3R

2, for any γ ≥ 0, where C1, C2, and C3 depend on n, ρ and γ. Since the
boundary of this region cannot intersect the hypersurface Mt, the compari-
son principle applies. �

This gives the bounds in the theorem, since we can rotate and translate
the solution to bring the initial supporting hyperplane to the hyperplane
xn+1 = 0, with M0 satisfying the conditions of Lemma 9 with R = 2r+(M0).
Thus h(z, 0) = 0. For positive sufficiently small t, Lemma 9 gives

h(z, t) = − inf
Mt

xn+1 ≤ −u(0, t)

as required.
Similar barriers can also be constructed for each α < 1/n.
The speed bound follows using Theorem 7 as for the previous cases.
We remark that the estimate for α < 1/n does not rely at all on the

particular structure of the Gauss curvature flows — the same result holds
for any strictly parabolic flow with speed homogeneous of degree less than
1 in the curvatures. �

6. Curvature control.

In this section we prove that the ratio of the maximum and minimum princi-
pal curvatures remains bounded throughout the evolution, given the upper
and lower speed bounds of the previous section. Our argument is an appli-
cation of the parabolic maximum principle to the evolution equation for the
curvature.

In the case n = 1 the speed bounds above and below already give complete
control on the curvatures. For the rest of this section we assume n ≥ 2.

Theorem 10. Suppose h : Sn × [0, T ] is a solution of Eq. (13) for which
the isoperimetric ratio is bounded and the speed is bounded above and below
— that is, there exist constants C1, C2 such that

0 < C1 ≤ Sn(z, t) ≤ C2

for every z ∈ Sn and t ∈ [0, T ]. Then there exist positive constants C3 and
C4 depending only on C1, C2, ρ, n and α such that

λi(z, t) ≥ min{C3t
n−1, C4}
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for all i ∈ {1, . . . , n}, z ∈ Sn, and t ∈ [0, T ].

Proof. We begin by computing the evolution equation for the matrix rij =
∇̄i∇̄jh + ḡijh under Eq. (13):

∂

∂t
rij = −∇̄i∇̄j

(
ρS−α

n

)
− ḡijρS−α

n

= αρS−(1+α)
n Ṡkl

n ∇̄i∇̄jrkl − α(1 + α)ρS−(2+α)
n ∇̄iSn∇̄jSn

+ αρS−(2+α)
n S̈klmn

n ∇̄irkl∇̄jrmn − ḡijρS−α
n − S−α

n ∇̄i∇̄iρ

+ αS−(1+α)
n ∇̄iρ∇̄jSn + αS−(1+α)

n ∇̄jρ∇̄iSn.

In the first term here we apply the identity (12), to yield:

∂

∂t
rij = αρS−(1+α)

n Ṡkl
n ∇̄k∇̄lrij − α(1 + α)ρS−(2+α)

n ∇̄iSn∇̄jSn(20)

+ αρS−(2+α)
n S̈klmn

n ∇̄irkl∇̄jrmn

+ (nα− 1)ρS−α
n ḡij − αρS−(1+α)

n Ṡkl
n ḡklrij

+ S−α
n ∇̄i∇̄jρ + αS−(1+α)

n ∇̄iρ∇̄jSn + αS−(1+α)
n ∇̄jρ∇̄iSn.

We wish to obtain an upper bound for the eigenvalues of rij , so the second
term on the first line and the last term on the second line are good terms
since they are negative. The first term of the first line is an elliptic operator,
and so is non-positive at a point and direction where a maximum eigenvalue
occurs. The first term of the second line we estimate using the concavity
of the nth root of the determinant as a function of the components of the
matrix, which is equivalent to the inequality

(21)
(

S̈klmn
n − n− 1

nSn
Ṡkl

n Ṡmn
n

)
ξklξmn ≤ 0

for any symmetric matrix ξ. Finally, the first term on the last line is
bounded, and the other two terms of the last line can be estimated in terms
of the good second term of the first line:∣∣∇̄iρ∇̄iSn

∣∣ ≤ Cε
∣∣∇̄iSn

∣∣2 + Cε−1

for any ε > 0. Combining these estimates, we obtain

(22)
∂

∂t
rij ≤ αρS−(1+α)

n Ṡkl
n ∇̄k∇̄lrij + CS−α

n ḡij − αρS−(1+α)
n Ṡkl

n ḡklrij .

The last term here will allow us to obtain an estimate independent of
initial data: We have Skl

n ḡkl = Sn−1/Sn, and the Newton inequalities [Mi]
give

(23) Sn−1 ≥ S
n−2
n−1
n S

1
n−1

1 ≥ CS
n−2
n−1
n r

1
n−1
max .
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Now work at a point and time where a maximum eigenvalue is attained,
and suppose i = j and ei is the eigenvector of r with the largest eigenvalue.
Then the first term in the evolution equation is negative, and

∂rmax

∂t
≤ CS−α

n ḡij − CS
−( n

n−1
+α)

n r
n

n−1
max ≤ CS−α

n

(
ḡij − CS

− n
n−1

n r
n

n−1
max

)
.

Given the bound below on S−α
n , the bracket is negative provided rmax is

sufficiently large. For the same reason the coefficient in front of the bracket
does not become small, and we have for rmax sufficiently large

d

dt
rmax ≤ −Crn/(n−1)

max .

The result now follows by the parabolic maximum principle and comparison
with the solution of the ordinary differential equation du/dt = −Cun/(n−1).

�

Next we observe that this automatically provides an upper bound on the
principal curvatures:

Proposition 11. Let W be a positive definite symmetric matrix for which
W ≥ εId and detW ≤ C. Then W ≤ Cε−(n−1)Id.

Proof. Number the eigenvalues λ1 of W in ascending order: λ1 ≤ λ2 ≤ · · · ≤
λn. Then

λn =
K

λ1λ2 . . . λn−1
≤ K

λn−1
1

,

where K = λ1 . . . λn = detW. �

In particular, the upper speed bound of Theorem 6 and the lower curva-
ture bound of Theorem 10 imply an upper curvature bound:

Corollary 12. Under the conditions of Theorem 10 there exist constants
C5 and C6 such that

W ≤ max{C5t
−(n−1)2 , C6}Id.

7. Convergence to a point.

In this section we prove that any solution of Eq. (6) with a smooth, strictly
convex initial hypersurface converges to a point in finite time. In the special
case of isotropic flows (ρ ≡ 1) this was proved by K.S. Chou [Ts] for α = 1
and by Ben Chow [Ch1] for other α. While we only need the result for
α ≤ 1/n, we give a proof which works for larger α as well.

Theorem 13. For any α > 0 and positive ρ ∈ C∞(Sn), and any smooth,
strictly convex hypersurface M0 ⊂ Rn+1, the hypersurfaces Mt given by the
solution of Eq. (6) exist for a finite time T and converge in Hausdorff dis-
tance to p ∈ Rn+1 as t approaches T .
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Proof. The maximal time of existence must be finite: By the comparison
principle, if M0 is enclosed by a sphere Sn

r(0)(q) for some r > 0 and q ∈ Rn+1,
then for all t in the interval of existence, Mt is enclosed by the sphere Sn

r(t)(q),
where

r(t) =
(

r(0)1+nα − (inf
Sn

ρ)(1 + nα)t
)1/(1+nα)

.

r(t) converges to zero in finite time, and Mt cannot exist beyond this time.
Consider again the estimate (22) for the evolution of the curvature. We

also have the evolution equation

∂

∂t
h = −ρS−α

n(24)

= αρS−(1+α)
n Ṡkl

n ∇̄k∇̄lh + αρS−(1+α)
n Ṡkl

n ḡklh− (1 + nα)ρS−α
n .

Combining these, we obtain

∂

∂t
(rij + Ahḡij) ≤ αρS−(1+α)

n Ṡkl
n ∇̄k∇̄l (rij + Ahḡij)

+ (C −A(1 + nα))S−α
n ḡij

+ (Ah− rij) αρS−(1+α)
n Ṡkl

n ḡkl.

Choose A = C/(1 + nα), so that the last term of the first line vanishes.
Also note that since the hypersurfaces are contracting, we have h ≤ h0 =
supSn h(z, 0) as long as the solution exists. Therefore we have, writing qij =
rij + Ahḡij ,

∂

∂t
qij ≤ αρS−(1+α)

n Ṡkl
n ∇̄k∇̄lqij − αρS−(1+α)

n Ṡkl
n ḡkl(qij − 2h0ḡij)

and hence by the parabolic maximum, the maximum eigenvalue of qij is
decreasing if it is larger than 2h0. Since the initial hypersurface is smooth
and strictly convex, qij is bounded at t = 0. Therefore we have a uniform
bound on qij and hence rij throughout the interval of existence.

Suppose the inradius of the hypersurfaces Mt do not converge to zero —
that is, the solution exists for a maximal time interval [0, T ), but there is
some ball of positive radius that remains enclosed by the solution through-
out. By the argument in Section 5, the speed remains bounded throughout
the interval of existence.

By Proposition 11 this also implies a bound on the curvature, so that
the hypersurfaces remain uniformly smooth and strictly convex on the time
interval [0, T ). It follows that there exists a subsequence of times {tk} con-
verging to T such that Mtk converges in C∞ to a smooth, strictly convex
limit MT . Furthermore, the C∞ convergence implies that all time deriva-
tives converge, so that in fact Mt approaches MT in C∞ as t approaches
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T . Hence we have a smooth solution on [0, T ], and the short-time exis-
tence result implies that this can be extended beyond T , contradicting the
assumption that T was maximal.

Therefore the inradius converges to zero. Since rij is uniformly bounded,
this also implies that the circumradius converges to zero, and the hypersur-
faces converge to a point. �

Theorem 13 implies a bound below on the time of existence of solutions
with smooth and strictly convex initial data, in terms of the inradius of the
initial hypersurface, ρ, and α: Any sphere which is initially enclosed by the
hypersurface acts as a barrier, preventing the hypersurface from contracting
to a point too quickly.

8. Short-time existence.

In this section we prove the following:

Theorem 14. For any positive ρ ∈ C∞(Sn), α ≤ 1/n, and open bounded
convex region Ω0 ⊂ Rn+1, there exists a smooth, strictly convex solution
xt : Sn × (0, T ) of Eq. (6) which converges to M0 = ∂Ω0 in Hausdorff
distance as t approaches zero. Any other such solution yt : Sn × (0, T ′) is
given by xt ◦ ϕ for some smooth diffeomorphism ϕ of Sn.

At the end of the section we also prove the existence and uniqueness of
viscosity solutions for arbitrary convex initial data and arbitrary α > 0.

8.1. Existence. In order to construct a solution which approaches M0 at
the initial time, we consider a family of smooth, strictly convex hypersurfaces
M

(ε)
0 which approach M0 in Hausdorff distance as ε approaches zero. By

Theorem 13, for each ε > 0 there exists a unique solution M
(ε)
t of Eq. (6)

with initial condition M
(ε)
0 , which converges to a point in finite time Tε > 0.

Then we have

dH(M0,M
(ε)
t ) ≤ dH(M0,M

(ε)
0 ) + dH(M (ε)

0 ,M
(ε)
t )

≤ dH(M0,M
(ε)
0 ) + Ct1/(1+nα).

By Theorem 10 and Corollary 12, the hypersurfaces M
(ε)
t satisfy bounds

above and below on the principal curvatures, uniformly in ε over every
compact subset of Sn × (0, T ). It follows from the regularity theory for
solutions of uniformly parabolic equations concave in the second derivatives
([K], Theorem 5.5) that there are also bounds on all higher derivatives of the
curvatures, uniformly in ε over every compact subset of Sn×(0, T ). It follows
from the Arzela-Ascoli theorem that there exists a sequence εk approaching
zero such that {M (εk)

t } converges in C∞ to a family of hypersurfaces {Mt}
satisfying the same bounds. In particular, {Mt} satisfies Eq. (6) on Sn ×
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(0, T ), Mt is smooth and strictly convex for each t > 0, and dH(M0,Mt) ≤
Ct1/(1+nα).

8.2. Uniqueness. Suppose we have two solutions {M (1)
t } and {M (2)

t } of
Eq. (6), both converging to M0 in Hausdorff distance as t → 0, and denote
by h

(i)
t the corresponding support functions. Fix ε > 0. Then there exists

t0(ε) > 0 such that |h(i)
t (z) − h0(z)| < ε for i = 1, 2 and all z ∈ Sn and

t ∈ (0, t0(ε)). Choose a smooth, strictly convex hypersurface M
(ε)
0 with

support function h
(ε)
0 such that h0(z) − 2ε < h

(ε)
0 (z) < h0(z) − ε. Without

loss of generality we assume that the origin is at the centre of a ball of radius
r−(M0) enclosed by M0. Then r−(M0) ≤ h0(z) ≤ 2r+(M0). It follows that

h
(ε)
0 (z) < h0(z)− ε < h

(i)
t (z) < h0(z) + ε <

(
1 +

3ε

r−(M0)− 2ε

)
h

(ε)
0

for i = 1, 2 and all z ∈ Sn and t ∈ (0, t0(ε)). The comparison principle and
the scaling property given by Eq. (15) then imply

h(ε)
τ (z) < h

(i)
t+τ (z) < (1 + λ)h(ε)

(1+λ)−(1+nα)τ
(z)

for all τ ≥ 0 for which these all exist, where λ = 3ε
r−(M0)−2ε . Consequently,∣∣∣h(2)

t+τ (z)− h
(1)
t+τ (z)

∣∣∣ ≤ (1 + λ)h(ε)

(1+λ)−(1+nα)τ
(z)− h(ε)

τ (z)

≤ λh
(ε)

(1+λ)−(1+nα)τ
(z) +

(
h

(ε)

(1+λ)−(1+nα)τ
(z)− h(ε)

τ (z)
)

≤ 2r+(M0)λ + C
(∣∣∣1− (1 + λ)−(1+nα)

∣∣∣ τ)1/(1+nα)

≤ Cλ + C(λτ)1/(1+nα).

Here we used Theorem 6 to obtain the second-last line. Now take t → 0.
Since ε > 0 is arbitrary and C independent of ε, we have for each τ > 0 and
z ∈ Sn

h(2)
τ (z) = h(1)

τ (z).
Note that the proof presented here does not rely strongly on the particular

structure of the evolution Equation (6). In particular, the uniqueness argu-
ment is valid for any flow by a monotone, positively homogeneous function
of curvature, since the bound on the change in the support function given in
Theorem 6 also holds for all such evolution equations. The existence argu-
ment requires a speed bound and regularity estimates independent of initial
data.

We now proceed to the case α > 1/n: In this case (as we show in Section
12) one cannot expect to produce smooth solutions from arbitrary convex
initial hypersurfaces. Instead we will work with a weaker notion of solution:
A family of convex regions {Ωt}0<t<T is called a viscosity solution of Eq. (6)
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if the following conditions hold: First, for any smooth, strictly convex hy-
persurface M0 contained in Ωt0 for some t0 ∈ (0, T ), the hypersurfaces Mt

given by solving (6) are contained in Ωt0+t for all t ∈ [0, T−t0) in the domain
of existence of the Mt. Second, for any smooth, strictly convex hypersurface
M0 which encloses Ωt0 for some t0 ∈ (0, T ), the hypersurfaces Mt enclose
Ωt0+t for all t ∈ [0, T − t0).

Theorem 15. For any smooth positive ρ ∈ C∞(Sn), α > 0, and any open
bounded convex region Ω0 ⊂ Rn+1, there exists a unique viscosity solution
{Ωt}0<t<T which converges to Ω0 is Hausdorff distance as t approaches zero.
Ωt converges to a point as t approaches T .

Proof. We use the same construction as presented in the proof of Theorem
14, producing a solution {M (ε)

t } for each ε > 0, with M
(ε)
0 approaching ∂Ω0

in Hausdorff distance as ε approaches zero. We specify further that M
(ε)
0 is

contained in Ω0 for all ε > 0, and is increasing in ε.
For ε sufficiently small, we can choose an origin for Rn+1 and radii R >

r > 0 such that the ball Br(0) is enclosed by all of the hypersurfaces M
(ε)
0 ,

and the ball BR(0) contains all of the hypersurfaces M
(ε)
0 . By the comparison

principle, there exists δ > 0 such that the ball Br/2(0) is enclosed by all the

hypersurfaces M
(ε)
t for t ∈ [0, δ]. The hypersurfaces also remain enclosed by

the ball BR(0).
It follows that the support functions h

(ε)
t (z) are uniformly Lipschitz: By

the Formula (9), we have |x̄|2 = h2 + |∇̄h|2, and re-arrangement gives
|∇̄h|2 ≤ |x̄|2 ≤ R2, which is a uniform Lipschitz bound.

Furthermore, the displacement bound and the speed bound of Theorem
6 show that h

(ε)
t is Hölder continuous in t, uniformly in ε and z, and also

uniformly Lipschitz on compact subsets of (0, δ). Therefore h(ε)(z, t) is a
Hölder continuous function on Sn × [0, δ], uniformly in ε. By the Arzela-
Ascoli theorem, there exists a sequence εk approaching zero which converges
to a limit h(z, t) satisfying the same estimates. By the Blaschke selection
theorem, each of the functions ht = h(., t) is the support function of a convex
region Ωt, and the same argument as in the proof of Theorem 14 shows that
Ωt approaches Ω0 in Hausdorff distance as t approaches zero.

We need to prove that the family {Ωt} is a viscosity solution. The first
condition is easily checked: If M ′

0 is contained within Ω0, then M ′
0 is also

enclosed by M
(ε)
0 for ε > 0 sufficiently small. By the comparison principle,

the resulting solution M ′
t is enclosed by M

(ε)
t for t > 0, and also M

(ε)
t is

increasing in ε and converges to ∂Ωt as ε approaches zero. Therefore M ′
t is

contained in Ωt for t > 0.
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The second condition also follows easily: Any hypersurface M ′
0 which

encloses Ω0 also encloses all of the hypersurfaces M
(ε)
0 , and so by the com-

parison principle M ′
t encloses M

(ε)
t for ε > 0 and t > 0, and so also encloses

the limit ∂Ωt.
The uniqueness statement in Theorem 15 follows exactly as in the proof

of uniqueness in Theorem 14, and the same argument shows that the regions
Ωt converge to a point. �

9. Application: The affine normal flow.

In this section we apply the speed and curvature bounds of the previous
sections to give a short proof of the following theorem:

Theorem 16. Let α = 1/(n + 2) and ρ ≡ 1. For any convex open region
Ω0 ⊂ Rn+1 there exists a smooth family of strictly convex embeddings xt :
Sn → Rn+1 satisfying Eq. (6) for which the Hausdorff distance between
Mt = xt(Sn) and M0 approaches zero as t → 0. Any other such solution {x̃t}
is related to {xt} by composition with a time-independent diffeomorphism.
Mt converges to a point p ∈ Rn+1 as t approaches a finite time T , and

M̃t =
(

Vol(Sn)
Vol(Mt)

)1/(n+1)

(Mt − p)

converges in C∞ to an ellipsoid centred at the origin.

This theorem was proved in the case of smooth, strictly convex M0 in
[A4]. The results of Section 6 allow us to give a proof which works also
for singular initial hypersurfaces. The argument is also considerably simpler
because it avoids the complicated third-derivative estimate which was the
key to the proof in [A4]. On the other hand, we use the result that elliptic
affine hyperspheres are ellipsoids, which was not necessary for the proof in
[A4].

Proof. By Section 8, we have a unique solution of Eq. (6) with the given
initial condition. Since this is smooth and strictly convex for t > 0, the
result of Theorem 13 implies that this solution converges to p ∈ Rn+1 in
finite time T .

In the proof we use the fact that the evolution equation is invariant under
the action of the special affine group: If {Mt} is a family of hypersurfaces
moving under Eq. (6), then {L(Mt)} is also such a family, for any special
affine transformation L.

Fix t ∈ [0, T ). There exists a special affine transformation Lt such that
Lt(Mt) has

C−Vol(Mt)1/(n+1) ≤ Vol(Sn)1/(n+1)hLt(Mt)(z) ≤ C+Vol(Mt)1/(n+1),

for some absolute constants C±.



24 BEN ANDREWS

We consider the solution h̃ given by the scaling relation (15):

h̃(z, τ) =
(

Vol(Sn)
Vol(Mt)

)1/(n+1)

hLt

(
z, t +

(
Vol(Sn)
Vol(Mt)

)−2/(n+2)

τ

)
,

where hL is the support function of the convex body obtained by apply-
ing the special affine transformation L to the body with support func-
tion h. Then C− ≤ h̃(z, 0) ≤ C+. By the comparison principle we also
have 1

2C− ≤ h̃(z, τ) ≤ C+ for τ ∈ [0, δ], where δ = (C−)2(n+1)/(n+2)(1 −
2−2(n+1)/(n+2))(n + 2)/2(n + 1). Hence on the interval [δ/2, δ] there are
uniform speed and displacement bounds (by Theorem 6), a uniform lower
bound on the speed (by Theorem 8), uniform bounds above and below on
the principal curvatures (by Theorem 10 and Corollary 12), and uniform
bounds on all higher derivatives of the curvature (by Theorem 5.5 of [K]).

It follows that the original solution satisfies uniform bounds on all quan-
tities which are both scaling invariant and special-affine invariant, on the
time interval

[
t + 1

2CVol(Mt)2/(n+2), t + CVol(Mt)2/(n+2)
]
, for some abso-

lute constant C. Since t is arbitrary, we have such bounds on the entire
interval [T/2, T ).

Therefore there exists a sequence {tk} approaching T , and a sequence of
special affine transformations {Lk}, such that the hypersurfaces {Lk(M̃tk)}
converge in C∞ to a smooth, strictly convex limit M̃T .

Suppose M̃T does not satisfy the condition K1/(n+2) = c〈x, ν〉 for some
c > 0 and some choice of origin. Then the time derivative of Z\,1/(n+2) on
M̃T is strictly negative, by Theorem 3. By the C∞ convergence and scaling,
there exists k0, δ > 0, and ε > 0 such that whenever k ≥ k0 we have

Z\,1/(n+2)

(
Mtk+δVol(Mtk

)2/(n+2)

)
≤ Z\,1/(n+2) (Mtk)− ε.

But since Z\,1/(n+2) is non-increasing, this would imply Z\,1/(n+2)(M̃tk) →
−∞ as k → ∞, which is impossible. Therefore M̃T satisfies the required
condition.

By Theorem 1 of [Ca], a smooth, strictly convex hypersurface satisfies
the condition K1/(n+2) = c〈x, ν〉 if and only if it is an ellipsoid.

The stronger convergence statements in the Theorem follow by consid-
ering the linearization of the evolution Equation (13) about the space of
ellipsoids — a direct calculation shows that this space is strictly linearly
stable, so Proposition 9.2.3 of [Lu] and a scaling argument implies that Mt

converges in C∞ to the ellipsoid M̃T after rescaling. The details of this
argument are given for a related evolution equation in [A10], Propositions
40-41. �



MOTION OF HYPERSURFACES BY GAUSS CURVATURE 25

Corollary 17. For any open bounded convex region Ω0 ⊂ Rn+1, the follow-
ing generalised affine isoperimetric inequality holds:

lim
t→0

Z\, 1
n+2

(Ωt) ≥ 1

with equality if and only if Ω0 is an ellipse.

In effect this result allows a definition of the affine surface area for convex
hypersurfaces which may be non-smooth or non-strictly convex, in such a
way that the affine isoperimetric inequality remains true. A related exten-
sion of the affine surface area has been given in [Le].

10. Proof of the main Theorems.

In this section we complete the proofs of Theorems 1 and 2. The proof is
similar to that presented in the special case of the affine normal flow in the
previous section, but is somewhat simpler because we do not require the
machinery of affine corrections to obtain bounded isoperimetric ratios.

Section 8 provides us with a unique solution {Mt} of Eq. (6) for a short
time, and Theorem 13 ensures that this solution remains smooth until it
converges to a point p ∈ Rn+1 in finite time T . In the case α > 1/(n +
2), Theorem 4 gives a uniform bound on the isoperimetric ratios of the
hypersurfaces Mt throughout the interval [0, T ]. In the case described in
Theorem 2, we also have such an estimate by hypothesis.

Theorems 6, 8 and 10 and Corollary 12 therefore imply uniform bounds
above and below on the principal curvatures of the rescaled hypersurfaces
{M̃t} defined by rescaling to fixed enclosed volume about the point p. The-
orem 5.5 of [K] and Schauder estimates ([Li], Theorem 4.9) imply uniform
bounds on all higher derivatives of curvature. It follows that there exists a
subsequence of times {tk} approaching T for which the hypersurfaces M̃tk

converge in C∞ to a smooth, strictly convex limit M̃T . By the same argu-
ment as that in Section 9, M̃t satisfies the equation 〈x, ν〉 = cρKα for some
c > 0. The convergence in C∞ of M̃t to M̃T as t approaches T follows from
Theorem 2 of [A6].

11. Application: Non-trivial homothetic solutions.

In this section we give an application of Theorem 2 to prove the existence
of homothetically contracting solutions of the isotropic flows

∂

∂t
x = −Kαν

for sufficiently small α. The idea is to consider the evolution of hypersurfaces
close to the sphere Sn, possessing suitable symmetries. Precisely, our result
is the following:
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Theorem 18. Let Γ be a proper subgroup of SO(n + 1) such that for every
z ∈ Sn, the orbit of z under Γ spans Rn+1 (that is, the inclusion of Γ in
SO(n+1) is an irreducible representation). Let λ be the smallest eigenvalue
corresponding to a non-trivial Γ-invariant spherical harmonic ϕ. Then for
α ∈ (0, 1/(λ−n)) there exists a non-spherical, Γ-symmetric, smooth, strictly
convex hypersurface satisfying the identity 〈x, ν〉 = Kα.

Proof. The linearization of the normalised isotropic Equation (6) about the
sphere solution h ≡= 1 is given by

∂

∂t
η = α(∆ + n)u + u

where ∆ is the Laplacian on Sn. In particular, for α ∈ (0, 1/(λ − n)) the
h ≡ 1 solution is strictly unstable in the direction ϕ. By [Lu], Theorem
9.1.3, there exists a Γ-symmetric solution {Mt} of Eq. (6) which converges
to h ≡ 1 as t → −∞ and diverges exponentially from h ≡ 1.

We observe that Γ-symmetry of a convex hypersurface implies a bound
on the isoperimetric ratio:

Lemma 19. For any Γ satisfying the conditions of Theorem 18, there exists
a constant C such that every Γ-symmetric convex hypersurface M ⊂ Rn+1

satisfies r+(M)/r−(M) ≤ C.

Proof. If this is not the case, then we can find a sequence of Γ-symmetric
convex hypersurfaces Mk such that r+(Mk) = 1 and r−(Mk) ≤ 1/k. By
the Blaschke selection theorem ([Sc], Theorem 2.5.14) we can choose a sub-
sequence Mk′ which converges in Hausdorff distance to a limit M∞ which
is again Γ-symmetric but has r−(M∞) = 0 and r+(M∞) = 1. It follows
that M∞ is contained in a lower-dimensional subspace of Rn+1. But this
is impossible, because there exists x ∈ M∞ with |x| = 1; by Γ-symmetry
all of the point g(x) are in M∞, but these are not contained in any such
sub-space. �

Therefore we can apply Theorem 2 to the solution {Mt}, obtaining C∞

convergence to a limit MT satisfying the required identity (possibly after
scaling to ensure c = 1). MT is Γ-symmetric, and has Z strictly less than
that for the sphere solution, since Z has strictly decreased along the solution
{Mt}. Therefore MT is non-spherical. �

Corollary 20. In the case n = 1, for each k ≥ 3 and each α ∈ (0, 1/(k2 −
1)) there exists a non-circular strictly convex smooth curve Ck with k-fold
symmetry which contracts homothetically under the flow

∂

∂t
x = −καn

where κ is the curvature, and n the unit normal.
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Proof. For k ≥ 3 the subgroup Γk generated by rotation through 2π/k satis-
fies the conditions of Theorem 18. The first spherical harmonics symmetric
under Γk are cos(kθ) and sin(kθ), with corresponding eigenvalue λ = k2. �

Corollary 21. In the case n = 2, there exists a homothetically contracting
solution of Eq. (6) with tetrahedral symmetry provided α ∈ (0, 1/10); there
exists one with octahedral symmetry provided α ∈ (0, 1/18); and there exists
one with icosahedral symmetry provided α ∈ (0, 1/40).

Proof. In this case the only subgroups satisfying the required condition are
the symmetry groups of the platonic solids. There are three such groups,
since the dual solids have the same symmetry group. The first tetrahedrally
symmetric spherical harmonic is given by the restriction of the function
xyz to S2, and the corresponding eigenvalue is 12. The first octahedrally
symmetric spherical harmonic is x4 + y4 + z4 − 3x2y2 − 3x2z2 − 3y2z2, and
the corresponding eigenvalue is 20. Finally, the first icosahedrally symmetric
spherical harmonic is

231z6 − 315z4(x2 + y2) + 105z2(x2 + y2)2 − 5(x2 + y2)3

+ 42zx5 − 420zx3y2 + 210zxy4,

and the corresponding eigenvalue is 42. �

Corollary 22. For n ≥ 3, there exists a non-spherical homothetically con-
tracting solution with the symmetry of a regular (n + 2)-simplex for α ∈
(0, 1/(2(n + 3))), and one with the symmetries of a regular hypercube for
α ∈ (0, 1/3(n + 4)).

Proof. The function
∑

i x
4
i − (6/n)

∑
i6=j x2

i x
2
j has the symmetry of a regular

hypercube in Rn+1, and its restriction to Sn is a spherical harmonic with
eigenvalue 4(n + 3).

For all n ≥ 1 there exists a cubic homogeneous harmonic polynomial un

on Rn+1 with the symmetries of a regular simplex. These are given by the
recursive definitions

u1(x1, x2) = x3
2 − 3x2

1x2

un+1(x1, . . . , xn+2) = un(x1, . . . , xn+1)

+ βn

(
x3

n+2 −
3

n + 1
(
x2

1 + · · ·+ x2
n+1

))
where β1 =

√
2 and

βk+1 = βk

√
(k + 1)3

k2(k + 3)
.

The restriction of un to Sn is a spherical harmonic with the required sym-
metries, and the corresponding eigenvalue is 3(n + 2). �



28 BEN ANDREWS

In [A5] we prove that the only homothetically contracting solutions of
flows by positive powers of curvature are those given in Corollary 20. For
n = 2 we expect that there are many more solutions which are not described
by Corollary 21. In particular, for small α there should be many solutions
symmetric under each of the platonic symmetry groups, and there should
also be solutions symmetric under some other subgroups of SO(3), such as
the subgroup of rotations about a fixed axis, and its discrete subgroups. In
the case n ≥ 3 there are of course many more examples of suitable subgroups
Γ which we have not mentioned explicitly in Corollary 22.

12. Hypersurfaces with planar or cylindrical parts.

In this section we demonstrate that the result of Theorem 1 no longer holds
for any α > 1/n. Specifically, we show that any solution starting from a
hypersurface containing a planar region must still contain a planar region for
small positive times. We also consider the behaviour of hypersurfaces which
contain regions which are cylindrical or locally have the form Mn−k × Rk

for some k > 0.

Theorem 23. Suppose M0 is a compact convex hypersurface, and F0 a sub-
set of M0 which has the form Nn−k

0 ×Uk
0 , where N0 is a smooth convex hy-

persurface in Rn+1−k and U0 is an open subset of Rk. Then for any smooth
positive function ρ on Sn and any α > 1/k, the viscosity solution {Mt}
starting from M0 contains an open subset Ft of F0 for t > 0 sufficiently
small.

Conversely, suppose Ω0 in a bounded open convex set in Rn+1 for which

σn−k = inf
x∈∂Ω0

sup
P,Γ

{
κ : y ∈ Ω0 ⇒ 〈x− y, P⊥〉 ≥ 1

2
κ|πΓ(x− y)|2

}
> 0

where the supremum is over all supporting hyperplanes P of Ω0 which con-
tain x and all n− k-dimensional affine subspaces Γ of P through x, and P⊥

is the unit normal to P which points outward from Ω0. Then for any ρ and
any α ∈ (0, 1/k] the viscosity solution {Ωt} of (6) with initial condition Ω0

is smooth and strictly convex for t > 0 and remains so until it contracts to
a point.

When Ω0 is smooth, σn−k is strictly positive if and only if En−k(W) is
strictly positive, or equivalently if and only if the sum of the smallest k + 1
principal curvatures is strictly positive at every point.

Proof. To prove the first part of the Theorem, we will construct barriers with
cylindrical symmetry, described by embeddings of the form ϕ : Sn−k×Bk

R(0)
with ϕ(z, x) = (u(|x|)z, x) ∈ Rn+1−k × Rk ' Rn+1. We consider the case
where u is concave and decreasing in |x|. The metric and second fundamental
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form are given by

gzizj = u2ḡij

gxizj = 0

gxixj = δij +
xixj

|x|2
(u′)2

and

Wzj
zi =

δj
i

u
√

1 + (u′)2

Wxj
zi = 0

Wxj
xi = − u′′

(1 + (u′)2)3/2

xix
j

|x|2
− u′

|x|
√

1 + (u′)2

(
δj
i −

xix
j

|x|2

)
.

The Gauss curvature is given by the expression

K = (−1)k u′′(u′)k−1

un−k|x|k−1(1 + (u′)2)(n+2)/2

and the unit normal is

ν =
z − u′x̂√
1 + (u′)2

where x̂ = x/|x|.
It follows that any function u(r, t) satisfying the inequality

(25) u̇ ≤ − sup ρ(−u′′)α(−u′)α(k−1)u−α(n−k)|x|−α(k−1)
(
1 + (u′)2

) 1−α(n+2)
2

has a cylindrical graph which acts as an inner barrier for convex solutions
of Eq. (6). We proceed to construct such barriers.

Lemma 24. For given k, ρ, and α > 1/k there exist constants c1, c2 and
c3 such that for any λ > 0 and u0 > 0, R > 0, the function

u = u0

1− c1(k, α)
(
|x|
R

+ c2(ρ, k, α)
(u0

R

)2kα t

u1+nα
0

− 1
) k+1−1/α

k−1/α

+


is C2 and satisfies (25) on the region

|x| ≤ 2R, 0 ≤ t ≤ c3(ρ, k, α)u1+nα
0

(
R

u0

)2kα

,

provided α ∈ (1/k, 1/(k− 1)). If α ≥ 1/(k− 1) then u is not C2 but acts as
a barrier for smooth, strictly convex solutions of Eq. (6), hence also for the
viscosity solutions constructed in Theorem 15.
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Proof. The case α ∈ (1/k, 1/(k − 1)) follows by direct computation. In
the case α ≥ 1/(k − 1) the same computation gives the result except when
|x| = R − c2(u0/R)2kαR/u1+nα

0 t, where u is not C2. A smooth convex
hypersurface lying outside the graph of u and meeting the graph at such a
point must have K = 0, so the barrier condition is verified. �

To use these barriers in the comparison principle, we need to check that
the viscosity solution {Mt} stays away from the boundary of the barrier
produced in Lemma 24. Fix x in the interior of M0 and ε > 0 small, and
choose u0 smaller than the smallest radius of curvature of N0, and place
the origin at the point x − (u0 + ε)νx. Choose R sufficiently small so that
the distance from x to the boundary of F0 is at least 3R. Let M̃0 be the
hypersurface given by√√√√n−k∑

i=1

x2
i = u0

1− c1(k, α)


√∑n

i=n−k+1 x2
i

R
− 1


k+1−1/α

k−1/α

+


for
∑n

i=n−k+1 x2
i ≤ 4R2. Then M̃0 lies entirely within M0. Furthermore, for

each y ∈ ∂M̃0, the sphere Bc(ρ,k,α)min{u0,R}(y) is enclosed by M0 for some
constant c. Define M̃t to be the hypersurface√√√√n−k∑

i=1

x2
i = u0

1− c1


√∑n

i=n−k+1 x2
i

R
+ c2

(u0

R

)2kα t

u1+nα
0

− 1


k+1−1/α

k−1/α

+


for
∑n

i=n−k+1 x2
i ≤ 4R2. For t < c(ρ, n, k, α) min{u0, R}1+nα we have

∂M̃t ⊂
⋃

y∈∂M̃0

Br(t)(y)

where r(t)1+nα = (cmin{u0, R})1+nα − (1 + nα) sup ρt. The comparison
principle implies that each of these balls is enclosed by Mt, and therefore
that ∂M̃t does not meet Mt. It follows by the comparison principle that M̃t

remains entirely enclosed by Mt on this time interval, and therefore that
h(νx, t) ≥ h(νx, t)− ε for all ε > 0, so that x has not moved during this time
interval.

Now we proceed to the second part of the Theorem, the case of α ≤ 1/k.
This also proceeds using barrier constructions. Let x ∈ ∂Ω0. Since σn−k > 0,
there exists a hyperplane P supporting Ω0 at x and an n − k-dimensional
subspace Γ of P such that Ω0 is contained in the region

〈x− y, P⊥〉 ≥ 1
4
σn−k|πΓ(x− y)|2.
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Ω0 is also clearly contained in the ball B2r+(Ω0)(x). We now construct bar-
riers:

Lemma 25. Fix k, ρ, α ∈ (0, 1/k) and constants R > 0 and u0 > 0. If
every y ∈ Ω0 satisfies

(26) |y| ≤ R,
n−k∑
i=1

y2
i ≤ u2

0

then for 0 < t ≤ c(ρ, k, n, α) min{u0, R}1+nα we have for every y = (Y, η) ∈
Ωt ⊂ Rn+1−k × Rk ' Rn+1,

|Y | ≤ u0 − ct
1

1−kα
R

α−1
1−kα

u
α(n−k)
1−kα

0

(
(4R− |η|)−

α(k+1)
1−kα + (4R + |η|)−

α(k+1)
1−kα

)
where c depends only on ρ, k, n, and α. If α = 1/k and every y ∈ Ω0 satisfies
(26), then for 0 < t ≤ c(ρ, k, n) min{u0, R}1+n/k and y = (Y, η) ∈ Ωt we have

|Y | ≤ u0 − c1R exp
(
−c2R

2kun−k
0 t−k

)
cosh

(
c2R

2k−1un−k
0 |η|t−k

)
where c1 and c2 depend only on ρ, k, and n.

Proof. A direct calculation shows that these regions are given by cylindrical
graphs satisfying the inequality

(27) u̇ ≥ − inf ρ(−u′′)α(−u′)α(k−1)u−α(n−k)|x|−α(k−1)
(
1 + (u′)2

) 1−α(n+2)
2

which therefore act as outer barriers for solutions of Eq. (6). �

It follows that the support function at every point must change: If we
fix z ∈ Sn, and place a cylindrical barrier outside the hypersurface M0 and
passing through x, then we have

h(z, t) ≤ h(z, 0)− ct
1

1−kα R− 1+kα
1−kα u

−α(n−k)
1−kα

0

for α < 1/k, and

h(z, t) ≤ h(z, 0)− c1R exp
(
−c2R

2kun−k
0 t−k

)
when α = 1/k. Theorem 7 then gives lower bounds on the speed ρS−α

n

uniformly in z for each t > 0, by the same argument as given in the proof of
Theorem 8. Theorem 10 implies bounds below on all the principal curvatures
at each positive time, and Corollary 12 gives upper bounds on the principal
curvatures. Theorem 5.5 of [K] implies that the solution hypersurface is
smooth and strictly convex for sufficiently small positive times, and the
result of Theorem 23 follows from Theorem 13. �
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