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*e present paper deals with the study of the motion’s properties of the infinitesimal variable mass body moving in the same orbital
plan as two massive bodies (considered as primaries). It is assumed that the massive bodies have radiating effects, have oblate shapes,
and are moving in circular orbits around their common center of mass. Using the procedures established by Singh and Abouelmagd,
we determined the equations of motion of the infinitesimal body for which we assumed that under the effects of radiation and
oblateness of the primaries, its mass varies following Jean’s law. We evaluated analytically and numerically the locations of
equilibrium points and examined the stability of these equilibrium points. Finally, we found that all the points are unstable.

1. Introduction

During the last decades, in celestial mechanics and dynamical
astronomy, the most studied problem was and remains the
restricted three-body problem that we denote in the sequel by
R3BP. *e problem has been investigated when the orbits of
the primaries are either circular or elliptic. One of the reasons
that make the problem very attracting is that it represents a
general applicable model that can be also endowed with some
types of perturbations. By perturbation, wemean the deviations
of the body from its normal states due to some outer forces
(perturbing effects). Perturbing effects can be in any form, such
as Coriolis and centrifugal forces, different shapes of the pri-
maries (as Roche ellipsoid, spherical shell filled with or without
fluid, heterogeneous body, homogeneous body, triaxial, oblate,
cylindrical, and finite straight segments), zonal harmonic ef-
fects, drag forces (P-R drag and strokes drag), resonances (high
or low), solar radiation pressure, variable mass, asteroids belt,
magnetic dipoles, charged bodies, Yarkovaskii effects, albedo
effects, and viscous forces.

Many research studies have been devoted to this problem
with different above cited perturbations. Our references are

not exhaustive; however, in this introduction, we essentially
cite the references that have been used to accomplish this
work.

Bhatnagar and Hallan [1] introduced a new type of
perturbations in the classical R3BP (i.e., under Coriolis and
centrifugal forces), and they have shown that their problem
has five libration points out of which three are unstable and
two are stable. In their studies, Khanna and Bhatnagar [2]
have been concerned by the existence and stability of
equilibrium points in the circular R3BP, both with the
triaxial shape and with the combination of the triaxial shape
and the oblateness of the primaries. More exactly, they
assumed that themoremassive primary is an oblate spheroid
in the first study, and in the second one, they combined the
triaxial shape and the oblateness of the primaries. With
similar hypothesis of the oblate spheroid shape of the more
massive primary, Sharma and Subba Rao [3] investigated the
stationary solutions and their characteristic exponents in the
classical circular R3BP. Subba Rao and Sharma [4] studied
the effect of this type of shape in the classical circular re-
stricted three-body problem and found that the collinear
stationary solutions are always unstable, while the nearly
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equilateral triangular stationary solutions are stable in some
interval depending also on the oblateness factor. In the same
topic of shape, Abouelmagd et al. [5] studied the effect of the
oblateness associated to small perturbations in the Coriolis
and centrifugal forces in R3BP. In particular, they found that
the positions of the collinear points and y-coordinate of the
triangular points are not affected by the small perturbations
in the Coriolis force.

*e case where both the primaries are assumed to be
triaxial rigid bodies with one of their respective axes as-
sumed to be an axis of symmetry has been investigated by
Sharma et al. [6]. *e authors supposed that the equatorial
plane coincides with the orbital plane of motion. In these
conditions, they found three collinear libration points
which are always unstable and two triangular libration
points which are stable in some intervals like it has been
shown by Szebehely [7] for the classical restricted three-
body problem. In this study, they also observed that there
are long and short periodic elliptical orbits for the trian-
gular libration points within the interval they considered.
In the studies by Abouelmagd et al. [8], Ansari et al. [9],
Ansari et al. [10], Ansari et al. [11], Ansari et al. [12], Ansari
et al. [13], Ansari et al. [14], Ansari [15], and Ansari [16],
the authors studied the models of restricted problems both
in three-body, four-body, five-body, and six-body by
considering various types of perturbations, especially with
variable of mass. For Robe’s problem, in the study by
Ansari [17], the author investigated the motion of the test
particle in restricted body problem having heterogeneous
irregular primary filled with the viscous fluid, and in the
study by Ansari et al. [10], the authors studied Robe’s
problem in the R3BP subject to viscous force. For the same
topic, Abouelmagd et al. [18] studied Robe’s problem for
which they suppose that the Newton potential is subject to
some modification.

On the other hand, Kushvah [19] investigated different
mathematical properties due to the asteroids belts for the
classical R3BP. *e equilibrium points and their stability
have been studied numerically. He also showed that the
collinear points are unstable and the triangular points are
stable in the sense of Lyapunov stability.

For the questions related to the resonance, in the study
by Pathak et al. [20], the authors, in both the unperturbed
and perturbed cases, investigated the location, the eccen-
tricity, and the period of the first order exterior resonant
orbits. *ey also analyzed the first, third, and fifth order
interior resonant periodic orbits. On the other hand, the
same team [21] studied resonant orbits in the framework of
photogravitational planar restricted three-body problem
with oblateness. It is observed that there exist periodic orbits
for seventh and ninth order resonance which are passing
around the Earth.

In the isotropic radiation case, the mathematical model
is governed by the following data:

If F1 and F2 are the gravitational forces exerted onm due
to m1 and m2 and if Fp1 and Fp2 are the solar radiation
pressure exerted on m due to m1 and m2, respectively, then
the total force exerted on m due to mi is given by

Fi − Fpi � Fi 1 −
Fpi
Fi

( ) � Fi 1 − pi( ) � qiFi, (i � 1, 2),

(1)
where pi � (radiation pressure due to primary/gravitational
force due to primary) and qi � (1 − pi), 0<pi ≤ 1.

Oblate body is a type of triaxial body.

x2

a21
+ y

2

b21
+ z

2

c21
� 1. (2)

When a1 � b1, it will become an oblate body, and A1 �
(a21 − c21)/5 is the oblateness factor, where a1, b1, and c1 are
the semiaxes of the triaxial body [22].

Ishwar and Elipe [23] studied the generalized photo-
gravitational R3BP where they assumed that the smaller
primary is an oblate body and the massive one is the source of
radiation pressure. *ey found secular solutions at the tri-
angular equilibrium points, and each of these points has either
a long or short periodic retrograde elliptical orbits. Singh and
Taura [24] devoted their paper to the motion of an infini-
tesimal body in the generalized R3BP. *e authors assumed
that both primaries have oblate shapes, radiating and sub-
mitted to the effect of gravitational potential from a belt. *ey
determined equations of the motion, located positions of the
equilibrium points, and examined their linear stability. To the
usual five equilibrium points, they showed that the corre-
sponding problem has additional two new collinear points
generated by the potential induced by the belt. *ey noticed
that collinear points are always unstable, while triangular
points are stable for certain interval of the mass ratio.
Abouelmagd and Ansari [25] studied numerically the bicir-
cular Sun perturbed Earth-Moon-satellite system and illus-
trated the equilibrium points, Poincaré’s surfaces sections,
and basins of attracting domain.

In different investigations, it is always supposed that the
masses of celestial bodies do not vary with time during the
motion, but in reality, many celestial bodies have a variable
mass with respect to the time as in the isotropic radiation or
the absorption in stars. *e isotropic radiation or the ab-
sorption in stars generate in general a variation of masses of
these celestial bodies and constitute an interesting research
topic in the celestial mechanics and dynamical astronomy.
*ese particular last cases have been studied by many re-
searchers in the restricted problem (two-body, three-body,
four-body, five-body, and six-body).

Singh and Ishwar [26] and Lukyanov [27] investigated
the effect of variable mass in the frame of circular R3BP. For
their contribution, Abouelmagd and Mostafa [28] investi-
gated the out-of-plane equilibrium points, the regions of
possible motion, and the region of forbidden motion of an
infinitesimal body supposed to have a variable mass rela-
tively to Jean’s law [29]. Also in R3BP, Zhang et al. [30]
investigated the triangular equilibrium points when both the
primaries are radiating, and the infinitesimal body has a
variable mass according to Jean’s law. *ey used Mesh-
cherskii space-time inverse transformation [31] to test the
linear stability of the equilibrium points.
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*e present study can be applied to study the motion of
dust particle, mass of which varies near radiating oblate
binary systems surrounded by an asteroids belt.

*e asteroid belts having ring shape (Figure 1) can be
found in our solar system between the planets. *ese rings
contain many bodies with irregular shapes but are always
smaller than the planets themselves. In general, these as-
teroid belts region lies between the inner boundary (radial
distance around 2.06AU) and outer boundary (the radial
distance around 3.27AU). Systems with asteroid belts were
for the first time introduced by Miyamoto and Nagai [32].
*is model is known as flattened potential given by the
following mathematical formula:

Vb(r, z) �
Mb

r2 + a +
������
z2 + b2

√( )2( )1/2 , (3)

whereMb is the averagedmass of disc, r is the radial distance
of the asteroids belt from the infinitesimal body, and a and b
are the flatness and density parameters of the asteroids belt,
respectively.

Now, let us describe the organization of our paper.
Section 1 presents a nonexhaustive literature review. Section
2 presents the equations of motion, while Sections 3 and 4
contain the investigations of the equilibrium points and of
their stability both analytically and numerically. Finally,
Section 5 represents our conclusion.

2. Equations of Motion

As it is commonly known, the classical R3BP is a system of
three bodies of masses m1, m2, and m, where m1 and m2

represent the masses of the primaries of the system and that
move in circular orbits around their common center of mass
representing the origin. In our study, the primaries are
assumed to be radiating with the radiation factor qi (i � 1, 2)
and oblate in shape with the oblateness factor Ai (i � 1, 2),
respectively. In the synodic coordinate system xyz, the line
joining both primaries are taken as the x-axis, while the line
perpendicular to this line is known as the y-axis. *e mean
motion n of the system is considered around z-axis, which is
perpendicular to the orbital plane of the primaries. *e third

body is assumed to have an infinitesimal variable massm(t))
and moves under the influence of the primaries and the
asteroids belt of mass Mb. We also assume that this infin-
itesimal body does not affect the behavior of the primaries as
well as the asteroids belt.

Let r1, r2, and r be the distances from the infinitesimal
body to the primaries m1, m2, and the asteroids belt, re-
spectively. *e coordinates of the infinitesimal body and the
primaries m1 andm2 are denoted by (x, y), (−μ, 0), and
(1 − μ, 0), respectively (Figure 1). Following the procedures
given by Abouelmagd and Mostafa [28] and by Singh and
Taura [24] and by assuming that the variation of mass of the
test particle originates from one point having zero mo-
mentum, the equations of motion of the third infinitesimal
variable massm(t) body with dimensionless variables in the
synodic coordinate system are as follows.

_m

m
( _x − ny) +(€x − 2n _y) � Ux,

_m

m
( _y + nx) +(€y + 2n _x) � Uy,


(4)

where

U � n
2

2
x2 + y2( ) + (1 − μ)q1

r1
+ μq2
r2
+ (1 − μ)A1q1

2r31
+ μA2q2

2r32
+ Mb������

r2 + T2
√ ,

n2 � 1 + 3

2
A1 + A2( ) + 2Mbrc

r2c + T
2( )3/2,


(5)

with

r21 � (x + μ)2 + y2,
r22 � (x + μ − 1)2 + y2,
r2 � x2 + y2,
r2c � 1 − μ + μ2,

T � a + b.


.

In this case, Jean’s law reduces tom � m0e
− αt, where α is

the constant coefficient; therefore, the mass of the body
varies exponentially. Ofcourse, m0 is the mass of the test
particle at the initial time. By using the Meshcherskii space-
time transformations to preserve both space dimension and
time, we get

y-axis

O m2

r2r1

FP2

FP1

m P

m1

Asteroid belt

x-axis

z-axis

Figure 1: Geometric configuration of the problem with asteroid
belt.
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x � β− 1/2x1,

y � β− 1/2y1,

 (6)

where β � m/m0. *en, the velocity and acceleration com-
ponents are as follows:

_x � β− 1/2 _x1 + 1

2
αx1( ),

_y � β− 1/2 _y1 + 1

2
αy1( ).


(7)

€x � β− 1/2 €x1 + α _x1 + 1

4
α2x1( ),

€y � β− 1/2 €y1 + α _y1 + 1

4
α2y1( ).


(8)

After using equations 6–8, equation (4) becomes

€x1 − 2n _y1 � Vx1 ,
€y1 + 2n _x1 � Vy1 ,

 (9)

where

V � n2

2
+ α

2

8
( ) x1( )2 + y1( )2( )

+ β3/2 (1 − μ)q1
ρ1

+ μq2
ρ2

+ (1 − μ)q1A1β

2ρ31
+ μq2A2β

2ρ32
+ Mb�������

ρ2 + T2β
√ .

(10)
ρ1, ρ2, and ρ are defined by

ρ21 � x1 +
��
β

√
μ( )2 + y1( )2,

ρ22 � x1 +
��
β

√
μ −

��
β

√( )2 + y1( )2,
ρ2 � x1( )2 + y1( )2.


(11)

3. Analysis of Equilibrium Points

If we replace the derivative with respect to time on the left
hand side of system (9) by zero, we get

x1
α2

4
+ n2( ) + β3/2 −

q1(1 − μ) x
1 +

��
β

√
μ( )

ρ31
−
q2 x1 +

��
β

√
(−1 + μ)( )μ

ρ32
−
3A1q1β(1 − μ) x1 +

��
β

√
μ( )

2ρ51



−
3A2q2β x1 +

��
β

√
(−1 + μ)( )μ

2ρ52
− Mbx

1

ρ2 + T2β( )3/2
 � 0,

(12)

y1
α2

4
+ n2( ) + y1β3/2 −q1(1 − μ)

ρ31
− q2μ

ρ32
− 3A1q1β(1 − μ)

2ρ51
− 3A2q2βμ

2ρ52
− Mb

ρ2 + T2β( )3/2  � 0. (13)

3.1. Triangular Equilibrium Points. From equations (12) and
(13), we deduce

q1

ρ31
+ 3A1q1β

2ρ51
� q2
ρ32
+ 3A2q2β

2ρ52
. (14)

Taking in account equation (14), equations (12) and (13)
can be written, respectively, as

α2

4
+ n2 − β3/2

q1

ρ31
+ 3A1q1β

2ρ51
+ Mb

ρ2 + T2β( )3/2  � 0, (15)

α2

4
+ n2 − β3/2

q2

ρ32
+ 3A2q2β

2ρ52
+ Mb

ρ2 + T2β( )3/2  � 0. (16)

In the classical R3BP (i.e., when α � 0, β � 1, qi � 0, and
Ai � 0), the solution is (ρ1 � 1, ρ2 � 1). *erefore, let us con-
sider that the solution in our problem is (ρ1 � 1 + c1, ρ2 �
1 + c2), where c1≪ 1 and c2≪ 1. From (15) and (16), we get

c1 �
1

3
− p1

3
1 + α2

4
( )β(− 3/2) + A1

2
1 + α2

4
( )β(− 1/2) − 1

3
n2 + α2

4
( )β(− 3/2) + Mb

3 ρ2 + T2β( )3/2 (17)

c2 �
1

3
− p2

3
1 + α

2

4
( )β(− 3/2) + A2

2
1 + α

2

4
( )β(− 1/2) − 1

3
n2 + α2

4
( )β(− 3/2) + Mb

3 ρ2 + T2β( )3/2. (18)
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And from system (11), we get

x1 �
��
β

√ 1

2
− μ( ) + 1��

β
√ c1 − c2( ),

y1 � ±
�����
4 − β

√
2

1 + 2

(4 − β) c1 + c2( )( ).


(19)

By combining equations (15–19), we obtain

x1 �
��
β

√ 1

2
− μ( ) − 1

β
1 + α2

4
( ) p1 − p2

3β
− A1 − A2

2
( ),

y1 � ±
�����
4 − β

√
2

1 + 2

(4 − β)
2

3
− p1 + p2

3
1 + α2

4
( )β(−3/2) + A1 + A2

2
1 + α2

4
( )β(− 1/2) − 2

3
n2 + α2

4
( )β(− 3/2) + 2Mb

3 ρ2 + T2β( )(3/2)  .


(20)

Notice that equation (20) represents the coordinates of
triangular equilibrium points.

3.2. Collinear Equilibrium Points. In this subsection and
from equation (12), we will determine the collinear equi-
librium points. By replacing y1 by 0 in equation (12), we get

f x1, y1( ) � x1 α2

4
+ n2( ) + β3/2 −

q1(1 − μ) x1 +
��
β

√
μ( )

ρ31
−
q2 x1 +

��
β

√
(−1 + μ)( )μ

ρ32
−
3A1q1β(1 − μ) x1 +

��
β

√
μ( )

2ρ51



−
3A2q2β x1 +

��
β

√
(−1 + μ)( )μ

2ρ52
− Mbx

1

ρ2 + T2β( )3/2
,

(21)

and therefore,

f x1, 0( ) � s1 x1( ) + s2 x1( ), (22)
where

s1 x
1( ) � x1 α2

4
+ n2( ) + β3/2 −

q1(1 − μ) x1 +
��
β

√
μ( )

x1 +
��
β

√
μ3

∣∣∣∣∣∣ ∣∣∣∣∣∣ −
q2 x1 +

��
β

√
(−1 + μ)( )μ

x1 +
��
β

√
(− 1 + μ)3

∣∣∣∣∣∣ ∣∣∣∣∣∣ −
3A1q1β(1 − μ) x1 +

��
β

√
μ( )

2 x1 +
��
β

√
μ

∣∣∣∣∣∣ ∣∣∣∣∣∣5


−
3A2q2β x1 +

��
β

√
(−1 + μ)( )μ

2 x1 +
��
β

√
(− 1 + μ)

∣∣∣∣∣∣ ∣∣∣∣∣∣5
,

s2 x
1( ) � − Mbx

1β3/2

ρ2 + T2β( )3/2.

(23)

To determine the locations of collinear equilibrium
points, we divide the x-axis in three different
subintervals, that is, x1 ∈ (−∞,−μ

��
β

√
), x1 ∈

(−μ
��
β

√
, (1 − μ)

��
β

√
), and x1 ∈ ((1− μ)

��
β

√
,∞), and we will

specify our approach in each case separately. Notice that
the endpoints of the above intervals correspond to the
situations where the infinitesimal body coincides with
one of the primaries.
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3.2.1. First Case. For the interval x1 ∈ (−∞,−μ
��
β

√
),

s1 x
1( ) � x1 α2

4
+ n2( ) + β3/2

q1(1 − μ)

x1 +
��
β

√
μ( )2 +

q2μ

x1 +
��
β

√
(− 1 + μ)( )2 +

3A1q1β(1 − μ)

2 x1 +
��
β

√
μ( )4 +

3A2q2βμ

2 x1 +
��
β

√
(− 1 + μ)( )4

 ,

s1′ x
1( ) � n2 + α2

4
+ β(3/2) − 2q1(1 − μ)

x1 +
��
β

√
μ( )3 −

2q2μ

x1 +
��
β

√
(− 1 + μ)( )3 −

6A1q1β(1 − μ)

x1 +
��
β

√
μ( )5 −

6A2q2βμ

x1 +
��
β

√
(− 1 + μ)( )5

 

� n2 + α2

4
+ β(3/2)

2q1(1 − μ)

x1 +
��
β

√
μ

∣∣∣∣∣∣ ∣∣∣∣∣∣3
+ 2q2μ

x1 +
��
β

√
(− 1 + μ)

∣∣∣∣∣∣ ∣∣∣∣∣∣3
+ 6A1q1β(1 − μ)

x1 +
��
β

√
μ

∣∣∣∣∣∣ ∣∣∣∣∣∣5 + 6A2q2βμ

x1 +
��
β

√
(− 1 + μ)

∣∣∣∣∣∣ ∣∣∣∣∣∣5
 .

(24)

It is clear that s1′(x1)> 0 for x1 ∈ (−∞,−μ
��
β

√
), and

s1(x1) is then a monotonically increasing function and
limx1⟶−∞s1(x1) � −∞, and limx1⟶−

�
β

√
μ−s1(x1) �∞.

We also have s2(x1) �Mb|x1|β3/2/((x1)2 + T2β)3/2, and
s2′(x1) � Mbβ

(3/2)/ ((x1)2 + T2β)(3/2) − 3Mb(x1)2β(3/2)/
((x1)2 + T2β)(5/2) < 0. limx1⟶−∞s2(x1) � 0, and
limx1⟶−

�
β

√
μ− s2(x1) > 0, s2(x1) is a monotonically in-

creasing function.
As limx1⟶ −∞f(x1, 0) < 0 and limx1⟶ −

�
β

√
μ−

f(x1, 0) > 0, we can conclude that there exists a unique real
in the interval x1 ∈ (−∞,−μ

��
β

√
) for which f(x1, 0) � 0,

and the corresponding point will be denoted in the sequel
by L3.

3.2.2. Second Case. For the case where
x1 ∈ (−μ

��
β

√
, (1 − μ)

��
β

√
) � (−μ

��
β

√
, 0)∪ (0, (1 − μ)

��
β

√
), we

will treat in the first step the subcase when
x1 ∈ (−μ

��
β

√
, 0) � (−μ

��
β

√
,−T

��
β

√
/
�
2

√
)∪ ((−T

��
β

√
)/

�
2

√
, 0).

Let x1 ∈ (−μ
��
β

√
,−T

��
β

√
/
�
2

√
). Since limx1⟶−

�
β

√
μ+

s1(x1) � −∞ and limx1⟶−
�
β

√
μ+s2(x1)> 0, we get

limx1⟶−
�
β

√
μ+f(x1, 0)< 0, and s1((−T

��
β

√
)/

�
2

√
)+

s2((−T
��
β

√
)/

�
2

√
)> 0. Consequently, f((−T

��
β

√
)/

�
2

√
, 0)> 0,

which means there is a unique point for which f(x1, 0) � 0.
*is point will be denoted in the sequel by Lb1.

In the case where x1 ∈ ((−T
��
β

√
)/

�
2

√
, 0), we have

s1((−T
��
β

√
)/

�
2

√
) + s2((−T

��
β

√
)/

�
2

√
)> 0, which implies that

f((−T
��
β

√
)/

�
2

√
, 0)> 0 and f(0, 0) � β3/2(−q1(1 − μ)

(
��
β

√
μ)/(

��
β

√
μ)3− q2(

��
β

√
(−1 + μ))μ/(

��
β

√
(−1 + μ))3 − 3A1q1

β(1 − μ)(
��
β

√
μ)/2(

��
β

√
μ)5 − 3A2q2β(

��
β

√
(−1 + μ))μ/2(

��
β

√
(−1 + μ))5)< 0

We can interpret as above that there exists a unique point
for which f(x1, 0) � 0. Let us denote this point by Lb2.

To complete the study of this second case, let
x1 ∈ (0, (1 − μ)

��
β

√
).

Since f(0, 0)< 0 and limx1⟶
�
β

√
(1− μ)−f(x1, 0)> 0, we

can conclude that there exists a unique point for which
f(x1, 0) � 0. Let L2 be this point.

3.2.3. -ird Case. Let x1 ∈ ((1 − μ)
��
β

√
,∞). Since

limx1⟶
�
β

√
(1− μ)+s1(x1) � −∞, limx1⟶∞s1(x1) �∞,

s2(
��
β

√
(1 − μ))< 0, and limx1⟶∞s2(x1) � 0, we can con-

clude that limx1⟶
�
β

√
(1− μ)+f(x1, 0)< 0 and

limx1⟶∞f(x1, 0)> 0, and then, we conclude that there is a
unique real in this interval for which f(x1, 0) � 0. *e
corresponding point will be denoted by L1.

*e above points L1, L2, L3, Lb1, and Lb2 are called
collinear equilibrium points (Figure 2 and 3). *ese points
are similar to points determined in the study by Singh and
Taura [24]. Notice that in the classical R3BP, there are only
three collinear equilibrium points.

*e locations of these equilibrium points are determined
numerically and depicted in Figure 4. From analyzing this
figure, we can observe that as we increase the value of β, all
the equilibrium points are moving away from the origin
except Lb2 (Figure 5).

4. Stability of Equilibrium Points

In this section, let us investigate the stability properties of the
small body’s motion in its vicinity (x10 + x11, y10 + y11)
under the effect of the oblate radiating primaries and the
asteroids dust belt, where (x11, y11) are the small dis-
placements from the equilibrium points (x10, y10). To do
this, we can write the variational equations for system (9) as

€x11 − 2n _y11 � V0
x1x1x

11 + V0
x1y1y

11,

€y11 + 2n _x11 � V0
y1x1x

11 + V0
y1x1y

11.

 (25)
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*e superscript 0 denotes the value at the corresponding
equilibrium point.

In the phase space, the above system (25) can be re-
written as

_x � x12,
_y11 � y12,
_x12 � 2ny12 + V0

x1x1x
11 + V0

x1y1y
11,

_y12 � −2nx12 + V0
y1x1x

11 + V0
y1y1y

11.


(26)

Due to the variation of themass and of the distance of the
small particle, by using Meshcherskii space-time inverse
transformations to examine the stability of the equilibrium
points, we then get

x13 � β− 1/2x11, y13 � β− 1/2y11,

x14 � β− 1/2x12, y14 � β− 1/2y12.

 (27)

Taking in account equation (26), system (27) can be
written as follows:

Y
.
� BY, (28)

where

Y �

x13

y13

x14

y14




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Figure 2: Locations of collinear equilibrium points.
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Figure 4: Locations of all equilibrium points for three values of β
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Table 1: All the equilibrium points depicted are unstable and determined for T � 0.02, q1 � 0.90, q2 � 0.85, A1 � 0.03, A2 � 0.02,
Mb � 0.01, μ � 0.4, and α � 0.2.

Equilibrium points
Roots

β x1 − C0 y1 − C0

0.40

0.7482467178 0.0000000000
0.1 ± 1.46479i

1.6105
–1.4105

0.1051524050 0.0000000000
0.1 ± 3.25487i
−4.46466
4.66466

–0.7099161991 0.0000000000
0.1 ± 1.30658i

–1.08426
1.28426

–0.0274388781 0.000000000
0.1 ± 10.4769i
−13.2108
13.4108

−0.0002097310 0.0000000000
0.1 ± 36.3091i
0.1 ± 34.1204i

0.0766012649 ±0.5044421565 −0.610786 ± 0.997642i
0.810786 ± 0.997642i

0.90

1.1223700767 0.0000000000
0.1 ± 1.46479i
−1.4105
1.6105

0.1577286075 0.0000000000
0.1 ± 3.25487i
±4.46466

−1.0648742987 0.0000000000
0.1 ± 1.30658i
−1.08426
1.28426

−0.0411583172 0.0000000000
0.1 ± 10.4769i
−13.2108
13.4108

−0.0003146670 0.0000000000
0.1 ± 34.1204i
0.1 ± 36.3091i

0.1149018973 ±0.7566632347 −0.610786 ± 0.997642i
0.810786 ± 0.997642i

1.40

1.3998414294 0.0000000000
0.1 ± 1.46479i
−1.4105
1.6105

0.1967221364 0.0000000000
0.1 ± 3.25487i
−4.46466
4.66466

−1.3281315953 0.0000000000
0.1 ± 1.30658i
−1.08426
1.28426

−0.0513334406 0.0000000000
0.1 ± 10.4769i
−13.2108
13.4108

−0.0003923708 0.0000000000
0.1 ± 34.1204i
0.1 ± 36.3091i

0.1433078443 ±0.9437248605 0.610786 ± 0.997642i
0.810786 ± 0.997642i
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B �

1

2
α 0 1 0

0
1

2
α 0 1

V0
x1x1 V0

x1y1
1

2
α 2n

V0
y1x1 V

0
y1y1 −2n 1

2
α




. (29)

*e characteristic equation for the matrix B is then

λ4 + α3 λ
3 + α2 λ

2 + α1 λ + α0 � 0, (30)

where

α0 �
1

16
α4 + 1

4
α2 4n2 − Vx1x1 − Vy1y1( ) + Vx1x1Vy1y1 − V

2
x1y1( ),

α1 � α Vx1x1 + Vy1y1 − 4n2 − α
2

2
( ),

α2 � − Vx1x1 + Vy1y1 − 4n2 − 3α2

2
( ),

α3 � −2α.


(31)

Table 1 represents the numerical solutions of equation
(30), for the values T � 0.02, q1 � 0.90, q2 � 0.85, A1 � 0.03,
A2 � 0.02,Mb � 0.01, μ � 0.4, and α � 0.2 (Singh and Taura
[24] and Ansari [16]) and three different values of parameter.
*is table represents also the roots corresponding to each
equilibrium points. From a simple interpretation of the
results of the table, we can deduce that equilibrium points
are unstable because at least one characteristic root is either a
positive real number or positive real part of the complex
characteristic root. While in the study by Singh and Taura
[24], it is shown that some equilibrium points are stable in
some intervals; therefore, in our case due to the impact of the
variation parameters, all the equilibrium points obtained are
unstable.

5. Conclusion

In this paper, we studied the effects of the variation pa-
rameters α and β on the behavior of motion of the infini-
tesimal body in the restricted 3-body problem and also when
the mass of this infinitesimal body varies according to Jean’s
law. We assumed that the primaries have both radiating as
well as oblateness effects, and the whole system has an effect
of an asteroids belt. Using the Meshcherskii space-time
transformation, we have evaluated the equations of motion.
From the obtained system of equations of motion, we nu-
merically illustrated the seven equilibrium points where five
equilibrium points are collinear and two are noncollinear
(i.e., triangular equilibrium points). *is conclusion is
similar to that made by Singh and Taura [24] but more

different from the classical R3BP [7]. Figure 4 shows the
location of the seven equilibrium points and their move-
ments for three values of β (0.4, 0.9, and 1.4). Figure 5 is the
zoomed part of Figure 4 near the equilibrium point Lb2.
From these figures, we noticed that as we increase the value
of the variation parameter β, all the equilibrium points are
moving away from the origin except Lb2. Furthermore, we
examined the stability of equilibrium points numerically,
and Table 1 represents the roots of the characteristic
polynomial that shows that at least one of the roots has either
positive real part of the complex roots or only a positive real
root. *ese facts confirm that all the equilibrium points are
unstable. As a second remark, we deduced that this result is
different from the result obtained by Singh and Taura [24]
where they have shown that the triangular points are stable
for 0< μ< μc, where μc is the critical mass ratio influenced by
the oblateness and radiation parameters of the primaries and
potential from the belt. We can then conclude that the
variation of parameters has a great impact on the dynamical
behavior of the motion of the infinitesimal body.
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