
Motion Planning and Reactive Control on

Learnt Skill Manifolds

Ioannis Havoutis

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2011



Abstract

We propose a novel framework for motion planning and control that is based on a

manifold encoding of the desired solution set. We present an alternate, model-free,

approach to path planning, replanning and control. Our approach is founded on the

idea of encoding the set of possible trajectories as a skill manifold, which can be learnt

from data such as from demonstration.

We describe the manifold representation of skills, a technique for learning from

data and a method for generating trajectories as geodesics on such manifolds. We

extend the trajectory generation method to handle dynamic obstacles and constraints.

We show how a state metric naturally arises from the manifold encoding and how this

can be used for reactive control in an on-line manner.

Our framework tightly integrates learning, planning and control in a computation-

ally efficient representation, suitable for realistic humanoid robotic tasks that are de-

fined by skill specifications involving high-dimensional nonlinear dynamics, kinody-

namic constraints and non-trivial cost functions, in an optimal control setting. Al-

though, in principle, such problems can be handled by well understood analytical

methods, it is often difficult and expensive to formulate models that enable the ana-

lytical approach.

We test our framework with various types of robotic systems – ranging from a

3-link arm to a small humanoid robot – and show that the manifold encoding gives

significant improvements in performance without loss of accuracy. Furthermore, we

evaluate the framework against a state-of-the-art imitation learning method. We show

that our approach, by learning manifolds of robotic skills, allows for efficient planning

and replanning in changing environments, and for robust and online reactive control.

i



Acknowledgements

I am grateful to my supervisor, Subramanian Ramamoorthy, for his invaluable guid-

ance, advice and support throughout the course of my PhD. He has inspired me to work

on manifold concepts and geometric approaches to robotics problems, while keeping

me focused and motivated.

I wish to thank my second supervisor, Sethu Vijayakumar, for his valuable advice

and for offering me the opportunity to undertake this PhD. He along with the other

members of the SLMC group have provided me with a very stimulating research envi-

ronment.

I would also like to thank my lab mates and the rest of the RAD group members.

Last, a big thanks to my family and all friends that helped in making these years a

delightful experience.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Ioannis Havoutis)

iii



To my family.

iv



Table of Contents

1 Introduction 1

2 Background 12

2.1 Path planning and control . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Traditional planning and control approaches . . . . . . . . . . 14

2.1.2 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Learning by demonstration . . . . . . . . . . . . . . . . . . . 16

2.1.4 Dynamic motion primitives . . . . . . . . . . . . . . . . . . 17

2.1.5 Sampling based motion planning . . . . . . . . . . . . . . . . 19

2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Motivation to use a manifold learning approach . . . . . . . . 23

2.2.2 The manifold representation advantage . . . . . . . . . . . . 24

2.2.3 Manifold notation and concepts . . . . . . . . . . . . . . . . 25

2.2.4 Comparison of above methods . . . . . . . . . . . . . . . . . 28

3 Manifold learning 30

3.1 Overview of approach . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Method mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The manifold model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Learning the manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Benefits of the manifold representation . . . . . . . . . . . . . . . . . 36

4 Generation of trajectories on learnt manifolds 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Motivation for a manifold representation . . . . . . . . . . . . . . . . 39

4.3 The manifold encoding . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Learning the manifold model . . . . . . . . . . . . . . . . . . 41

v



4.3.2 Geodesic paths . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Reaching with a robotic arm . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Reaching examples . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 Generation of novel reaching solutions . . . . . . . . . . . . 50

4.5 Walking with the KHR-1HV humanoid . . . . . . . . . . . . . . . . 51

4.5.1 Example walking solutions . . . . . . . . . . . . . . . . . . . 52

4.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.3 Generation of novel walking motions . . . . . . . . . . . . . 54

4.5.4 Experimental considerations . . . . . . . . . . . . . . . . . . 56

4.6 Walking with NAO humanoid robot . . . . . . . . . . . . . . . . . . 57

4.6.1 Quasi-static walking examples . . . . . . . . . . . . . . . . . 58

4.6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.3 Generation of novel walking solutions . . . . . . . . . . . . . 60

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Geodesic trajectories with dynamic constraints 65

5.1 Changing environments and dynamic constraints . . . . . . . . . . . 65

5.2 Novel constraints on learnt manifolds . . . . . . . . . . . . . . . . . 68

5.2.1 Constrained geodesic paths . . . . . . . . . . . . . . . . . . . 69

5.3 Constrained reaching on a robotic arm . . . . . . . . . . . . . . . . . 72

5.3.1 Reaching examples . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Generation of constrained reaching motions . . . . . . . . . . 75

5.3.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Constrained stepping with the Nao humanoid . . . . . . . . . . . . . 77

5.4.1 Stepping examples . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Generation of constrained walking motions . . . . . . . . . . 79

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Reactive control on learnt manifolds 83

6.1 The need for strategic control . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Control beyond the local model . . . . . . . . . . . . . . . . 84

6.1.2 Overview of reactive manifold controller . . . . . . . . . . . 86

vi



6.2 Control on and to a skill manifold . . . . . . . . . . . . . . . . . . . 87

6.2.1 Projection of states on manifold . . . . . . . . . . . . . . . . 89

6.3 Benefits of manifold control . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Manifold control on the 3-link arm . . . . . . . . . . . . . . . . . . . 93

6.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Serving example with the Kuka Lightweight Robot arm . . . . . . . . 96

6.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Standing on one leg with the Nao humanoid . . . . . . . . . . . . . . 101

6.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Evaluation 108

7.1 Learning by demonstration . . . . . . . . . . . . . . . . . . . . . . . 108

7.1.1 The LbD approach . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 iCub data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Manifold metric . . . . . . . . . . . . . . . . . . . . . . . . 116

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Conclusions 119

Bibliography 124

vii



List of Notation

Below is a list of symbols and abbreviations used throughout this thesis (unless an

exception is noted in the text) . Entries of the form a(·) denote an argument should

be supplied to the function a, for example where there is a direct dependency on some

quantity. In addition to the terms defined here, note that we use the convention of bold

upper-case letters, A, to denote matrices, bold lower-case letters, a, to denote vectors

and normal weighted font, a, to denote scalar terms.

Symbols

q, q̇, q̈ Position, velocity and acceleration in joint space.

Q(·) Trajectory in joint space, either time indexed or discretised.

x, ẋ, ẍ Position, velocity and acceleration in task space.

X(·) Trajectory in task space, either time indexed or discretised.

t Time.

T Duration in time (e.g., duration of a trajectory).

u(·) Control action.

K∗ Gain (e.g., Kp, proportional gain).

D Dimensionality of a high-dimensional space.

d Dimensionality of a low-dimensional space.

M Manifold.

H (·) Mapping from a point to its the tangent basis.

viii



H (·) Mapping from a point to its the tangent basis.

∆i
. j Centred estimate of the directional derivative of i w.r.t. j.

εi j Alignment factor.

θ Vector of model parameters.

λ Regularisation term.

min(·) Minimization of the argument construct.

µ Mean, expected or arithmetic.

σ Variance.

A⊗B The Kronecker product of the matrices A and B.

vec(·) The vector operation that vectorizes a matrix A.

O Set of obstacle points.

f
q
i j Force between consecutive path points qi and q j.

f O
ik Force between path point qi and obstacle point Ok.

{⊘} Empty set.

C Curvature of a set of (consecutive) path points.

H ′(·) Manifold projection matrix.

P(·, ·) Joint probability density function.

G Gaussian kernel.

Σ Covariance of Gaussian kernel.

ix



Abbreviations

SPL Standard Platform League.

RRT Rapidly-exploring Random Tree.

LbD Learning by Demonstration.

PbD Programming by Demonstration.

DoF Degree(s) of Freedom.

LQR Linear Quadratic Regulator.

LQG Linear Quadratic Gaussian.

RBF Radial Basis Function.

GMM Gaussian Mixture Model.

GMR Gaussian Mixture Regression.

PDF Probability Density Function.

EM Expectation Maximization.

DMP Dynamic Motion Primitive.

RM Road Map.

PRM Probabilistic Road Map.

GPDM Gaussian Process Dynamic Model.

GPLVM Gaussian Process Latent Variable Model.

MDS Multi-Dimensional Scaling.

LLE Locally Linear Embedding.

SOM Self-Organizing Map.

CFA Coordinated Factor Analysis.

LLC Locally Linear Coordination.

x



LSML Locally Smooth Manifold Learning.

RMSE Root Mean Squared Error.

NN Nearest Neighbour.

ARA* Any-time Repairing A*.

GP Gaussian Process.

xi



Chapter 1

Introduction

In recent years the RoboCup Robotic Soccer competition has become increasingly pop-

ular as an international event that brings together hardware and software engineering

research in robotic soccer. One of the most successful divisions in the competition is

the Standard Platform League (SPL). Each SPL team consists of a group of four Nao

humanoid robots (Figure 1.1) that autonomously compete in matches of robotic soccer.

According to the official rule set, all SPL teams must have a designated Nao robot

as a goalkeeper. As in human football, the Nao goalkeeper is charged with directly

preventing the opposing team from scoring. Setting aside the vision requirements, suc-

cessful goalkeeping requires intercepting shots at goal, basic ball handling and passing

to a team mate further up the field. Such a small set of high level skill specification can

be further broken down to a lower level skill set. Examples of such low level skills are

walking and running to the ball, kicking to targets, diving for saves, etc.

The most common approach amongst current SPL teams is to have a small num-

ber of hand-crafted variations of each skill, that the high-level behaviour program

would chose to replay at will. Such motion alphabets often lack feedback closure, thus

are not robust to changes in the environment, while designing appropriate motions is

time-consuming and subjective. This approach leads to discontinuous sets of action

possibilities, largely impacting the efficiency of a football playing robot. For exam-

ple, passing or kicking is often discretised to straight, left and right shooting motions,

providing a very coarse control over the actual outcome of the action.

The Nao goalie example highlights the increasing need of modern, every-day,

robotic platforms’ requirement for real-time motion planning and control. Many realis-

tic humanoid robotic tasks are defined by skill specifications involving high-dimensional

nonlinear dynamics, kinodynamic constraints and non-trivial cost functions, in an op-

1



Chapter 1. Introduction 2

Figure 1.1: The RoboCup Standard Platform League Nao humanoid robot. {Image

courtesy of Team Edinferno}.

timal control setting. Although, in principle, such problems can be handled by well

understood analytical methods, it is often difficult and expensive to formulate models

that enable the analytical approach.

Coming back to the SPL example, what we need is a flexible motion planning and

control framework that can generate motions derived from a set of skills, necessary

for successful goalkeeping. Such a motion generator should be able to achieve a large

family of goals, for example it should be able to produce kicking motions that cover the

entire space reachable by the robot’s leg. In addition, it should take into account con-

straints such as joint limits, that arise from the physical grounding of the system, and

task limits, that arise from the interaction with a dynamically changing environment,

e.g., stability, obstacles, other opponents.

In a classical optimal control setting, e.g. Todorov and Li (2005), one would start

with the dynamics modelling of the problem. This requires accurate analytical models

of both the robot’s kinematics and dynamics, as well as an accurate model of the en-

vironment and the interaction between the aforementioned parts, e.g. impact models,

friction models. Such models can be difficult to acquire and can exhibit great variabil-

ity, for instance different stepping surfaces, different motor behaviours, etc. By having

a well defined goal and the analytical model, through an optimal control method, one

can get to the optimal trajectory for achieving the goal at hand, alongside with lo-

cal feedback stabilizers to overcome disturbances and perturbations. In practice such

methods are very hard to apply to real world problems.

http://wcms.inf.ed.ac.uk/ipab/robocup/


Chapter 1. Introduction 3

Although optimal control theory exits for a long time (Pontryagin, 1962; Athans

and Falb, 1966), apart from a number of highly specialised applications, we are un-

able to use such methods in a day-by-day basis on systems of interest (e.g., multi-DoF,

dynamic, humanoids), as the level of computational complexity quickly becomes pro-

hibitive. The core of the problem is that when searching through all the possible trajec-

tories that a system can generate, then this search space quickly grows too large. For

example consider passing the ball to a team member with a directed kick. The motion

generator need not search though any of the possible trajectories that, for example, do

not move the kicking leg as such trajectory candidates would fail the task by default.

In practice there is no need to generate every possible trajectory, we need to search

through only those trajectories that capture some structure underlying a specific task.

One good approach, that can bring down the computational complexity, is to ex-

ploit qualitative structure of the problem at hand. There are numerous examples of

exploiting problem structure in the literature, outlining a more broad stream of thought.

For example Full and Koditschek (1999), have demonstrated how one can collapse

the dimensionality of a given system by trimming away degrees of freedom, exploiting

synergies and symmetries. This way, one can arrive at a reduced model, the template,

that can be used as a guide or a target for the control of the original system (Figure

1.2(a)). This way, the control is essentially performed on the template model and the

output is then mapped back to the full system, with the additional joints and actuators.

Inspired by the Burridge-Rizzi-Koditschek idea of sequential switching controllers

(Figure 1.2(b)), Conner et al. (2009, 2003, 2006), has shown how one can break the

full state space of the system in smaller domains, each of which can be covered with an

invariant control strategy, e.g. converging to an edge or a point in the domain (Figure

1.3(a)). A global model of the local domains is built from the adjacency relationships,

forming a graph. Achieving a given goal would then require finding a path from start

to end on the graph, coordinating the invariant local control strategies and following

the flow-through policy that emerges.

Two research groups, Dever et al. (2006, 2004) and Frazzoli et al. (2005, 2003),

both working on controlling UAV helicopters, have shown that even in difficult control

problems one can organize solutions in manoeuvre sets. This way one can arrive at

groups of control strategies, appropriate for each manoeuvre set, via expert demon-

stration or offline optimization. In turn find bounds of the manoeuvre groups, feasible

manoeuvre initiation conditions and possible manoeuvre exit conditions, in essence

discovering which manoeuvres can be sequenced. This is used to build a manoeuvre



Chapter 1. Introduction 4

TEMPLATE

ANCHOR

(a) Templates and anchors. (b) Seq. switching controllers.

Figure 1.2: Examples in the literature showing how one can exploit and/or impose prob-

lem structure. (a) The templates and anchors view of Full and Koditschek (1999), where

high-dimensional neuromuscular systems can be trimmed down to reduced template

models by exploiting synergies and symmetries. The template model is used for control

and the calculated control actions are then mapped back to the full system. (b) The

sequential switching controller idea from Burridge et al. (1999), where local simple con-

troller can be used to incrementally build up a controller network covering the space of

interest. Notice how the outcome of one control law brings the system to the influence

of the following controller.

graph, much like a state machine (Figure 1.3(b)), and use this graph to plan paths that

achieve given goals.

All the aforementioned examples still required a substantial amount of model knowl-

edge and meticulous fine-tuning. Nonetheless, the common idea they share is that

good trajectory generation approaches produce qualitatively similar solutions that are

inherently structured. The central idea of this thesis is to capture the structure of such

solution sets in a form appropriate for motion planning and control.

We build a framework that can concisely encode the qualitative structure of a skill,

as this can bring down the computational complexity. It allows us to learn such an en-

coding from example solutions, as working with the full models of the systems in ques-

tion is too expensive. Our framework allows for the dynamical addition of constraints

either in the joint space or the task space of the system. It provides the machinery nec-

essary for the rejection of perturbations beyond sersorimotor noise. Finally, it operates

in an efficient manner, capable of reactive behaviour, permitting on-line deployment.



Chapter 1. Introduction 5

(a) Flow-through policies. (b) Maneuver sets and graphs.

Figure 1.3: Examples in the literature showing how one can exploit and/or impose prob-

lem structure. (a) Flow-through policies, introduced in Conner et al. (2009), as in Figure

1.2(b), can be composed of smaller domains where the local invariant controllers are

easier to define. Such policies can be point- or edge- converging vector fields, suitable

for the plan at hand. (b) Dever et al. (2006) and Frazzoli et al. (2005) demonstrated how

even in difficult control problems one can group control strategies, in this case helicopter

manoeuvres, and arrange these into a control graph. Planning can then be performed

by finding paths on this graph, picking the sequence of manoeuvres that would bring

the system to the desired state.

The strategy we will use for this is to learn each skill in an offline phase directly

from demonstrated data. Such data can be either the result of an expensive optimization

procedure or expert demonstrations. Each set of demonstrated solutions belongs to a

specific skill and invariantly possesses inherent structure1. Each skill is represented as

a skill manifold, an encoding that allows for a variety of geometric operations. The

set of such learnt skill manifolds can be then used by the robot online, in autonomous

manner, accommodating novel constraints and goals. Figure 1.4 provides an overview

of the proposed approach.

In general, we will see that solution sets of robotic skills have inherent structure

that is closely captured with our manifold representation. We provide a number of

low dimensional examples where such structure can be directly visualized. We present

a method for learning skill manifolds from demonstrated solutions and an algorithm

for generating novel trajectories as geodesics on such learnt geometries. We intro-

1More for this argument in the following section..



Chapter 1. Introduction 6

Figure 1.4: Overview of our approach. Skills are encoded as skill manifolds that are

learnt from example solution sets offline. The learnt skill set is the used by the robot to

generate trajectories that accommodate novel goals and/or constraints, and to react to

unforeseen disturbances in an on line manner.

duce a method for adding constraints at runtime to such learnt manifolds, as a central

requirement is that the robot should be able to operate autonomously in a dynamic

environment. We demonstrate an system for online reactive control that is based on a

metric naturally derived from the manifold representation. This can be used to over-

come perturbations and produce strategic changes in the behaviour of the controller,

stemming from the natural separation between on-manifold and off-manifold control.

Experiments are reported in order to validate the methods and to assess the perfor-

mance of the various algorithms developed. In these, learning is performed on data

from various optimization procedures, on systems ranging from a simple 3-link pla-

nar arm to a high-dimensional humanoid robot. Overall we illustrate that approaching

skill-specific motion planning and control in terms of manifolds of example solution

sets can yield significant performance benefits with regards to both behavioural sta-

bility, in the sense of a graceful degradation of the methods’ generated solutions; and

computational efficiency, allowing for real-time deployment.

Why model solution sets as manifolds

Robots are physically grounded systems and consist, mostly, of rotational and trans-

lational elements. Thus, the configuration spaces of most robotic systems can be nat-



Chapter 1. Introduction 7

Figure 1.5: The configuration manifold of a typical two-link manipulator.

urally described in terms of products of spatial motion and rotation groups (Arnold,

1989; Novikov and Taimanov, 2006), e.g., the special orthogonal group SO(3) and the

special Euclidean group SE(3). A pictorial example is that of the simple two-link ro-

tational manipulator (Figure 1.5), the configuration space of which can be naturally

expressed as a torus.

Definition 1 (Lie group). A Lie group is a smooth manifold obeying the group proper-

ties and that satisfies the additional condition that the group operations are differen-

tiable.

In general, the dynamics of most robots evolve on Lie groups and have the struc-

ture of both a group and a differentiable manifold (Lewis, 2007). Lie groups of robot

dynamics are far too complex to learn from data or represent with a reasonably com-

putationally complex model (there is some very interesting recent work with low-

dimensional systems in Kobilarov and Marsden (2011)). Due to limits on the motion

of actuators, the true configuration space is invariably a manifold with a boundary

(Novikov and Taimanov, 2006) that defines the set of valid configurations. In turn,

solutions to specific tasks impose a structure to the configuration space that is specific

to the task at hand.

We know that solutions from optimal control form sets that are inherently struc-

tured, e.g., Figure 1.2, as solutions to similar optimal planning and control queries

tend to be similar on a local scale. On a larger scale, such skill-specific solutions form

manifolds that can be perceived as high-dimensional surfaces (hypersurfaces). There

is an abundance of manifolds that can form in the configuration space of a complex

(enough) system. It would be very difficult to arrive at a general parametrization of

such a set of manifolds that accounts for a number of skills of interest in unison.



Chapter 1. Introduction 8

Instead we are interested in learning from data a non-parametric model of a single

skill at a time. Such models are invariantly local as each hypersurface (manifold) is

assumed to be locally smooth. Each such manifold models the geometric form that a

set of solutions, belonging to a specific skill, trace in the space that they evolve. In

principle, this space can be any arbitrary state space but throughout this work we focus

on configuration spaces. By modelling each skill as a manifold of a demonstrated

solution set we bring down the computational complexity of both the modelling and

the generative phases, while we gradually build-up an expressive skill library. Skill-

graph approaches can then be used to organize solution sets and allow for planning

queries and reactive control that involve the consecutive invocation of a number of

skills.

Thesis outline

In this section we provide a short outline of the thesis, highlighting the core ideas of

behind the structure of each chapter. Each chapter overview is followed by a list of

references to articles in which the work has been published during the course of the

research, as well as an illustration of the key original contributions of each chapter.

In summary we first present our manifold learning for motion planning and control

framework and the ideas that motivate our approach. Then we introduce each of the

key three components of the framework and present results in stages. Last we present

an overall experiment that ties in all the components of the approach, leading to a

comparison on multiple levels between our framework and a state-of-the art imitation

learning method.

In Chapter 2, we present work related to path planning, control and machine learn-

ing. The first section provides a review of methods in the field of path planning and

control, while the second section presents related research in the field of machine learn-

ing with a focus on manifold learning approaches.

Original contributions:

• Review of state of the art path planning and control approaches in terms of clas-

sical, sampling based and learning based methods.

• Analysis of motivation behind using a manifold learning representation for path

planning and control.

• Overview and comparison of state of the art manifold learning methods.



Chapter 1. Introduction 9

In Chapter 3, we give a detailed presentation of the manifold learning approach,

central to our framework. We show how such a representation can be learnt from data

and give an illustrative example on the swiss-roll dataset.

Original contributions:

• Introduction the use of a geometric manifold learning approach to robotic task

representation.

• In-depth description of how the model is set-up and trained from an example

solutions set.

• Analysis of the limitations of the manifold learning method as well as the bene-

fits associated with the use of such an encoding for robotic tasks.

Publications

• Havoutis, I. and Ramamoorthy, S. (2010). Geodesic trajectory generation on

learnt skill manifolds. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), 2010.

In Chapter 4 we present a method for generating novel solutions from learnt man-

ifold representations. We show how such solutions can be described as geodesic tra-

jectories of the learnt manifold hypersurface and demonstrate the effectiveness of the

manifold approximation in terms of computational efficiency, generalization ability

and model accuracy.

Original contributions:

• Numerical optimization method of generating consistent training data as ground

truth for robot learning.

• Method of generating robot trajectories as geodesics on learnt skill manifolds,

minimizing path length while evolving on the underlying geometry.

• Numerous experiments presented, evaluating the algorithm’s performance with

respect to ground truth data.

Publications

• Havoutis, I. and Ramamoorthy, S. (2010). Geodesic trajectory generation on

learnt skill manifolds. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), 2010.



Chapter 1. Introduction 10

In Chapter 5 we present an extension to the trajectory generation method, that

enables our framework to handle novel, time-varying or transient constraints, typical

of a realistic environment. Such constraints can live in the task space or the joint space

of the system and were not present in the manifold learning phase.

Original contributions:

• Extension to the unconstrained trajectory generation procedure, allowing for a

dynamical addition of novel constraints.

• Introduction of an iterative procedure for generating constrained geodesic trajec-

tories.

• Numerous experiments of unconstrained and constrained solutions to novel plan-

ning queries, in a variety of systems.

Publications

• Havoutis, I. and Ramamoorthy, S. (2010). Constrained geodesic trajectory gen-

eration on learnt skill manifolds. In Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2010. (Finalist for Best

RoboCup Paper Award)

In Chapter 6 we propose a new approach to reactive control of humanoid robotic

systems by utilizing a learnt manifold and a correspondingly derived cost hypersurface,

in a model free setting. We show how we can set-up a vector field in the ambient

space that enforces convergence to the desired family of trajectories from off-manifold

points.

Original contributions:

• Method for reactive control on learnt skill manifolds based on an iterative pro-

cedure equivalent to the geometric projection.

• Example of a reactive control architecture based on the manifold representation.

• Analysis of the metric that arises from the manifold encoding and comparison

to a naive metric, in the context of cost (value) driven planning and control ap-

proaches. Evidence of the superiority of the manifold metric.

• Numerous examples of the reactive manifold controller in scenarios where the

successful execution of the task is sensitive to the cost of the solution. Demon-

strations on a variety of systems.



Chapter 1. Introduction 11

In Chapter 7 we present a rigorous evaluation of our manifold learning framework

against a state-of-the-art imitation learning approach. We demonstrate that our ap-

proach provides superior generalization and stability characteristics, as well as a far

greater ease of retargeting, both with respect to initial and goal positions.

Original contributions:

• Numerous comparisons on a variety of metrics, as well as with regards to robust-

ness against small and large changes of initial and goal positions.

• Analysis of the advantages and the difficulties of both methods, in the context of

a realistic pick-and-place task.

Publications

• A journal paper covering reactive control and comparison with the state-of-the-

art is currently in preparation.

Finally, in Chapter 7, we give conclusions and suggest directions for future work.



Chapter 2

Background

This chapter presents work that is related to the research goals of this thesis. It consists

of two sections; the first presents work in the field of path planning, while the second

presents related research from the field of machine learning and in particular manifold

learning. Both fields are core to this thesis subject, as the proposed framework is

adopting a manifold learning perspective for solving, in essence, path planning and

control problems.

2.1 Path planning and control

The issue of path planning and control is central to almost any robotics scenario where

the plant consists of physical articulated and actuated structures that are designed to

interact with the physical environment.

In the general case path planning1 is concerned with finding a feasible path be-

tween two defined states. Adopting a configuration space notation, as used throughout

this work, path planning is concerned with computing an appropriate (smooth, feasi-

ble, collision-free, etc.) path that takes the current state of the system, qs, to a desired

(final) goal state qg. The path that the system has to traverse in configuration space, Q,

can be discretised to qi with i = 1, . . . ,n, or be time indexed as q(t) with t = 1, . . . ,T .

Many approaches to generating such paths have been developed during the past

decades. For example a large body of research has been concerned with the probabilis-

tic generation of collision free paths in an exploratory fashion. These are variations of

the Rapidly exploring Random Trees (RRTs) detailed in subsection 2.1.5.1. Recent de-

velopments try to incorporate task constraints to RRT-based algorithms and couple the

1The term motion planning is also used in the literature.

12



Chapter 2. Background 13

sampling process with an analytical-model-specific corrective action (Berenson et al.,

2009a, 2011). Others have looked into imitating human demonstration in generating

such paths, where the goal point can be arbitrarily altered while the qualitative proper-

ties of the produced motions remain similar. Such approaches fall under the Leaning

by Demonstration category and are more thoroughly explained in subsection 2.1.3.

The problem of control consists of generating the actions that the system must real-

ize for following defined paths, supervising the execution of the subsequent transitions

and applying corrective actions when a deviation from the path is observed or when a

perturbation occurs. A common control strategy is to utilize feedback from the plant

to correct with respect to a reference state. A common feedback-error based approach,

very popular in robotics, is PID control and variants thereof, where corrective actions

are taken based on a proportional, an integral, and a derivative term of an error signal.

Much of the popularity of PID can be attributed to its ease of implementation and

broad generality. For example, to set-up a PID controller one needs a reference state

and the current state, or estimate, of the controlled variable. This way an error term,

e(t), its integral and its derivative, dictate the controllers’ output as:

u(t) = Kpe(t)+Ki

∫ t

0
e(t)dt +Kd

d

dt
e(t), (2.1)

where Kp, Ki, Kd are the gains of the proportional, the integral and the derivative terms

of the error accordingly.

Controllers for robotic systems can be defined in many different levels. Low-level

controllers operate directly on the joint level and regulate the torques applied at each

joint, i.e. the force that the joint actuator should apply for the joint to reach a desired

state. Such controllers are often PD based where the P and D gains are subject to

tuning, specific for the needs of the system at hand. High-level controllers define

the control actions that the system needs to execute to follow a trajectory, where it is

often the case that such trajectory is indirectly defined by the controller actions. Such

controllers often provide a local feedback-stabilizer, a local feedback law that would

overcome any perturbations occurring during the execution of the trajectory.

In systems where analytical models are available there exist a number of con-

trol approaches that can provide analytical solutions (Stengel, 1995; Siciliano and

Khatib, 2008; Levine, 1996). These methods often require solving the Hamilton-

Jacobi-Bellman equation, a partial differential equation which is central to optimal

control (Sontag, 1998), solved over the whole of state space. In complex systems

such analytical treatments are not computationally possible. A number of approaches



Chapter 2. Background 14

have been developed for the control of complex systems, a broad variety of which we

overview in the following subsections.

In general what we would like is a framework that yields a planned path and the

control actions that are associated with the realization of the plan. Approaches also

exist where the path is not explicitly defined, instead a vector field is imposed on the

robots configuration space, based on the goal at hand, that makes the system converge

to the desired configuration space point. This is a more reactive approach that draws

parallel to dynamical systems theory as the configuration point of convergence can be

easily considered as an attractor point in the systems phase space. Constructing such

attractors has proven to be far from trivial for most interesting systems.

2.1.1 Traditional planning and control approaches

Planning is a research field central to robotics. Planning approaches can be naturally

divided into task space planning, where a plan is devised for an end-effector to follow,

and joint space planning, where a plan is computed for each DoF of the system to

follow. Forward and inverse kinematics and dynamics can provide a mapping between

task space and joint space plans but it is often the case that inverse mappings are not

unique or suffer from a variety of computational difficulties.

Traditional planning approaches of low complexity make use of splines, a gen-

eralization of polynomials, as a structured way of creating smooth and differentiable

curves for task and joint space plans (Craig, 1989; Siciliano and Khatib, 2008). This

is often based on straight-line trajectories in order to limit the polynomial factors to a

unique solution.

More complex approaches to planning problems include optimisation-based meth-

ods where there exists a cost function to be optimized over and in essence picks the one

solution over the set of all possible solutions to a planning query. Various cost func-

tions have been applied to movement systems. Some of the high level cost functions

used are minimum jerk (Flash and Hogan, 1985), minimum torque (Uno et al., 1989)

and minimum endpoint variance (Wolpert and Harris, 1998). Such approaches face

the problem of large computational cost as the optimisation depends on complicated

mathematical models. Moreover, complex movement systems in general have to utilise

combinations of cost functions. Recognizing the individual cost functions that shape a

particular motion is not always possible. In addition, the solution of combinations of

cost functions in a mathematical model can be intractable or non-convergent.



Chapter 2. Background 15

In the most general case controllers are defined over the state space of the system.

Such controllers do not depend on timing variables and provide stability guarantees

on the control space. In simple systems such solutions can be computed analytically

(Stengel, 1995). Textbook examples of such controllers are the Linear Quadratic Reg-

ulator (LQR) (Athans and Falb, 1966; Craig, 1989) and the Linear Quadratic Gaus-

sian (LQG) (Stengel, 1995; Siciliano and Khatib, 2008). Much of the recent effort in

this direction has focused on iterative and approximate methods of computing such

controllers (Li and Todorov, 2006; Todorov and Li, 2005; Kalakrishnan et al., 2011;

Theodorou E. and S., 2011), as the computational complexity of the analytical ap-

proaches quickly scales out of reasonable bounds as system complexity increases.

Control oriented approaches often assume an obstacle free workspace where no

explicit path-planning phase is necessary. This is true for strict industrial-floor appli-

cations but inadequate for systems designed for close interaction with humans in every-

day tasks. One of the main reasons behind this is that optimal control approaches have

a difficulty factoring in a model of the system’s environment. On the other extreme,

often planning methods do not take into consideration the control phase of the sys-

tem, potentially producing trajectories that the controller is unable to follow or clashes

severely with the system’s natural dynamics. One of the main reasons behind this is

that optimality measures, at the control level, are hard to be factored in the planning

step. Our proposed framework aims to integrate planning and control under a single

representation, thus tightly couple the planning and control phases. A more detailed

overview of general control and planing literature follows.

2.1.2 Vector fields

The notion of global vector fields has been a research topic for many years. A central

claim of such approaches is that decoupling feedback an motion planning can be inef-

ficient. Typically, paths computed by planners may not be smooth and can be difficult

to track. On the other hand, it can be difficult to design feedback control strategies

that take into account non-convex constraints induced by the obstacles in the environ-

ment. This becomes more problematic when a robot has to replan as a consequence of

a feedback controller failing to steer the robot to follow a prescribed path.

Global vector field approaches, rather than planning a single path from start to

goal, try compute a feedback law, in the form of a vector field, over the entire free

space of the system. Early vector field approaches Choset et al. (2005) would naively



Chapter 2. Background 16

set up sources and sinks, on constraints and targets respectively, with the use of simple

structures such as Radial Basis Functions and then follow the resulting vector field to

arrive at the global steady state (sink).

This of course tends to be problematic when the free space is complex, rather typ-

ical of multi-DoF configuration spaces. The most common issue is that the resulting

vector field can contain spurious attractors that can trap the system state in local min-

ima. More recent work on global vector fields moves against this problem by assem-

bling a global solution through local decompositions. For example, Zhang et al. (2009)

preform an approximate cell decomposition of the free space and compute vector fields

within cells by considering their adjacency relation, with the constraints and goals in

mind. Another clever approach from Conner (2008) takes another path by, again, de-

composing the full space in smaller domains and setting up local predefined feedback

laws with specific state-evolution properties.

All such approaches have been demonstrated to work well with low-dimensional

configuration spaces and systems that can easily be locally linearly approximated.

These approaches scale badly with increasing complexity for reasons of decompo-

sition and neighbourhood calculation. Cartesian space planning is nicely suited by

global vector field approaches but often planning and feedback in configuration spaces

yield poor results.

2.1.3 Learning by demonstration

Learning by Demonstration (LbD), sometimes also in the literature as Programming

by Demonstration (PbD), has appeared as one way to respond to the growing need

for intuitive control methods (Billard et al. (2008)). LbD belongs to a larger class

of approaches of Imitation Learning, where the general goal of which is to have the

system at hand learn from examples (Argall et al. (2009); Billard et al. (2007); Schaal

et al. (2003)).

In LbD the user provides a small set of demonstrations, usually 5 to 10 examples,

and the system should be able to encode the dynamics of this motion for future use.

Such representation is time independent and at its core is the ability to locally estimate

the dynamics of the example-generating system , f .

Estimating the dynamics of f given a set of demonstrations is done with a statis-

tical approach; Gaussian Mixture Regression (GMR). This approximates f with and

estimate f̂ as a nonlinear combination of a finite set of Gaussian kernels that define



Chapter 2. Background 17

a joint probability distribution function (PDF), P(ξi, ξ̂i), over a training set of exam-

ple trajectories ξi, ξ̂i, i = 1, . . . ,M. The PDF is defined as a mixture of K Gaussian

G1, . . . ,GK , with µK and ΣK being the mean and covariance matrix of a Gaussian GK:

P(ξi, ξ̂i) =
1

K

K

∑
k=1

GK(ξi, ξ̂i;µk,Σk), (2.2)

and

µk = [µk
ξ;µk

ξ̇
] and Σk =





Σk
ξ

Σk

ξξ̇

Σk

ξ̇ξ
Σk

ξ̇



 , (2.3)

where each Gaussian probability distribution Gk is given by:

GK(ξi, ξ̂i;µk,Σk) =
1

√

(2π)2d|Σk|
e−

1
2 (([ξ

i
t ,ξ̇

i
t ]−µk)T (Σk)−1([ξi

t ,ξ̇
i
t ]−µk)). (2.4)

The model is trained with the Expectation-Maximization algorithm (EM) and genera-

tion of a new trajectory from a learned Gaussian Mixture Model (GMM) is done by

sampling equation 2.2, this process is termed GMR (for further reading on GMR the

interested reader can consult Calinon and Billard (2008)).

The GMM/GMR framework allows for stability analysis and empirical determina-

tion of the region of stability of the learned dynamics. Disadvantages include the ap-

pearance of spurious attractors that can trap the evolution of the state of the system and

the inversion of the covariance matrix that can suffer from singularities. A difficulty

common to almost all imitation learning approaches is that of scaling up to a system

with multiple DoFs and complex dynamics. For that most recent results consider task

space encodings, limited to a 2 or 3 dimensional Cartesian space (Gribovskaya et al.,

2010), thus requiring an extra layer of inverse kinematics and dynamics that eventually

computes the actual joint space trajectory that the system follows.

2.1.4 Dynamic motion primitives

Another approach that is directly comparable with LbD is that of Dynamic Motion

Primitives (DMPs). DMPs provide a framework for learning the dynamics of demon-

strated motions by using a simple dynamical system with guaranteed attractor prop-

erties. Such dynamical systems though can only exhibit trivial behaviour, thus a non-

linear function is being learnt from the examples that makes up for the idiosyncrasies

of the demonstrated movements.



Chapter 2. Background 18

DMPs can be used to generate discrete and rhythmic movements. Each DoF is

represented by a coupled dynamical system of the form:

τu̇ = K(g− x)−Du+(g− x0) f , (2.5)

τẋ = u (2.6)

where x and u are positions and velocity fo the system, x0 and g are start and goal

position, τ is a temporal scaling factor, K acts as a spring constant and D as a damping

factor. The factor f is the non-linear function which allows the generation of complex

motions and is the part that is learnt from data. The nonlinear function is of the form:

f (s) =
Σiwiψi(s)s

Σiψi(s)
, (2.7)

where ψi = exp(−hi(s− ci)
2) are Gaussian basis functions with center and width, ci

and hi accordingly and wi adjustable weights. This function is also coupled with a

phase variable s which moves from 1 to 0, signifying that the function’s effect on

the output progressively dies out and the canonical dynamics of the attractor system

eventually prevail. This timing variable evolves as:

τṡ = −αs, (2.8)

where α is a predefined constant. The set of the above equations define one DMP and a

set of n DMPs would be needed to represent a motion in an n-dimensional state space.

The advantage of the formulation is that the generated trajectories retain the spatial

and temporal characteristics of the motion that has been used for learning. In other

words, the produced movements are self-similar for changes in start positions, goal

positions and temporal scaling. In addition the convergence to the goal is guaranteed

by the dynamics of the underlying simple dynamical system, as the effect of the non-

linearity vanishes with the evolution of the time variable.

Nonetheless, such representation requires the tuning of many parameters and is

limited to encoding one DoF per DMP, something that limits its capability of captur-

ing the interplay between the DoFs of a controlled system. Furthermore, learning is

performed on a single demonstration, thus limiting the generalization ability of the

approach.

The DMP framework was introduced around a decade ago by Ijspeert et al. (2002)

and has been further developed and extended over the years by a couple of groups

since then (Schaal, 2006; Degallier et al., 2006; Ijspeert et al., 2003; Nakanishi, 2004).



Chapter 2. Background 19

Recently Pastor et al. (2009) have shown how to alleviate the effect of unwanted, often

excessive, scaling that resulted from changing the goal of a system. Here as well there

has been a transition from joint space to task space, which of course make the variables

in question much more “well-behaved”, and an additional (given) inverse kinematics

layer is used to produce the actual joint movement of the plant.

2.1.5 Sampling based motion planning

Planners based on road-maps (RMs) have been used in early robotic path planning

problems, mostly involving planar mobile robots and low degrees-of-freedom (DoFs)

manipulators. The main idea was to divide the configuration space of the plan in free

and obstacle space and form a graph-based approximation for traversing the free space.

With the increase of the platforms’ DoFs, having such an explicit representation of the

configuration space started to become infeasible. This, in turn, led to the formulation

of Probabilistic RMs (PRMs), where the free space was explored in a probabilistic

fashion and the RM was built out of the constraint-respecting samples.

As plant complexity increased and environments became more dynamic, simple

sampling approaches had to be reconsidered. Specifically, there was a need for ‘sin-

gle query’ planners operating in an on-line manner. This lead to Rapidly-exploring

Random Trees (RRTs). The simple idea behind RRTs is that one does not need to

exhaustively sample the configuration space entirely before looking for a single path.

Instead one can sample randomly in a structured manner, which ensures connec-

tivity between the samples - thus at the same time building up the connectivity graph

in an RM-like fashion. In addition building on an RM, storing and managing such an

amount of information quickly becomes infeasible as the plant complexity increases.

RRTs are single query algorithms, thus after a solution is found the resulting tree is

discarded as there is no guarantee that it would equally be valid under a different plan-

ning query. Moreover the use of structured sampling ensures uniform coverage of the

space that is explored. The algorithmic machinery behind RRTs is quite simple and

straightforward - an important factor in spreading the use of RRTs in a wide variety of

applications.

2.1.5.1 The RRT algorithm

RRT (LaValle, 2006) is a remarkably simple yet effective algorithm for planning a path

between two points in configuration space. All the algorithm needs for operation are



Chapter 2. Background 20

start and end points, as well as a distance metric for evaluating sample points.

In the algorithm, one adopts a simple set characterisation of the configuration

space, which is the union of the free space, Q f ree and the obstacle space Qobs. In

turn all samples q belong to Q f ull:

∀q ∈ Q⇔ Q f ull = Q f ree∪Qobs.

Q f ull can be the configuration space or the phase space for the system, or even just

any composition of state variables within q ∈ R
D, D being the dimensionality of the

problem space.

We root a tree, T , at the given starting point, qinit and grow it by iterating the

following process. Pick a random point qrand ∈ Q f ull and calculate its distance from

each point already in T . Select the closest point from T , qnear, and grow the tree toward

qrand by a step size ∆x. Then evaluate if the resulting configuration

qnew = qnear +∆xqrand ,

belongs to Q f ree or Qobs. If the former is true qnew is added to T , alternatively the sam-

ple is discarded. The procedure is repeated until the goal configuration qgoal is reached,

within some tolerance or number of iterations. The shortest path is then computed on

T using a tree search algorithm. Pseudocode of the classic version of RRT is presented

in Algorithm 1 while a schematic representation of the algorithm’s steps is available in

Figure 2.1..

A nice feature of the RRT is that there are few tunable parameters that need to be

experimented with. Furthermore, RRTs are probabilistically complete. Thus, given

that a solution exists RRTs are guaranteed to find it with increasing probability as the

number of samples grows.

In addition RRTs do not require an explicit model of the system that is being sam-

pled. It suffices to have a way of evaluating new samples according to the set of

planning constraints that might be relevant to the problem at hand. For example when

considering a reaching task the evaluation might involve collision detection and when

considering a walking task the evaluation might be more relevant to the stability of the

plant. RRT planners are thus much more flexible in the sense that they can work with

any simulated or real model that can be treated as a black-box system. Nevertheless an

accurate model of the plant’s dynamics and kinematics can contribute to the planning

speed of the algorithm as the evaluation of the samples can be derived numerically.



Chapter 2. Background 21

Algorithm 1 Rapidly-exploring Random Tree

RRT(qinit , qgoal)

INPUT: start point qinit , goal point qgoal

OUTPUT: path in configuration space p

T .add(qinit) {Initialize tree T}

for i = 0 to k do

qrand ← RANDOM POINT

qnear← NN(qrand , T )

qnew← STEP(qnear, qrand , dx)

valid← EVALUATE(qnew)

if valid == true then

T .add(qnew)

dist← DISTANCE(qnew, qgoal)

if dist ≤ tolerance then

break

end if

end if

end for

p← SHORTEST PATH(T .first,T .last)

RETURN p

However, when considering complex problems involving humanoids, many finer

points need consideration, including convergence to the goal, stability and realisabil-

ity constrains, space coverage and resolution. For example, in spaces with D ≥ 8

convergence is typically slow. It has been shown that including a small bias, e.g.

0.01 favouring the goal, greatly increases the convergence speed as it steers the ex-

ploration in configuration space. Many modern RRT-based samplers make use of two

trees (Kuffner and LaValle, 2000; Diankov et al., 2008), rooted at the initial and the

goal points, where in every step the trees are grown and a check for matching the trees

is also performed. The key issue is that sampling a high dimensional space densely

enough is computationally infeasible. Other studies in this direction include obsta-

cle based sampling (Thomas et al., 2007; Rodriguez et al., 2006), Gaussian sampling

(Boor et al., 1999) and other approaches.

The past few years have seen some very exciting developments in the area of mo-

tion planning for humanoid robots and other complex architectures. Kuffner et al.



Chapter 2. Background 22

Figure 2.1: Schematic representation of the RRT algorithm. The search tree is rooted

at qinit and at each iteration a random configuration point, qrand , is picked. The nearest

point that belongs to the search three is computed (qnear) and a step, dx, is taken

towards the random point. If the new point results in a valid configuration, with regard

to the planner’s constrains, it is added to the search tree and the procedure is repeated

until the goal is reached.

(2002) demonstrated an interesting approach to this problem based on a combination

of the RRT algorithm (LaValle and Kuffner, 2001) and post-processing in the form of

dynamics filtering to ensure stability of the resulting behaviour.

In general, overall success of such algorithms depends on the metric that is defined

over the space to be explored. Traditionally a metric of the form:

d(q,q′) =
n

∑
i=1

wi

∥

∥qi−q′i
∥

∥ ,

is used where the weights wi denote the importance of each Degree of Freedom (DoF).

These weights are often empirically chosen based on trial and error. As the dimen-

sionality grows in nonlinear systems, this becomes difficult as our intuitive notions of

neighbourhood become inapplicable. These are the sorts of spaces where modern hu-

manoid robots live. There is a need for other ways to derive such metrics. We argue

that learning such a metric in a data-driven fashion is a desirable and scalable approach.

The second, related, issue that determines success of RRT-based planning is cov-

erage. Random sampling in high dimensions can be excessively wasteful when the

underlying task has very special structure. A bulk of recent work has demonstrated

that due to a variety of reasons, e.g., joint limits, self-collisions, stability and energy

constraints, many interesting robotic behaviours are restricted to low-dimensional sub-

spaces (Vijayakumar et al., 2005; Bitzer et al., 2008; Full and Koditschek, 1999; Ra-

mamoorthy and Kuipers, 2006; Jenkins and Mataric, 2004). It is desirable to leverage

this in the process of achieving better sampling coverage as the dimensionality of the

problems increases.

If these manifolds have non-zero volume in the C-space it is straightforward to

show that an RRT-based algorithm is probabilistically complete as in the limit of sam-



Chapter 2. Background 23

ples, sampling will eventually place samples inside the manifold. However, if such a

manifold has zero volume in the C-space, a hypersurface in the high dimensional space,

then the probability of sampling such a subspace is practically zero. An approach that

uses a projection operator to move samples from the high dimensional space to the

surface has been used in Berenson and Srinivasa (2010). We have explored a similar

idea in Havoutis and Ramamoorthy (2010c) with limited success.

2.2 Machine learning

Systems of interest that interact with the environment in a physical manner are hard

to accurately model. In recent decades there has been strong turn towards learning

paradigms.

The machine learning literature includes many examples of dimensionality reduc-

tion methods used to abstract and/or make problem spaces manageable. For exam-

ple Chalodhorn et al. (2006) use a low-dimensional sensory-motor mapping to opti-

mize demonstrated motions over the robot’s dynamics. Wang et al. (2008) introduced

GPDM, a Gaussian processes based dimensionality reduction with a dynamical model

of the evolution of the state, that can learn models of human kinematic trajectories. In

the same spirit, Bitzer et al. (2008) use a Gaussian process-based nonlinear dimension-

ality reduction technique to arrive at an underlying model of demonstrated data, while

using a parametrised path generation method over the learnt representation to generate

novel movements.

2.2.1 Motivation to use a manifold learning approach

As known from the study of biological behaviours, natural systems utilize synergies

and coordination strategies that allow for efficient locomotion and fast planning. Bi-

ological strategies usually have a musculoskeletal basis that is inherent to the dynam-

ics of the system, that restricts movement to a subset of all possible solutions. In a

robotics context, system and (possibly artificial) task constraints can serve the same

purpose. Robotics (Ramamoorthy and Kuipers, 2008; Isto and Saha, 2006) and graph-

ics (Safonova et al., 2004) researchers have utilized this fact to devise efficient motion

synthesis strategies. Some recent works (Berenson et al., 2009b; Stilman, 2007; Bretl

et al., 2004) also address this issue by considering how task space constraints, e.g.,

end-effector constraints, can be used to structure planning in configuration space with



Chapter 2. Background 24

local Jacobian mappings. However the low-dimensional nature of the solutions may

not always be taken into account explicitly.

An approach that is closer to our current work is that of Calinon and Billard (2009),

who demonstrate robot programming by demonstration with a probabilistic model,

namely Gaussian Mixture Regression, of Jacobian-based inverse kinematics for learn-

ing trajectories and incorporating task space constraints. What has not always been

exploited in such work is the geometrical structure of families of paths in lower di-

mensional subspaces. By simply mapping a set of poses to a low-dimensional space

and fitting a parametrised model, one is essentially overriding potential intrinsic dy-

namics effects that define many behaviours of interest.

Our goal is to learn this geometric structure, i.e., a skill manifold, that captures the

intrinsic structure of the space of trajectories by approximating the tangent space from

demonstration data. So, if one begins with a set of motion examples from a specific

class, e.g., due to a path optimization or redundancy resolution principle or even a more

complex kinodynamic constraint, then one seeks a representation that intrinsically cap-

tures both the restriction of states to a low-dimensional space and the evolution of the

trajectories in that space - as opposed to imposing a trajectory generation scheme, post

hoc.

2.2.2 The manifold representation advantage

In the usual formulation, manifold learning is aimed at finding an embedding or ‘un-

rolling’ of a nonlinear manifold onto a lower dimensional space while preserving met-

ric properties such as inter-point distances. Popular examples include MDS (Hastie

et al., 2001), LLE (Roweis and Saul, 2000) and Isomap (Tenenbaum et al., 2000).

Much of this work has been focused on summarization, visualization or analysis that

explains some aspect of the observed data. On the other hand, we are interested in

preserving properties of trajectories in the data set. So, our goal is to learn a model of

the tangent space of the low-dimensional nonlinear manifold, conditioned on the adja-

cency relations of the high dimensional data. Such a learnt manifold model can then

be used to compute geodesic distances, to find projections of points on the manifold

and to directly generate geodesic paths between points.

An important point that differentiates our approach from alternate data-driven ap-

proaches that also utilize some form of dimensionality reduction (Vijayakumar et al.,

2005; Bitzer et al., 2008; Full and Koditschek, 1999; Ramamoorthy and Kuipers, 2006;



Chapter 2. Background 25

Jenkins and Mataric, 2004) is that although we have a low-dimensional representation

to reduce complexity, we solve an integrated planning and control problem in the am-

bient high dimensional space. This gives a clearer interpretation to what the controller

is achieving: enforcing a large domain vector field towards the manifold and along

the manifold. This makes the consideration of obstacles (Havoutis and Ramamoorthy,

2010a) and disturbances much more natural, without having to worry about how they

themselves may be mapped to an artificial low dimensional space. Issues such as this

latter point tend to be rather delicate in many alternate approaches.

2.2.3 Manifold notation and concepts

A manifold is a space where every point has a neighbourhood homeomorphic to an

open Euclidean n-ball, an n-dimensional space following an Euclidean distance met-

ric, where n is allowed to vary. Manifolds can consist of a single connected component

or be disjoint unions of connected components. Manifolds that have a fixed n (i.e.

n-dimensional manifolds) are called pure manifolds. For example, the sphere has a

constant dimension of 2 and is therefore a pure manifold whereas the disjoint union of

a sphere and a line in three-dimensional space is not a pure manifold as the dimension-

ality of the line is 1.

Definition 2 (Manifold). A manifold is a topological space that is locally Euclidean,

i.e., around every point, there is a neighbourhood that is topologically the same as the

open unit ball in R
n.

Generally, manifolds are taken to have a fixed dimension (the space must be locally

homeomorphic to a fixed n-ball), and such a space is called an n-manifold. Intuitive

examples are; the 1-manifold that is a curve and the 2-manifold that is a surface, while

higher dimensionality is not easily accessible to human intuition. 3-manifolds and

above can be loosely termed as hypersurfaces.

In robotics, a motion manifold is usually the subspace on which a trajectory is

restricted to lie on, i.e., a geodesic curve on the manifold. In this context, the manifold

is a hypersurface that is embedded in the high dimensional state space of the system.

This ambient space is often described as the configuration space of the system but,

without loss of generality, it can also allow for higher order terms as velocities and

accelerations, in this case the manifold is embedded in a mixed space.

Definition 3 (Geodesic). A geodesic is a locally length-minimizing curve.



Chapter 2. Background 26

A geodesic can be considered as a generalization of the notion of a straight line

in a curved space. Given a metric, a geodesic curve is defined as the a local length-

optimal path between two points. In the plane, the geodesics are straight lines, while

on the sphere, the geodesics are great circles. In general, geodesic curves connecting

two points on a manifold are curves, that belong to the manifold (hypersurface) and

are optimized with regards to their length.

A number of machine learning methods have been developed to deal with points

that yield to a manifold representation. Many of such methods are concerned with

finding an embedding of lower dimensionality in order to unroll, and often better vi-

sualize or classify, high dimensional data. This is often coupled with a metric preser-

vation process that seeks to preserve the metric relations in the low dimensional em-

bedding. Work in Self-Organising Maps (SOMs) has also been motivated by similar

ideas though most research was focused on learning forward and inverse kinematics

(Ritter, 1997; Walter and Ritter, 1995), where the SOMs were viewed as an intermedi-

ate representation between joint and task space. Initially SOMs have been considered

but were discarded as an alternative because of their sensitivity to initialization in high

dimensional data (Kohonen, 1997). The following subsections present some of the

most significant manifold learning approaches in limited detail. The interested reader

can refer to the references provided for further details, as an in-depth presentation of

all these methods is omitted in the interest of space.

2.2.3.1 Coordinated factor analysis

Coordinated factor analysis (CFA) has been introduced in (Verbeek, 2006) for mod-

elling data sampled from manifolds. It uses a mixture of factor analysers to approx-

imate a non-linear factor manifold. The method fits local factor analysis models and

then tries to coordinate the local factors in order to recover a global parametrization.

The global alignment of the local models is achieved by modifying their objective

function. This method has been developed in an in image analysis context and is well

suited for geometrical image transformations. The model optimization is performed

with EM and is prone to local minima.

2.2.3.2 Locally linear coordination

Locally linear coordination (LLC) (Teh and Roweis, 2003) aligns the hidden represen-

tations used by each component of a mixture of dimensionality reducers into a single



Chapter 2. Background 27

global representation of the data throughout space. Given an already trained mixture,

the alignment is achieved by applying an eigensolver to a matrix constructed by the in-

ternal representations of the mixture components. Research results show visualization

and interpolation on high dimensional data.

2.2.3.3 Manifold charting

Manifold charting (Brand, 2003) coordinates local parametric models to obtain a glob-

ally valid nonlinear embedding function. Like LLC, this charting method defines a

quadratic cost function and finds the optimal coordination directly. However, charting

is based on a cost function much closer in spirit to the original global coordination

model and it instantiates one local model centred on each training point, so its scaling

is the same as that of LLE and Isomap.

2.2.3.4 Isomap

Isomap, proposed by Tenenbaum (Tenenbaum et al., 2000) globally coordinates proxi-

mal pairwise distances using all-pairs shortest paths distances computed from a neigh-

bourhood graph on the dataset. Isomap assumes that the underlying structure is a

manifold with a boundary. This underlying manifold can be uncovered by Isomap,

given the input data set is dense enough to cover the entire manifold and forms a single

connected component. A single connected component covering this manifold approx-

imates all-pairs geodesic distances on the underlying manifold. By applying MDS to a

matrix of geodesic distances, nonlinearities in the data due to the manifold are removed

to produce a coordinate space intrinsic to the underlying manifold. No explicit model

is used to measure pairwise distances. Isomap relies only on measuring distances

between proximal points and uses shortest-paths coordination for distances between

distal points. The utilization of coordination for distal points typically provides better

uncovering of structure, given sufficient data density.

2.2.3.5 Locally smooth manifold learning

Locally smooth manifold learning (LSML) (Dollár et al., 2007), rather than posing

manifold learning as the problem of recovering an embedding, poses the problem in

terms of learning a warping function for traversing the manifold. LSML explicitly

focuses on generalizing to unseen portions of the manifold by making a smoothness

assumption, which is crucial for use in a robotics learning context as in this disser-



Chapter 2. Background 28

tation. Learn manifolds are trained on an error function that estimates the centred

directional derivative between neighbouring points in the high dimensional data set.

The function is approximated with an RBF network, with the number of kernels and

dimensionality being open parameters. The learnt manifold can be used to compute

geodesic distances, to find projections of points on the manifold and to generate novel

sample points.

2.2.4 Comparison of above methods

Common to all aforementioned methods is the idea that point sets arising from diverse

problems often contain intrinsic structure. Such structure is seldom addressed in most

dimensionality reduction methods. Manifold learning is a recent trend that seeks to

leverage the benefits of such structure and exploit it for use in interesting problems.

Many of the aforementioned manifold learning methods are mostly concerned with

embedding the high dimensional data to a low dimensional space that makes them

more easily interpretable, for classification or even visual investigation. In contrast

our framework focuses on an efficient representation of the demonstrated data with

goal-oriented trajectory generation in mind. Many of the statistical methods presented

earlier can sample the learnt models but explicitly defining a goal for the sampling

procedure might be difficult.

In many of the methods discussed earlier there is no generative process. This is an

essential requirement in order to create novel data, e.g., generate motions similar to the

example solutions. Such generation is often done ad-hoc or in an interpolative manner

which completely oversees the geometric information inherent to a skill manifold. In

addition, even though the manifold structure is taken into account in the calculation of

the embedding, it does not actively take part into the generative process, which often

is crucial for the success and applicability of the method.

Having a low-dimensional embedding is often useful for higher-level motion recog-

nition and classification tasks but it often disregards geometric information that can be

very useful to lower-level tasks as trajectory generation and control. Our framework

is chiefly aimed at motion planning, re-planning and control, thus a manifold learning

method that yields an efficient geometric representation of robotic skills is paramount.

The last method that we have briefly introduced, LSML in subsubsection 2.2.3.5,

forms the basis for the manifold learning part of this thesis. It combines both a geo-

metric driven approach to learning and a generative process that utilizes the learnt ge-



Chapter 2. Background 29

ometry. In addition it is much more geared towards generalization to unseen portions

of the manifold. Instead of finding an embedding for visualization, it learns a represen-

tation on the manifold. This way we gain access to a variety of geometric operations,

such as computing geodesics, manifold projection, etc., that are highly beneficial in a

motion planning and control context. A detailed examination of the manifold learning

algorithm along with the computational model and its parameters follows in the next

chapter.



Chapter 3

Manifold learning

In this chapter we will present the manifold learning algorithm that has been used

throughout this dissertation. We will first present some simple manifold notions and

how non linear dimensionality reduction can be framed as a manifold learning prob-

lem. We will then present the main ideas behind this method and detail the model that

has been used. Learning (training) the model based on data is then explained, followed

by a section that outlines the specific benefits of using such an approach.

3.1 Overview of approach

Data sets that fall on or near a low dimensional manifold have been the subject of

study by a number of techniques. Linear manifolds with few dimensions are relatively

easy to estimate with a small amount of data. Data that are drawn from high dimen-

sional nonlinear manifolds are an challenging task for machine learning research. Such

data sets result whenever the modes of variability of the data are much fewer than the

dimension of the data space, as is the case of robot movements.

Manifold learning refers to the problem of recovering the structure of a manifold

from a set of unordered sample points. Often manifold learning is equated with di-

mensionality reduction, especially in cases where the goal is to find an embedding or

“unroll” a manifold into a lower dimensional space. Embedding is done in a way that

certain relationships between points are preserved, while the dimension is 2 or 3 as

embeddings are typically used for visualization.

In our framework we seek to recover the structure of a manifold by examining

the motion of a point on the manifold. Our approach, based on LSML introduced in

Dollár et al. (2006), attempts to learn an approximation of the tangent space that is

30



Chapter 3. Manifold learning 31

locally common to neighbouring data points. This way we can start from a point in

the high dimensional data space and generate its neighbours, even beyond the support

of the training data and up to a locally quadratic approximation. The key difference

between embedding methods that try to find a structure preserving embedding and our

approach is that our goal is to learn how to traverse such structure rather than embed it

to a new coordinate frame.

3.2 Method mechanics

Assume a given data set of D dimensions, in our case a set of example trajectories in a

robot state space as discretised datapoints. Due the kinematic and dynamic constraints

of the plant and the task, such data lies on a smooth d-dimensional manifold that

is embedded in the D-dimensional state space. The d dimensions of the manifold

effectively explain the local modes of variation as presented in the dataset.

The data set can be described as a set of points x∈RD, while the image of the points

on the manifold is y∈Rd . There exists a continuous bijective mapping M that converts

low dimensional points y from the manifold, to points x of the high dimensional space,

x = M (y).

The central observation is that given two neighbouring points on the manifold, xi

and x j1 , the difference between these points, ∆i
. j, should be a linear combination of the

tangent vectors at that point on the manifold, scaled by an unknown alignment factor

εi j. Assume a mapping H from a point on the manifold to its tangent basis H (x),

H : x ∈ R
D 7→

[

∂

∂y1
M (y) · · ·

∂

∂yd

M (y)

]

∈ R
D×d,

where each column of H (x) is a basis vector of the tangent space of the manifold at y,

i.e. the partial derivative of M with respect to y. Taking ∆i
. j to be the centred estimate

of the directional derivative at x̄i j and εi j to be the unknown alignment factor, we have

H (x̄i j)εi j ≈ ∆i
. j, that holds given ε is small enough and the manifold can be locally

approximated with a quadratic form.

Definition 4 (Tangent space). Let x be a point in an d-dimensional manifold M , and

attach at x a copy of Rd tangential to M . The resulting structure is called the tangent

space of M at x and is denoted TxM . If γ is a smooth curve passing through x, then

the derivative of γ at x is a vector in TxM .

1Where superscript i and j are used for indexing.



Chapter 3. Manifold learning 32

3.3 The manifold model

To model H assume a model that we need to optimize with respect to the given data

set and this model has a set a set of parameters, here represented as θ, thus our model

is Hθ. The error that we need to minimize is:

err(θ) = min
{εi j}

∑
i, j∈Ni

∥

∥Hθ(x̄
i j)εi j−∆i

. j

∥

∥

2

2
. (3.1)

The goal of training would be to find the θ that minimizes Equation 3.1, where εi j are

additional free parameters that are optimized over and do not affect model complexity.

To enforce the smoothness of the mapping Hθ we add an explicit regularization

term, in addition to implicit smoothness that may come from the model itself. The

intuition behind the first term is that the learned tangents at two neighbouring locations,

x̄i j and x̄i j′ , should be similar, i.e.,

∥

∥

∥
Hθ(x̄

i j)−Hθ(x̄
i j′)

∥

∥

∥

2

F
, should be small. The second

term is used to avoid numerical instabilities, ensuring that Hθ’s do not get very small

and ε’s very large, thus
∥

∥εi j
∥

∥

2

2
is also constrained. Regularization is performed with

the addition of the following term to Equation 3.1:

r = λE ∑
∥

∥εi j
∥

∥

2

2
+λθ ∑

∥

∥

∥Hθ(x̄
i j)−Hθ(x̄

i j′)
∥

∥

∥

2

F
. (3.2)

To simplify the error term we can rewrite it using a single λ as we can treat Hθ and

αHθ as the same for any α > 0. This way the error of Hθ with regularization terms

(λE ,λθ), is equal to the error of αHθ with regularization terms (α2λE ,
1

α2 λθ), in essence

translating in a single λE = λθ = λ.

3.4 Learning the manifold

In principle any regression technique can be employed for modelling Hθ, e.g. Vi-

jayakumar et al. (2005), Rasmussen and Williams (2006). A linear model of radial

basis functions (RBFs) is particularly well suited for the task (Bishop, 2007). The

RBFs used are of the form

f j(x) = exp(
−||x−µ j||

2
2

2σ2
j

),

where the basis centers µ are computed with K-means clustering on the given dataset

and the basis width σ is set to be twice the average of the minimum distance between

each cluster and its nearest neighbour center (See Figure 3.1 for a brief overview of



Chapter 3. Manifold learning 33

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
RBF function approximation

 

 

f

train

test

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gaussian basis functions

Figure 3.1: A one-dimensional sinusoid approximated by RBFs. On the left the function

is plotted with green and from this function 200 noisy datapoints are sampled and used

for training. The noise in this example has a variance of σ = 0.1 and the samples are

plotted in blue. A set of 40 random test points are plotted in red. The left figure shows

how the basis functions are spaced. The centers µ and the widths σ are computed from

the training dataset, while the number of basis used k is set to 5 for this example.

function approximation with RBFs). From the RBFs we can compute a feature vector

fi from x̄i j of the form fi = [ f 1(x̄i j), . . . , f k(x̄i j)], where the number of basis function

k controls the smoothness of the final mapping Hθ. This way a large k would result

to a mapping that better fits local variations of the dataset but whose generalization

abilities to other points on the manifold would be weaker, following the bias-variance

trade-off. We can then define

Hθ(x̄
i j) = [Θ1fi j, . . . ,ΘDfi j],

where the Θs are randomly initialized d× f matrices.

To solve the system we compute the thin singular value decomposition (SVD) of

∆i and from the linearity assumption there are at most d non-zero singular values. In

practice we can compute the truncated SVD that keeps at most 2d singular values and

allows for significant computational reduction. This way we have ∆i = U iΣiV iT and

by plugging in this and Hθ(x̄
i j) into Equation 3.1 with rearranging we get

err(θ) = min
E i

n

∑
i=1

D

∑
k=1

∥

∥

∥fiT ΘkT
E i−U i

k.Σ
i
∥

∥

∥

2

2
. (3.3)

To solve Equation 3.3 simultaneously for E and Θ is complex but by keeping either

one constant we can optimize iteratively the other variable, in an EM-like fashion,



Chapter 3. Manifold learning 34

becoming least squares problem. The system is solved for E i keeping the Θks fixed as

E i = argmin
E i

D

∑
k=1

∥

∥

∥fiT ΘkT
E i−U i

k.Σ
i
∥

∥

∥

2

2
(3.4)

= argmin
E i

∥

∥H iE i−U i
k.Σ

i
∥

∥

2

F
(3.5)

= H i+U iΣi. (3.6)

In the next iteration we keep E i fixed and optimize for Θks by

Θk = argmin
Θk

n

∑
i=1

∥

∥

∥
fiT ΘkT

E i−U i
k.Σ

i
∥

∥

∥

2

2
(3.7)

= argmin
Θk

∥

∥

∥

(

E iT ⊗ fiT
)

vec
(

ΘkT
)

− vec
(

U i
k.Σ

i
)

∥

∥

∥

2

F
. (3.8)

Since vec
(

U i
k.Σ

i
)

= ΣiU i
k.

T
the least squares solution for Θk becomes

vec
(

Θk
)

=









E1T
⊗ f1T

...

EnT ⊗ fnT









+







Σ1U1
k.

T

...

ΣnUn
k.

T









(3.9)

We continue iterating the error minimization procedure until the system converges.

The iterative nature of the algorithm does not guarantee the convergence to a global

minima of the error function, thus a number of random restarts are performed to avoid

bad local minima.

3.4.1 An example

The best way to demonstrate the the manifold learning algorithm is with a working

example. Here we present a manifold learning task step-by-step. A widely known

manifold learning benchmark is the example of the swiss-roll in 3 dimensions. The

dataset in this example is randomly sampled from a well defined subspace of the 3

dimensional ambient space. This subspace has the form of a volumeless surface that

is rolled into a spiral pattern (Figure 3.2(left)) . It is easy to see that this subspace

is inherently two dimensional, thus a two dimensional embedding would suffice to

describe it. The key observation in this case is that distances between neighbouring

datapoints hold locally but break down for points that belong to different rolls.

Consider a dataset x = x1, . . . ,xn, sampled from a swiss-roll manifold as in Fig-

ure 3.2 (right). The data in this case as in all but the toy examples present in this

dissertation are sampled from paths that follow the surface geometry. This is typical



Chapter 3. Manifold learning 35

Figure 3.2: The swiss-roll manifold. The data comes from paths that are sampled from

a surface, in a sequential and directional manner, that is embedded in the 3-dimensional

space. This surface has no volume and can be unrolled to a 2-dimensional space.

of state space trajectories that follow task specific and plant constraints. First we begin

by computing the nearest neighbour graph by iteratively increasing the neighbourhood

distance until we have a single component, as in Figure 3.3 (left). The distance metric

in this scenario should include all the neighbouring data points but not relate data-

points that are on different rolls of the surface. Based on the neighbourhood relations

we compute ∆i that gives us an estimate of the local tangent space of the manifold at

each datapoint, Figure 3.3 (right). Based on this the model error will be subsequently

calculated for each iteration of the model error minimization loop. We set the dimen-

sionality of the manifold to 2 as in this case it is easily apparent. This of course should

not be the case in more complex problems. The correct way to set d for higher dimen-

sional problems would be through a cross-validation procedure. Next we need to set

the number of basis functions that the model will use. In this case a network of 20

RBFs was empirically found to be adequate. Again setting k can also be included in a

cross-validation procedure, while one should keep in mind that this parameter can also

affect the smoothness of the model.

Once all d and k have been set then we preform k-means clustering on the dataset

to compute the centres for the RBFs, µ. The width of the basis functions, σ, is set

according to the distance of the centres. After pre computing the features and the SVD



Chapter 3. Manifold learning 36

Figure 3.3: The nearest neighbor relations between datapoints. The metric holds for

local neighbourhoods as relating points that lie on different rolls of the surface would

result in a skewed mapping. The local tangent basis that are estimated from the dataset

are plotted on the right subfigure.

of ∆i, we initialize Θ’s randomly and initiate the alternating minimization procedure.

We iterate until convergence. As a result we have a model of the tangent space that

is lower in dimensionality, it is compactly represented and covers the entire ambient

space. Figure 3.4 presents the manifold tangent space basis evaluated at the centres of

the basis functions. We can now evaluate the learnt model at every point and also create

novel datapoints that satisfy the manifold geometry. This way we have a systematic

way of distinguishing between points that belong to the modelled surface and points

that belong to the ambient space.

3.5 Benefits of the manifold representation

Apart from the desirable properties of the manifold learning method, e.g. good general-

ization ability and computational efficiency, a key advantage over other methods is that

it learns a geometric representation of the underlying manifold. This gives us access to

a variety of geometric operations that are desirable in a robotics motion planning and

control context. As we will see in the following chapters, with such a representation

we can create novel trajectories from a manifold that is learnt from a set of example



Chapter 3. Manifold learning 37

Figure 3.4: The manifold surface with samples of the learnt tangent space approxi-

mation. The representation provides a smooth mapping on the entire ambient space.

Here we plot the tangent basis evaluated at the centres of the RBFs used to learn the

manifold model.

trajectories. We can optimize over the model to incorporate time-varying and transient

constraints that are not present at learning, and compute distances to desirable spate

space locations. We can ensure the execution of a manifold following state path and

find the closest return-to-manifold trajectory.

In addition a representation based on the manifold learning method that we have

presented above provides a direct benefit for motion planning and control. The en-

coding is grounded in the system’s ambient space, thus firstly it can express a global

strategy for the system’s motion and control, and secondly it does not require an inter-

mediate mapping of the state for, again, controlling or planning. Such mappings are

common amongst other machine learning approaches and hinder the flexibility of the

system as the control in effect happens in a different space. Such benefits are elabo-

rated in the following chapters, where the efficacy and applicability of the proposed

framework is exemplified.



Chapter 4

Generation of trajectories on learnt

manifolds

In this chapter we present the trajectory generation part of our approach. We first

present how skill manifolds arise in robot learning. We then detail how path gener-

ation is preformed over learned motion manifolds. We will present the details of the

algorithm as well as the benefits that such a learning approach can leverage. Examples

and experimental results from a variety of platforms are presented.

4.1 Introduction

Humanoid robots are appealing due to their inherent dexterity. However, these poten-

tial benefits may only be realized if the corresponding motion synthesis procedure is

suitably flexible. This chapter presents a flexible trajectory generation algorithm that

utilizes a geometric representation of humanoid skills (e.g., walking) - in the form of

skill manifolds.

These manifolds are learnt from demonstration data that may be obtained from off-

line optimization algorithms or a human expert. We demonstrate that this model may

be used to produce approximately optimal motion plans as geodesics over the manifold

and that this allows us to effectively generalize from a limited training set.

We demonstrate the effectiveness of our approach on a simulated 3-link planar

arm, and then the more challenging example of a physical 19-DoF humanoid robot

and on the 23-DoF Nao humanoid. We show that our algorithm produces a close

approximation of the much more computationally intensive optimization procedure

used to generate the data. This allows us to present experimental results for fast motion

38



Chapter 4. Generation of trajectories on learnt manifolds 39

planning on a realistic – variable step length, width and height – walking task on a

humanoid robot.

4.2 Motivation for a manifold representation

In recent years, humanoid robot platforms have been receiving increasing attention due

to their inherent dexterity and great flexibility. Correspondingly, this highlights the

need for general purpose motion planners. Off the shelf solutions for humanoid robot

behaviours are often restricted to a limited motion vocabulary that does not exploit the

full capacity of the system. For instance, predesigned motions in many platforms are

not parametrized in a flexible way (e.g., allowing full control over step length, width

and height) and impose a limited discretisation on the reachable space of the robot.

There is a pressing need for efficient algorithms that can overcome these limitations

and achieve a relatively rich set of within-skill variations in a realistic and practically

implementable setting. Given such algorithms, one could then treat the skill as a com-

ponent in a higher level discrete search (Chestnutt et al., 2005). Standard approaches

that do allow for such flexibility tend to be computationally expensive, e.g., requiring

high dimensional numerical optimization or c-space search. We need a more efficient

alternative.

In realistic domains, e.g. RoboCup, where restrictions to variations on a skill would

adversely impact higher level planning goals, one seeks a compact representation of

the family of possible motions of a particular skill. This means that one would like

to be able to learn and compactly represent the whole continuum of possible solutions

for a particular task. In a machine learning setting, where one is acquiring a skill from

demonstration, this raises the need for good generalization to solutions that possibly

lie beyond the region of support of the original demonstration. Many existing data-

driven approaches to humanoid motion synthesis are often limited in this respect -

either they focus on interpolation within narrow regions near dense demonstrated sam-

ples or learning is posed as a problem of parameter tuning of an externally imposed

path planning algorithm that may not naturally exploit the underlying structure of the

space of solutions. We aim to make progress in this setting, by developing an algorithm

that has better generalization properties and also a more natural and tighter integration

between learning and planning.

In this setting, one way to obtain training data could be from demonstrated trajec-

tories by an expert (Schaal et al., 2003). In this case notions such as optimality are



Chapter 4. Generation of trajectories on learnt manifolds 40

intrinsic to the expert’s demonstrations and can be based on a variety of (sometimes

unmodelled) factors (Coates et al., 2008). In order to have a better understanding of

the behaviour of the algorithm, in this thesis, we utilize demonstration data that is

obtained from another computational solution, involving numerical optimization with

well defined cost functions. These solutions are computationally expensive and not

feasible for online operation. However, they can serve the same role as demonstration

data. With this, we have a clear idea of the specific optimality properties of each task

being considered, and a measure of algorithm performance against reasonable ‘ground

truth’.

As known from the study of biological behaviours, natural systems utilize syner-

gies and coordination strategies that allow for efficient locomotion and fast planning.

Biological strategies usually have a musculoskeletal basis that is inherent to the dy-

namics of the system, that restricts movement to a subset of all possible solutions. In

a robotics context, system and (possibly artificial) task constraints can serve the same

purpose. Robotics (Ramamoorthy and Kuipers, 2008; Isto and Saha, 2006) and graph-

ics (Safonova et al., 2004) researchers have utilized this fact to devise efficient motion

synthesis strategies. Some recent works (Berenson et al., 2009b; Stilman, 2007; Bretl

et al., 2004) also address this issue by considering how task space constraints, e.g.,

end-effector constraints, can be used to structure planning in configuration space with

local Jacobian mappings. However the low-dimensional nature of the solutions may

not always be taken into account explicitly.

The machine learning literature includes many examples of dimensionality reduc-

tion methods used to abstract and/or make problem spaces manageable. For example

Chalodhorn et al. (2006) use a low-dimensional sensory-motor mapping to optimize

demonstrated motions over the robot’s dynamics. Wang et al. (2008) introduced the

GPDM, a Gaussian processes based dimensionality reduction with a dynamical model

of the evolution of the state, that can learn models of human kinematic trajectories. In

the same spirit, Bitzer et al. (2008) use a Gaussian Process-based nonlinear dimension-

ality reduction technique to arrive at an underlying model of demonstrated data, while

using a parametrized path generation method over the learnt representation to generate

novel movements.

Our goal is to learn a geometric structure, i.e., a skill manifold, that naturally and

directly specifies both the low dimensional structure and evolution of trajectories on

this subspace (which, in other works, one often externally and rather arbitrarily im-

posed). So, if one begins with a set of motion examples from a specific class, e.g., due



Chapter 4. Generation of trajectories on learnt manifolds 41

to a path optimization or redundancy resolution principle or even a more complex kino-

dynamic constraint, then one seeks a representation that intrinsically captures both the

restriction of states to a low-dimensional space and the evolution of the trajectories in

that space. We achieve this by representing motions in terms of skill manifolds (learnt

from data) where the tangent spaces are suitably defined so that geodesics correspond

exactly to the execution of the desired motion.

4.3 The manifold encoding

This section starts with a brief a summary of the manifold learning algorithm that was

elaborated on in Chapter 3 and forms the basis of our method. It continues with the

details of the procedure for generating trajectories on such learnt skill manifolds.

In the usual formulation, manifold learning is aimed at finding an embedding or

‘unrolling’ of a nonlinear manifold onto a lower dimensional space while preserving

metric properties such as inter-point distances. Popular examples include MDS (Hastie

et al., 2001), LLE (Roweis and Saul, 2000) and ISOMAP (Tenenbaum et al., 2000).

However, much of this work has been focused on summarisation, visualization or anal-

ysis that explains some aspect of the observed data.

On the other hand, we are interested in preserving properties of trajectories in the

data set. So, our goal is to learn a model of the tangent space of the low-dimensional

nonlinear manifold, conditioned on the adjacency relations of the high dimensional

data. The learnt manifold can be used to compute geodesic distances, to find projec-

tions of points on the manifold and to directly generate geodesic paths between points.

4.3.1 Learning the manifold model

This subsection presents a synopsis of the manifold learning method in the context

of skill learning for robotic platforms. It concludes with a brief discussion on the

parametrization of the skill.

A manifold encoding is grounded on a set of example solutions. Such a set is

produced either from a computationally intensive optimization procedure, an optimal

controller, or even a human demonstrator. The key characteristic is that such examples

are solutions to a particular skill that are derived from the same underlying geometry.

Thus, similar queries have similar solutions, directly deriving from a local smoothness

assumption.



Chapter 4. Generation of trajectories on learnt manifolds 42

Training data are points from the system’s state space that in most cases represent

trajectories of a particular skill. These are of the form,

Q = [q1, . . . ,qk]T , (4.1)

qi = qi
1, . . . ,q

i
n, i = 1, . . . ,k. (4.2)

The number of examples being k and the length of each trajectory represented by i,

the temporal ordering for each example trajectory. Each datapoint qi
j belongs to a D-

dimensional space, the system’s state space, and lies on a locally smooth d-dimensional

manifold. This subspace is embedded in the D-dimensional space and has a specific ge-

ometry. To approximate this we learn a mapping from each point of the D-dimensional

space to the tangent basis of the manifold, H (q).

The datapoints belong to the state space of the system and such a state space can

contain configuration variables, poses, higher order terms, as velocities and accelera-

tions, or any combination of the above. Most of our experiments focus on the config-

uration space of the systems, in contrast to task space representations that are much

more well-behaved. In summary, the learnt skill-specific manifold is a hypersurface

embedded in the ambient space, in this case the robot’s configuration space, where all

the set of the demonstrated skill solutions evolve.

We start by computing the neighbourhood relationships between datapoints of the

demonstrated trajectories. The distance is computed with the Euclidean metric, while a

threshold is automatically computed so that the datapoints belong to a single connected

component. In addition a temporal relationship between consecutive points on each

trajectory is enforced. A time-based sampling of the example solutions can have a

negative effect on the model as it can skew the average distance metric that is estimated

from the dataset. Consider for example a minimum jerk trajectory (Flash and Hogan,

1985) that is sampled in equal time steps. The datapoins that are near the start and end

of the trajectory are points where the speed of the motion is low, thus producing a large

number of samples. The cause of this effect is that a distance metric does not consider

derivative information that datapoints carry. In this case a resampling is necessary that

yields unit speed samples. In essence a bad estimate of this distance can either lead to

overly dense geodesic paths, that impose an unnecessary computational burden, or to

an overly sparse discretisation, that would not be able to follow the manifold geometry

consistently. The average distance can be considered as a geodesic step estimate and

is used to initialize the geodesic trajectory generation procedure, detailed in the next

section.



Chapter 4. Generation of trajectories on learnt manifolds 43

Modelling Hθ is done with a linear model of radial basis functions (RBF’s) with

features over the evidence (Hastie et al., 2001), where the number of basis functions,

f , acts as parameter that can control the smoothness of the estimated mapping. More

nonsmooth nonlinear manifolds with abrupt changes, would typically require more

basis functions to ensure a tight local fit, though the generalization ability may be

weakened. The RBF’s, µ’s and σ’s are computed directly from the data, Specifically

these are computed in an unsupervised manner using k-means clustering.

The free parameters of the model are only two and these are the dimensionality of

the underlying manifold and the number of RBFs used in the encoding. Choosing the

parameters affects the model complexity and falls under the general problem of bias-

variance tradeoff. These two terms are not strongly coupled thus setting the parameters

can be done through a cross-validation procedure. In this setting one would monitor

the impact of the change of the parameters on the model error (Equation 3.1) and pick

the least complex model that archives a good approximation. In essence we pick the

model where the derivative of the error flattens.

4.3.2 Geodesic paths

By approximating the tangent space of the manifold, we gain access to a variety of

geometric operations that allow us to generate novel solutions that conform to the

manifold hypersurface. Central to our robotics aims is the ability to compute paths

through configuration space that lie on the low dimensional manifold.

Formally, our goal is to find the shortest path between two prespecified poses

q1, qn ∈ R
D, D being the dimensionality of the configuration space, that respects the

geometry of the learnt manifold. In a robotics context, being on the manifold essen-

tially means that the constraints (e.g., optimality w.r.t. a particular task-specific cost)

inherent in the training data are respected. In practice we, discretise our path into a set

of n via points, q = q1, . . . ,qn, with the q1 and qn being fixed, and we follow a com-

bination of gradient descent steps to minimize the length of the path while not leaving

the support of the manifold. Figure 4.1 presents sketches of each step of the trajectory

generation procedure that is elaborated below.

The geodesic trajectory generation procedure consist of two phases. In the first

phase an initial estimate of the path is created and in the second phase this path is

optimized with respect to the manifold geometry and the overall path length. Note

that the initial estimate is a discretised path (no need for forward integration) while the



Chapter 4. Generation of trajectories on learnt manifolds 44

(a) Manifold geometry (b) Initialization

(c) Gradient optimization (d) Geodesic path

Figure 4.1: Sketch of the geodesic trajectory generation procedure. (a) We begin with

a learnt manifold model, a starting point on the manifold, often being the current state

of the system, and a goal point, that is the state we want to reach. (b) We initialize with

a trajectory that can traverse the ambient space of the system. This can be as crude

as a simple manifold interpolation for low dimensional spaces. (c) We subsequently

optimize the trajectory with respect to the manifold geometry by following the gradients

of two errors defined over the geometry. The first drives the points on the manifold while

the second minimizes the path length. (d) The outcome is an optimal length geodesic

trajectory. In other words the shortest trajectory that connects the start and goal states

and does not diverge from the underlying manifold geometry.



Chapter 4. Generation of trajectories on learnt manifolds 45

Algorithm 2 Initial Geodesic Trajectory

INPUT: M , ℓ, qstart , qend

OUTPUT: q≡ {qstart ,q2, . . . ,qi,qend}

qle f t = qstart , qright = qend, distPrev = ∞

loop

di f f = qle f t−qright

dist = norm(di f f )

if dist < ℓ then

break {Distance reached}

else if dist < distPrev then

mid point = (qle f t +qright)/2

qle f t = InitialGeodesicTra jectory(M , ℓ, qle f t , mid point)

qright = InitialGeodesicTra jectory(M , ℓ, qright , mid point)

break

else

distPrev = dist

qnext = qle f t (or qnext = qright)

H = Hθ(qnext)

di f f = H×H ′× (di f f/norm(di f f ))

qnext = qnext +di f f × ℓ {Geodesic step}

end if

end loop

q = [qle f t , qright ]

model provides a continuous estimate of the tangent spaces of nearby points.

4.3.2.1 Geodesic path initialization

The initialization procedure is based on the start and goal points, that are kept constant,

and the average distance estimate ℓ, that is derived from the training data set. The

process that begins with the distance between the two initial points, the edges of the

path. The distance is split in half and either the left or right edge (start or end) is grown

towards the middle.

Growing the path is done by taking consecutive small geodesic steps, i.e. finding

points that move towards the midpoint of the distance and are on the manifold. The

point reached is set to the new estimate of left (or right) and the procedure continues



Chapter 4. Generation of trajectories on learnt manifolds 46

with recursion. The recursion stops when the distance between the two points in focus

is equal or less to ℓ. Pseudocode of this phase is available in Algorithm 2 while Figure

4.1(b) provides a sketch of the outcome of the initialization step.

4.3.2.2 Geodesic path optimization

The initial estimate of the path is a manifold interpolation but roughly follows the

manifold geometry and it not the shortest geodesic paths possible. Since we have

learnt the tangent space of the manifold we can find an optimal – minimum cost –

solution that is a geodesic path and its length can be minimized.

The optimization of the path is performed with an iterative gradient descent pro-

cedure that is performed in two steps. The first step follows the orthonormal (to the

manifold) component of the gradient of

errM (q) = min
{εi j}

∑
i, j∈Ni

∥

∥Hθ(q̄
i j)εi j− (qi−q j)

∥

∥

2

2
,

that essentially makes the qi’s “stick” to the learnt manifold by iteratively moving them

to points where neighbouring (consecutive) bases are aligned. The second gradient

descent step follows the parallel (to the manifold) component of

errlength(q) =
n

∑
i=2

∥

∥qi−qi−1
∥

∥

2

2
,

that iteratively minimizes the length of the path without leaving the support of the

learnt manifold, while keeping the endpoints fixed.

The next sections present three examples of our method. The first example presents

experiments on a simulated 3-link arm where both the manifold and the learnt model

can be visualized and are representative of the core ideas behind this work. For the sec-

ond and third examples we use physical humanoid robots, with which we demonstrate

how our method scales to more complex systems and more challenging tasks.

4.4 Reaching with a robotic arm

This experiment demonstrates how our framework can accurately learn and general-

ize a reaching behaviour. It shows how generated trajectories are consistent with the

demonstrated examples while generalizing within and beyond the region of support of

the data. We have chosen a 3-link planar arm where we can explicitly visualize both

the configuration space and the optimization manifold. The arm is a series of three



Chapter 4. Generation of trajectories on learnt manifolds 47

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Task space

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(b) Neighborhood graph

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q
3

(c) Joint space

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q
3

(d) Tangent space

Figure 4.2: Learning the optimality manifold of a 3-link arm. (a) The planar task space of

the arm and subsampled points (blue) used for leaning. (b) The neighbourhood graph

used for learning a manifold. (c) The manifold hypersurface that we wish to encode, as

traced by the dataset points in the configuration space of the robot. Light gray points

are not used for learning but are plotted to give a better estimate of the geometry of the

manifold. Note that the manifold is not planar but twist and turns as we move down the

q3 axis. (d) The learnt tangent space model. Blue and green arrows are basis vectors

evaluated at points that correspond to the original grid.

rigid links of unit length that are coupled with hinge joints, producing a redundant sys-

tem with 3 degrees of freedom (DoFs) that is constrained to move on a 2 dimensional

plane (task space).



Chapter 4. Generation of trajectories on learnt manifolds 48

4.4.1 Reaching examples

We start with a 21× 31 grid in task space and compute the joint positions for each

goal point with an iterative optimization procedure detailed below. We subsample 100

grid points to get a random permutation for learning, as in Figure 4.2(a). We have

chosen to start with training data that follow a grid in task space in order to visualize

the corresponding geometry in the system’s joint space. The choice of the grid and

the number of grid points are arbitrary and do not affect the subsequent process, later

in this thesis we use a triangulated mesh to visualise the manifold geometry. This

structure arises from the optimization procedure that resolves the system’s redundancy,

i.e. a different redundancy resolution strategy would shape the state space geometry

differently.

The system being redundant, we first choose a redundancy resolution strategy,

which implicitly specifies the manifold that we will subsequently learn. We choose

the joint space configuration, q, that minimizes the distance to a convenience (robot

default or minimum strain) pose, qc:

min‖q−qc‖
2 , (4.3)

subject to f (q)−x = 0, (4.4)

where f is the forward kinematics and x is the goal endpoint position on the plane.

The resulting q’s trace a smooth nonlinear manifold in joint space, depicted in

Figure 4.2(c). We note that the manifold does not lie on a plane but on a convex

strip that twists clockwise and tightens as we travel down the q3 axis. Also different

redundancy resolution strategies would produce different optimality manifolds. We

note that, in general, this kind of information may not be explicitly known (in the case

of human demonstration) or visualisable for more complex problems.

4.4.2 Implementation

The first step in data-driven learning of the desired manifold is to compute the neigh-

bourhood graph of the training data. We evaluate the task space distances to compute

the neighbourhood graph with the constraint that the graph contains a single connected

component. In practice we gradually increase the neighbourhood distance until all

points are connected, as in Figure 4.2(b).

The tangent space that we wish to learn is inherently two dimensional. We learn

a model of Hθ with 10 RBF’s and 100 points, the blue points in Figure 4.2(c). We



Chapter 4. Generation of trajectories on learnt manifolds 49

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Within data generalization

−0.5 0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

(b) Beyond data generalization

(c) Generalization errors (d) Time

Figure 4.3: Results of the 3-link arm experiments. Novel task space trajectories pro-

duced with random start and end points where (a) demonstrates generalization within

the region of support of the data, while (b) demonstrates generalization beyond the re-

gion of support of the training data. (c) RMSE error of generated trajectories against

ground truth for the two cases. In the interpolation scenario the error is practically zero

(y axis in log-scale). (d) Absolute planning time for the two cases. Note that in the

interpolation case the length of the paths is consistently low.



Chapter 4. Generation of trajectories on learnt manifolds 50

can subsequently evaluate Hθ at any point in our joint space. Figure 4.2(d) shows

the tangent bases evaluated at every point of the previously generated grid. Note that

the basis vectors are aligned and vary smoothly, i.e. we obtain a good generalization

within the region of support of the data.

4.4.3 Generation of novel reaching solutions

For measuring the goodness of our learnt manifold, we use two metrics. Central to

our aims is the generalization ability of the model. Thus we quantitatively evaluate

the error of planned motions against the poses that the original optimization procedure

would produce, when presented with novel planning queries. We distinguish between

two scenarios for our motion planning. The first evaluates the model’s interpolation

ability, generating trajectories that in task space lie within the grid from which 100

points have been sampled for learning. The second case evaluates the extrapolation

ability of the model by generating trajectories, the endpoints of which lie outside the

original grid. In both cases start and endpoint positions in task space were random,

while results are averaged over 10 trials for each scenario.

We create 50 geodesic paths, with random start and end points for each case, with

the method detailed in section 4.3.2. Samples of such paths for both generalization

cases are depicted in Figure 4.3(a) and (b) (grid points in light gray for comparison).

We then collect all the intermediate points and compute the optimal solutions of

their forward kinematics with the redundancy resolution algorithm detailed in section

4.4.1, as ground truth. We compute the RMSE, for each trial and for each case, between

ground truth and prediction of model, for a total of 10 trials.

The averaged errors are depicted in Figure 4.3(c). Note that the RMSE axis is in

log-scale while the difference of the two bars is of 2 orders of magnitude. To be pre-

cise the average RMSE for paths generated within the region of support of the data is

1.8935×10−4±3.6013×10−5(practically zero), while beyond the support of the data

the average RMSE is 6.84×10−2±2.19×10−2. This shows that the manifold encod-

ing is able to accurately represent and replace the original data generation procedure.

In addition, computing the geodesic paths takes less time on average (Figure 4.3(d) in

both cases).



Chapter 4. Generation of trajectories on learnt manifolds 51

(a) Robot

−10 −5 0 5
−4−2024

0

5

10

15

20

25

30

35

xz

y

(b) Model

Figure 4.4: The KHR-1HV humanoid robot used, (a) physical robot and (b) skeleton

model.

4.5 Walking with the KHR-1HV humanoid

The three-link arm experiments are useful for demonstrating the working of the mani-

fold learning and geodesic path planning algorithm. We now move to a more complex

system. In this setting, the notion of a skill manifold is more intuitively understood. We

use the KHR-1HV (Figure 4.4(a)), a “KidSized” humanoid robot1 that stands approxi-

mately 35cm tall. It consists of 19 digital servo motors on brackets, in a bipedal-two-

armed configuration, with a control board and a battery pack. The system is unstable

as the center of mass is elevated.

No analytical model of the dynamics of the system is available to us. Obtaining

such models is labour intensive and requires detailed knowledge of the structure of

both the robot and the environment. Building such models require system identification

and parameter estimation methods that are subjects of current research work. Robotic

systems are hard to approximate or analytically model, thus we prefer to work directly

from experimental data.

We focus on the task of walking, with the aim of generating a motion synthesis

strategy that allows for full coverage of a reasonably large interval in step length. Re-

calling the Nao goalkeeper example, such a skill manifold would allow the robot to

1According to the RoboCup Humanoid League size classification.



Chapter 4. Generation of trajectories on learnt manifolds 52

−10

−5

0

5

−5
0

5

0

2

4

xz

y

(a) Right steps

−5

0

5

10

−5
0

5

0

2

4

xz

y

(b) Left steps

−10

−5

0

5

−5
0

5

0

2

4

xz

y

(c) Right neighborhood graph

−5

0

5

10

−5
0

5

0

2

4

xz

y
(d) Left neighborhood graph

Figure 4.5: Task space representation of the training data through forward kinematics.

Random start and end point leg swing trajectories of the left (a) and right (b) legs. (c)

and (d) the neighbourhood graphs that result from the task space distances between

demonstrated data (units in cm). This provides the task-specific distance metric for the

high dimensional joint-space. Note that depicted here are only feet midpoint positions

while the datasets consist of the joint space points that are 19-dimensional.

take large steps when trying to reach the ball, and smaller steps when near the ball or

when correcting its orientation with respect to a team-mate for passing, in a continuous

fashion. We begin with a redundancy resolution strategy that would yield training data

and ground truth for our subsequent comparisons.

4.5.1 Example walking solutions

We frame the redundancy resolution strategy as an unconstrained nonlinear optimiza-

tion problem. Algorithmically, we use a Quasi-Newton approach with a cubic line

search procedure, based on the BFGS formula for iteratively updating the estimate of

the Hessian of the objective (cost) function Nocedal and Wright (2006). Formally, the

optimization problem is of the form

min
q

J (q), (4.5)



Chapter 4. Generation of trajectories on learnt manifolds 53

subject to f (q)−x = 0, (4.6)

where J is the cost function, f is the forward kinematics and x is a goal task space

position. The cost function is a mixture of task constraints and stability constraints.

The cost function evaluates:

• the distance of the midpoint of the swing foot to the desired goal

• the alignment of the swing foot with the x and y versors, to keep the foot flat

• the horizontal distance of the position of the pelvis to the desired pelvic position,

to manipulate the center of mass of the humanoid

• the alignment of the waist of the robot with the z versor, to keep the humanoid,

from the hips up, in an upright position

The optimization initialization pose is one where the humanoid stands upright with the

knee joints slightly bent.

To generate a walking trajectory we start with the desired task space path of the

swing leg and the position of the pelvis, and discretise to 20 waypoints. The swing

foot trajectories are straight lines from start to goal points while the height of the

foot is regulated with a sinusoid, scaled to a prespecified height. In practice we set

the position of the pelvis to be over the support foot and perform a double support

weight shift step once the swing leg has reached the goal position. Last we run the

optimization procedure detailed earlier, and get the joint space trajectory of the leg

swing and the weight swift phases for each complete task space step path.

The optimization results are approximately constant speed quasi-static trajectories,

in the sense that inertial effects are negligible. We collected 20 full body joint space

trajectories for stepping with the right leg and the same amount for stepping with the

left leg. Start and goal points of every step have been randomized within a reasonable

reaching distance. Figure 4.5(a) and 4.5(b) show the task space trajectories of each

swing leg by running the datasets through the forward kinematics (the support foot is

in light gray for comparison).

4.5.2 Implementation

Compared to our previous simpler example, this is a higher dimensional space and

sampling is necessarily somewhat sparse. Of the 19 DoFs of the robot we used the 12



Chapter 4. Generation of trajectories on learnt manifolds 54

DoFs of legs and hips and kept the remaining arm joints at a constant pose. Further-

more we separated each footstep to a swing phase and a weight shift phase. This way

we divided learning into two components, leg swing manifold and support weight shift

manifold, as the measure of optimality is essentially different for each phase. In gen-

eral the separation of such motions can be automatically done, for example Beaudoin

et al. (2008), but this topic is beyond the scope of this thesis.

We begin with the same neighbourhood graph computation procedure where we

gradually increase our neighbourhood distance until the graph is not disconnected (Fig

4.5(d) and 4.5(c)). We set the dimensionality of the manifolds to be 3, corresponding

to the natural task space of the robot (see section 4.7). In all learnt manifolds we

used models with 20 RBF’s and 400 data points that belong to 20 random task space

trajectories as described in the previous section.

4.5.3 Generation of novel walking motions

The learnt manifolds are able to produce smooth walking trajectories that satisfy the

optimization criteria used to produce the training data. Specifically, the average RMSE

(degrees) of the leg swing manifold for the ground truth was as low as 0.12 while

the average RMSE of the weight shift manifold ranged on average near 0.06 (Figure

4.6(c)). This implies that the geometry of the step manifold is more complex and some

of its features might be smoothed over by the RBF model. Nonetheless the procedure

was able to produce stable walking in the continuum of the reaching space of the robot

as depicted in Figure 4.6(a) and 4.6(b) for right and left swings accordingly.

One point to note is that the shape of the trajectories in task space is qualitatively

different than the training data. This suggests that the learnt manifold indeed traces the

true underlying geometry that the optimization procedure sculpts in the robot’s joint

space. In contrast the training data has been generated on a point by point basis, while

the shape of the trajectories in the task space (sinusoid) has been artificially imposed,

regardless of the intrinsic structure of the optimality surface. The geodesic paths that

are generated are optimal with respect to the manifold’s geometry and traverse the

configuration space smoothly.

The absolute time needed to generate a geodesic path on the pair of manifolds

(swing leg and weight shift) from random start to random end points was approxi-

mately 1.5552±0.4785 seconds (in a standard, not particularly fine-tuned, numerical

implementation of the algorithm) whereas generating a trajectory with the optimization



Chapter 4. Generation of trajectories on learnt manifolds 55

−5

0

5

10

−5
0

5

0

2

4

x
z

y

(a) Generated left steps

−10

−5

0
−5

0
5

0

2

4

xz

y

(b) Generated right steps

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
M

S
E

 

 

Step error

Weight shift error

(c) Error

10
0

10
1

10
2

10
3

T
im

e
 (

s
e

c
)

 

 

Optimal geodesic paths

Numerical optimization

(d) Absolute time

−10
−5

0
5

0
10

20
30

40

0

5

10

15

20

25

30

35

xz

y

(e) Generated random walk

Figure 4.6: Experimental results with the humanoid robot. Random start and end point

trajectories for left (b) and right (b) leg swings that have been generated from our learnt

manifold, via geodesic path optimization (units in cm). (c) RMSE (degrees) of gener-

ated data against ground truth. (d) absolute time needed for planning and optimization

with our method and the nonlinear optimization method (y axis in logscale) described in

the text (section 4.5.1). (e) Random walk generated by geodesic path optimization on

the learnt manifolds for randomized task-space goals. Snapshots of the robot executing

the motion in Figure 4.7, see also accompanying video.



Chapter 4. Generation of trajectories on learnt manifolds 56

Figure 4.7: Stills of the robot executing the planned motion depicted in Figure 4.6(e).

procedure, described in section 4.5.1 required approximately two minutes on average.

This is a significant decrease in absolute planning time, which makes it possible to

deploy this algorithm in realistic application scenarios (e.g. RoboCup).

A randomized walk sequence entirely generated with our method is depicted in

Figure 4.6(e). Notice that the step lengths are varying and the step points are variable

as well with respect to the x axis. Snapshots of this walk executed by the robot are

shown in Figure 4.7.

4.5.4 Experimental considerations

In this section, we make a few practical observations regarding the humanoid plat-

form used in the experiments. The intent is to give an idea of some limitations that

are specific to this robot - independent of the capabilities of the algorithm - while

we later move to more capable experimental platform. Throughout the course of our

experiments we had to deal with various shortcomings of the platform. One of the

shortcomings of the KHR platform is that the servos are not strong enough to support

the robot’s weight when in single foot support. So, this creates oscillations while walk-

ing and makes leg placement less accurate. Also, it is worth noting that the robot tends

to slide the swing leg before reaching the goal as the support servos give in.

In addition the control of the servos is very limited. On that we can solely com-

mand servo positions and maximum velocity while torque control is implemented in

an uncontrolled lower level. Essentially this leaves room only for open loop control,



Chapter 4. Generation of trajectories on learnt manifolds 57

both on the trajectory and the joint level as no feedback is available from the robot

servos, an approach that is not suited for unstable dynamical systems. Closed loop

control would be far more efficient for dynamical tasks especially for bipedal motions

that require active balancing strategies. We believe that also solutions of a dynamic

query with regard to a specific skill, e.g. dynamic walking, should also trace a non-

linear manifold. The investigation of this claim is in fact part of our current research

focus.

Furthermore, for learning in a humanoid setting ideally one would utilize human

motion data. The difficulty with this would be to map such data to the robot geometry

which is an active research thread, currently beyond our scope.

4.6 Walking with NAO humanoid robot

This section presents how the framework can be used with an advanced humanoid

robot. We show that we are able to learn, from a limited number of stepping examples,

a representation that captures an approximately complete set of walking motions. Fur-

thermore, the produced motions can accommodate novel starting positions and goals

while producing good (stable) generalizations of the examples provided.

This case allows us to demonstrate an intuitive example of a skill manifold. Our

experiments are based on the Nao (Figure 4.8) humanoid robot, popularly known as the

chosen robot for the Standard Platform League in RoboCup. The Nao is approximately

half a meter tall and weights 4.3kg. It has an 500MHz AMD Geode processor onboard,

running Linux. It has 25 DoFs and a variety of sensors. From the point of view of

motion synthesis, it is an inherently unstable system, with an elevated center of mass.

We do not have an analytical model of the dynamics of the system. Even if we

were to develop an approximate model, it would need to account for varying model

parameters, e.g. change in the motor behaviour as the battery gets depleted or motor

temperatures vary. Such effects are very hard to capture analytically, although they do

matter in practice. So, we prefer to work directly from experimental data. However,

we do use a model of the robot kinematics for calculating the relevant foot and pelvic

positions in global coordinates.

We focus on the task of walking, with the aim of generating a motion synthesis

strategy that achieves full coverage of a reasonably large interval in step length, width

and height. In effect, the optimality surface would be the set of all solutions to all possi-

ble task space queries, thus a tangent space point would have a local coordinate frame



Chapter 4. Generation of trajectories on learnt manifolds 58

(a) Robot

−20246

−5
0

5
10

15

0

10

20

30

40

50

x
y

z

(b) Model

Figure 4.8: The Nao humanoid robot used, (a) physical robot and (b) skeleton model.

that guides the path in that particular neighbourhood. We begin with a redundancy

resolution strategy that would yield walking examples as training data for manifold

learning.

4.6.1 Quasi-static walking examples

We frame the redundancy resolution strategy as a constrained nonlinear optimization

problem. Algorithmically, we use a sum of squares (SoS) approach that uses the trust-

region-reflective algorithm (Nocedal and Wright, 2006).

The optimization problem is of the form,

min
q

J (q), J = J1(q)+ . . .+ Jn(q),

subject to f (q)−x = 0,

where J is the cost function that is composed of a number of cost factors Jn, f is the

forward kinematics and x is goal task space positions. The cost function is a mixture of

task constraints and stability constraints. The cost function we used for data generation

evaluates:

• distance between swing foot and goal

• alignment between swing foot and x/y versors



Chapter 4. Generation of trajectories on learnt manifolds 59

• deviation in pelvis position

• alignment between waist and z versor

The initial pose for the numerical optimization algorithm is a default robot initialization

pose with slightly bent knees.

−5

0

5

−12−11
−10

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
−12−11−10

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(a) Right foot training set

−5

0

5

10 11
12

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
101112

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(b) Left foot training set

Figure 4.9: The neighbourhood graph, computed for a dataset of 500 points for each

swing leg. Both plots show the swing foot midpoint position in task space. The inset

plots show the corresponding continuous trajectories in task space.

To generate a walking trajectory we start with the desired task space path of the

swing leg and the position of the pelvis, and discretise to 10 points. The swing foot

trajectories are straight lines from start to goal points while the height of the foot

is regulated with a sinusoid with varying apex height. For stability control we set

the position of the pelvis to be over the support foot and perform a double support

weight shift step once the swing leg has reached the goal position. Lastly, we run the

optimization procedure described earlier, and get the joint space trajectory of the leg

swing and the weight swift phases for each complete task space step path.

The optimization results are approximately constant speed quasi-static trajectories,

in the sense that inertial effects are negligible. We collected 50, full body, joint space

trajectories for stepping with the right leg and the same amount for stepping with the

left leg. Start and goal points of every step have been randomized within a reasonable

reaching distance. The inset plots of Figure 4.9(b) and 4.9(a) show the task space tra-

jectories of each swing leg foot midpoint, by running the datasets through the forward

kinematics of the system.



Chapter 4. Generation of trajectories on learnt manifolds 60

4.6.2 Implementation

Compared to our example in section 4.4, this is a higher dimensional space and sam-

pling is necessarily somewhat sparse. Of the 25 DoFs of the robot, we focus on the 12

DoFs for legs and hips, keeping the arm and head joints at a constant pose. Further-

more we separate each footstep into a swing phase and a weight shift phase. This way

we divide the learning process into two components, leg swing manifold and support

weight shift manifold - as the measure of optimality is essentially different for each

phase.

We begin with the same neighbourhood graph computation procedure where we

gradually increase the neighbourhood distance until the graph is not disconnected (Fig-

ure 4.9(b) and 4.9(a)). We set the dimensionality of the manifolds to be 4, with a simple

cross validation step that penalizes model complexity while producing stable and rea-

sonable results. In all learnt manifolds we used models with 20 RBFs, and 500 data

points that belong to 25 random task space trajectories as described in the previous

section.

4.6.3 Generation of novel walking solutions

The learnt manifolds are able to produce smooth walking trajectories that satisfy the

optimization criteria used to produce the training data. Moreover, trajectories are pro-

duced approximately within one to two seconds, in contrast to the numerical optimiza-

tion used to generate the data which required on average approximately 45 seconds per

trajectory (Figure 4.11), both with reasonable code and on commodity hardware. The

computation time of the former increases with the dimensionality of the manifold.

The procedure is able to produce stable walking in the continuum of the reach-

able space of the robot as depicted in Figure 4.10(a) and 4.10(b) for right and left

swings accordingly. One interesting observation is that the robot manufacturer in the

accompanying software for walking, specifies that the stepping space of the feet can-

not extend more than 9cm. With our manifold trajectory generation we are able to step

further and reach stably up to 12cm, nonetheless most of our experimental sampling

was constrained to be up to 10cm.

One point to note is that the shape of the generated trajectories in task space is

qualitatively different from the training data. The training data is generated by point-

by-point kinematic optimization of an artificially imposed sinusoidal sequence of task

space points. By fitting the tangent space of the manifold to the collection of all such



Chapter 4. Generation of trajectories on learnt manifolds 61

−5

0

5
−12

−10

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(a) Generated right foot traj.

−5

0

5

10
12

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(b) Generated left foot traj.

Figure 4.10: Generated task space trajectories from randomly sampled start and end

points. The trajectories correspond to swing foot midpoint trajectories in task space and

are stable on the robot.

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 (

s
e
c
)

 

 

Manifold generation

Numerical optimization

Figure 4.11: Results averaged over 25 random start-to-end trajectories. The manifold

representation can stepping trajectories that generalize from the numerical optimization

examples in significantly less time. This way the manifold can been employed in an

online scenario while producing trajectories that, with a numerical approach, would

take close to a minute to compute.



Chapter 4. Generation of trajectories on learnt manifolds 62

data points, and making all local frames consistent, we extract a manifold that indeed

traces the true underlying geometry that the optimization procedure sculpts in the robot

joint space.

Figure 4.12: An example of a generated walk from random feet start and end-point

positions. The generated walk is stable and relatively fast while the possible reach

of the steps is greater than the standard motion synthesis procedure from Aldebaran

Robotics. Additionally the motion generation is fast and can be employed in an online

motion planner.

4.7 Discussion

We have demonstrated how a machine learning technique for approximating a low-

dimensional skill manifold may be tightly integrated with the process of trajectory

generation. One of the important differences between our manifold learning frame-

work and other machine learning-based motion generation algorithms is that we focus

on capturing the structure underlying the demonstrated set in a geometric fashion.

In both examples presented, we have chosen d to have the dimensionality of the

system’s task space. The reasoning behind this choice is that there might be config-

urations that are close in joint space but far away in task space. Since our aim is to



Chapter 4. Generation of trajectories on learnt manifolds 63

learn skill-specific manifolds, this seems natural.We could have used any d < D, but

simpler models are preferred. Choosing the appropriate dimensionality falls under the

bias-variance trade off, as discussed below.

We now make a few observations regarding limitations (hence, directions for future

improvement) of the algorithm in its current form. In this work, we do assume that the

skills may be represented by a subspace that is a single connected component. This

is clearly not an issue for the 3-link arm example. However, in general, this may

well be insufficient as the dimensionality of the system grows. The place where this

plays a role is the neighbourhood graph computation where by connecting two points

that should not be connected we would obtain a skewed model. In practice, suitably

dense sampling, or better still incremental sampling in appropriate regions, and a bit

of algorithmic book keeping, would suffice to ensure that this aspect of the manifold

structure is properly reflected.

Also, one must keep in mind that the manifold learning step is performed with an

iterative algorithm, much like EM, that is randomly initialized and does not always

guarantee a global minimum. So, learnt models may not be unique solutions. This

may call for better model selection procedures - a topic for future development.

The number of RBF basis in our experiments was chosen empirically, thus is open

to further improvement. A high number of RBF’s would allow the model to capture

more intricate local geometric structure of the manifold, but would impair its general-

ization ability. On the other hand a low number of RBF’s may oversmooth the solution

and lose much of the geometric variation present in the training data.

The above issues derive from the bias-variance trade-off, central to machine learn-

ing, and can be handled systematically with the use of cross-validation procedure. Such

choices would need to be closely related to the geometric complexity of the manifold

that one would like to learn. Also, by using the centred estimate of the directional

derivatives as a basis for our model formulation, it is implied that the model can have

limited success with manifolds that cannot be locally approximated in a quadratic form.

In practice highly nonlinear manifolds that vary wildly or have sudden cutoffs may not

be suitable for learning, without additional treatment.

Finally, we assume that start and end points of each trajectory are known. For this

we have used the redundancy resolution strategy used in generating the demonstrated

data. There is no implicit mapping of task space goals to configuration space poses on

the manifold per se, but in principle once the manifold is learned one can easily search

for points that satisfy task space goals.



Chapter 4. Generation of trajectories on learnt manifolds 64

4.8 Conclusions

We have demonstrated how a manifold learning algorithm can capture the geomet-

ric properties of a low dimensional skill manifold that underlies a high dimensional

dataset. We have also shown how this model can be naturally used to generate joint

space trajectories, and how the generated trajectories reflect the optimality and con-

straints inherent in the training data.

We started with an example of a simulated robotic arm that is suitable for demon-

strating the core concepts of our work and then demonstrated a similar result on a

more interesting humanoid robot behaviour. We have demonstrated how manifolds of

complex numerical optimization solutions can be learnt from sparse data and how the

geometric structure generalizes within and beyond the support of the data. Finally, we

have shown how such learnt manifolds can be used to produce novel approximately

optimal solutions to continuous path planning queries in a very efficient and fast man-

ner.

The next chapter chapter builds on the geodesic trajectory generation method that

we have presented and extends it for planning in the presence of kinodynamic con-

straints. It shows how such geodesic trajectories can be modified “on-line” to accom-

modate a changing environment while reusing an existing skill manifold encoding.



Chapter 5

Geodesic trajectories with dynamic

constraints

This chapter addresses the problem of compactly encoding a continuous family of tra-

jectories corresponding to a robotic skill, and using this representation for the purpose

of constrained trajectory generation in an environment with many (possibly dynamic)

obstacles. With a skill manifold that is learnt from data, we show that constraints can

be naturally handled within an iterative process of minimizing the total geodesic path

length and curvature over the manifold. We demonstrate the utility of this process

with two examples. Firstly, a three-link arm whose joint space and corresponding skill

manifold can be explicitly visualized. Then, we demonstrate how this procedure can

be used to generate constrained walking motions with the Nao humanoid robot.

5.1 Changing environments and dynamic constraints

Humanoid robots receive increasing attention as general purpose platforms suitable

to a multitude of applications. However, the level of flexibility that can actually be

achieved tends to fall short of this promise of generic dexterity. One of the big difficul-

ties is related to the problem of devising motion planning and control algorithms that

can cope with the combination of dynamic complexity, dimensionality and model im-

precision. Many off the shelf solutions providing humanoid behaviours, e.g., for loco-

motion, tend to be restricted to a limited and discrete vocabulary, valid only in narrow

domains of applicability. For instance, it is hard to find a general purpose humanoid

walking ‘engine’ that provides full control over step length, width and height, in real-

world terrains. On the other end, specialized approaches that do enable some flexi-

65



Chapter 5. Geodesic trajectories with dynamic constraints 66

ble movements tend to be computationally expensive, e.g., requiring high-dimensional

numerical optimization and/or c-space search, often with near-exact knowledge of the

system and its environment. This is a steep requirement for resource constrained ma-

chines.

In this chapter, we address the problem of designing motion strategies that can

achieve a rich set of within-skill variations. These strategies are acquired in a data-

driven manner, allowing for adaptation to changes in environmental conditions and

task contexts, and can be implemented in realistic resource constrained robotic sys-

tems. Such a representation of a parametrized skill, applicable under a wide variety of

conditions, could then form the basis for higher level search processes over a small al-

phabet, enabling fast high level planning (e.g., Chestnutt et al. (2005); Beaudoin et al.

(2008)). Indeed, one of the big weaknesses of some existing motion synthesis strate-

gies is that they do not cleanly admit such abstractions (Calinon and Billard, 2008;

Gribovskaya et al., 2010; Wang et al., 2008; Chalodhorn et al., 2006; Bitzer et al.,

2008).

We build on the work presented in the previous chapter – to compactly represent

a continuous family of trajectories representing a specific skill such as variable step-

length walking – to incorporate constraints (involving a combination of task and joint

space obstacles). The goal is to define a scheme wherein the manifold captures the

essential variations in the set of trajectories corresponding to a skill, from which one

is able to lazily select specific instances as the constraints (possibly dynamic) are re-

vealed. In practice, one often adopts a receding-horizon approach to handling such

problems and we’d like our approach to be compatible with this paradigm.

The basic notion of utilizing low-dimensional representations in a motion synthe-

sis setting is becoming well accepted in the robotics and graphics communities (Ra-

mamoorthy and Kuipers, 2008; Isto and Saha, 2006; Safonova et al., 2004). Some

recent works (Berenson et al., 2009b; Stilman, 2007; Bretl et al., 2004) address this

issue by considering how task space constraints, e.g., end-effector constraints, can be

used to structure planning in configuration space with local Jacobian mappings. How-

ever, this requires full access to an exact model, which may not always be possible.

The machine learning literature includes many examples of dimensionality reduction

methods used to abstract and/or make problem spaces manageable. Wang et al. (2008)

introduced the GPDM, which identifies a mapping to a low dimensional space where

a linear dynamic model is fit to data. In the same spirit, Bitzer et al. (2008) use a

Gaussian Process-based nonlinear dimensionality reduction technique to arrive at a



Chapter 5. Geodesic trajectories with dynamic constraints 67

(a) Unconstrained geodesic (b) Obstacles introduced

(c) Constrained geodesic path

Figure 5.1: Example sketch of a constrained optimization scenario and of the proposed

solution procedure. (a) An unconstrained generated geodesic trajectory for a path plan-

ning query originating qstart and reaching qend . (b) The appearance of an obstacle set

O introduces further constraints in the geodesic generation procedure as the intersec-

tion of the set with the manifold geometry, in effect, creates a patch that the solutions

now have to avoid. (c) The obstacle set, O, taken into consideration serves to drive the

geodesic trajectory away from the red square obstacle, subject to an obstacle clearance

distance ℓ. This is achieved through a spring-system model that extends the geodesic

trajectory generation procedure and produces solutions that avoid such “no-go” patches

while following the underlying manifold geometry.

subspace within which one may approximate demonstrated data using parametrized

families of paths. An approach that is closer to our current work is that of Calinon and

Billard (2009), who demonstrate robot programming by demonstration with a proba-

bilistic model, namely Gaussian Mixture Regression, of Jacobian-based inverse kine-

matics for learning trajectories and incorporating task space constraints. What has not

always been exploited in such work is the geometrical structure of families of paths in

lower dimensional subspaces. In essence by looking at the low dimensional space as a

geometrical structure that is embedded in the ambient space of the system we gain ac-

cess to a number of efficient planning, replanning and control methods. In contrast, by

simply mapping a set of poses to a low-dimensional space and fitting a parametrized

model, one is essentially overriding potential intrinsic dynamics effects that define



Chapter 5. Geodesic trajectories with dynamic constraints 68

many behaviours of interest.

Our goal is to learn this geometric structure, i.e., a skill manifold, that captures the

intrinsic structure of the space of trajectories by approximating the tangent space from

demonstration data. So, if one begins with a set of motion examples from a specific

class, e.g., due to a path optimization or redundancy resolution principle or even a more

complex kinodynamic constraint, then one seeks a representation that intrinsically cap-

tures both the restriction of states to a low-dimensional space and the evolution of the

trajectories in that space - as opposed to imposing a trajectory generation scheme, post

hoc.

Figure 5.1 provides a sketch of such a scenario. In this setting, we can generate

unconstrained trajectories of the learnt skill manifold, as explained in the previous

chapter (Figure 5.1(a)). Now as the system’s environment changes, a set of novel ob-

stacle points is introduced. What our method achieves, is to generate geodesic trajecto-

ries that can successfully navigate away from such obstacle sets while not leaving the

support of the learnt manifold (Figure 5.1(c)). This is achieved with a spring-system

model that optimizes geodesic trajectories with respect to novel constraints.

The next section explains the constrained geodesic trajectory generation procedure

and elaborates on the spring-system model that has been employed. The following sec-

tion demonstrates how such an approach can be applied to a 3-DoF arm that performs

a reaching task, and to the Nao humanoid robot performing walking motions.

5.2 Novel constraints on learnt manifolds

Presented with D-dimensional data that are derived from a d-dimensional geometry

embedded in the high dimensional space, we can learn a representation of such a ge-

ometry with the tools we have developed in the previous chapters (Havoutis and Ra-

mamoorthy, 2010b). The manifold learning method we have presented in Chapter 3

provides us with a global model of the underlying hypersurface’s tangent basis, Hθ,

which serves as a compact encoding of the manifold geometry.

Given such a model we are then able to produce unconstrained solutions to novel

motion planning queries as geodesic trajectories on the learnt manifold. This genera-

tive procedure has been explained in Chapter 4. The outcome is a series of points in

the system’s state space, q = [qstart ,q2, . . . ,qend], that follow the manifold’s geometry

that in turn encodes task and system costs and constraints that where present in the set

of solutions utilized as a training dataset in the model learning phase.



Chapter 5. Geodesic trajectories with dynamic constraints 69

Often in systems that act in a changing environment novel constraints can be intro-

duced dynamically. For example consider the task of walking for a humanoid robot.

We can learn an unconstrained walking manifold that produces stable stepping mo-

tions of variable step start and end points. Such trajectories assume that there are no

obstacles in the way of the swinging leg. Now if obstacles are introduced, imagine

the play-room of a kid, the system will have to generate motions that are able to avoid

such geometries in task space, e.g. step over a pile of Legos, avoid randomly dropped

toys. Such obstacles were not present in the manifold learning step and are regarded

as constraints that are not encoded in the skill manifold.

Re-learning a representation that takes account such randomly occurring constraints

would be futile. Instead, our method reuses the previously learnt unconstrained mani-

fold representations and incorporates new constraints in the motion planning phase, in

an on-line manner. The next subsection describes the procedure in detail.

5.2.1 Constrained geodesic paths

The algorithm presented in subsection 4.3.2 generates unconstrained geodesic trajecto-

ries that generalize from the solution set presented to the manifold learning procedure

in the training phase. In practice, we often require more control over the generated

trajectories as, often, the system would need to avoid task space and joint space obsta-

cles. This is a constrained trajectory generation problem over the manifold. We now

describe a procedure for generating constrained geodesic paths that avoid “no-go”

patches on the manifold surface. These are defined as sets of obstacle points O ∈ R
D

that are uniformly sampled from the “no-go” task space region and trace the obstacle

patch in joint space. For example such points can be samples from the faces of a cube

obstacle or a set of points sampled from the surface of a sphere (Figure 5.1(b)).

The intersection of the manifold set and the obstacle set, M ∩O, is the region that

we would like to take into consideration when generating a constrained geodesic path.

This point set would drive the geodesic path away from the patch that we want to avoid

but given the learnt tangent space the path will not leave the surface of the manifold,

thus the optimality properties that the manifold represents are still respected.

We treat the affected consecutive geodesic path points, q, as a system of springs

that can either exert attractive or repulsive forces to their neighbours. A force f
q
i j, with

magnitude
∣

∣

∣
f

q
i j

∣

∣

∣
= ℓ−

√

(q j−qi)2,



Chapter 5. Geodesic trajectories with dynamic constraints 70

(a) Calculation of forces (b) Manifold projection

Figure 5.2: (a) An obstacle point ok affects only the path points that are within its range

(βℓ) and exerts on them repulsive forces (red). In contrast the path points can exert

repulsive (not shown) and attractive forces (blue) to their path neighbors. (b) All forces

that act on each path point are averaged and the resulting mean vector is subsequently

projected on the learnt manifold M .

between two consecutive path points qi and q j, is repulsive if the distance between

them is less than ℓ, and attractive if the distance is greater than ℓ. The distance ℓ is a

metric that is derived from the manifold learning step and is estimated directly from

data (subsection 4.3.2). The magnitude of the force is directly proportionate to the

distance of the points in question.

The obstacle point set, O, exerts repulsive forces to the path points. The area of

effect of the obstacle point set is also defined relative to ℓ; each obstacle point, ok exerts

a force f o
ik, of magnitude

| f o
ik|= β× ℓ−

√

(qi−qo)2,

to every path point, qi, within a hypersphere of radius set to βℓ. This distance can also

be increased or decreased by tunning the scalar β with obstacle clearance in mind.

We calculate all forces that act on each affected path point and compute a mean

force vector for each point,

f̄i =
1

k

k

∑ f o
ik +

1

j

j

∑ f
q
i j. (∀ j ∈ {neigh(i)}).

This vector is projected on the manifold, f M
i = f̄iH

q
θ H

q′

θ , and each point is moved

by a small step, γ, accordingly. Figure 5.2(b) provides a sketch of the average force

projection step. In effect this makes the points take small geodesic steps away from the



Chapter 5. Geodesic trajectories with dynamic constraints 71

Algorithm 3 Constrained Geodesic Trajectory Generation

INPUT: M , qstart , qend, O

OUTPUT: q≡ {qstart , . . . ,qi,qend}

q← Geodesic Path(qstart , qend)

repeat

dO ← Compute Distances(q, O)

[ f o
ik, f

q
i j]← Calculate Spring Forces(q, dO)

f̄i← f o
i. + f

q
i.

f̄ M
i ← f̄iH

q
θ H

q
θ
′

q← q+ γ f̄ M
i

C i← ∂q2/∂s2 {Curvature}

C̄ ← 1/n∑C i

C̄ M
i ← (C̄ −C i)H

q
θ H

q
θ
′

q← q+ γC̄ M
i

δ← q−qold

until dO = {⊘} or δ≤ 10−6

obstacle while not leaving the support of the manifold. We repeat the procedure until

all path points have cleared obstacle points (O = {⊘}) or the algorithm has converged.

5.2.1.1 Curvature smoothing

The above procedure only acts on the geodesic path points that are in the area of effect

(distance < βℓ) of obstacle points. This tends to lead to trajectories that are not smooth

when only small portions of the paths are considered. To alleviate this, we introduce

a step that considers the full set of path points and interplays with the constraint opti-

mization.

Definition 5 ({Geometric} Curvature). A measure of the speed of rotation of the tan-

gential frame. Intuitively, (geometric) curvature is the amount by which a geometric

object deviates from being flat, or straight in the case of a line.

We use the path curvature as a measure for smoothing the generated geodesic paths

in a structured fashion. We calculate the curvature, C , over the discrete geodesic points,

q = q1, . . . ,qn as

C i =
∂q2

∂s2
, i = 1, . . . ,n−2,



Chapter 5. Geodesic trajectories with dynamic constraints 72

where s is the distance between two consecutive points. We calculate the mean cur-

vature C̄ and the error gradient C̄ −C i (vector), for each triple of path points. Each

point is then moved by a small step along the error gradient and projected on the man-

ifold tangent space. The entire constrained geodesic trajectory generation procedure is

summarized in Algorithm 3.

The following sections present two examples of our method. The first example

presents experiments on a simulated 3-link arm where both the manifold and the learnt

model can be visualized and are representative of the core ideas behind this work. For

the second example we use a physical humanoid robot, with which we demonstrate

how our method scales to more complex systems and more challenging tasks.

5.3 Constrained reaching on a robotic arm

Our first set of experiments are designed to elucidate the basic concepts underlying

our approach. We use a 3-link planar arm where we can explicitly visualize both

the configuration space and the optimization manifold (surface that corresponds to

a specific redundancy resolution strategy), along with possible obstacle points. The

arm is a series of three rigid links, of 1/3 length, that are coupled with hinge joints,

producing a redundant system with 3 degrees of freedom (DoFs) that is constrained to

move on a 2 dimensional plane (task space).

5.3.1 Reaching examples

We randomly sample 100 Cartesian points from the top semicircle of the task space of

the system. The dataset is 100 points of x and y couples, where

x =

{

x ∈ [−1,1]

y ∈ [0,1]
(5.1)

We run the task space dataset through an iterative optimization procedure detailed

below and get the corresponding joint space datapoints, q = (q1,q2,q3). A set of 100

such points is depicted in Figure 5.3(a)), as black dots in joint space and task space

plots.

We densely sample the space with 900 more points that are used solely for visual-

ization purposes and play no further part in the learning procedure. For visualization

purposes, we use all 1000 points to compute a Delaunay triangulation of the joint space

structure as sampled, and then plot the trimesh (triangle mesh) for comparison with the



Chapter 5. Geodesic trajectories with dynamic constraints 73

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Manifold surface

q
1
(rad)

q
3
(r

a
d

)

−0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Samples

(a) Samples.

0
1

2 0
1

2

0

0.5

1

1.5

2

2.5

q
2
(rad)

Tangent space basis

q
1
(rad)

q
3
(r

a
d

)

−0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Neighborhood graph

(b) Learnt manifold.

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Geodesic paths

q
1
(rad)

q
3
(r

a
d
) −0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Task space

(c) Generated geodesic paths.

Figure 5.3: The manifold learning and usage for the 3link arm example. a) Starting

with 100 datapoints in joint space, that correspond to task space coordinates as in the

inset plot. b) The neighbourhood graph in task space (inset plot), and the learnt tan-

gent space that the model predicts for the RBF centres in the high dimensional space.

c) Randomly sampled optimal (unconstrained) geodesic paths and corresponding task

space trajectories in the inset plot. The thin gray trimesh is a densely sampled recon-

struction of the underlying surface, used only for comparison and as a visualization

aid.



Chapter 5. Geodesic trajectories with dynamic constraints 74

paths that our algorithm produces. This trimesh surface is depicted in all figures with

thin gray edges.

The system being redundant, we first have to choose a redundancy resolution strat-

egy, which implicitly specifies the geometry of the manifold (Figure 5.3(a), thin gray

mesh) that the manifold encoding approximates. Here, we choose the joint space con-

figuration, q, that minimizes the absolute sum of joint angles, in a different view

it minimizes the distance to a convenience (robot default or minimum strain) pose,

qc = (0,0,0), with an additional weighting on the cost of each joint movement, wi.

Formally,

min‖wq−qc‖
2 , (5.2)

subject to f (q)−x = 0, (5.3)

where w is a weighting vector, f is the forward kinematics and x is the goal endpoint

position on the plane. We set w = (4,2,1), which means that the cost of the first joint

offset will be four times as significant as the last joints angle, thus penalizing more

any motion of the first link. Such weighting is often used in robotics (Craig, 1989;

Siciliano and Khatib, 2008; Levine, 1996) as, in a physical setting, moving the last

link only is much more energy efficient than moving the first link, as the first link will

have to move the rest of the systems weight as well.

The resulting q’s trace a smooth nonlinear manifold in joint space, depicted in

Figure 5.3(a). We note that the manifold surface resembles a convex strip that bends

backwards towards the edges, much like a section cut of a bent tube. This is the surface

that points of the specific optimality criterion trace. Also different redundancy resolu-

tion strategies would produce different optimality manifolds. We note that, in general,

this kind of information is not explicitly known (in the case of human demonstration)

or even visualisable, for many complex problems.

5.3.2 Implementation

We start by computing the neighbourhood graph of the dataset points. We do this

by evaluating the task space distances as the forward kinematics of the system are

known. As we require that our set consists of one connected component, we gradually

increase the neighbourhood distance until no disconnected subsets exist. The resulting

neighbourhood graph is depicted in Figure 5.3(b)(inset plot).

After visualizing the optimality surface we can conclude that the manifold can be

naturally represented with a two dimensional tangent space, and we learn a model of



Chapter 5. Geodesic trajectories with dynamic constraints 75

Hθ with 10 RBFs. We can subsequently evaluate Hθ at any point in our joint space.

For example Figure 5.3(b) shows the tangent basis evaluated at the centres of the RBFs

used. Note that the basis vectors are aligned and vary smoothly, i.e. we obtain good

generalization within the region of support of the data. This way, in order to “walk”

on the manifold we need to evaluate the learned tangent basis and follow each local

frame for each consecutive step, in other words follow the blue and green arrows of

Figure 5.3(b) for each point in question.

5.3.3 Generation of constrained reaching motions

Once we have learnt a model of the manifold tangent basis we have access to the ge-

ometric properties of the surface. Subsequently the geometry of the manifold can be

used to generate geodesic paths. The procedure for generating these unconstrained

paths was described in section 4.3.2, and the key advantage is that the generated paths

will be of shortest distance and adhere to the manifold geometry. Geodesic paths gen-

erated from randomly sampled start and end points are depicted in Figure 5.3(c), where

the manifold geometry is also plotted (thin gray trimesh) for comparison. Note how

the generated paths trace the underlying manifold geometry while also minimizing the

deviation from a straight line connecting start and end points (non-geodesic minimum

distance). The resulting task space trajectories – the geodesic paths run through for-

ward kinematics – are also displayed in the inset plot at the same figure. Note that the

resulting task space trajectories are curved, an interesting observation discussed in the

next subsection.

In most realistic scenarios, we need more control over the geodesic paths that we

generate. We would like to be able to specify patches on the manifolds that we would

like the generated paths to avoid, while preserving their geodesic properties. This

is accomplished by the procedure detailed in section 5.2.1, and results are depicted in

Figure 5.4. We start with a set of random start and end points and pick a list of obstacle

points that intersect the manifold. In Figure 5.4 the points to be avoided appear as

red circles, and effectively trace a patch that can be viewed as a “no-go” region on

the manifold. The red lines are the predicted geodesic paths that travel through the

obstacle regions. The blue lines are the constrained geodesic paths that are optimized

with the obstacle patches in consideration. The resulting task space behaviour for this

set of examples is visualized in the inset plot of the same picture.



Chapter 5. Geodesic trajectories with dynamic constraints 76

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

 #3

Constrained geodesic paths

q
1
(rad)

 #2

 #1

q
3
(r

a
d
)

−0.4−0.2 0 0.2 0.4 0.6

0.4

0.6

 #1

 #2
 #3

x(m)

y
(m

)

Task space avoidance

Figure 5.4: Example geodesic trajectories that avoid point set obstacles on the learnt

manifold. The unconstrained geodesic trajectories in red are the initial estimates that

either collide or come unsuitably close to the obstacle points. The blue trajectories are

the outcome of optimizing these geodesic trajectories with the constrained geodesic

trajectory generation procedure that allows to avoid smoothly novel obstacle points in

the system’s state space. The inset plot demonstrates how the joint space trajectories

appear in the system’s task space. See text for details.

5.3.4 Remarks

One interesting observation, regarding the shape of the task space trajectories gener-

ated by geodesic paths, is that the shortest path in the 3 dimensional joint space would

be a straight line connecting the start and end points. The geodesic paths are the joint

space trajectories that connect start and end points and minimize the deviation from a

straight line with respect to the manifold geometry. Now, the manifold is the surface

defined as the union of all joint space paths that are optimal with respect to a specific

redundancy resolution strategy. These are shortest paths that satisfy the optimality re-

quirements implicitly encoded. In our scenario, the predicted trajectories would be

composed of a series of points that minimize the sum of joint angles, thus the task

space trajectories would be subsequently optimized with respect to minimum angular



Chapter 5. Geodesic trajectories with dynamic constraints 77

change.

Another point is that the generation of geodesic paths is more efficient – and much

faster (∼ 1 sec vs. ∼ 3 sec) – than numerical optimization as described in section

5.3.1, while achieving (practically) equal results (approximation RMSE ∼ 10−3). In

other words we are able to approximate the solution set of the costly optimization

with an approximation that is able to generate accurate solutions in a fraction of the

computational cost. In addition we are able to lazily add novel constraints and take

them into account in the motion generative process without impacting the optimality

with respect to the manifold hypersurface.

5.4 Constrained stepping with the Nao humanoid

The three-link arm experiments are useful for demonstrating the working of the man-

ifold learning and constrained geodesic path planning algorithm. Now we show how

our proposed approach can be applied to a more complex setting. This allows us to

demonstrate an intuitive example of a skill manifold. Our experiments are based on

the Nao (Figure 4.8) humanoid robot, previously presented in section 4.6.

The following set of experiments aim to demonstrate that first our method can accu-

rately represent a complex bipedal humanoid behaviour, such as walking, that requires

a high degree of coordination and is subject to a number of stability constraints, and

second that the method of adding novel constraints to the trajectory generation proce-

dure scales up to a system of such dimensionality. We demonstrate this with a walking

task. Our aim is to generate a motion synthesis strategy that achieves full coverage of

a reasonably large interval in step length, width and height, while allowing the addi-

tion of constraints that appear as the system’s environment changes. We begin with a

redundancy resolution strategy that would yield walking examples as training data for

the manifold learning procedure.

5.4.1 Stepping examples

As in 4.6.1 we generate a set of randomized walking joint space trajectories with a

non-linear optimization approach. Again, we utilize a sum of squares (SoS) approach

that uses the trust-region-reflective algorithm (Nocedal and Wright, 2006).

The optimization problem is of the form,

min
q

J (q), J = J1(q)+ . . .+ Jn(q), (5.4)



Chapter 5. Geodesic trajectories with dynamic constraints 78

subject to f (q)−x = 0, (5.5)

where J is the cost function that is composed of a number of cost factors Jn, f is

the forward kinematics and x is goal task space positions. The cost function being

a mixture of task and stability constraints. For the purpose of generating quasi-static

walking trajectories, our cost function evaluates the following set of cost factors:

• the distance between swing foot position and goal position

• the alignment between swing foot and x versor

• the alignment between swing foot and y versor

• the deviation in pelvis position with respect to the support foot polygon

• the alignment between waist and z versor

The initial pose for the numerical optimization algorithm is a default robot initialization

pose with slightly bent knees.

To generate a walking trajectory we start with the desired task space path of the

swing leg and the position of the pelvis, and discretise to 10 points. The swing foot

trajectories are straight lines from start to goal points while the height of the foot is

regulated with a sinusoid with varying apex height. In practice we set the position

of the pelvis to be over the support foot and perform a double support weight shift

step once the swing leg has reached the goal position. Lastly, we run the optimization

procedure described earlier, and get the joint space trajectory of the leg swing and the

weight swift phases for each complete task space step path.

We collect 50, full body, joint space trajectories of stepping motions swinging the

right leg and the same amount of stepping motions swinging the left leg. Start and goal

points of every step are randomized within a reasonable reaching distance.

5.4.2 Implementation

From the 25 DoFs of the Nao robot we separate the 12 DoFs that correspond to the legs

and hip joints, while we keep the rest of the joints at a constant pose1. We distinguish

two phases for each footstep cycle, one for swinging and placing the free leg and a

1The position of the hands in this robot does not have a big influence on the stability of the robot as

the mass of the hands is small with respect to the mass of the rest of the body. In principle though the

hands can be used to provide stabilization while walking.



Chapter 5. Geodesic trajectories with dynamic constraints 79

−5

0

5

−14
−12

−10

0

1

2

3

4

y(cm)

Constrained right step examples

x(cm)

z
(c

m
)

−5 0 5
0

2

4

x(cm)

z
(c

m
)

−8
−6

−4
−2

0
2

4
6

8 1010.51111.5

0

1

2

3

4

5

y(cm)

x(cm)

Constrained left step examples

z
(c

m
)

−5 0 5
0

2

4

x(cm)

z
(c

m
)

Figure 5.5: Generated constrained task space trajectories from randomly sampled start

and end points. The red trajectories correspond to the original unconstrained foot mid-

point that collide with the obstacle (red circle). The resulting optimized constrained task

space trajectories plotted in blue. Inset plots are side views of the identical trajecto-

ries. (Note that learning and generation of the geodesic trajectories takes place in the

high dimensional joint space while the figures portray the outcome through the forward

kinematics.)

second for shifting the weight of the robot from the support leg to the swing leg. We

treat these two phases as two different skill manifolds as the measure of optimality is

essentially different for each phase.

We compute the neighbourhood graph of the demonstration dataset, where we

gradually increase the neighbourhood distance threshold until we have a single con-

nected component. A cross-validation step follows that optimizes the model complex-

ity with respect to the decrease in model error. This is done to avoid overfitting the

data and boost generalization. Throughout our tests the cross-validation step resulted

to 4-dimensional manifolds. All manifold models use 20 RBF kernels and are trained

on 500 data points belonging to 25 randomly sampled quasi-static stepping motions,

as previously described.

5.4.3 Generation of constrained walking motions

With our framework we are able to produce unconstrained walking trajectories that

cover the continuum of the reachable space of the robot’s swing leg. In addition, these

novel trajectories are produced on average within approximately 1.5 seconds, in con-

trast to the numerical optimization used to generate the data which required on average



Chapter 5. Geodesic trajectories with dynamic constraints 80

approximately 45 seconds per trajectory, both with reasonable code and on commodity

hardware. The computation time of the former increases with the dimensionality of the

manifold.

To verify the accuracy of the learnt manifold representation we collect a set of

randomly sampled walking trajectories and compare against ground truth. The ground

truth in this case is trajectories generated through the computational optimization method

on the same set of randomly sampled planning queries. We average over 50 trials and

achieve an RMSE of 0.1 at a tiny fraction of the computational cost (2%). This way we

can replace the computational expensive procedure with our manifold representation

and be able to generate cheaply equally accurate walking solutions.

As in the previous example we randomly pick a set of start and end points in task

space and generate an unconstrained stepping trajectory as a geodesic path on the learnt

skill manifold. We insert an obstacle near the unconstrained trajectory, keep the start-

ing and goal points of the planning query fixed, and compute the constrained geodesic

trajectory. Examples of this process are depicted in Figure 5.5.

These are the task space trajectories of the midpoint of the feet of the stepping

Nao, i.e. the generated trajectories through the forward kinematics, while both mani-

fold learning and generation procedures operate in the high dimensional configuration

space of the robot. The dashed red lines correspond to the unconstrained predictions

that collide with the perceived obstacles, that appear as red circles, while the blue lines

are the constrained trajectories that avoid the obstacle points.

The efficacy of such an additional degree of control is obvious. To provide a con-

crete example we have used the constrained geodesic trajectory generation for random

obstacle avoidance, staying away from regions in task space that might interfere with

the swing trajectory. In the case of going up or down a step, it is often the case that

the foot collides with the previous or next step’s edge. When such a collision occurs,

the robot loses its balance and falls down. Now, we can detect this collision and set

this point to be a “no-go” point in a point set. In the same state the robot will then

skilfully avoid the colliding pose and successfully negotiate the step.Snapshots of such

behaviour are shown in Figure 5.6 and 5.7.

5.5 Conclusion

We present an approach to constrained trajectory generation over a manifold that com-

pactly encodes a continuous family of trajectories corresponding to a robotic skill.



Chapter 5. Geodesic trajectories with dynamic constraints 81

Figure 5.6: Nao executing of a planned motion. Top row : the unconstrained stepping

trajectory that hits an obstacle (the ball). Bottom row : the constrained optimized trajec-

tory where the swing path avoids the obstacle, the ball.

Figure 5.7: Detail of a left foot swing. Top row : the original trajectory that provides

minimal foot clearance (approx. 2cm on apex). Bottom row : adding a obstacle close

to the original trajectory pushes the optimization to higher stepping trajectories (here

approx. 5cm on apex).



Chapter 5. Geodesic trajectories with dynamic constraints 82

This skill manifold is learnt from demonstration data by approximating the tangent

space. Having this manifold along with the local coordinate frames in the form of the

tangent space enables efficient ways to handle changing task contexts and obstacles,

while respecting intrinsic requirements of the task.

We demonstrated these ideas on two sets of examples - a simulated robotic arm,

suitable for visually illustrating core concepts and a humanoid robot behaviour, con-

strained variable step-length walking. We have demonstrated that the manifolds, de-

fined by solutions to a complex numerical optimization problem, can be learnt from

sparse data and that the geometric structure generalizes within and beyond the sup-

port of the data. This enables motion synthesis methods where one is able to lazily

compute trajectories in response to changing task specifications (perhaps including ad-

ditions to the underlying cost function expressions) by the constrained geodesics that

intrinsically respect the partial specifications that define the essence of the underlying

task.



Chapter 6

Reactive control on learnt manifolds

In the preceding chapter we saw how constraints can be added dynamically to a learnt

skill manifold, a critical extension for systems that interact with a changing environ-

ment. In this chapter we present an approach to reactive control of humanoid robotic

systems by utilizing a learnt manifold and a correspondingly derived cost hypersurface,

in a model free setting.

The manifold encodes desired evolution of trajectories subject to a variety of spec-

ifications including task and system constraints. This structure also enables us to de-

vise a vector field in the ambient space (i.e., the full configuration or joint space) that

enforces convergence to the desired family of trajectories from off-manifold points -

essential for compensation of large perturbations. This model can be used for efficient

trajectory generation and as a metric of closeness to the desired family of solutions.

This enables computations such as that of the closest feasible state to any arbitrary

state space point. We demonstrate the effectiveness of our approach using robotics

examples including a planar 3-link arm, the Kuka Lightweight Robot and the Nao hu-

manoid robot.

6.1 The need for strategic control

Many humanoid robotic tasks of common interest require the agent to satisfy skill

specifications consisting of constraints including that of the robot’s and environmen-

tal dynamics. For instance, the task of handling a tray in a typical service scenario

requires the robot to achieve one of a certain set of goal states while respecting state

constraints that might induce slipping, falling or collisions while also taking care of

the manipulator dynamics and internal constraints. Although such a problem is math-

83



Chapter 6. Reactive control on learnt manifolds 84

ematically well posed as an optimal control problem, the issue of analytically defining

appropriate costs and constraints is a difficult one. In practice, many robotic skills of

interest do not admit a clean characterization in such analytical models.

In response to this problem, we have seen the development of approaches that try to

induce models and specifications from data - obtained in various ways from people per-

forming the same task. Recent examples include Calinon and Billard (2009), Ijspeert

et al. (2002). Typically, these methods are based on the use of supervised learning to

approximate models (Gribovskaya et al., 2010; Hersch et al., 2008) or control policies

(Schaal et al., 2003; Pardowitz et al., 2007). In almost all such cases, the outcome is a

set of trajectories captured in a parameterized probabilistic model that encodes, for in-

stance, possible velocities at each state. This then enables interpolation of trajectories

from previously unseen initial conditions.

6.1.1 Control beyond the local model

An issue that has received relatively little attention is that of reactive control in the face

of large disturbances. To the extent that the above methods encode possible trajecto-

ries, they solve a “local” planning problem regarding the immediate direction along

which the trajectory should be executed. One is then expected to combine this with a

lower level controller that locally enforces this trajectory. Our interest is in exploring

alternate methods that more tightly integrate planning and control. In many applica-

tions of interest, we may not have exact dynamics models that are required for the use

of traditional control design methods. Indeed, the most common use of data-driven

models has been to fill precisely this gap by providing a learnt model that can be

plugged into the local controller. In this sense, the type of control that is achieved in

many robot learning designs is closely related to corresponding analytical counterparts.

Although there are a number of different techniques for designing controllers to en-

force a trajectory, ranging from the simple PID controller to sophisticated H∞ designs,

the essential objective of all of these controllers is to devise a vector field that guides

the system towards a goal - which may be a singleton state, a set of states or a more

structured subset or surface. The algorithmic complications of some of the more ad-

vanced controller architectures, necessitated by practical issues such as sensorimotor

noise or model imprecision, may sometimes obscure this essential requirement but the

fact remains that control is a means to identifying the appropriate spaces within which

one needs to apply corrective vector fields. Moreover, for the purposes of humanoid



Chapter 6. Reactive control on learnt manifolds 85

robotics, one may also wish to endow these vector fields with further structure such

as more compliant control along certain subspaces and much more tight control along

others. The minimum intervention principle (Todorov and Jordan, 2002) hypothesized

to explain aspects of human motor control is an example of this.

Our preferred approach to solving this problem involves two components. Firstly,

we encode the task in a skill manifold, a subspace, in the underlying state space that

is defined by the equivalence class of trajectories corresponding to various instances

of the general task. Then, we define cost hypersurfaces that penalize deviations from

this subspace of states within the ambient space. For instance consider a Nao robot

presented with a set of discrete footholds. Assuming that the motion cannot be per-

formed in a dynamic fashion, the task here would be to stand on one leg and swing the

free leg to the next foothold. In this case all variations of feasible swinging motions

are captured as trajectories along the stepping skill manifold. Deviations from a stable

configuration (i.e., away from the set of all feasible trajectories) would be penalized

according to the specific structure of the task - by defining cost hypersurfaces with re-

spect to that underlying skill manifold. This yields a vector field in the ambient space

that constitutes both a basic plan from an initial condition and a controller to counteract

perturbations.

An important point that differentiates our approach from alternate data-driven ap-

proaches that also utilize some form of dimensionality reduction is that although we

have a low-dimensional representation to reduce complexity, we solve an integrated

planning and control problem in the ambient high dimensional space. This gives a

clearer interpretation to what the controller is achieving: enforcing a large domain

vector field towards the manifold and along the manifold. This makes the considera-

tion of obstacles (Havoutis and Ramamoorthy (2010a)) and disturbances much more

natural, without having to worry about how they themselves may be mapped to an ar-

tificial low dimensional space. Issues such as this latter point tend to be rather delicate

in many alternate approaches.

A related point is that our problem formulation gives a clear meaning to what the

limitations of a skill are. For instance, consider the problem of training a robot to per-

form a dexterous yoga manoeuvre (e.g., standing on one leg while leaning to a side

and stretching the other leg to counterbalance). One might begin with a certain conser-

vative set of example movements and approximate a control strategy from this. Then,

in ‘live’ usage, what happens if the robot is asked to perform a much more extreme

version of the same manoeuvre? We, the designer, may know that the limits of the



Chapter 6. Reactive control on learnt manifolds 86

task are defined by a stability boundary but this is far from obvious in the data. The

alternative of explicitly specifying this key requirement, using expert insight, may not

always be feasible, e.g., as in the dynamics filtering approach (Nakamura and Yamane,

2000; Yamane and Nakamura, 2003). In such a scenario, one could approximate the

desired effect by restricting trajectories to the ‘next-best’ movement on the skill mani-

fold, treating cost surfaces away from the manifold (as will be explained in more detail

shortly) as a proxy for the task-specific limit.

In contrast it would be easier to provide a number of examples of the behaviour that

one would like the agent to exhibit and have the system learn from such demonstra-

tions. The problem that we address in this chapter is how to infer and learn a compact

representation of a continuous family of solutions from a set of trajectories that are

demonstrated by an expert. Our intuition throughout this thesis is that the demon-

strated trajectories belong to a specific subspace, a manifold, in the system state space,

and are consistently optimized with respect to a specific (set of) cost(s). Our aim then

is to accurately learn and represent such a hypersurface, how to plan and replan given

such model, how to systematically quantify our confidence on the produced solutions

and how this knowledge can be used online for control.

6.1.2 Overview of reactive manifold controller

By adopting a machine learning perspective we are able to learn a model directly from

demonstrated data. In addition by considering the underlying cost, present in the ex-

amples, as a nonlinear, lower dimensional manifold we gain access to a number of

benefits. First, the learnt manifold provides a systematic way of evaluating distances

in state space, it can be viewed as a way of evaluating the state cost, as inferred directly

from data. In other words this is a cost metric learnt directly from data, that allows us

to produce novel solutions that follow the demonstrations and quantify our confidence

on our predictions. Second, on the planning phase we can generate paths that gener-

alize the example solutions, i.e., are subject to (an approximation) of the same cost

function. Third, on a path execution phase, a tracking controller can use this metric

to reject perturbations by coupling the distance to the cost manifold with the feedback

gains. This way, control can be compliant with respect to perturbations that follow the

manifold (cost) hypersurface, but stiff against forces that drive the state of the system

away from the model. Last, it is unclear how one can reason about the limitations

of the task at hand: if you ask the robot to go somewhere that is too far from where



Chapter 6. Reactive control on learnt manifolds 87

it ought to be, can it generate a safe next-best plan? Our framework shows how one

might approach this question. In essence, finding the closest best point would be the

same as finding the projection of the state in question onto the manifold.

A key contribution here is a method for defining a manifold metric that is used to

evaluate the “value” of states (in ambient space, e.g., the full joint space) in a general

model-free fashion. We demonstrate the utility of this approach using three examples.

Firstly, we demonstrate efficient path planning, fast re-planning and online control in

the face of relatively large scale perturbations for a simulated 3-link arm. Here, both

the underlying surface and the learnt manifold can be visualized and intuitively un-

derstood. Then, we move on to an anthropomorphic robot arm (the Kuka Lightweight

Robot arm), using which we demonstrate how our method applies to a realistic task

scenario. Last we show how a more complex skill manifold can be used as a bounded

planning manifold for the Nao humanoid robot standing on one leg. We begin, in

the next section, with an outline of the basic manifold learning method and a detailed

presentation of the state projection procedure.

6.2 Control on and to a skill manifold

Presented with D-dimensional data that is derived from a d-dimensional geometry em-

bedded in the high dimensional space, we can learn a representation of such a geome-

try with the tools we have developed in the previous chapters. The manifold learning

method we have presented in Chapter 3 provides us with a global model of the un-

derlying hypersurface’s tangent basis, Hθ, which serves as a compact encoding of the

manifold geometry.

Given such a representation we are then able to produce unconstrained solutions

to novel motion planning queries as geodesic trajectories on the learnt manifold. Next

we saw how such paths can be modified to accommodate dynamic constraints that

may transiently appear in the system’s state space, without the need of relearning the

representation. The outcome of the above is a series of points in the system’s state

space, q= [qstart ,q2, . . . ,qend], that follow the manifold’s geometry that in turn encodes

task and system costs and constraints that where present in the demonstrated solution

set while avoiding “no-go” patches that appear in the system’s lifetime.

In the preceding chapters we have concentrated our efforts to solutions that restrain

the system’s state to evolve on the learnt skill manifold hypersurface. The intuition is

that the set of solutions used as examples to our manifold learning phase, imply that



Chapter 6. Reactive control on learnt manifolds 88

(a) Unforeseen perturbation. (b) State projection.

(c) On-manifold replanning.

Figure 6.1: A sketch of an example where the ability to project would be necessary.

(a) The system executes a geodesic trajectory when an unforeseen perturbation drives

the state of the system to an off-manifold point. The remaining trajectory points are

discarded. (b) Replanning from an off-manifold point would be insensible to the desired

state evolution. Instead, we find the projection of the off-manifold state on the underlying

geometry. This is the closest point that we then control for in a reactive manner. (c) A

new geodesic trajectory is replanned, starting from the projection state and reaching to

the goal state.

the manifold geometry is indeed the set of desired states. Such a measure of “value”

can be difficult to be explicitly encoded in terms of an analytical cost function but in

practice may encode task specifications, system constraints and general costs.

In effect, we demonstrated how a trajectory can be optimized to follow the man-

ifold geometry from start to goal in a manner similar to a vector field on the learnt

hypersurface. Perturbations that make the system’s state jump to different points that

belong to the manifold can be lazily handled with straightforward replanning, utilizing

the tools presented earlier.

It is often the case that perturbations will cause the state to leave the manifold

geometry (Figure 6.1(a)). Replanning from an off-manifold state would then be insen-

sible as the set of desired states is the manifold itself. A sensible choice is to find the

closest on-manifold point and try to reach this in a reactive manner (Figure 6.1(b)).

Once the state has returned to the manifold hypersurface, replanning occurs normally



Chapter 6. Reactive control on learnt manifolds 89

(Figure 6.1(c)).

This empowers our framework with a global behaviour that covers the ambient

space of the system in its entirety and enables us to reason quantitatively about the

value (or cost) of off-manifold states. It can be viewed as endowing the space around

the learnt hypersurface with a vector field controller that reactively seeks to return the

state on the manifold should a perturbation occur. As we show in the following sections

this is a crucial property for control and stability in the classing sense. This is archived

via a projection operation as detailed in the following subsection.

6.2.1 Projection of states on manifold

We are given a learnt manifold model, Hθ, and a point q that belongs to the ambient

space of the system. Our aim to find a point q′ that minimizes the distance between q

and q′, while q′ must belong to the subspace that the manifold represents, i.e. q′ is the

closest point on the manifold geometry.

The projection of q on to the manifold Hθ cannot be computed in closed form. In-

stead a gradient descent approach is utilized to find a new point q′ on H that minimizes

the distance

d =
∥

∥q−q′
∥

∥

2

2
.

First we need to initialize the procedure with an on-manifold point. One can use q′ to

be the nearest point in the training data or, in a control setting to the last state space

point of a tracked trajectory, i.e. the point that the perturbation occurs and state of the

system left the support of the manifold.

Since Hθ is defined over the whole R
D we calculate the orthonormalized tangent

space at q′, H ′ ≡ orth(Hθ(q
′)), and H ′H ′T the corresponding projection matrix. We

follow the gradient to the local minima on the manifold, using the update rule for q′:

q′← q′+αH ′H ′T (q−q′),

with α being a step size. The resulting q′ is an on-manifold state that is closest, in

a local sense, to the off-manifold state q. Pseudocode for the procedure appears in

Algorithm 4.

6.3 Benefits of manifold control

Our primary objective in this setting is to devise a vector field in the configuration or

joint space of the robot that enforces convergence to the skill manifold and approxi-



Chapter 6. Reactive control on learnt manifolds 90

Algorithm 4 On-manifold state projection

INPUT: M , qinit , q

OUTPUT: q′

q′ = qinit

d = ∞

H ′ = orth(M ,q′) {Tangent basis}

while d 6= d′ do

d′ = d

q′ = q′+αH ′H ′T (q−q′)

H ′ = orth(M ,q′)

d′ =
√

(q−q′)2

end while

mately optimal evolution along the skill manifold. Beginning on the skill manifold, if

the system were asked to achieve a goal that is infeasible (as indicated by the data),

then one should be able to compute and execute a ‘next-best’ trajectory consisting of

convergence to the desired subspace and subsequent evolution along it. So, the prob-

lem is essentially one of using the learnt structure to define an appropriately structured

error function for control purposes.

Since all trajectories subject to the task specifications must lie on the manifold, the

desired movement from off-manifold points is along the projection back to the man-

ifold. Note that the precisely optimal corrective path segment may well be slightly

different from this projection, depending on the specific nature of the overall task

specification. However, this true underlying specification could not be known from

data alone. So, the projection on to the manifold is the logical choice under this level

of information. Deviations along the manifold, either due to dynamic obstacles or due

to unforeseen perturbations, may be dealt with differently. Along the manifold, even

if one were pushed away from the originally planned trajectory, one is still assured

that the system is performing a reasonable movement subject to specifications. So,

these two types of corrections may be handled differently and with different levels of

stiffness.

Figure 6.2 outlines a controller architecture that achieves this type of behaviour.

Geodesic paths along the manifold provide the feedforward component. Feedback

corrects deviations along and away from the manifold - with different levels of gain.

For sufficiently large perturbations away from the desired paths (such as in examples



Chapter 6. Reactive control on learnt manifolds 91

to follow), it may be more desirable to replan, in a receding horizon sense.

In addition, the feedback gain KM (q) is state dependent and serves to scale the

control input with respect to the systems distance from the desired manifold. This

coupling yields a system that is compliant with respect to on-manifold perturbations,

that are in a sense indifferent to the task cost, but stiffens-up against perturbations that

drive the state to cost-expensive parts of the space.

Figure 6.2: A diagrammatic outline of the proposed control strategy utilizing the learnt

manifold.

A key benefit of the manifold representation (as opposed to, say, a probabilistic

model of possible velocities at each state) is that it provides a clear notion of deviation

from skill sets and deviations within that set. With this, control is conceptually no more

complicated than a simple proportional-derivative scheme but implemented in terms of

a more sophisticated notion of ‘error’.

In the absence of the manifold representation, one could still have implemented

alternate error metrics such as, for instance, based on distances to centres of clusters

of demonstrated data points. Stated in terms of our model, this is similar to defining

errors in terms of the centres of RBFs used in our approximation. However, such a

metric would yield significantly suboptimal and non-smooth behaviours depending on

parameters of the statistical model such as the number of clusters. We illustrate the

behaviour of this metric within a bounded volume surrounding the desired subspace

in Figure 6.3(a). What is plotted is the distance to the shortest kernel center, distances

range from deep blue to red while the lower spectrum of blue is completely transparent

for clarity. This results essentially in a number of low-distance spheres around the

centres of the model. The metric becomes smoother as distances become larger but,

on a local scale - which is the one of real interest for control purposes, such a metric

would overestimate the distance to the manifold and be undesirably non-smooth. In

contrast, by considering the distance to the modelled subspace directly we can get an

accurate and smooth metric, that captures the distance accurately as shown in Figure



Chapter 6. Reactive control on learnt manifolds 92

(a) RBF metric. (b) Manifold metric.

Figure 6.3: a) Volumetric plot of the distance metric that can be evaluated directly from

the model. The metric breaks down as the distances get smaller, leading to overestima-

tion of the true distance. Black dots represent RBF centres, over which the evaluation

is based. b) Volumetric plot of metric derived from our model. The metric evaluates

the distance to the modelled surface and we see that it smoothly surrounds the under-

lying manifold. Distances range from dark blue (small) to red (large), while the closest

distances are completely transparent for clarity.

6.3(b).

An interesting possibility that arises from this (to be explored in future work) is

that one could devise planning schemes based on variants of the A* algorithm, as the

cost defined using the manifold is admissible - strictly less than or equal to the true cost

of the underlying function. This property would not be present in the previous naive

metric, which is prone to producing overestimates. In turn, the use of an admissible

cost guarantees that A* (and variants) returns a path that is optimal and in practice

greatly reduces running time.

In the following sections, we demonstrate the utility of these ideas for practical

applications. The first example presents experiments on a simulated 3-link arm where

both the manifold and the learnt model can be visualized. For the second example, we

use the Kuka LWR anthropomorphic robot arm, with which we demonstrate how our

method scales to more complex systems and more challenging tasks. Last, we present



Chapter 6. Reactive control on learnt manifolds 93

an example on the Nao humanoid robot, generating motions that stand stably on one

leg.

6.4 Manifold control on the 3-link arm

The intent of this example is to elucidate basic concepts underlying reactive control

with skill manifolds. We use a 3-link planar arm where we can explicitly visualize

both the configuration space and the optimization manifold (corresponding to a specific

redundancy resolution strategy), along with possible obstacle points. The arm is a

series of three rigid links, of 1/3 length, that are coupled with hinge joints, producing

a redundant system with 3 degrees of freedom (DoFs) that is constrained to move on a

2 dimensional plane (task space).

We randomly sample 100 Cartesian points from the upper semicircle of the task

space of the system. We run the task space dataset through an iterative optimiza-

tion procedure detailed below and get the corresponding joint space datapoints, q =

(q1,q2,q3). A set of 100 such points is depicted in Figure 6.4(a), as black dots in

joint space and task space plots. The thin gray mesh surface that appears in most re-

lated figures is produced by densely sampling the manifold and helps convey a clearer

perspective of the geometry of the space in question.

The system being redundant, one needs a redundancy resolution strategy, which

implicitly specifies the geometry of the manifold (Figure 6.4(a)) that we subsequently

learn. Here, we choose the joint space configuration, q, that minimizes the absolute

sum of joint angles, in a different view it minimizes the distance to a convenience (e.g.,

minimum strain) pose, qc = (0,0,0), with joint weighting,

min‖w(q−qc)‖
2 , (6.1)

subject to f (q)−x = 0, (6.2)

where w is a weighting vector, f is the forward kinematics and x is the goal endpoint

position on the plane. We set w = (4,2,1), which means that the cost of the first joint

offset will be four times as significant as the last joints angle, thus penalizing more its

motion.

The resulting q’s trace a smooth nonlinear manifold in joint space, depicted in

Figure 6.4(a). We note that the manifold surface resembles a convex strip that bends

backwards towards the edges, much like a section cut of a bent tube. This is the surface



Chapter 6. Reactive control on learnt manifolds 94

0
0.5

1
1.5

2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

q
1
(rad)

q
3
(r

a
d

) −0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Task space

(a) Samples.

0
1

2 0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

q
2
(rad)

q
1
(rad)

q
3
(r

a
d
)

−0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Neighborhood graph

(b) Learnt manifold model.

0
0.5

1
1.5

2

0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

q
1
(rad)q

2
(rad)

q
3
(r

a
d

)

0 1 2

0.5

1

1.5

2

2.5

q
1
(rad)

q
3
(r

a
d

)

(c) Random projections.

Figure 6.4: Use of the manifold learning method illustrated for the 3-link arm example.

a) Start with 100 data points in joint space (the ambient space) that correspond to task

space coordinates as in the inset plot. b) The neighbourhood graph in task space (inset

plot), and the learnt tangent space that the model predicts, shown at the RBF centres

in the high dimensional space. c) Randomly sampled points in state space (red) and

corresponding manifold projections (green). The inset plot is a different perspective of

the same figure. Note that these projections are indicative of the control action, i.e.,

control vector field, which is naturally different in different regions of the ambient state

space. (The thin gray trimesh is a densely sampled reconstruction of the underlying

surface, the extra points being used only for comparison and as a visualization aid.)



Chapter 6. Reactive control on learnt manifolds 95

0
0.5

1
1.5

2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

 projection

q
1
(rad)

 start

 end

q
3
(r

a
d

)

(a) Perturbed geodesic path.

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 start

 end

x(cm)

y
(c

m
)

(b) Perturbation example projections.

Figure 6.5: A typical trajectory resulting from this method. A geodesic path from start to

end is computed, with a random perturbation occurring at time t = 0.25 that pushes the

state away from the manifold. This new state is projected back on to the manifold to find

the closest feasible state. A path from the projected point to the goal is then executed

before continuing along. The task space trajectory with perturbation. The dashed blue

line is the initial predicted trajectory while the red line is the motion due to the (severe)

perturbation occurring at the first red star. The state is then pushed away from the initial

trajectory and a new path to the goal is replanned after the novel state is projected on

the learnt manifold.

that points of the specific optimality criterion trace. Also different redundancy resolu-

tion strategies would produce different optimality manifolds. We note that, in general,

this kind of information is not explicitly known (in the case of human demonstration)

or even visualisable, for many complex problems.

6.4.1 Implementation

We start by computing the neighborhood graph of the data points. We do this by eval-

uating task space distances using known forward kinematics. As we require that our

set consists of one connected component, we gradually increase the neighborhood dis-

tance until no disconnected subsets exist. The resulting neighborhood graph is depicted

in Figure 6.4(b)(inset plot).

We can see that the manifold can be naturally represented with a two dimensional

tangent space, and we learn a model of Hθ with 10 RBFs. We can subsequently evaluate

Hθ at any point in our joint space. For example Figure 6.4(b) shows the tangent basis



Chapter 6. Reactive control on learnt manifolds 96

evaluated at the centres of the RBFs used. Note that the basis vectors are aligned

and vary smoothly, i.e. we obtain good generalization within the region of support of

the data. This way, in order to traverse the manifold we need to evaluate the learned

tangent basis and follow each local frame for each consecutive step, in other words

follow the blue and green arrows of Figure 6.4(b) for each point in question.

6.4.2 Evaluation

To evaluate the accuracy of the model we randomly pick 100 start and end points

and plan a trajectory between them, first with our method and second, with a naive

quintic polynomial method as in Craig (1989) - our chosen benchmark. We distinguish

two cases; an unperturbed trajectory, and a random perturbation occurring at t = 0.25

(Figure 6.5). We calculate the average cost per trajectory and average over the results

for each case (Table 6.1). The evaluation shows that with the use of manifold we

achieve consistently lower cost trajectories, while the difference is multiplied in the

case where a perturbation occurs. The interpretation being that the naive planner is

forced to stay in a high cost patch of the state space while the manifold finds the

appropriate short path to the cost-optimal surface.

6.5 Serving example with the Kuka Lightweight Robot

arm

The next set of experiments demonstrates how our method can scale up to a higher

dimensional problem and capture more interesting behaviours. For this, we use the

7-DOF Kuka Lightweight Robot (LWR-III), shown in Figure 6.6.

The chosen movement corresponds to that of carrying a tray (it helps if we imag-

ine that it may be loaded with high tumblers) from a randomized start position to a

randomized goal position while trying to minimize total joint motion. This task can

be broken down into two costs that need to be simultaneously optimized. The first of

these must penalize deviation from a flat end-effector configuration, while the second

must minimize the angular displacement.

This problem is defined as:

min(J), (6.3)

subject to f (q)−x = 0, (6.4)



Chapter 6. Reactive control on learnt manifolds 97

Figure 6.6: The redundant Kuka Lightweight Arm.

where the cost, J, can be separated into two factors: J = J1 + J2, of the form:

J1 = wq2, (6.5)

J2 = T 2
pitch +T 2

roll. (6.6)

Where T is the end-effector orientation with respect to the global frame of refer-

ence. As the system is redundant we use a non-linear optimization method to obtain

random training points.

6.5.1 Implementation

As in the 3-link arm example, we start with the nearest neighbour (NN) graph compu-

tation, where we gradually increase the neighbourhood distance until no disconnected

subsets exist. An NN graph is shown in Figure 6.7(b), where we plot the end-effector

positions that correspond to the sampled configurations and the graph edges that result

from the computation.

Our training set in this case consists of 100 data points that have been collected

by sampling random end-effector positions and then optimizing with the procedure

described earlier, Figure 6.7(a). The dimensionality of the system in this case is quite

high, thus the sampling is necessarily sparse. The dimensionality of the manifold has

been set to 4, while using 20 RBF kernels, as lower dimensional models did not achieve

an acceptable test error.

The dimensionality of the system prevents any meaningful visualization or qual-

itative observation about its geometry. Nonetheless the evaluation presented below



Chapter 6. Reactive control on learnt manifolds 98

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

x(m)y(m)

z
(m

)

XYZ

(a) Samples.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

x(m)
y(m)

z
(m

)

(b) Neighborhood graph.

Figure 6.7: a: The kinematic model of the Kuka LightWeight Arm along with 100 ran-

domly sampled joint space endpoint positions. b: The neighbourhood graph that results

from the sampled joint space points.

reveals that the learnt manifold is an accurate model of the cost metric present in the

demonstrated data, while planning and replanning with this model is highly beneficial.

6.5.2 Evaluation

The experimental procedure was as follows. We collect a set of 100 joint space tra-

jectories that are produced by our method where the start and goal points are sampled

randomly from the reachable space of the system. We further generate trajectories that

correspond to the same start and goal positions with a naive method quintic polynomi-

als as in Craig (1989). We then generate a random perturbation at time t = 0.25 and

replan with both methods (Figure 6.8). We then evaluate the true cost for all sets and

compute the average cost per trajectory.

By comparing the resulting average costs we can see that our method produces

significantly lower cost trajectories, i.e. the deviation from a flat end-effector configu-

ration is lower while the angular displacement cost is also lower. The resulting benefit

is magnified in the case where the trajectories are perturbed as the resulting average

costs show (Table 6.1), where the naive method on average tilts the end-effector (tray)

by 0.55rad which would be considered a task failure. This occurs because in our

method the system seeks to return to the space of the demonstration data as soon as the

perturbation ceases and replans thereafter while following the manifold of (approxi-



Chapter 6. Reactive control on learnt manifolds 99

−0.6
−0.4

−0.2
0

−0.6

−0.4

−0.2

0

0.2

0.4

−0.2

0

0.2

0.4

0.6

x(m)
y(m)

z
(m
)

start

e nd
XY

Z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

time(sec)

q
1
:7
(r
a
d
)

Figure 6.8: An example planned trajectory. The unperturbed trajectory appears as a

dashed line. The perturbation pushes the state away from the planned trajectory (red

line). The solid blue line, originating at the point when the perturbation ceases (red star),

is the replanned trajectory that extends from the projected state point and ends at the

goal position. Inset plot : Example joint space trajectories including a large perturbation.

mately) optimal cost. The naive method seeks to reach the goal without considering

the underlying cost-optimal sub-structure thus is prone to spend the remaining time in

a non-optimal part of the state space. In table 6.1 the evaluated cost for the predicted

trajectories is also broken down to its two components, the average angular displace-

ment (J1) and the average displacement from a flat end-effector configuration (J2).

Both metrics assert that our manifold method provides superior results regarding the

underlying cost metrics.

Figure 6.8 shows a typical run of the control strategy. Random start and end points

are selected and we use our manifold-based method to generate a trajectory that reaches

the goal while satisfying the learnt cost (dashed blue line). At time t = 0.25, a random

perturbation occurs that pushes the state of the system away from the planned path.

The controller recognizes the discrepancy between the planned and current state and

computes the projection of the new state space onto the manifold, along a direction that

is orthogonal to cost hypersurface. In other words, the system moves back towards the



Chapter 6. Reactive control on learnt manifolds 100

Figure 6.9: Two examples of perturbed trajectories with the Kuka LWR arm. The red

line traces the path of the end-effector (the perturbation is seen as the discontinuity in

this trace). Time flows from left to right.

closest point that satisfies the learnt cost modelled by the manifold. A new path is

replanned from this state towards the goal, the solid blue line originating from the red

star and reaching the goal. Figure 6.9 contains snapshots from example trajectories on

a realistic simulator1. See accompanying video for further examples.

The computational cost of the proposed procedure scales linearly with the size of

the model, i.e. the complexity is coupled with the number of RBF kernels used. Plan-

ning a trajectory on average requires less than 0.1sec while projections from random

state space points on the learnt manifold on average require 0.09± 0.05sec, on stan-

dard commodity hardware running not particularly optimized code. This suggests that

manifold (re)planning can be a viable solution for online usage.

As a final remark regarding evaluation, we note that we seed our algorithms with

analytically optimized trajectories rather than human demonstration. We choose to do

this with the aim of having precisely controlled experiments with clear ground truth.

So, we are able to make concrete statements about the ability of our methods to re-

cover the ‘correct’ solutions. As such there would be no difference if we replace these

trajectories by, e.g., motion capture data, although we would not be in a position to

make similarly quantitative statements regarding performance.

1The simulator is developed in the Statistical Learning and Motor Control group (SLMC) and uses a

rigorous analytical model of the robot’s dynamics. Note that the dynamics model is used for physically

realistic simulation but is not available to the learning, planning or control algorithms.



Chapter 6. Reactive control on learnt manifolds 101

Table 6.1: Mean costs evaluated against the true cost functions. The results are

mean±standard deviation over sets of 100 random sampled trials.

System Method Unperturbed Perturbed

traj. cost traj. cost

3-link naive 0.9239±0.1799 1.401±0.3610

manifold 0.8724±0.1723 1.214±0.2597

Kuka naive (J1) 0.7952±0.0713 0.8173±0.1215

manifold (J1) 0.6719±0.0777 0.6862±0.1317

naive (J2) 0.0154±0.0082 0.5546±0.1199

manifold (J2) 0.0119±0.0072 0.0785±0.0160

6.6 Standing on one leg with the Nao humanoid

The following experimental setup presents a realistic task scenario on the Nao hu-

manoid robot. It aims to provide a concrete example of both the efficiency and efficacy

of our approach, as well as to demonstrate in an intuitive setup the concept of skill

boundary definition - in this example, the union of the states that are stable.

Consider the task of standing on one leg while moving the other freely around. You

will soon realize that balancing on one leg is not a trivial task while it will become clear

that there is a certain area that your free leg can cover, after which stabilization efforts

would be in vain. Capturing this region of stability of a humanoid system performing

such a task is the core idea of this section.

We consider a more elaborate example that is implemented on the Nao humanoid

robot. We show that by utilizing a learnt skill manifold we can capture the subspace of

the configuration space of the system that consists of the set of poses that stably balance

the humanoid on one leg. This skill manifold is learnt from a set of example data that

we arrive at through numerical pose optimization of a variety of costs as explained later

below. We show that we can successfully generate paths on such manifold as well as

project random pose samples that are unstable to their closest stable pose, thus ensure

the stability of the system.



Chapter 6. Reactive control on learnt manifolds 102

6.6.1 Implementation

For this example we use the Nao humanoid robot. The total degrees of freedom of the

robot are 25 but for our experiment we only focus on the 12 DoFs of the lower body,

hip and legs. These are the DoFs that are most relevant to the stability of the plant as

the arms and the heads have little impact on the stability of the pose, even though their

use can make a big difference in more dynamic situations.

We begin by randomly sampling points in the task space of the robot in the interval;

x =















x ∈ [−20,20]

y ∈ [−20,−5]

z ∈ [0,15]

(6.7)

This covers a large volume of the reachable set of the free swing leg (Figure 6.10).

Nonetheless this sampling produces points that are not reachable without taking an

extra step or might collide with the robot geometry. The former will be discarded after

the optimization technique, explained in the next subsection. Weeding out the latter

would require a collision detection step that is beyond the scope of the experiment.

Many of such samples require the robot to reach close to the boundary of its stability

and this is exactly what we are interested in capturing. Once a random task space

sample is drawn we pass it to the numerical optimization method that would return an

optimized pose. Each pose consists of the 12 DoFs for the legs that are optimized, plus

the head and arm DoFs to a standard constant position.

6.6.1.1 Numerical optimization

Mapping from a 3-dimensional task position to a 12-dimensional pose is a general

redundancy resolution problem, which we treat as a constrained nonlinear optimization

problem. Algorithmically, we use a sum of squares (SoS) approach (Nocedal and

Wright, 2006). The optimization problem is of the form,

min
q

J (q), (6.8)

J = J1(q)+ . . .+ Jn(q), (6.9)

subject to f (q)−x = 0, (6.10)

where J is the cost function that is composed of a number of cost factors Jn, f (q)

is the forward kinematics mapping of the pose q, and x is the sampled task space

positions. The search space q is also subject to inequality constraints that keep all



Chapter 6. Reactive control on learnt manifolds 103

−15

−10

−5

0

5

10

15

−15

−10

−5

0

0

5

10

 

x(cm)
y(cm)

 

z
(c

m
)

Stance foot position

Swing foot endpoint

Figure 6.10: Task space samples drawn from a standard uniform distribution on the

interval in 6.7. Unreachable samples are discarded through the numerical optimization

step. The red dot signifies the position of the stance foot while the blue dots represent

the midpoint of the foot that moves freely.

produced configurations within the joint limits of the humanoid. The cost function is a

mixture of task constraints and stability constraints. In detail, the cost factors that we

used for data generation evaluate:

• the task space distance between swing foot and sampled goal

• the alignment between swing foot and x/y versors, that keeps the swing foot flat

with respect to the ground plane

• the deviation in pelvis position from the support polygon that the stance foot

provides

• the alignment between waist and z versor, pushing the pose to an upright posi-

tion.

The initial pose for the numerical optimization algorithm is a default robot initialization

pose with slightly bent knees. There are cases when the goal position is outside the

reachable area of the humanoid or the optimization suffers from a bad local minima,

leading to a solution pose far from the task specifications. In practice, bad samples

are seldom encountered and are easily characterized by the final optimization cost.

Optimization results that achieve a suboptimal final cost are discarded.



Chapter 6. Reactive control on learnt manifolds 104

6.6.2 Evaluation

Table 6.2: Evaluation table. The projected states RMSE is evaluated against ground

truth data that is generated from the numerical optimization procedure. Results are

averaged over 50 trials.

Time RMSE Unstable Stable

Numerical optimization 38.35sec – 2 48†

Random state samples – – 50 0

Projected states 1.707sec 0.01 3 47‡

Geodesic trajectories 0.0254sec – 8 42‡

† Trials for samples that did not converge where not included in the count.

†‡ 12 of the 13 unstable poses pass model evaluation but fail on the physical plant due

to self collision.

The evaluation of the method is multi-fold. First a good metric is to compare

against the poses that the computational optimization method would produce. The

error between such predictions and ground truth can give a reliable estimate of the ac-

curacy of the approximation that the manifold method provides. This way we compute

the RMSE of poses produced by the projection operation against the outcome of the

numerical optimization given the same query. Averaged over 50 samples we achieve

an RMSE of 0.01, meaning that our representation approximates the true underlying

geometry closely.

Next, we compare the time that it would take to produce such predictions, through

both the optimization process and the manifold projection, as well as how much time

would it take to generate a full geodesic trajectory given the current and goal states.

On average the numerical optimization procedure requires more than 35 seconds per

point. Projecting a random point requires 1.7 seconds on average, depending on the

initial estimate and step size. Producing a geodesic path given start and goal points

requires just 0.02 seconds. All evaluations where carried out on commodity hardware

with reasonable MATLAB code2. This points out the immediate benefit that one can

enjoy from using such a skill manifold representation.

Finally, we evaluate the stability of the initial random poses, the subsequent pro-

jections of the random poses on the learnt manifold, and the geodesic paths that are

2Porting all code to mex files would in principle provide a great speed-up but was not investigated.



Chapter 6. Reactive control on learnt manifolds 105

produced to reach the sequence of poses. Almost all poses, except from the random

state samples, are stable with a little variation between cases. In addition almost all un-

stable outcomes are due to self-collisions, something present in the training data as the

evaluation of which is beyond the scope of this thesis. An overview of aforementioned

evaluations is available in Table 6.2.

Figure 6.11 and Figure 6.12 provide an example of state projection with the Nao

humanoid. Random poses are generated in the systems state space. All these are

unstable poses that are only restricted to be within the robots joint limits. These poses

are then projected on the learnt manifold and a new pose q′ is found. This pose is

the closest state to the random state belongs to the manifold hypersurface. We then

generate the geodesic trajectory that originates from the current pose of the robot to

the projected state. A set of 10 such poses are demonstrated in Figure 6.11 while

Figure 6.12 shows the poses on the physical Nao humanoid. A video of this sequence

is also available as accompanying material.

Overall the evaluation shows that the manifold representation is a close approx-

imation of the solution space that the demonstrated solution set derives from. The

key advantage is that such an encoding has far superior computational efficiency while

also allows the utilization all the tools that we have presented in previous chapters. In

essence it gives us the ability to arrive at novel solutions that are optimal with respect

to the presented examples at computational cost that allows on-line deployment.

6.7 Conclusion

Humanoid robotics researchers are increasingly beginning to take note of the need

for integrated planning and control schemes that accommodate sophisticated specifica-

tions arising at all levels from joint-level limits to global stability and other multivariate

constraints, e.g., Berenson et al. (2009b), Ramamoorthy and Kuipers (2008).

In this chapter, we presented an approach to solving this problem by utilizing a

learnt manifold and a correspondingly derived cost hypersurface, in a model free set-

ting. Here, we assume that demonstrated samples are generated from a number of

different goals (representing task variation) under a consistent cost specification. With

this, we show how our method is able to accurately capture this underlying cost as a

hypersurface in the ambient high-dimensional space.

We demonstrated how this model can be used for efficient trajectory generation

and control. We show how the distance to the learnt manifold can be viewed as a



Chapter 6. Reactive control on learnt manifolds 106

−30
−20

−10
0

10 −10
0

10

0

10

20

30

40

50

yx

z

−20

−10

0
−10

0
10

0

10

20

30

40

50

y
x

z

−20

−10

0

10
−10

0
10

20

0

10

20

30

40

y
x

z

0
5

10
−20

−10
0

10
0

10

20

30

40

50

y

x

z

−20
−10

0
10

−10
0

10
20

0

10

20

30

40

50

yx

z

−20
−10

0
10

−10
0

10

0

10

20

30

40

50

yx

z

0

10

20 −10
0

10

0

10

20

30

40

50

y
x

z

−10

0

10
−10

0
10

0

10

20

30

40

50

y
x

z
−10

0
10

−10
0

10

0

10

20

30

40

50

y
x

z

−20

−10

0

10 −10
0

10
20

0

10

20

30

40

50

y
x

z

Figure 6.11: The skeleton model of the Nao humanoid performing a number of poses

that balance on one leg. The gray skeleton represents the random pose sample that

has been sampled within the space of kinematic constraints of the system. The black

skeleton is the projection of the previously randomly sampled pose on the stable con-

figuration manifold. The snapshots on Figure 6.12 correspond to the same sequence

of poses.

Figure 6.12: Snapshots of the video that demonstrates how the Nao humanoid can

move through the poses presented in Figure 6.11. The motions from one pose to the

next is a geodesic path on the stable configuration manifold.



Chapter 6. Reactive control on learnt manifolds 107

metric of closeness to the desired family of solutions, while being able to directly

compute the best feasible state given an arbitrary ambient state space point. This opens

many avenues for future work, including the possibility of devising advanced planning

methods such as Anytime Repairing A* (ARA*).

The next chapter evaluates our framework against a state of the art imitation learn-

ing method.



Chapter 7

Evaluation

In the preceding chapters we proposed a framework for motion planning and control

based on a manifold learning approach which encodes a solution set derived from

example data in a model free manner. We have seen how such a representation can be

used to, on the one hand, answer novel planning queries and, on the other hand, control

the execution of planned trajectories on-line in a reactive fashion.

In this chapter we evaluate our framework against a state of the art imitation learn-

ing approach. We demonstrate that our approach provides superior generalization and

stability characteristics, as well as a far greater ease of retargeting, both with respect to

initial and goal positions.

For each scenario we change the start position, or goal respectively, of the task by

first a small and then a large offset. We evaluate both learning frameworks on these

sets of novel planning queries. We provide evidence of consistently good behaviour of

the trajectories generated by our manifold framework.

7.1 Learning by demonstration

Learning by Demonstration (LbD) is one of the two state of the art Imitation Learning

approaches, the other being Dynamic Motion Primitives (DMP). LbD uses a statistical

approach to estimate the underlying dynamics of a, generally small (< 10), set of

example trajectories. After the learning phase, the model is used to predict a velocity

vector given the state of the system. This is in turn integrated to the system’s state

and the procedure is repeated until the state has converged to an attractor point of the

approximated dynamics. We preferred to compare our framework against LbD, instead

of DMP, as our approach is more similar to LbD than DMP. This similarity will become

108



Chapter 7. Evaluation 109

more clear as we discuss the LbD framework in the following subsection.

7.1.1 The LbD approach

LbD is a two phase framework, consisting of a leaning phase, carried out off-line, and

a generative phase, that can be used on-line. The learning phase utilizes the Gaussian

Mixture Model (GMM) approach to model the dynamics of the data generation pro-

cess. Generation is done by Gaussian Mixture Regression (GMR), a procedure that

generates samples from a learnt GMM (Calinon and Billard, 2008, 2009).

The dynamics of the data generating system, f , are approximated from a given set

of demonstrated trajectories. This produces an estimate, f̂ , as a nonlinear combination

of a finite set of Gaussian kernels that define a joint probability distribution function

(PDF), P(ξi, ξ̂i), over a training set of example trajectories ξi, ξ̂i, i= 1, . . . ,M. The PDF

is defined as a mixture of K Gaussian G1, . . . ,GK , with µK and ΣK being the mean and

covariance matrix of a Gaussian GK:

P(ξi, ξ̂i) =
1

K

K

∑
k=1

GK(ξi, ξ̂i;µk,Σk), (7.1)

and

µk = [µk
ξ;µk

ξ̇
] and Σk =





Σk
ξ

Σk

ξξ̇

Σk

ξ̇ξ
Σk

ξ̇



 , (7.2)

where each Gaussian probability distribution Gk is given by:

GK(ξi, ξ̂i;µk,Σk) =
1

√

(2π)2d|Σk|
e−

1
2 (([ξ

i
t ,ξ̇

i
t ]−µk)T (Σk)−1([ξi

t ,ξ̇
i
t ]−µk)). (7.3)

The model is trained with EM and generation of a new trajectory from a learned GMM

is done by sampling equation 7.1, the GMR process. GMR produces velocity estimates

of the state vector of the system, the velocities are then integrated to the state and a

new state vector is produced, in turn feeding into the GMR process. The procedure

terminates either after a finite number of iterations or when the state has converged to

an attractor point in the system’s state space.

The GMM/GMR framework allows for stability analysis and empirical determi-

nation of the region of stability of the learned dynamics. Disadvantages include the

appearance of spurious attractors that can trap the evolution of the state of the system

and the inversion of the covariance matrix that can suffer from singularities. Scaling

up to systems with a high number of DoFs and complex dynamics is one of the central



Chapter 7. Evaluation 110

difficulties of the approach. For that most recent results consider task space encod-

ings, limited to a 2 or 3 dimensional Cartesian space (Gribovskaya et al. (2010)), thus

requiring an extra layer of inverse kinematics and dynamics that eventually computes

the actual joint space trajectory that the system follows.

7.2 iCub data

The dataset used for the comparison of the two methods comes from the iCub hu-

manoid robot1. It consists of 5 trajectories, discretised to 100 datapoints. The tra-

jectories represent the end-effector position and orientation in Cartesian space. End-

effector positions are x = [x,y,z], while the orientations are in quaternion notation,

o = [o1,o2,o3,o4]. In essence the dataset encodes the task dynamics and not the dy-

namics of the robot. The task in this case would be pick-and-place motions.

0

0.05

0.1

0.15

0
0.05

0.1
0.15

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

y
x

z

Figure 7.1: iCub pick-and-place task. The data consists of 5 trajectories of 100 data-

points each.

All five demonstration trajectories originate approximately around xstart = [1.8,1.8,−1.1],

while the goal position is the origin of the axis, xgoal = [0,0,0], as plotted on Figure 7.1.

1The dataset and source code are available at http://lasa.epfl.ch/sourcecode/index.php, under Learn-

ing Position and Orientation Control.



Chapter 7. Evaluation 111

7.3 Model comparison

For the comparison we have used the model provided along with the source code of

the implementation. The GMM/GMR model divides the state of the system in two

parts. This division requires the training of two GMM/GMR models, one used for

learning and predicting positions, and the other for learning and predicting orientations.

The separation of position and orientation estimates is rather unnatural as, in tasks

such as pick-and-place, these are strongly coupled. We focus our comparison to the

positional part of the task as a poor prediction of position would automatically render

any prediction in orientation futile. The position GMM consists of 5 Gaussian kernels

that encode for a state model of the form:

x = [x,y,z, ẋ, ẏ, ż]T . (7.4)

Each kernel, Gk=1,...,6, is thus parametrized by µ([6× 1]) and σ([6× 6]), while the

GMM model also contains a prior probabilities vector, πk. The aforementioned param-

eters are set in the learning phase automatically. The GMM model takes approximately

2.35 seconds to train from the given data.

For the manifold model we use the position data as described earlier. In fairness

for the comparison we set number of RBFs, k, to 5, but in practice we achieve an

acceptably low model error with 4 kernels. The dimensionality of the tangent basis, d,

is set to 1 win a cross-validation manner, as this is sufficient to explain the dataset at

hand.

We begin with the calculation of the nearest neighbourhood relationships between

the datapoints. The constraint that we impose is that all datapoints should belong to

a single connected component and that all consequent datapoints for each trajectory

are connected (temporal relation). The neighbourhood graph that results from this

operation is available on Figure 7.2. Next we learn a manifold model, M , with the

procedure described in section 3.3. The computation of the neighbourhood graph as

well as the manifold learning, requires approximately 1.38 seconds to complete.

7.4 Results

Having compared the two models on training and generation times, we now compare

the actual trajectories that the two methods generate. We begin by comparing the

predicted trajectories under a change of the starting position. To do so we set up a a



Chapter 7. Evaluation 112

0

0.05

0.1

0.15

0

0.05

0.1

0.15

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

y
x

z

Figure 7.2: The neighborhood graph that results from the iCub data.

Table 7.1: Evaluation of both methods with regards to training and generation times.

The results are averaged over multiple trials (20 and 27 respectively).

Number of kernels Training time Generation time

Manifold model 5 1.38sec 0.0817sec

GMM/GMR 5 2.35sec 0.0853sec

cube centred at the point chosen in the GMM/GMR code as the starting position. This

point is the initial position of one of the demonstrated trajectories.

We run two tests on starting positions; one utilizing a cube of 0.02m edges (small

cube) and one where the edges of the cube measure 0.1m (large cube). We subse-

quently set as starting positions the midpoints of the edges of the cube and the points

that are on the corners of each edge. This results to a set of 27 points that are equally

spaced with regards to the initial point as,

xcube =















xinit±0.01

yinit±0.01

zinit±0.01

(small cube), xcube =















xinit±0.05

yinit±0.05

zinit±0.05

(large cube). (7.5)



Chapter 7. Evaluation 113

For both cases the target of the trajectories is set to xgoal = [0,0,0]. We run the set of

27 start/end tuples through the GMM/GMR and manifold trajectory generation proce-

dures, both for the small and large cube starting positions. The results of the small cube

staring position changes are show in Figure 7.3, while the large cube results are plotted

in Figure 7.4. The varying initial positions are marked with red points, the points that

each trajectory reaches are red ‘×’ marks, and the goal position is marked with a red

square.

0
0.1

0.2 0
0.05

0.1
0.15

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

y
x

z

(a) Manifold.

−0.2

0

0.2
−0.2

0

0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

y
x

z

(b) GMM/GMR.

Figure 7.3: Comparison of the two methods by altering the starting positions of the tra-

jectories. The novel starting positions are chosen on a small (ℓ= 0.02) cube around a

start point of one demonstrated trajectories. (a) Generated trajectories from the mani-

fold model. All (27) trajectories reach the target in a manner qualitatively similar to the

demonstration data. The blue arrows are evaluations of the tangent space in the ambi-

ent space of the manifold. (b) Trajectories generated from the GMM/GMR model. Only

12 trajectories reach the target position, while the rest get trapped to flows of spurious

attractors and fail to converge.

The outcomes of this process are plotted in Figure 7.3 and Figure 7.4. We see that

in both scenarios the manifold model can successfully generate trajectories that reach

the goal position. What is more, the generated trajectories are qualitatively very sim-

ilar to the demonstrated trajectories. The trajectories that the GMM/GMR framework



Chapter 7. Evaluation 114

0

0.1

0.2 0
0.1

0.2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

y
x

z

(a) Manifold.

−0.5

0

0.5 −0.2
0

0.2
0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

y
x

z

(b) GMM/GMR.

Figure 7.4: Comparison of the two methods by altering the starting positions of the tra-

jectories. The novel starting positions are chosen on a large (ℓ = 0.1) cube around a

start point of one demonstrated trajectories. (a) Generated trajectories from the mani-

fold model. All (27) trajectories reach the target in a manner qualitatively similar to the

demonstration data. The blue arrows are evaluations of the tangent space in the ambi-

ent space of the manifold. (b) Trajectories generated from the GMM/GMR model. Only

8 trajectories reach the target position, while the rest get trapped to flows of spurious

attractors and fail to converge.

generates are very sensitive to the change of the starting position. This way, in both

scenarios, most of the trajectories quickly fall under the influence of spurious attrac-

tors and are subsequently attracted away from a desired evolution. This effect becomes

more strong when we alter the initial position according to the large cube points (Fig-

ure 7.4(b)). In contrast the manifold trajectory generation yields very good results,

even when we initialize from the points on the large cube (Figure 7.4(a)). We see that

the generated trajectories reach the goal position successfully while also maintain a

spatial profile very similar to the demonstrated trajectories.

Next we present results from the manifold method with respect to changes of the

goal position. We follow the same approach of creating a small and a large cube

around the goal position and picking points from these geometries. Changing the goal

is a straightforward procedure within our manifold framework. In contrast, changing



Chapter 7. Evaluation 115

the goal of a GMM/GMR model is not intuitive. The reason is that the GMM model is

grounded on the state space that it represents in an absolute manner. Thus, a change of

goal would require a translation of the full model in state space, something that would

result in the former initial positions being outside the volume that the model covers.

Intuitively, one would need to scale and translate the GMM model with the new goals

in mind. This becomes increasingly difficult as the state space contains position and

velocity variables, the coupling of which is sensitive to scaling. Resolving the model

scaling problem is beyond the scope of this thesis, thus we present examples of goal

changes only for the manifold model.

0

0.1

0.2 0
0.05

0.1
0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

y
x

z

(a) Small change.

0

0.1

0.2 0
0.05

0.1
0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

y
x

z

(b) Large change.

Figure 7.5: Change of the goal positions for the manifold generation procedure. (a)

Generated trajectories that reach points on a cube of edge (ℓ= 0.02) around the former

goal position. (b) Generated trajectories that reach points on a cube of edge (ℓ =

0.1) around the former goal position. The generated trajectories demonstrate a spatial

profile that is very similar to the demonstrated data.

The results on Figure 7.5, for both a small and a large changes of the goal position,

show that first it is easy to change the goal of a planning query and second the manifold

encoding produces trajectories that exhibit spatial profiles that are qualitatively very

similar to the original set of examples. A summary of all the trials is available on Table

7.2.



Chapter 7. Evaluation 116

Table 7.2: A summary of the comparison between the manifold and the GMM/GMR

frameworks. With the manifold representation all the trajectories succeeded in reaching

the goal position. In the GMM/GMR case trajectories proved to be very sensitive to

changes of the initial position, leading to poor performance. What is not captured by

the table is the qualitative behaviour of the generated trajectories, that in the case of

the manifold encoding, is very similar to the demonstrated examples.

Manifold GMM/GMR

Success Failure Success Failure

Change in starting position
Small 27 0 12 15

Large 27 0 8 19

Change of goal
Small 27 0 – –

Large 27 0 – –

7.4.1 Manifold metric

It is also interesting to investigate what the manifold metric, that we introduced in

Chapter 6, would result to with respect to the demonstrated iCub dataset. In such a

setting this metric would provide us with the means necessary to perform online feed-

back control when executing a planned pick and place trajectory. In essence the metric

would give us a quantitative estimate of the desirability of the states that populate the

off-manifold state space.

When executing a pick-and-place trajectory that is generated by the manifold rep-

resentation, as a geodesic path, whenever an unforeseen perturbation occurs we can

quickly compute the closest-on manifold state and reactively generate a trajectory to

it. This additional benefit of the manifold representation can be interpreted as a state

value, or cost, that forms a “desirable” tunnel that surrounds the demonstrated trajec-

tories and can be directly used for reactive feedback control.

Figure 7.6 presents a volumetric plot of the manifold metric. The blue lines are

the set of demonstrated trajectories, originating from the red ‘×’ marks and reaching

the goal state marked by a red square. The distance to the manifold is color-coded,

red being the most distant states and the distance decreasing towards the blue volume.

States that are closer to the manifold are transparent for clarity. The three Figures

are rotated views of the same plot. Figure 7.6 demonstrates how the manifold metric

creates a tunnel of desirable states that surround the demonstrated solution set.



Chapter 7. Evaluation 117

Figure 7.6: Volumetric plot of the manifold metric that allows for reactive feedback con-

trol. The color-coding signifies distance to the manifold model, ranging from red (fur-

thest) to blue. Small distance volumes are transparent for clarity. All three figures are

rotated views of the same plot and demonstrate how the manifold metric creates a

tunnel of desirable states that surround the demonstrated solution set.

7.5 Conclusion

In this chapter we have evaluated the motion planning and control framework that we

propose in this dissertation, against a state of the art imitation learning method. We

have presented the statistical GMM/GMR LbD framework and we have compared on

learning and generation time.

We further compared the two approaches on a realistic dataset generated with the

iCub humanoid, performing a pick-and-place manipulation task. We have evaluated

the two methods with respect to robustness against small and large changes in initial

conditions and have demonstrated that our manifold representation significantly out-

performs the GMM/GMR method, as the latter is very sensitive to even small changes

of starting positions.

Additionally we presented a scenario where the goal of the task changes within a

small and a large offset. In this case we showed results from our manifold approach,

that exhibits consistently good behaviour. Furthermore, handling such changes is an

easy task for the manifold representation while a GMM/GMR model would require a

complicated transformation treatment.

Last we demonstrated the form that the manifold metric, presented in the preceding

chapter, takes with respect to the solution set at hand. Such a metric of state value, or

cost, takes the form of a tunnel around the demonstrated trajectories, and can be used

directly in a reactive control manner. This gives our approach the ability to overcome

large unforeseen perturbations and stabilize against smaller disturbances.

In the next chapter, we summarize and give conclusions on the work undertaken in



Chapter 7. Evaluation 118

this thesis and suggest directions for future work.



Chapter 8

Conclusions

In this thesis, we have explored an alternate model-free approach to trajectory genera-

tion and control that utilizes a manifold learning method as a basis for robotic skill rep-

resentation. We have presented several examples of learning such skills from demon-

strated solution sets, of adding kinodynamic constraints in a dynamic manner and of

using the learnt manifold model for reactive control. Furthermore we have presented

the utility of our framework in a variety of robotic platforms - ranging from a 3-link

planar arm to a small humanoid robot.

In Chapter 2 we reviewed several state of the art methods from planning, control

and machine learning literature. In particular we have shown that formal planning and

control methods rely heavily on accurate models of the systems in question and models

of the interaction of such plants with their environment. Such models are often hard

to build and computationally expensive to work with. In addition we showed that tra-

jectory generation methods that utilize some kind of machine learning machinery fail

to recognize and exploit the manifold structure that robotic skills invariantly exhibit,

while often learning and motion planning/control are carried out in different spaces.

In Chapter 3 we introduced the manifold learning machinery that was used through-

out this thesis. We presented a detailed account of the manifold learning algorithm as

well as the procedure for learning from a given solution set. We discussed the RBF

model used as the base manifold representation, the error that needs to be minimized

and the error minimization procedure. Furthermore, we provided an illustrative exam-

ple of the manifold learning method on a benchmark swiss-roll dataset.

In Chapter 4 we presented how a manifold model can be used for learning a robotic

skill and how such a learnt model can generate novel trajectories as geodesic paths.

We gave an algorithm for producing such geodesic paths via iterative optimization

119



Chapter 8. Conclusions 120

of an initial path with respect to the underlying manifold geometry. We evaluated the

generalization ability of such novel trajectories while also compared the computational

complexity and generation time against the ground truth optimization procedure used

to generate the demonstrated solution set. We provided a number of examples, namely

on reaching with the 3-link planar arm, and on walking both with the KHR-1HV and

Nao humanoid robots.

In Chapter 5 we extended the trajectory generation procedure to account for kin-

odynamic constraints that are not represented in the training solution set. We demon-

strated how such constraints can be later added to the trajectory generation procedure

in an on-line manner. We showed how the generative procedure is modified to produce

trajectories that avoid patches on the manifold geometry that would result in collisions

with the introduced obstacles. We provided a number of examples of unconstrained

and constrained trajectories, in a reaching scenario with the 3-link planar arm and a

stepping example with the Nao humanoid robot.

In Chapter 6 we demonstrated how the manifold skill representation can be used in

a on-line setting for reactive control. We showed how the manifold model gives rise to a

natural quantitative measure of the system’s state space that can be viewed as a cost and

used directly for control. We demonstrated the superior qualities of such a measure in

comparison to a naive metric. We provided evidence that such a control strategy results

in trajectories that outperform a traditional control method in terms of overall cost as

evaluated by the cost function used to provide the ground truth example solutions set.

In addition we presented how such a metric can be used to constrain the evolution of

trajectories in states that are achieving the task present in the example solution set. We

provided a variety of examples that demonstrate how this combined motion planning

and reactive control framework can be utilized on a number of example scenarios.

Finally, in Chapter 7 we evaluated our framework against a state of the art imitation

learning approach. The evaluation was based on data from the iCub humanoid robot

performing a pick-and-place task. We demonstrated that our approach provides supe-

rior generalization and stability characteristics by investigating the behaviour of both

approaches with changes to initial and goal positions. In addition we showed that our

manifold based method provides better robustness and far greater ease of retargeting,

with respect to changes of both the initial and goal positions.



Chapter 8. Conclusions 121

Future work

There exist a number of directions in which the work presented in this thesis may be

extended in future work.

Improved learning machinery

Using an RBF model has been convenient as it is easy to train and simple to work

with, both in terms of parametrization and further ability. There are a number of ma-

chine learning methods that one can use for learning manifold models. One promising

approach would be to use a Gaussian Processes (GP) based model. Training such a

model may be more complex that training and RBF network but the advantages can

be many. Mainly a GP model can provide confidence bounds on its predictions; this

way predicted trajectories can be quantitatively classified with respect to skill achieve-

ment, a measure of predicted success for each query and a potential cost to be added

to each path optimization. In addition, a GP model can be incrementally trained, so

that new examples of trajectories can be incorporated to the skill manifold as soon as

they become available. This would be more suitable for a robot designed for adaptive

everyday interaction as opposed to an one-off learning phase.

Motion recognition

Extending the current framework to allow for motion recognition would be a intuitive

forward step. Having a set of learnt skill manifolds, one can easily formulate a clas-

sification procedure that in essence evaluates the likelihood that a given example can

originate from each of the set of manifolds. Naively this can be quantified by directly

computing the distance from each sample to each manifold hypersurface. In princi-

ple, measures that take into account the evolution of a trajectory on a manifold should

also be considered. This can potentially provide a base for learning from continuous

demonstrations, without the need of characterization of each skill set as a single learn-

ing trial. For example the robot can compare any new sample with its existing skill

library and if the new example does not match any of the existing skills a new skill

manifold will be learnt. This also gives rise to the need for incremental learning ap-

proaches on the level of single skills and on the level of skill libraries. This way a

robot can adaptively improve its skill set throughout its lifetime instead of following a

one-shot learning paradigm.



Chapter 8. Conclusions 122

Human data

The experiments that we have presented have all been based on demonstration data that

has been generated from an optimization procedure. This has been highly beneficial as

we had a clear view of the data generating procedure, thus we were able to quantitative

evaluate the success and limitations of our framework. It would be very interesting to

have our approach tested with real human demonstrations. Human demonstrations are

subject to a variety of factors that make their modelling difficult. The main difficulty

has to do with the noise present in human demonstrations. Such noise can manifest

in the level of solutions, meaning that for the same planning query we can get a set

of similar but different examples. Given imperfect examples, one would need to take

into consideration the effect of noise in the learning dataset. On a higher level different

people can also employ different strategies for achieving the same goal, leading to ex-

amples for the same skill conceptually but of different planning outcomes. In a robotic

context the equivalent would be to optimize for the same goal but with a different set

of cost factors. Learning from noisy examples along with incremental learning and

motion recognition can potentially lead to a learning based framework highly suited

for real life learning without the need of expert demonstrations.

Higher order manifolds

Most of the examples in this thesis take place within a robot’s configuration space.

Points that belong to such space represent the configuration of each degree of free-

dom of the system. In this case the temporal relationships are captured through the

neighbourhood relationship computation step of the manifold learning algorithm, in

an indirect manner. An interesting direction of future work would be to extend our

approach to higher order spaces such as manifolds of velocities and accelerations. All

the machinery that we have developed throughout this work would be applicable to

higher order manifolds as well. Such representations can provide further flexibility

and grant access to a variety of new optimization criteria with regards to geodesic path

generation, e.g. minimum time, minimum jerk, etc.

Basis for Optimal control

As already mentioned in the Chapter 6 of this thesis, a learnt skill manifold can be

used in an optimal control setting. One way of doing this would be to include the



Chapter 8. Conclusions 123

learnt manifold as an inequality constraint to the optimization. This way the solutions

returned will be trajectories that evolve on the manifold hypersurface. Another place

for the use of skill manifolds would be the initialization of optimal control search

procedures. Most optimal control methods rely on simplistic initialization methods

that often have a high impact on the quality of the result. Learnt manifolds can be

used to provide a good initial estimate for the optimization, this way bringing down

the optimization time and greatly improving the outcome.

ARA* planner

As briefly mentioned in Chapter 6, the manifold metric that arises naturally through

the manifold representation can be used as the basis for more traditional planning ma-

chinery. For instance, an interesting research direction would be to use such a leant

metric with a planning algorithm such as Anytime Repairing A* (ARA*). ARA* is a

real-time variant of A* and is capable of producing planning solutions of increasing

optimality the more computational time is provided. A general purpose planning algo-

rithm such as ARA* can be used to generate the geodesic paths on the learnt manifolds,

starting from a crude approximation in computationally restricted scenarios and grad-

ually improving to fine optimality resolution in cases where time criticality relaxes.

This can potentially provide a general purpose, flexible realtime planner and controller

framework for use in everyday tasks.



Bibliography

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and Autonomous Systems, 57:469–483.

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics (Graduate Texts

in Mathematics). Springer, 2nd edition.

Athans, M. A. and Falb, P. L. (1966). Optimal Control. McGraw-Hill, New York.

Beaudoin, P., van de Panne, M., Poulin, P., and Coros, S. (2008). Motion-motif graphs.

In Symposium on Computer Animation 2008.

Berenson, D., Chestnutt, J., Srinivasa, S., Kuffner, J., and Kagami, S. (2009a). Pose-

constrained whole-body planning using task space region chains. In IEEE-RAS In-

ternational Conference on Humanoid Robots (Humanoids ’09).

Berenson, D. and Srinivasa, S. (2010). Probabilistically complete planning with end-

effector pose constraints. In IEEE International Conference on Robotics and Au-

tomation (ICRA ’10).

Berenson, D., Srinivasa, S., Ferguson, D., and Kuffner, J. (2009b). Manipulation plan-

ning on constraint manifolds. In IEEE International Conference on Robotics and

Automation (ICRA ’09).

Berenson, D., Srinivasa, S., and Kuffner, J. (2011). Task space regions: A framework

for pose-constrained manipulation planning. International Journal of Robotics Re-

search.

Billard, A., Calinon, S., a. D. R., and Schaal, S. (2007). Handbook of Robotics, chapter

59 - Robot programming by demonstration. MIT Press.

124



Bibliography 125

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot programming

by demonstration. In Siciliano, B. and Khatib, O., editors, Handbook of Robotics,

pages 1371–1394. Springer, Secaucus, NJ, USA.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition.

Bitzer, S., Havoutis, I., and Vijayakumar, S. (2008). Synthesising novel movements

through latent space modulation of scalable control policies. In Lecture Notes in

Computer Science, pages 199–209. Springer Berlin / Heidelberg.

Boor, V., Overmars, M., and van der Stappen, A. (1999). The gaussian sampling

strategy for probabilistic roadmap planners. Robotics and Automation, 1999. Pro-

ceedings. 1999 IEEE International Conference on, 2:1018–1023 vol.2.

Brand, M. (2003). Charting a manifold. In Advances in Neural Information Processing

Systems 15, pages 961–968. MIT Press.

Bretl, T., Lall, S., Latombe, J.-C., and Rock, S. (2004). Multi-step motion planning for

free-climbing robots. In in Workshop on the Algorithmic Foundations of Robotics

(WAFR), pages 1–16.

Burridge, R. R., Rizzi, A. A., and Koditschek, D. E. (1999). Sequential Composition

of Dynamically Dexterous Robot Behaviors. The International Journal of Robotics

Research, 18(6):534–555.

Calinon, S. and Billard, A. (2008). A probabilistic programming by demonstra-

tion framework handling skill constraints in joint space and task space. In Proc.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’08),

pages 367–372.

Calinon, S. and Billard, A. (2009). Statistical learning by imitation of competing

constraints in joint space and task space. Advanced Robotics, 23:2059–2076.

Chalodhorn, R., Grimes, D., Maganis, G., Rao, R., and Asada, M. (2006). Learning hu-

manoid motion dynamics through sensory-motor mapping in reduced dimensional

spaces. In Proceedings of the IEEE International Conference on Robotics and Au-

tomation (ICRA ’06), pages 3693–3698.



Bibliography 126

Chestnutt, J., Lau, M., Cheung, K. M., Kuffner, J., Hodgins, J. K., and Kanade, T.

(2005). Footstep planning for the honda asimo humanoid. In Proceedings of the

IEEE International Conference on Robotics and Automation.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki, L. E.,

and Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Imple-

mentations. MIT Press, Cambridge, MA.

Coates, A., Abbeel, P., and Ng, A. Y. (2008). Learning for control from multiple

demonstrations. In Proceedings of the 25th International Conference on Machine

Learning (ICML ’08), pages 144–151, New York, NY, USA. ACM.

Conner, D., Choset, H., and Rizzi, A. (2009). Flow-through policies for hybrid con-

troller synthesis applied to fully actuated systems. IEEE Transactions on Robotics,

25(1):136 –146.

Conner, D. C. (2008). Integrating Planning and Control for Constrained Dynamical

Systems. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Conner, D. C., Choset, H., and Rizzi, A. (2006). Integrated planning and control

for convex-bodied nonholonomic systems using local feedback. In Proceedings of

Robotics: Science and Systems II, pages 57–64, Philadelphia, PA. MIT Press.

Conner, D. C., Rizzi, A., and Choset, H. (2003). Composition of local potential func-

tions for global robot control and navigation. In Proceedings of 2003 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2003), volume 4,

pages 3546– 3551. IEEE.

Craig, J. J. (1989). Introduction to Robotics. Addison Wesley, 2nd edition.

Degallier, S., Santos, C., Righetti, L., and Ijspeert, A. (2006). Movement generation

using dynamical systems : a humanoid robot performing a drumming task. In 6th

IEEE-RAS International Conference on Humanoid Robots, pages 512 –517.

Dever, C., Mettler, B., Feron, E., Popovic’, J., and Mcconley, M. (2004). Trajec-

tory interpolation for parametrized maneuvering and flexible motion planning of

autonomous vehicles. AIAA Guidance, Navigation, and Control Conference.

Dever, C., Mettler, B., Feron, E., Popovic’, J., and Mcconley, M. (2006). Nonlinear

trajectory generation for autonomous vehicles via parameterized maneuver classes.

Journal of Guidance, Control and Dynamics, 29:289–302.



Bibliography 127

Diankov, R., Ratliff, N., Ferguson, D., Srinivasa, S., and Kuffner, J. (2008). Bispace

planning: Concurrent multi-space exploration. In Robotics: Science and Systems.

Dollár, P., Rabaud, V., and Belongie, S. (2006). Learning to traverse image manifolds.

In Neural Information Processing Systems (NIPS).

Dollár, P., Rabaud, V., and Belongie, S. (2007). Non-isometric manifold learning:

Analysis and an algorithm. In International Conference on Machine Learning

(ICML).

Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experimen-

tally confirmed mathematical model. Journal of Neuroscience, 5(7):1688–1703.

Frazzoli, E., Dahleh, M. A., and Feron, E. (2003). A maneuver-based hybrid control

architecture for autonomous vehicle motion planning,. In Samad, T. and Balas, G.,

editors, Software Enabled Control: Information Technology for Dynamical Systems.

Wiley-IEEE Press.

Frazzoli, E., Dahleh, M. A., and Feron, E. (2005). Maneuver-based motion planning

for nonlinear systems with symmetries. IEEE Trans. on Robotics, 21(6):1077–1091.

Full, R. and Koditschek, D. (1999). Templates and anchors: neuromechanical hypothe-

ses of legged locomotion on land. Journal of Experimental Biology, 202(23):3325–

3332.

Gribovskaya, E., Zadeh, K., Mohammad, S., and Billard, A. (2010). Learning Non-

linear Multivariate Dynamics of Motion in Robotic Manipulators. International

Journal of Robotics Research.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). The Elements of Statistical

Learning. Springer.

Havoutis, I. and Ramamoorthy, S. (2010a). Constrained geodesic trajectory generation

on learnt skill manifolds. IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS ’10).

Havoutis, I. and Ramamoorthy, S. (2010b). Geodesic trajectory generation on learnt

skill manifolds. International Conference on Robotics and Automation (ICRA),

2010. Proceedings 2010 IEEE.



Bibliography 128

Havoutis, I. and Ramamoorthy, S. (2010c). Motion synthesis through randomized

exploration on submanifolds in configuration space. In Baltes, J., Lagoudakis, M.,

Naruse, T., and Shiry, S., editors, RoboCup 2009, volume 5949 of Lecture Notes in

Artificial Intelligence, pages 92–103. Springer.

Hersch, M., Guenter, F., Calinon, S., and Billard, A. (2008). Dynamical system mod-

ulation for robot learning via kinesthetic demonstrations. IEEE Transactions on

Robotics, 24(6):1463 –1467.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). Movement imitation with nonlinear

dynamical systems in humanoid robots. In In IEEE International Conference on

Robotics and Automation (ICRA ’02), pages 1398–1403.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2003). Learning attractor landscapes for

learning motor primitives. Science, 15:15471554.

Isto, P. and Saha, M. (2006). A slicing connection strategy for constructing prms in

high-dimensional cspaces. Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA ’06)., pages 1249–1254.

Jenkins, O. C. and Mataric, M. J. (2004). A spatio-temporal extension to isomap

nonlinear dimension reduction. In International Conference on Machine Learning

(ICML ’04), pages 441–448.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). Stomp:

stochastic trajectory optimization for motion planning. In IEEE international con-

ference on Robotics and Automation (ICRA ’11).

Kobilarov, M. B. and Marsden, J. E. (2011). Discrete geometric optimal control on lie

groups. IEEE Transactions on Robotics, 27(4):641 –655.

Kohonen, T. (1997). Self-Organizating Maps. Springer-Verlag, New York.

Kuffner, J. and LaValle, S. (2000). RRT-connect: An efficient approach to single-

query path planning. Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA ’00), 2:995–1001 vol.2.

Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., and Inoue, H. (2002).

Dynamically-stable motion planning for humanoid robots. Auton. Robots,

12(1):105–118.



Bibliography 129

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cambridge,

U.K.

LaValle, S. M. and Kuffner, J. J. (2001). Randomized kinodynamic planning. The

International Journal of Robotics Research, 20(5):378–400.

Levine, W. S. (1996). The Control Handbook. IEEE PRESS.

Lewis, A. D. (2007). Is it worth learning differential geometric methods for modeling

and control of mechanical systems? Robotica, 25:765–777.

Li, W. and Todorov, E. (2006). An iterative optimal control and estimation design for

nonlinear stochastic system. In 45th IEEE Conference on Decision and Control,

2006, pages 3242 –3247.

Nakamura, Y. and Yamane, K. (2000). Interactive motion generation of humanoid

robots via dynamics filter. In Proceedings of the 1st IEEE-RAS International Con-

ference on Humanoid Robots (Humanoids ’00).

Nakanishi, J. (2004). Learning from demonstration and adaptation of biped locomo-

tion. Robotics and Autonomous Systems, 47(2-3):79–91.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, 2nd edition.

Novikov, S. P. and Taimanov, I. A. (2006). Modern Geometric Structures and Fields,

volume 71. AMS Graduate Studies in Mathematics, 2nd edition.

Pardowitz, M., Knoop, S., Dillmann, R., and Zollner, R. (2007). Incremental learning

of tasks from user demonstrations, past experiences, and vocal comments. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(2):322

–332.

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009). Learning and generaliza-

tion of motor skills by learning from demonstration. In International Conference on

Robotics and Automation (ICRA ’09).

Pontryagin, L. S. (1962). The Mathematical Theory of Optimal Processes. CRC Press.

Ramamoorthy, S. and Kuipers, B. J. (2006). Qualitative hybrid control of dynamic

bipedal walking. In Proceedings of Robotics: Science and Systems, Philadelphia,

USA.



Bibliography 130

Ramamoorthy, S. and Kuipers, B. J. (2008). Trajectory generation for dynamic bipedal

walking through qualitative model based manifold learning. IEEE International

Conference on Robotics and Automation (ICRA), pages 359–366.

Rasmussen, C. E. and Williams, C. (2006). Gaussian Processes for Machine Learning.

MIT Press.

Ritter, H. (1997). Self-organizing maps for robot control. In Gerstner, W., Germond,

A., Hasler, M., and Nicoud, J.-D., editors, Artificial Neural Networks ICANN’97,

volume 1327 of Lecture Notes in Computer Science, pages 673–684. Springer Berlin

/ Heidelberg.

Rodriguez, S., Tang, X., Lien, J.-M., and Amato, N. (2006). An obstacle-based

rapidly-exploring random tree. Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA ’06), pages 895–900.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326.

Safonova, A., Hodgins, J. K., and Pollard, N. S. (2004). Synthesizing physically realis-

tic human motion in low-dimensional, behavior-specific spaces. ACM Transactions

in Graphics, 23(3):514–521.

Schaal, S. (2006). Dynamic movement primitives - A framework for motor control in

humans and humanoid robotics. Adaptive Motion of Animals and Machines, page

261280.

Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational approaches to

motor learning by imitation. Philosophical Transactions: Biological Sciences,

358(1431):537–547.

Siciliano, B. and Khatib, O., editors (2008). Springer Handbook of Robotics. Springer.

Sontag, E. D. (1998). Mathematical Control Theory: Deterministic Finite-

Dimensional Systems. Springer, New York, 2nd edition.

Stengel, R. F. (1995). Optimal control and estimation. John Wiley & Sons, 2nd edition.

Stilman, M. (2007). Task constrained motion planning in robot joint space. IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS ’07), pages

3074–3081.



Bibliography 131

Teh, Y. W. and Roweis, S. (2003). Automatic alignment of local representations. In

Advances in Neural Information Processing Systems 15, pages 841–848. MIT Press.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323.

Theodorou E., Stulp F., B. J. and S., S. (2011). An iterative path integral stochastic

optimal control approach for learning robotic tasks. In The 18th world congress of

the International Federation of Automatic Control (IFAC’ 11).

Thomas, S., Morales, M., Tang, X., and Amato, N. (2007). Biasing samplers to im-

prove motion planning performance. IEEE International Conference on Robotics

and Automation (ICRA ’07), pages 1625–1630.

Todorov, E. and Jordan, M. I. (2002). A minimal intervention principle for coordinated

movement. In In, pages 27–34. MIT Press.

Todorov, E. and Li, W. (2005). A generalized iterative lqg method for locally-optimal

feedback control of constrained nonlinear stochastic systems. In In proceedings of

the American Control Conference, pp 300-306.

Uno, Y., Kawato, M., and Suzuki, R. (1989). Formation and control of optimal trajec-

tory in human multijoint arm movement. Biological Cybernetics, 61:89–101.

Verbeek, J. (2006). Learning nonlinear image manifolds by global alignment of lo-

cal linear models. IEEE Transactions on Pattern Analysis & Machine Intelligence,

28(8):1236–1250.

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). Incremental online learning in

high dimensions. Neural Compututation, 17(12):2602–2634.

Walter, J. and Ritter, H. (1995). Local PSOMs and chebyshev PSOMs improving the

parametrised self-organizing maps. In International Conference on Artificial Neural

Networks (ICANN ’95), Paris, pages 95–102.

Wang, J. M., Fleet, D. J., and Hertzmann, A. (2008). Gaussian process dynamical

models for human motion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(2):283–298.

Wolpert, D. M. and Harris, C. M. (1998). Signal dependent noise determines motor

planning. Nature, 394(6695):780–784.



Bibliography 132

Yamane, K. and Nakamura, Y. (2003). Dynamics filter - concept and implementation

of online motion generator for human figures. IEEE Transactions on Robotics and

Automation, 19(3):421 – 432.

Zhang, L., LaValle, S., and Manocha, D. (2009). Global vector field computation

for feedback motion planning. In IEEE International Conference on Robotics and

Automation (ICRA ’09), pages 477–482.


	Introduction
	Background
	Path planning and control
	Traditional planning and control approaches
	Vector fields
	Learning by demonstration
	Dynamic motion primitives
	Sampling based motion planning

	Machine learning
	Motivation to use a manifold learning approach
	The manifold representation advantage
	Manifold notation and concepts
	Comparison of above methods


	Manifold learning
	Overview of approach
	Method mechanics
	The manifold model
	Learning the manifold
	An example

	Benefits of the manifold representation

	Generation of trajectories on learnt manifolds
	Introduction
	Motivation for a manifold representation
	The manifold encoding
	Learning the manifold model
	Geodesic paths

	Reaching with a robotic arm
	Reaching examples
	Implementation
	Generation of novel reaching solutions

	Walking with the KHR-1HV humanoid
	Example walking solutions
	Implementation
	Generation of novel walking motions
	Experimental considerations

	Walking with NAO humanoid robot
	Quasi-static walking examples
	Implementation
	Generation of novel walking solutions

	Discussion
	Conclusions

	Geodesic trajectories with dynamic constraints
	Changing environments and dynamic constraints
	Novel constraints on learnt manifolds
	Constrained geodesic paths

	Constrained reaching on a robotic arm
	Reaching examples
	Implementation
	Generation of constrained reaching motions
	Remarks

	Constrained stepping with the Nao humanoid
	Stepping examples
	Implementation
	Generation of constrained walking motions

	Conclusion

	Reactive control on learnt manifolds
	The need for strategic control
	Control beyond the local model
	Overview of reactive manifold controller

	Control on and to a skill manifold
	Projection of states on manifold

	Benefits of manifold control
	Manifold control on the 3-link arm
	Implementation
	Evaluation

	Serving example with the Kuka Lightweight Robot arm
	Implementation
	Evaluation

	Standing on one leg with the Nao humanoid
	Implementation
	Evaluation

	Conclusion

	Evaluation
	Learning by demonstration
	The LbD approach

	iCub data
	Model comparison
	Results
	Manifold metric

	Conclusion

	Conclusions
	Bibliography

