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Abstract. Using data from the EISCAT (European Incoher-

ent Scatter) VHF and CUTLASS (Co-operative UK Twin-

Located Auroral Sounding System) HF radars, we study

the formation of ionospheric polar cap patches and their re-

lationship to the magnetopause reconnection pulses identi-

fied in the companion paper by Lockwood et al. (2005).

It is shown that the poleward-moving, high-concentration

plasma patches observed in the ionosphere by EISCAT on

23 November 1999, as reported by Davies et al. (2002),

were often associated with corresponding reconnection rate

pulses. However, not all such pulses generated a patch and

only within a limited MLT range (11:00–12:00 MLT) did

a patch result from a reconnection pulse. Three proposed

mechanisms for the production of patches, and of the con-

centration minima that separate them, are analysed and eval-

uated: (1) concentration enhancement within the patches by

cusp/cleft precipitation; (2) plasma depletion in the minima

between the patches by fast plasma flows; and (3) intermit-

tent injection of photoionisation-enhanced plasma into the

polar cap. We devise a test to distinguish between the ef-

fects of these mechanisms. Some of the events repeat too

frequently to apply the test. Others have sufficiently long

repeat periods and mechanism (3) is shown to be the only

explanation of three of the longer-lived patches seen on this

day. However, effect (2) also appears to contribute to some

events. We conclude that plasma concentration gradients on

the edges of the larger patches arise mainly from local time

variations in the subauroral plasma, via the mechanism pro-

posed by Lockwood et al. (2000).
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1 Introduction

In a companion paper, hereafter referred to as Paper I,

Lockwood et al. (2005) studied motions of the open-closed

field line boundary (OCB) during two substorm cycles on

23 November 1999. From detailed analysis of the flows ob-

served by the EISCAT (European Incoherent Scatter) VHF

radar, the reconnection rate was shown to be pulsed when

the IMF was steadily southward and EISCAT was within

the inferred merging gap (the ionospheric footprint of the

magnetopause reconnection X-line). From both the EISCAT

data and the DMSP (Defense Meteorological Satellite Pro-

gram) spacecraft passes, Lockwood et al. (2005) found the

merging gap extent to be of order 09:30–15:30 MLT (which

EISCAT beam 1 observed in the interval 06:45–12:45 UT).

Davies et al. (2002) reported that poleward-moving plasma

concentration enhancements (polar cap “patches”) were seen

by the EISCAT VHF radar on this day and associated them

with regions of enhanced HF backscatter, observed using the

CUTLASS (Co-operative UK Twin-Located Auroral Sound-

ing System) HF radar at Hankasalmi. In the present paper,

we analyse the association of the reconnection rate pulses

with the formation of the patches and investigate the mecha-

nism by which the patches are formed.

1.1 Polar cap patches

Ionospheric plasma concentration enhancements have been

observed moving in an antisunward direction throughout the

polar cap. They are seen moving poleward into the po-

lar cap on the dayside (Foster and Doupnik, 1984; Foster,

1989; Lockwood and Carlson, 1992; Lockwood et al., 2001;

Opgenoorth et al., 2001; Carlson et al., 2002, 2004), mov-

ing across the central polar cap (Weber et al.,1984; Anderson

et al., 1988; Sojka et al., 1993, 1994; McEwen and Harris,
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1996; Pedersen, 2000), and emerging from the polar cap into

the nightside auroral oval (Lockwood and Carlson, 1992).

In many studies, patches have been associated with regions

of enhanced HF radar backscatter and so linked with the

poleward-moving events seen by these radars (Rodger et al.,

1994a, b; Milan et al., 2000; Davies et al., 2002).

The mechanisms responsible for the formation of polar cap

patches have been a matter of considerable debate. An as-

sociation between patches and transient reconnection pulses

has been suggested by a number of recent studies (McCrea

et al., 2000; Lockwood et al., 2000, 2001; Opgenoorth et

al., 2001; Moen et al., 2001). Other studies suggest patches

are linked to other phenomena, such as travelling convection

vortices (Valladares et al., 1994, 1999).

A key feature, which any theory of polar cap patches

must explain, is why there exist minima between the re-

gions of high plasma concentration, as opposed to them be-

ing appended directly to each other, so forming a continu-

ous “tongue” of enhanced ionization extending into the po-

lar cap. Two different classes of mechanism have been pro-

posed: (1) the intermittent entry of flux tubes (and the frozen-

in, photon-produced ionization) into the polar cap by time-

varying convection; and (2) in-situ effects of precipitation

and electric fields within the cusp/cleft region.

1.2 Intermittent entry of photon-produced ionization into

the polar cap

Several conceptual and simulation models have reproduced

polar cap patches using time-dependent convection in the

presence of the photon-produced plasma concentration gra-

dients associated with solar zenith angle (e.g., Anderson et

al.,1988; Sojka et al., 1993, 1994). However, as pointed out

by Lockwood (1993), it is not valid to impose time-varying

convection patterns on a model of the coupled ionosphere-

thermosphere system in an ad-hoc manner. The reason is

that such a procedure will neglect the key magnetospheric

distinction between open and closed field lines. Imposing

an empirical model of the pattern of convection without this

consideration will allow closed field lines to convect antisun-

ward (without them first being opened or being subject to

any viable viscous-like momentum transfer mechanism) and

open field lines to convect sunward (without them first being

reconfigured by tail or lobe reconnection).

Thus, although such simulations can produce patches by

allowing plasma of varying photon-produced concentration

to enter the polar cap, they are not revealing the true mecha-

nism. This is because they are not constraining field lines

to move into the polar cap through a realistic dayside re-

connection merging gap, given that convection excitation

is dominated by the production and loss of open flux by

magnetic reconnection. Lockwood and Carlson (1992) pro-

vided a conceptual model of how the flow changes associ-

ated with pulsed reconnection could generate convecting po-

lar cap patches, using the theory of ionospheric convection

excitation by Cowley and Lockwood (1992). However, this

mechanism relied on the OCB being in a close and particular

proximity to the plasma concentration gradient associated

with the day-night solar terminator and so cannot explain si-

multaneous patch production in the summer and winter polar

caps, as has been observed by Rodger et al. (1994b). In ad-

dition, the requirement of this special condition is at odds

with the fact that patches are present within the polar cap for

such a large fraction of the time. Lockwood et al. (2000)

provided a refinement of the Lockwood and Carlson model

which would apply if the Y-component of the IMF is large

in magnitude and events are longitudinally extensive. In this

model, lower-concentration flux tubes arise from local times

further away from noon and, once in the polar cap, they form

the equatorward part of each patch of newly-opened flux gen-

erated by a reconnection pulse. Combined observations by

the EISCAT Svalbard Radar (ESR) with the EISCAT VHF

and CUTLASS radars (Lockwood et al., 2000) and by the

ESR with the Cluster and DMSP spacecraft (Opgenoorth et

al., 2001) provide evidence for this mechanism. Further-

more, fast azimuth scans by the ESR have shown plasma

enhancements propagating into the polar cap (Carlson et al.,

2002).

1.3 In-situ effects in the cusp

Rodger et al. (1994a) point out that plasma production by soft

particle precipitation could be an important effect in patch

production (Whitteker, 1977; Watermann et al., 1994; Davis

and Lockwood, 1996; Millward et al., 1999; Walker et al.,

1999; Vontrat-Reberac et al., 2001). In addition, Rodger et

al. (1994a) note that plasma loss rates are enhanced by strong

ion drifts (Schunk et al., 1975) and these have been both

predicted and observed to generate significant depletions in

the cusp region (Balmforth et al., 1998, 1999; Ogawa et al.,

2001) within flow channel events (Pinnock et al., 1993). Both

these factors could be significant in introducing structure into

the plasma concentrations on the timescales for flux tubes

to enter the polar cap. To do so, it is necessary for some

flux tubes entering the polar cap to have undergone one or

both of these processes to a greater degree than others. If

all variables remained constant, other than the reconnection

rate, then all newly-opened flux tubes reconnected at a given

MLT would undergo the same sequences of precipitation and

motion and this would not generate the required structure.

Debate about these two classes of mechanism has been

considerable (e.g. Rodger et al., 1994c; Lockwood and Carl-

son, 1994) and it is probable that both are required for a

full understanding of patches. McCrea et al. (2000) used the

ESR to study the field-aligned plasma concentration profiles

within patches and found them to be different from the pro-

files of the nearby sunlit ionosphere but also different from

those within the cusp, indicating that the enhanced plasma

concentration in patches may result from ionisation by both

solar EUV and cusp/cleft precipitation.
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Fig. 1. Logarithm of plasma concentration, log10[Ne], colour-coded as a function of invariant latitude and observation time, as observed

along (a) beam 1 and (b) beam 2 of the EISCAT VHF radar CP-4-B experiment (see text for details). The data are integrated into 10-s

intervals. The plot shows the poleward-moving patches reported by Davies et al. (2002). (c) The ionospheric velocity, V ′, corresponding to

the magnetopause reconnection rate. The high ion temperature boundary is shown in the upper two panels as a white line. Minima in the

reconnection rate are marked with vertical red dashed lines.

2 Observations

In this section, we consider in detail the observations of

polar cap patches made by the EISCAT VHF radar on

23 November 1999, between 03:00 and 13:00 UT. Davies et

al. (2002) have shown that some of these patches are linked

to poleward-moving events seen by the HF CUTLASS Su-

perDARN radar at Hankasalmi. A full description of the in-

terplanetary conditions, seen by the Wind and ACE satellites,

has been given in Paper I and by Moen et al. (2004). The re-

sponse in the polar cap detected by the EISCAT VHF radar,

the auroral electrojet magnetometers and by various DMSP

satellites, is also presented in Paper I, along with an analysis

of the local reconnection rate around EISCAT beam 1. The

reconnection rate was found to be significantly above zero at

06:45–12:45 UT (MLT of 09:30–15:30).

The magnetopause reconnection rate is proportional to V ′,

the ionospheric plasma convection velocity component nor-

mal to the open-closed boundary, OCB, and in the OCB

rest frame (the constant of proportionality being the prod-

uct BiLi , where Bi is the ionospheric field and Li is the

length along the dayside ionospheric merging gap which
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Fig. 2. Logarithm of the height-corrected plasma concentration, log10[f(h)Ne], colour-coded as a function of invariant latitude and obser-

vation time, as observed along (a) beam 1 and (b) beam 2 of the EISCAT VHF radar. The normalizing factor f(h) is an estimate of the

ratio Ne(350)/Ne(h) based on the plasma scale height, derived from the observed temperatures and assuming diffusive equilibrium. (c) The

ionospheric velocity V ′ corresponding to the magnetopause reconnection rate. The high ion temperature boundary is shown in the upper

two panels as a white line. The pulses in the reconnection rate can be associated with poleward moving events. Minima in the reconnection

rate are marked with vertical red dashed lines. In (a) and (b) the dotted white lines mark linear fits to the major minima in the plasma

concentration, as a function of range.

maps along field lines to unit length of the magnetopause

X-line). Paper I presents a procedure for computing V ′

from EISCAT CP-4-B data, along with the westward velocity

along the OCB, V||W . Because the radar data are gated into

range gates of length 65 km, there are quantum jumps in the

inferred OCB latitude and orientation and these are smoothed

out by employing 5-min running means. This results in the

V ′ and V||W data presented here being similarly smoothed

(i.e., 5-point running means of 1-min data). By comparison,

the scalar parameters (the plasma concentration Ne, the ion

temperature Ti , and the electron temperature Te) presented

here are all unsmoothed 10-s integrations.

2.1 EISCAT plasma concentration observations

On 23 November 1999, the CP4 experiment was run on the

EISCAT VHF radar. In this mode, the radar observes simul-

taneously along two beam directions: beam 1 is at an az-

imuth 344◦ east of geographic north and is perpendicular to
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Fig. 3. The variation of altitude-normalised ionospheric plasma concentration, f(h)×Ne, for range gate 5 of beam 1 (3=72.82◦, in black)

and gate 4 of beam 2 (3=72.16◦, in mauve). The data for beam 2 have been lagged by 110 s and the two observations points are 189 km

apart.

the magnetic L-shells; beam 2 is at an azimuth 15◦ east of

beam 1. Both beams are at an elevation of 30◦. For beam 1,

the MLT is approximately 2.75 h ahead of UT. The raw data

are pre-integrated and recorded every 10 s; in the present pa-

per, no post-integration of raw data has been applied before

they were analysed to give Ne, Te and Ti . We here employ

range gates 1–17, which cover invariant latitudes 3 from

70.8◦ to 78.1◦ along beam 1 and for which the separation

of the beams along the L-shells is 142 km and 421 km, re-

spectively (corresponding to 15 min and 64 min of MLT).

The poleward-moving events can be seen in

Figs. 1a and b. These present the logarithm of the electron

concentration, Ne, observed along EISCAT beams 1 and 2,

respectively, as a function of time and radar range. Note that

these plots scale the range axis (up the page) as a function

of invariant latitude, 3, but because the beams are at an

elevation of 30◦, the observation altitude increases from

280 km to 914 km across the 3 range shown. It can be

seen that high-concentration patches were observed first in

beam 2, appearing there near 07:15 UT, and roughly 25 min

later in beam 1. This delay is of the same order as the MLT

separation of the two beams for range gate 5 (3=72.8◦),

where these early patches first appeared. Thus the radar

appears to have rotated into a region where patches could

be seen (at MLT>11 h). The patches were seen after the

IMF turned southward and the inferred OCB was eroding

equatorward in the growth phase of the second substorm,

discussed in Paper I. The end of the last significant patch

was seen in the polar cap at 09:08 and 09:03 UT for beams 1

and 2, respectively (11:53 and 12:08 MLT). Thus patches

were seen only during the relatively small MLT interval

of about 11–12 h, whereas reconnection signatures were

seen over the much larger MLT range of 09:30-15:30 (see

Paper I). There is evidence that suggests that at least some

of the reconnection pulses that do not generate patches are

real. For example, the large V ′ peak around 09:24 UT can be

seen to have caused an equatorward migration of the OCB

(and also caused a burst of enhanced westward flow (V||W ,

seen in Fig. 3 and by the CUTLASS HF radar at Pykkvibær

– data not shown) and ion temperature (see Fig. 5). Thus we

conclude that this reconnection pulse was indeed real and

yet it did not generate a poleward-moving patch.

Because the further range gates are at greater altitudes in

the topside ionosphere, the patches of enhanced plasma con-

centration in Fig. 1 appear to decay as they migrate pole-

ward. To compensate for this, a correction has been made in

Figs. 2a and b to make an allowance for the altitude profile of

the ionosphere within the radar f-o-v. If we assume that the

plasma is in diffusive equilibrium, the topside Ne will show

an exponential decay with altitude:
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Fig. 4. (a) The velocity normal to the boundary in its own rest frame, V ′, and (b) The westward flow parallel to the boundary, V||W . The

dashed black and white lines are at the same times as the red dashed lines in Figs. 1 and 2. The green line shows the lower latitude edge of

enhanced plasma concentration observed along beam 1 and the white line is the OCB latitude.

Ne(h) = Ne(ho)e
−(h−ho)/H ,

f (h) = Ne(ho)/Ne(h) = e(h−ho)/H , (1)

where ho is a reference altitude (here we adopt ho=350 km),

and H is the plasma scale height given by

H = kB(Te + Ti)/mig . (2)

Te and Ti are the electron and ion temperatures, kB is Boltz-

mann’s constant, mi the mean ion mass (assumed here to be

16 amu, i.e. pure atomic oxygen ions) and g the gravitational

acceleration. Using the Te and Ti observed by the radar in

each range gate and sampling interval, we compute the cor-

responding H (assumed to be independent of altitude) and

f (h) and then estimate Ne(ho), the plasma concentration on

the same field line as the observation, but mapped to a uni-

form altitude (we here adopt ho=350 km), using Eqs. (1) and

(2). Note that this procedure tends to underestimate Ne(ho)

in the nearest range gates as these are near the F2 peak and

the exponential decrease with h in the topside is an overesti-

mate of the true gradient in Ne at these heights.

The solid white lines in parts a and b of both Figs. 1 and 2

show the OCB latitude along the two beams, as derived in Pa-

per I. Figures 1c and 2c show the variation of V ′, the velocity

of the plasma normal to the inferred OCB in the OCB rest

frame. In these figures, V ′ is for the gate immediately pole-

ward of the inferred OCB. (N.B., the full variation over the

whole 10-h interval is shown in Fig. 13 of Paper I). Because

the value V ′ depends primarily on V1, the plasma velocity

component observed normal to the L-shells along beam 1, it

is here taken to apply to the MLT of beam 1.

Figure 1c shows that reconnection was ongoing through-

out the interval, and was pulsed at the location of EISCAT.

The variations in V ′ seen after 08:30 UT are much larger

than the estimated uncertainty, εV ′=220 ms−1 (see Paper I).

However, before this time the variations are smaller than, or

comparable to, εV ′ : thus the reconnection rate pulses before

08:30 UT were generally too small in amplitude, and/or too

frequent to allow definitive identification in any one gate.

However, the same variations in V ′ are seen in several ad-

jacent independent range gates around the OCB (c.f. Fig. 4a)

indicating that they are real. Combining estimates from 4

such gates yields almost the same variation in V ′ but reduces

εV ′ to near 100 ms−1, compared to which the pulses in V ′

are significant, even before 08:30. There were two DMSP

passes in close conjunction to the EISCAT radar in this inter-

val. The first was by the F14 satellite which crossed the OCB

at12:30 MLT and 08:50 UT (when the EISCAT beam 1 was

near 11:35 MLT) and is shown in Fig. 6 of Paper I. The sec-

ond was by F12 which crossed the OCB at 12:24 MLT and

9:01 UT (when the EISCAT beam 1 was near 11:46MLT)

and is shown in Fig. 5 of Moen et al. (2004). Both these

passes showed small stepped cusp ion signatures which,

given the association with poleward-moving events, are con-

sistent with rapid magnetopause reconnection rate pulses, as

predicted by Cowley et al. (1991b) and Lockwood and Smith

(1992). Lockwood et al. (1993a) and Farrugia et al. (1998)
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have previously reported that cusp ion steps are indeed ob-

served in association with poleward-moving events.

In Figs. 1 and 2, the times of the main minima in V ′

are marked with vertical red dashed lines and are labelled

A-I. As discussed in the Introduction, it is the production

of the minima between the patches that is most puzzling and

Figs. 2a and b reveal that a series of poleward-propagating

plasma concentration minima was launched from the OCB:

each of these minima has been marked by a black and white

dashed line and labelled 1–9. The V ′ sequence applies at

beam 1 and comparison of Figs. 2c and a reveals that the on-

set times of the plasma concentration minima 2, 5, 7, 8 and

9 in beam 1 are coincident with, respectively, V ′ minima C,

D, E, F and G. Thus reconnection pulses within the MLT in-

terval 11–12 h can all be associated with poleward-moving

patches, but outside this MLT range reconnection pulses do

not generate patches (there in no Ne enhancement between

V ′ minima pairs AB, BC, GH and HI). It should be noted

here that rapid variations in the V ′ variation will be smoothed

out, because of the need to take a 5-min running means. The

average separation of minima 1–7 is 5 min, whereas the cor-

responding figure for minima 7–9 is 15 min. Therefore it is

not surprising that other rapidly-repeating Ne minima (1, 3,

4 and 6) cannot be associated with a clear, resolvable min-

ima in V ′ but may well be associated with the variations that

can still be seen, despite the smoothing, between the labelled

minima.

Figure 2, because it allows for the altitude variation of

the concentration, shows the true evolution of the patches.

The tendency of the patches to fade out with increasing lati-

tude in Fig. 1 is often the result of the experiment geometry

– they appear to fade out because the beam is too high in

the topside ionosphere at the greatest latitudes. Until about

08:45 UT, patches migrated poleward out of the radar field

of view, but after this time, the patches were not reaching the

further ranges of the beam. We will show that this is because

they convected westward, under the influence of the strong

prevailing positive IMF By , rather than moving poleward out

of the radar f-o-v. The change at 08:45 UT is exactly mir-

rored in backscattered power from adjacent latitudes to the

north of the EISCAT f-o-v, as detected by the CUTLASS

HF radar at Hankasalmi, Finland (see Davies et al., 2002).

This provides yet further support for the association between

poleward-propagating regions of enhanced HF backscatter

and polar cap patches in the plasma concentration.

Figure 3 demonstrates the convection of the patches by

plotting the altitude-normalised ionospheric plasma con-

centration, Ne(ho)=f(h)×Ne, for range gate 5 of beam 1

(3=72.82◦, in black) and gate 4 of beam 2 (3=72.16◦, in

mauve). The data for the beam 2 point have been lagged

by 1t=110 s and because the two observations points are

d=189 km apart, the patches consistently convect at about

Vp=d/1t=1.7±0.2 km s−1 between the two points (taking the

uncertainty in 1t to be ±10 s). Figure 2 gives that the pole-

ward phase motion of events was about 0.6 km s−1, from

which the observed Vp yields a westward phase motion of

1.6 kms−1. In Fig. 3 we note two classes of minima between

the patches. The first type are longer-lived minima (vary-

ing from 3 to 8 min, giving extents of Lm of between 300 and

600 km in the direction of motion). Within these longer-lived

minima, Ne(ho) returns to values typical of those seen on

the nightside (between about 2×1011 m−3 and 3×1011 m−3).

These are the dominant minima seen after 08:24 UT and

they are almost identical in the data from the two VHF radar

beams. Before then, the second class of minimum dominates.

These are shorter-lived (between about 20 and 120 s, giving

extents Lm in the range 35–200 km), shallower (Ne(ho) con-

sistently near 7×1011 m−3) and less coherent between the

two locations, although there is still considerable similarity

between the two. One of these minima appears in the cen-

tre of the first larger- scale patch observed by beam 1 (be-

tween minima 7 and 8), but is absent from the same feature

in beam 2. The patches between the deeper minima last for of

order 10 min, giving patch sizes Lp of order 1700 km in the

direction of motion), whereas the patches between the more

shallow minima last for of order 2 min giving Lp≈340 km.

Davies et al. (2002) and Moen et al. (2004) have noted

that the ion temperatures at the time of many of these events

showed transient enhancements, implying that the poleward-

moving density structures were connected to transient flow

and reconnection bursts. Figure 2 confirms that there is some

association between the patches and reconnection rate pulses.

2.2 EISCAT plasma flow observations

Figures 4, 10 and 11 apply a novel analysis to the EISCAT

plasma flow data during this interval. The panels of Fig. 4

show (a) V ′ (the poleward plasma flow, perpendicular to the

OCB in the OCB rest frame) and (b) V||W (the westward flow

parallel to the OCB) colour-coded as a function of observa-

tion time and invariant latitude. The derivation of these flows

relative to the inferred OCB is presented in Paper I. The black

and white vertical dashed lines are at the same times as the

red dashed lines in Figs. 1 and 2, i.e. the times of minima

in the reconnection rate. It can be seen in Fig. 4a that the

V ′ features are largely aligned vertically in the plot, indicat-

ing that the poleward flow across the boundary is relatively

independent of latitude. This confirms that the precise iden-

tification of the OCB latitude is not critical in the reconnec-

tion rate determination, as noted in Paper I. Note that Fig. 4a

shows that during reconnection rate pulses, poleward flow is

excited on both sides of the boundary, as expected for the

incompressible ionospheric magneto-plasma as it enters the

polar cap: the fact that the poleward flow in the bursts is only

a weak function of latitude shows that the reconnection ex-

tended over a wide range of MLTs about the radar.

Figure 4b shows that the along-boundary westward flow,

V||W , was periodically enhanced over a range of latitudes

poleward of the OCB. These intervals of high V||W always

start with, or follow immediately after, the maxima in V ′

and we interpret them as the bursts of westward flow on the

newly-opened field lines produced by the reconnection burst

(for the prevailing IMF BY >0 in the Northern Hemisphere).

With this interpretation, the clear equatorward edges of these
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Fig. 5. Line-of-sight velocity measurements by the Pykkvibær CUTLASS HF radar, colour-coded on an MLT-invariant latitude, 3, grid.

The vertical dotted line is the 12:00 MLT axis and the concentric dotted circles are 3=60◦, 70◦ and 80◦. Scans were recorded every 2 min,

but only every other scan is presented here. (a) for 08:00–08:20 UT, (b) for 08:24–08:44 UT. Positive values (color coded green or blue) are

toward the radar, i.e. generally westward, The black lines in the first panel give the locations of the two EISCAT VHF beams.

westward flow regions confirm the OCB identification. Note

that the OCB location is not well defined between 08:00 and

08:45 UT when it migrated equatorward of the EISCAT f-o-

v and fast flow features may therefore have been missed in

the EISCAT data for events which start after V ′ minima D, E

and F. The flow is westward at all latitudes and times covered

by Figs. 1, 2 and 4, except at the lowest latitudes early in the

interval, where it is eastward. This region of sunward flow

is that discussed by Moen et al. (2004) and the equatorward

edge of the patches shown in Fig. 1a is the green line drawn

in Fig. 4b. This shows that all the patches were only seen

poleward of the convection reversal boundary, on westward-

flowing, newly-opened field lines. Thus Fig. 4b reveals why

patches and high plasma concentrations were not observed

before 10:30 MLT and appeared first at high latitudes: the

patches were only seen where the convection was westward

(away from noon) and not equatorward of the convection re-

versal boundary where V||W<0 because this eastward flow

brought low-density, nightside plasma onto the dayside.

The flow speeds derived (poleward and westward) are sim-

ilar to the patch phase motions discussed in the previous sec-

tion. Thus they appear to be convecting under the E×B drift,

as expected for polar cap patches and as is usually assumed in

the interpretation of HF radar backscatter patches. The pres-

ence of westward flow bursts is confirmed by data from the

HF CUTLASS radar at Pykkvibær, Iceland, shown in Fig. 5.

These data are also valuable in identifying which of the west-

ward flow channels extended equatorward of the EISCAT f-

o-v during the interval 08:15–09:00 UT, when the OCB mi-

grates to 3 below 70.8◦. The l-o-s velocity (Vlos , positive

towards the radar) is plotted for the eastward-viewing scan in

an invariant latitude – MLT frame. The beams of the EISCAT

VHF radar are shown in black in the first frame of Figs. 5a

and b. Scans were recorded every 2 min, but only every other

scan is presented here: Fig. 5a is for 08:00–08:20 UT and

Fig. 5b is for 08:24–08:44 UT.

The intermediate scans (not shown), in general, reveal evo-

lution between the frames that are shown. At the start of
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Fig. 5. Continued.

the interval shown, a westward flow burst can be seen as a

blue patch in Fig. 5a, immediately to the west of the EIS-

CAT beam 1. This patch persists in the next three frames

and migrates southward. This behaviour can also be identi-

fied in V||W in Fig. 4b and corresponds to the event follow-

ing the V ′ minimum labelled D. In this event, V||W peaks at

1.5 kms−1 which is consistent with the peak Vlos of 1 kms−1

because the boundary is oriented at about 30◦ to the rele-

vant Pykkvibær radar beams. It is also comparable to the

inferred phase motion of the events. This first event in the

HF radar data shown had faded away by 08:16. A second,

smaller westward-flow event peaked at 08:24 UT which did

not extend to latitudes below the EISCAT f-o-v. The cor-

responding small event can be seen in V||W in Fig. 4b fol-

lowing the V ′ minimum E. This small event had faded by

08:28 UT and a third, very strong and latitudinally-extensive

event started to form at 08:36 UT. For comparison, the peaks

in V||W in Fig. 4b in gate 2 are at 08:09, 08:23 and 08:48 UT

– in good agreement with the bursts of westward flow at the

same latitude seen by the Pykkvibær CUTLASS radar. Thus

the patches were convecting rapidly into, and through, the

EISCAT f-o-v from the east with a convection velocity of or-

der 1.5 km s−1. This westward motion was much faster than

the poleward propagation which was of order 0.6 km s−1.

2.3 EISCAT plasma temperature observations

The ion temperature (Ti) enhancements seen along the two

beams are very similar, as can be seen in Fig. 6 which plots

Ti , colour-contoured as a function of invariant latitude and

UT for (a) beam 1 and (b) beam 2. Note that the ion tem-

peratures observed are line-of-sight values and assume a

Maxwellian ion thermal velocity distribution. For the large

angles between the magnetic field lines and the radar beams

used here, the ion temperatures derived will systematically

overestimate the true ion temperature in heating events be-

cause of the non-isotropic, non-Maxwellian form of the ion

distribution functions (Lockwood et al., 1993d); however,

this effect will not alter the general pattern of the variations

shown in Fig. 6. The general decrease in Ti values between

08:00 and 08:50 UT is attributed by Moen et al. (2004) to
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Fig. 6. Ion temperature observed along (a) azimuth 1, [Ti ]1, and (b) along azimuth 2, [Ti ]2, for the same interval as Fig. 1. The white lines

are the inferred OCB latitude and the dashed white lines are the same as in Figs. 2 and 7.

the effect of enhanced neutral winds driven by the persistent

westward ion flow and we here discuss this effect in some

more detail. Lockwood and Fuller-Rowell (1987) used a

coupled ionosphere-thermosphere model to show how strong

westward neutral winds are expected in the afternoon auroral

oval and in the near-noon cusp region. This is because cen-

trifugal and coriolis forces are opposed to each other in the

afternoon auroral oval and parcels of neutral thermospheric

air receive greater momentum from ions because this bal-

ance of forces keeps them in the region of fast sunward ion

flow for longer intervals. As a result, fast westward neutral

wind (velocity Vn) arrives in the cusp region around noon.

Ion-neutral frictional heating varies as (Vi–Vn)2, where Vi is

the ion velocity: thus there is a region of strong ion heating

where the westward wind meets the eastward ion flows in the

auroral oval of the dawn convection cell, as seen before 07:45

at low latitudes. However, after 07:45 the ion flow observed

is westward and hence the vector difference (Vi–Vn) is not

so large and the ion heating is weaker. After 08:45 stronger

ion heating is again seen because the polar cap is contract-

ing: this causes the westward ion flow to meet any eastward

neutral wind that had been established in the expanded polar

cap. Lockwood et al. (1988) and Fox et al. (2001) have pre-

sented other examples of such ion heating associated with a

contracting polar cap boundary.

The dashed lines are the same as marked on Fig. 2 for

the respective beams. There were no consistent Ti struc-

tures associated with the Ne minima but there were ion heat-

ing events near the onset of several events. Specifically,

minima 1, 3 and 9 in beam 1 and 2 and 9 in beam 2 mapped to

strong enhanced Ti events. Thus only for event 9 did strong

ion heating span both beams. Minima 2, 5, 7 and 8 in beam 1

and 3, 5, 7 and 8 in beam 2 map to weak Ti enhancements.

Thus only for minima 4 and 6 is no ion heating seen in either

beam.

Figure 7 shows the electron temperature Te data in the

same format as Fig. 6. The poleward-moving events can be

seen with minima in Te coinciding with the Ne peaks and Te

peaks lining up with the dashed lines denoting the Ne min-

ima, as given by Fig. 2. The very strong anticorrelation be-

tween the EISCAT Te and Ne observations is underlined by

the plots for gates 1 (bottom) to 6 (top) shown in Fig. 8.

3 Analysis of patch formation mechanisms

As discussed earlier, the major difficulty in understanding

patch formation is the origin of the concentration minima be-

tween the patches rather than the mechanisms that give the

high concentration within the patches. We here analyse each

of the mechanisms in the light of the data presented in the

last section.

3.1 Patch enhancement by magnetosheath precipitation

Figures 7 and 8 show that the minima in Ne are accompa-

nied by maxima in the electron temperature Te and that Te is

considerably depressed inside the high Ne patches. Inside the

cusp/cleft precipitation region we expect both Te and Ne to
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Fig. 7. Electron temperature observed along (a) azimuth 1, [Te]1, and (b) along azimuth 2, [Te]2, for the same interval as Fig. 1. The white

lines are the inferred OCB latitude and the dashed white lines are the same as in Figs. 2 and 6.

be enhanced (Whitteker, 1977; Walker et al., 1999; Millward

et al., 1999; Vontrat-Reberac et al., 2001) and this is indeed

observed in the cusp/cleft region (Titheridge, 1976; Brace et

al., 1982; Curtis et al., 1982; Doe et al., 2001). However,

as the field lines convect poleward of the cusp/cleft into the

mantle and polar cap precipitation regions, modelling studies

show Te will fall rapidly as the precipitation flux decays; on

the other hand Ne will decay only slowly (Watermann et al.,

1994; Davis and Lockwood, 1996;). Thus regions of high

Ne and non-enhanced Te could be fossil remnants of passage

through the cusp/cleft precipitation region. For sheath-like

precipitation alone to form a convecting sequence of patches

and minima, some flux tubes would need to be subject to

higher precipitation flux than others as they enter the polar

cap.

Satellite passes close to the EISCAT f-o-v at the time of

these patch observations show high-flux magnetosheath ion

and electron precipitation (cusp and cleft) over an invariant

latitude band of at least 1.5◦ poleward of the OCB (see, for

example, Fig. 6 of Paper I and Fig. 5 of Moen et al., 2004).

If the polar cap patches (high Ne – low Te) were remnants of

precipitation, in no case did either of the EISCAT beams in-

tersect the source precipitation region (which would be iden-

tified by elevated Ne and Te). In fact, the observed concen-

tration enhancements in the patches Ne>1012 m−3 are con-

siderably greater than the simulation studies discussed above

predict for sheath precipitation effects.

Figure 7 shows that several of the low Te regions extend

continuously poleward from equatorward of the OCB. The

precipitation required cannot be regarded as being to the west

or, most likely in this case with IMF BY >0, to the east of the

radar f-o-v. In Fig. 4 we see that reconnection is ongoing lo-

cally and thus the sheath-like precipitation on newly-opened

field lines must be present at the MLT of the radar. Thus

we conclude that the patches seen on this day were not fossil

remnants of sheath-like precipitation.

3.2 Patch separation by high plasma flow channel

Strong flow channels in which newly-opened field lines move

rapidly for periods of order 5–10 min can deplete the iono-

sphere. Observations of this effect, and numerical simula-

tions of it, have been presented by Balmforth et al. (1998,

1999). Thus if some of the newly-opened flux tubes undergo

rapid motion for a prolonged time (where others do not), this

effect can give the minima between patches. The plasma is

depleted because of high plasma loss rates, caused by en-

hanced ion velocities in the presence of ion-neutral collisions

(Schunk et al., 1975). This effect also elevates the ion tem-

perature. Thus regions where such loss is taking place will

show in the radar data as regions of high ion temperature.

Given only minima 4 and 6 failed to register at least some

ion heating in at least one radar beam in their observed life

history (Fig. 6), this effect could indeed be important. (In

events 4 and 6 the ion heating could have existed but at an

MLT outside the radar f-o-v).

Coincident with minimum 8 there is a persistent weak

rise in Ti ; however, Ti<Te here and so the ions are be-

ing heated predominantly by conduction from the electron

gas, rather than ion-neutral frictional heating. Strong ion
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Fig. 8. Ten-second electron concentration ([Ne]1, blue) and temperature ([Te]1, red) observations by the EISCAT VHF radar along beam 1,

for range gates 1 (bottom) to 6 (top) at invariant latitudes 3 of 70.83◦, 71.33◦, 71.84◦, 72.33◦, 72.82◦ and 73.30◦.

heating is possible in this event equatorward of the EISCAT

f-o-v where fast westward flow could have existed between

the OCB and the equatorward edge of the f-o-v. However,

this is the small middle event of the three revealed in the

data from the Pykkvibær CUTLASS radar shown (Fig. 5)

and these data reveal that this westward flow burst did not

extend equatorward of the EISCAT f-o-v. Another explana-

tion could be that the high-Ti region was to the east of the

radar field of view and the fossil trough it generated then

convected westward into the f-o-v. The trough was first

seen in beam 1 roughly d=100 km poleward of the OCB,

when the flow across the boundary was V ′≈0.4 kms−1 (see
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Fig. 4). From this we infer that this trough was first seen by

beam 1 on field lines that have been open for d/V ′≈250 s.

Figure 4b shows that the westward flow along the boundary

at this time was V||W≈1.2 kms−1 and thus the trough field

line crossed the boundary V||W (d/V′)≈300 km to the east of

beam 1. This gives two inconsistencies with the concept that

the trough originated via a high-velocity flow channel: firstly,

the elapsed time is unlikely to be great enough to produce the

concentration decrease (Balmforth et al., 1998, 1999). Sec-

ondly, beam 2 is roughly 200 km to the east at this latitude

and would be seeing the same field lines when their time

elapsed since reconnection was just 80 s, and yet no signifi-

cant Ti enhancement was seen at beam 2 either.

We can conclude that at least one of the observed minima

between the patches is inconsistent with the concept that they

were generated by rapid flow on newly-opened field lines.

3.3 Patch production by intermittent poleward transport of

photoionisation-produced plasma

Figure 9 shows schematically the patch formation mecha-

nism proposed by Lockwood et al. (2000), adapted for this

case of IMF BY >0 in the Northern Hemisphere. This mech-

anism is based on the concept that the active reconnection

region expands rapidly away from noon during each event,

as proposed by Lockwood et al. (1993b) and Lockwood

(1994), and as consistent with the data presented by Milan et

al. (2000) and McWilliams et al. (2001). The shading of ar-

eas in Fig. 9 denotes the time that parts of an event are recon-

nected, the darker regions being reconnected later and further

away from noon as the reconnection pulse propagates around

the afternoon sector. The panels of Fig. 9 show the evolution

of newly-opened field lines as they move westward under the

magnetic curvature force (Cowley et al., 1991a; Greenwald

et al., 1990) before being assimilated into the polar cap by

poleward motion (Cowley and Lockwood, 1992). This pat-

tern of motion is as observed in dayside cusp/cleft auroral

and flow transients (Lockwood et al., 1989) and the motion

of regions of enhanced HF backscatter (Milan et al., 2000).

Patches in Ne could be seen because the last flux tubes to

be opened by the pulse are reconnected nearer dusk, where

the ionospheric plasma concentrations are lower. Thus the

black region will contain lower plasma concentrations than

the lighter-shaded region, which was reconnected earlier in

the event. In Fig. 9, two illustrative radar beams are shown.

For the more westerly of the two, A, the full poleward mo-

tion of the event would be seen. However, for a radar beam

at location B, further to the east, the patches move mainly

westward over the beam and their poleward motion is not

seen in full. This behaviour can be noted in Fig. 2a be-

cause beam 1 observed patches that propagated through all

latitudes to 3=78◦ until 08:45 UT (11:30 MLT), but after

this time the patches were not seen at the highest latitudes.

Thus before this time, beam 1 was at an MLT correspond-

ing to beam A in Fig. 9, whereas after this time beam 1

was in a location corresponding to B in Fig. 9. Because this

behaviour of the patches is also apparent in Fig. 2, where

b). 

c). 

d). 

a). 

A B 

e). 

Fig. 9. Schematic illustration of the theory of polar cap patch forma-

tion by Lockwood et al. (2000), here for the Northern Hemisphere

with IMF By>0. The pulse of enhanced reconnection propagates

through the afternoon sector away from 12:00 MLT (vertical line),

opening the field lines: the darker shaded regions are opened last

and at the largest MLT. A and B are two illustrative radar beam

locations (see text for details).

electron density is reconstructed for a constant altitude, this

effect cannot be attributed to the altitude of the beam. The

same change can be seen for beam 2 (Fig. 2b) at 07:52 UT

(11:41 MLT at 3=78◦). The data from both beams are hence

consistent with events evolving to later MLT before about

11:30 UT under the magnetic curvature force, before mov-

ing northward and being subsumed into the polar cap.

The decreases in Te associated with high Ne reported here

can be considered consistent with transport of EUV-produced

plasma into the polar cap. Under the same downward heat

flux conditions, an increase in Ne will lead to a decrease in

Te. Thus if high-Ne plasma patches are convected through

the cleft/cusp, Te will be lower than for low-Ne flux tubes

convected through the same precipitation sequence. The lack



3526 M. Lockwood et al.: Motion of the dayside polar cap boundary during substorm cycles: Part II

a). 

b). 

1 2 3  4  5 6  7      8       9 

1 2 3  4  5 6  7      8       9 

  
  

  
∫ V

2
d

t 
 (

 k
m

2
s

-1
  

) 
  

    
  

  
  

  
[M

L
T

] o
  

  
(h

rs
) 

  
  

Fig. 10. Analysis of the cause of the patches. (a) The estimated MLT where field lines seen by beam 1 were reconnected, [MLT]o and (b)

the integral of the square of the plasma speed between reconnection and observation at beam 1. The white lines are the inferred OCB latitude

and the dashed lines are the same as in Fig. 2. In (a) values of [MLT]o below 11 are shown in blue.

of any high Ne equatorward of the patches in beam 1 before

08:30 UT (08:20 for beam 2) in Fig. 1 does not argue against

the convection of EUV-enhanced patches into the polar cap,

as it would have done had the flow been purely poleward.

This is because at this time the patches were also convect-

ing westward and so the EUV-enhanced plasma would have

crossed the OCB to the east of the radar f-o-v but moved

poleward into the polar cap to the west of the radar f-o-v.

Outside the MLT interval 11:00–12:00, no poleward-

moving patches were observed despite the fact that pulsed

reconnection signatures were detected over a much longer

interval (09:30–15:30 MLT). Thus patches were only seen in

the EISCAT f-o-v when it was near to noon and there was

pulsed local reconnection. This is consistent with the con-

cept of entry of subauroral, EUV-enhanced plasma into the

polar cap, as proposed by Lockwood and Carlson (1992), in

that the merging gap must have the required orientation with

respect to the plasma concentration gradient around the day-

night terminator – it is also consistent with the refinement of

this concept by Lockwood et al. (2000) in which the recon-

nection pulse propagates zonally over this plasma concentra-

tion gradient.

Lockwood et al. (2000) pointed out that Fig. 9 can ac-

commodate two physical mechanisms that might generate

the minima between the patches. Flux tubes reconnected

away from noon will contain a lower concentrations of EUV-

produced ionospheric plasma; at the same time, such flux

tubes may also move further and faster under the magnetic

curvature force before moving poleward into the polar cap.

Both effects mean that these flux tubes will have lower con-

centration than flux tubes reconnected nearer noon. In addi-

tion, any enhancement by cusp/cleft precipitation would be

smaller because of the plasma concentration variation in the

magnetosheath. These low-Ne flux tubes would end up sand-

wiched between the high-Ne flux tubes inside the polar cap.

Figures 10 and 11 present an analysis of the relative impor-

tance of these two effects.

The upper panel of Fig. 10 shows [MLT]o, the estimated

MLT where a flux tube was reconnected, as a function of the

time and latitude of its subsequent observation by the EIS-

CAT radar beam 1. To produce this figure, we assume that

the flow components across and along the OCB, as seen by

EISCAT (V ′ and V||W ), apply at a given time t at all MLT

between the reconnection site and the radar beam. Each flux

tube is then mapped backwards in time, in the boundary rest

frame, using the observed V ′ and V||W , shown in Fig. 4, un-

til it intersects the boundary, giving the time and MLT of

reconnection (i.e. when it crossed the boundary). The re-

sults are shown in Fig. 10a. It can be seen that field lines

seen early in the series were reconnected before 11:00 MLT

(shaded dark blue), but then some field lines reconnected af-

ter 11:30 MLT (the light blue contour) begin to appear at the

radar beam. Because they originate closer to noon, these will

contain higher Ne. Figure 8 shows that the highest number

densities in gate 1 (which for most of the time is equatorward

of the OCB) are observed in a plateau at 08:45–09:20 UT

(11:30–12:05 MLT). These peak concentrations correspond

to the green and light blue contours in Fig. 10a. These agree
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Fig. 11. Same as Fig. 10, for beam 2.

quite well with where Ne(ho) is greatest in Fig. 2a, although

higher electron concentrations commence somewhat earlier

in Fig. 2 than we might predict on the basis of Fig. 10, pre-

sumably because of the additional ionising effect of sheath-

like precipitation. The bottom panel of Fig. 8 shows that

Ne falls rapidly in beam 1, gate 1 between about 09:15 and

09:45 UT (roughly 12:00–12:30 MLT). The red contours are

for [MLT]o exceeding 12:30, where the source concentration

is smaller than the near-noon peak values by a factor of more

than 3. It can be seen that minima 8 and 9 do indeed line

up very well with peaks in [MLT]o, strongly implying that

these minima are created by the transport of lower concen-

tration plasma from the post-noon sector. Minima 3 and 6

are also aligned with peaks of [MLT]o. The largest values

of [MLT]o are to be found late in the interval and these are

consistent with the low Ne(ho) observed then (with no patch

enhancements).

The bottom panel of Fig. 10 shows the square of the ion ve-

locity, V 2, integrated over the interval during which the flux

tube convects from its inferred reconnection site to where it

is observed by the EISCAT radar (∫V2dt). This quantity is a

measure of the integrated effect of the convection velocity on

the flux tube depletion. Maxima in ∫V2dt match up well to

minima 2, 5, 6, 7 and 9; however, event 8 shows no peak in

∫V2dt and that observed in event 9 does not line up so well

with the Ne minimum.

Note that because the variations of V ′ and V||W are both

5-point running means of 1-min data, neither [MLT]o nor

∫V 2dt should be expected to reflect all of the structure that

can be seen in the Ne(ho) observations. Nevertheless, it is

instructive to look at the timings of what variations are ob-

served and how they vary along the radar beams.

The one feature missing in Fig. 10a is the large [MLT]o
that should have been observed along minimum 7, which

Figs. 1a and 3 show was one of the most pronounced of all

the Ne minima. An explanation of this is may be provided

by Fig. 10b which shows that there is well-aligned peak in

∫V 2dt, albeit not of the largest magnitude.

Figure 11 shows the corresponding plot to Fig. 10 for

beam 2. Because of the different orientation of this beam

with respect to the magnetic meridian, the regions of larger

[MLT]o are more sloped than in Fig. 10. Again, minima 8

and 9 fit the predicted [MLT]o variation very well and 3 and

6 line up with weak peaks in [MLT]o. As for beam 1, there

is a ∫V2dt peak at the time of minimum 9, but which is not

quite as well aligned as that in [MLT]o, and there is no peak

associated with minimum 8. The peaks in ∫V2dt do not line

up well with the earlier events 1–7.

Because both ∫V 2dt and [MLT]o are based on smoothed

flow data (5-min running-means) we should expect them to

match the larger period events at the end of the interval bet-

ter than the short period events 1–7. The computation of both

∫V 2dt and [MLT]o is based on the assumption that the flow

is longitudinally uniform between the reconnection point and

the radar at all times – this assumption will be poorest when

the MLT difference between the radar and the reconnection

point is greatest and may lead to some of the apparent dis-

crepancies.

These results are summarised in Table 1, which also gives

the time of each minimum since the previous one, 1T, the



3528 M. Lockwood et al.: Motion of the dayside polar cap boundary during substorm cycles: Part II

Table 1. Summary of event characteristics.

Event Minimum Decrease since Time since Potential Potential Potential Potential

Number in Ne(ho)** since since [MLT]o [MLT]o ∫V 2dt ∫V 2dt

(1011 m−3) preceding preceding feature in feature in feature in feature in

maximum** minimum beam 1? in beam 2? beam 1? in beam 2?

1Ne(ho) 1T (min)

(1011 m−3)

1 5 7 4.65 No* No* No* No*

2 7 6 4.03 No* No* Yes No*

3 4 8 5.34 Yes Yes No No

4 6 11 4.77 No* No* No* No*

5 6 11 5.84 Yes No Yes No

6 6 11 5.38 Yes Yes Yes No

7 2 15 4.98 No* No* Yes No*

8 2 13 15.37 Yes Yes No No

9 2 10 15.21 Yes Yes Yes Yes

∗ but 1T<5 min

∗∗ maximum and minimum values in range gates 3–17.

minimum Ne(ho) and the decrease since the previous maxi-

mum 1Ne(ho). In Table 1, we mark with an asterisk those

events which do not match up to ∫V 2dt and [MLT]o features

and for which 1T is less that the 5-min smoothing time of

the velocity data. Table 1 shows that the failure to match

up either mechanism to minima 1 and 4 can be attributed to

the necessary smoothing of the flow data and the same effect

makes it hard to draw conclusions from events 2 and 7. For

both beams, minima 3, 6 and 8 match up will with [MLT]o
features but not ∫V 2dt features, whereas minimum 9 can be

matched up with corresponding features in both [MLT]o and

∫V 2dt.

4 Conclusions

Pulses in the inferred reconnection rate have been shown

to be associated with synchronous flow enhancements along

the OCB and consequent ion temperature enhancements, and

the production of poleward-moving events and polar cap

patches. We have shown that most of the poleward-moving

patches of enhanced plasma concentration in the interval

studied can be associated with a reconnection pulse. How-

ever, some pulses failed to cause a patch and patch produc-

tion was limited to a much smaller MLT extent than the

observed reconnection merging gap and the interval over

which the reconnection pulses were observed. The events

presented here were also seen in conjunction with cusp ion

steps (Cowley et al., 1991b; Lockwood and Smith, 1992;

Newell and Meng, 1991; Escoubet et al., 1992) seen by low-

altitude polar-orbiting spacecraft (see Paper I) which, when

seen in conjunction with poleward moving events, are an

unambiguous signature of transient magnetopause reconnec-

tion (Lockwood et al., 1993a; Lockwood and Davis, 1995;

1996; Pinnock et al., 1995; Farrugia et al., 1998).

We have looked at the various mechanisms that have been

proposed for polar cap patch production. We have provided

strong evidence that at least the longer-lived, deeper min-

ima between the larger-scale patches appear to be caused

by transient inclusion of lower-concentration plasma from

outside the polar cap, as discussed in Sect. 1.2. We find

evidence for enhancement of plasma concentration by soft

magnetosheath precipitation down newly-opened field lines,

but this does not appear to be a factor that contributes to the

minima between the patches and poleward-moving events,

nor is it sufficient to explain the maximum plasma concen-

trations in the patches. We also have shown evidence of a

second cause of plasma concentration minima. These tend

to be shorted-lived, more repetitive, less coherent in longi-

tude and less deep. It is difficult to differentiate between the

mechanisms for threes cases because of the need to use 5-min

smoothed flow data. We find evidence for some contribution

of the enhanced loss rates in zonal flow events of the kind ob-

served by Lockwood et al. (1989) and Pinnock et al. (1993),

as modelled by Balmforth et al. (1998, 1999) (see Sect. 1.3).

The results can be summarised by looking at the electron

density minima seen in Figs. 1 and 2, in relation to the pre-

dictions for the proposed mechanisms, as shown in Figs. 10

and 11 and Table 1. To summarise the results: three of the

events (minima 3, 6 and 8) are only explained as injection of

lower concentration of photon-produced plasma from larger

MLT (hereafter referred to as “the MLT effect”). One of the

deeper minima, event 7, is only explained by enhanced loss
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rates induced by fast longitudinal flow (“the flow channel ef-

fect”); however, although this is true for beam 1, agreement

is not so good for beam 2. Three events could be a mix-

ture of the two effects, but the propagation of events down

the beams is better matched to the MLT effect than the flow

channel effect.

For the last event (minimum 9) there is a clear peak in

[MLT]o , but there is also a peak in ∫V 2dt; however, the lat-

ter is not as well-aligned with the progression of the event

down the beam in either azimuth. Thus minimum 9 appears

best explained by the MLT effect. This was one of the deep

minima. Minimum 8 shows a clear peak in [MLT]o which,

in both beams, is well-aligned with the event progression in

both azimuths, but no peak in ∫V 2dt. The CUTLASS radar

data confirm there was no strong flow event at this time which

could have generated this minimum; therefore this deep min-

imum is only explained by the MLT effect.

The plasma concentration enhancements will cause en-

hanced excitation of the 630-nm red line oxygen emission

in the cusp by the hot tail of the thermal ionospheric elec-

tron population (Wickwar and Koffman, 1984; Lockwood et

al., 1993c). Thus we can associate the events discussed here

with aspects of poleward-moving auroral red-line transients

(Sandholt et al., 1993; Fasel, 1995; Moen et al., 1995). We

note, however, that not all aspects of the auroral emission in

these transient events can be explained in terms of the ef-

fects of enhanced plasma concentration in patches. In par-

ticular, events frequently show regions of dominant 557.7-

nm oxygen green line emission in their early phases and this

reveals accelerated electron precipitation: this has been as-

sociated with the region of upward field-aligned current of

the oppositely-directed pair that transfers the momentum as-

sociated with the event to the ionosphere (Lockwood et al.,

1993c). Observations by the CUTLASS radar shows that the

transient red-line events are also associated with poleward-

moving regions of enhanced HF backscatter (Davies et al.,

2002). As with polar cap patches, the difficulty in under-

standing these events has been understanding the minima that

form between them, as discussed by Lockwood and Davis

(1996). (Note that without the minima, they would not be

identified as poleward-moving events).

Several of the observed events have repeat periods too

short (<5 min) to allow discrimination between the proposed

mechanisms. This time resolution limitation is set by the

need to smooth out boundary location and orientation errors

introduced by the range resolution of the radar experiment

used. Thus improved range resolution would allow the test

to be applied to the shorter period events.

In this paper, we have found that some of the well-resolved

minima (repeat periods >5 min) are only explicable as the ef-

fect of plasma concentration gradients associated with solar

photo-ionisation being convected into the polar cap. There is,

however, also evidence of an additional effect of enhanced

plasma loss rates induced by fast flow. The role of one or

other, or a combination of the two is explained using the the-

ory outlined by Lockwood et al. (2000).

Paper I shows that reconnection was present on this day

over a wide extent of the dayside (covering roughly 09:00–

15:00 MLT), whereas the patches presented here were only

seen by EISCAT over the smaller range of 10:30–12 MLT.

The lack of patches before 10:30 MLT is because the radar

was then viewing the region of eastward (sunward) flow in

the auroral oval and thus the plasma originates from the

nightside and is of low concentration. The lack of patches

after 12:00 MLT is related to the motions of the polar cap

boundary discussed in Paper 1 and, in particular, the pole-

ward retreat of the dayside OCB caused by the substorm ex-

pansion phase. Figure 6a shows that because of this pole-

ward retreat of the OCB, only before 12:00 MLT (09:15

at beam 1) do the bursts of poleward flow (V′>0) reach

down to the lower latitudes near the day-night terminator,

where ionospheric plasma concentrations are enhanced by

photoionisation. Thus this is consistent with the idea that

the higher concentrations in the patches observed were gen-

erated by photoionisation and then convected into the polar

cap when bursts of reconnection opened them and they sub-

sequently migrated into the polar cap: for this to happen the

OCB needed to be close to the day-night terminator and this

was true in the late growth phase/early expansion phase of

the substorm until the polar cap contracted too far poleward.

Thus, through their effect on the latitude of the OCB (as dis-

cussed in Paper 1), substorm cycles can modulate the forma-

tion of polar cap patches.
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