
Discrete Comput Geom 22:201–221 (1999) Discrete & Computational

Geometry
© 1999 Springer-Verlag New York Inc.

Motion Planning for a Convex Polygon in a
Polygonal Environment∗

P. K. Agarwal,1 B. Aronov,2 and M. Sharir3

1Department of Computer Science, Box 90129, Duke University,
Durham, NC 27708-0129, USA
pankaj@cs.duke.edu

2Department of Computer and Information Science, Polytechnic University,
Brooklyn, NY 11201-3840, USA
aronov@ziggy.poly.edu

3School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 69978, Israel
sharir@math.tau.ac.il
and
Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

Abstract. We study the motion-planning problem for a convexm-gon P in a planar
polygonal environmentQ bounded byn edges. We give the first algorithm that constructs
the entire free configuration space (the three-dimensional space of all free placements
of P in Q) in time that is near-quadratic inmn, which is nearly optimal in the worst
case. The algorithm is also conceptually simple. Previous solutions were incomplete, more
expensive, or produced only part of the free configuration space. Combining our solution
with parametric searching, we obtain an algorithm that finds the largest placement ofP
in Q in time that is also near-quadratic inmn. In addition, we describe an algorithm that
preprocesses the computed free configuration space so thatreachability queriescan be
answered in polylogarithmic time.

∗ All three authors have been supported by a grant from the U.S.–Israeli Binational Science Foundation.
Pankaj Agarwal has also been supported by a National Science Foundation Grant CCR-93-01259, by an Army
Research Office MURI Grant DAAH04-96-1-0013, by a Sloan fellowship, and by an NYI award and matching
funds from the Xerox Corporation. Boris Aronov has also been supported by NSF Grant CCR-92-11541 and
a Sloan Research Fellowship. Micha Sharir has also been supported by NSF Grants CCR-94-24398 and CCR-
93-11127, by the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University, and by a grant
from the G.I.F., the German–Israeli Foundation for Scientific Research and Development.

202 P. K. Agarwal, B. Aronov, and M. Sharir

1. Introduction

Problem Statement. Let P be a closed convexm-gon. We consider the problem of
planning a collision-free motion forP inside a closed planar polygonalenvironment
Q, bounded by a total ofn edges. We allowP to translate and rotate. A (congruent)
placementof P is thus any congruent copy ofP (without reflections). A placement of
P is free if it is fully contained in Q, andsemifreeif it is free and the boundary∂Q
of Q touches the boundary∂P of P. Any placement ofP can be represented by three
real parameters(x, y, θ), where(x, y) ∈ R2 is the position of a reference point ofP
andθ ∈ [−π, π] is the counterclockwise angle by whichP is rotated from some fixed
orientation. The space of all placements ofP, known asconfiguration space, is thus
identified withR2 × S, whereS is the unit circle. Thefree configuration spaceC of P
in Q is the space of all free placements ofP in Q, and the boundary∂C corresponds
to the set of all semifree placements. Note thatC is a closed set. If scaling ofP is also
permitted, the configuration space can be identified withR3× S.

We consider two types of problems in this context:

Motion planning: ConstructC, the space of all free congruent placements ofP. Prepro-
cessC so that one can determine efficiently whether two given placementsI , F of P
lie in the same connected component ofC; that is, whether there exists a collision-free
motion ofP insideQ from one of these placements to the other. If so, then also return
a path fromI to F that lies withinC. See Fig. 1.

Largest placement: Allowing scaling, find a largest similar copy ofP that fits insideQ.

Previous Results. Both problems are central problems in robotics and manufacturing,
and have been studied intensively in computational geometry during the past two decades.
Some of the initial results on this problem can be found in [14], [26], [34], and [38];
these algorithms are either inefficient or consider only special cases (e.g., whereP is
assumed to be a line segment). See recent surveys for a summary of known results in
motion planning [22], [35]. The first significant progress was made by Leven and Sharir
[27], who analyzed thecombinatorial complexityof C when no scaling is allowed, which
can be measured by the number of freecritical placementsof P. A placementZ of P
is calledcritical if there exist three distinct pairs(e1, v1), (e2, v2), and(e3, v3), so that,
for eachi = 1,2,3, eitherei is an obstacle edge andvi is a vertex ofP or ei is an

Fig. 1. Motion planning for a convex polygon inside a polygonal environment

Motion Planning for a Convex Polygon in a Polygonal Environment 203

edge ofP andvi is an obstacle vertex, and so that the vertexvi touches the edgeei

at placementZ. Leven and Sharir showed that this quantity and thus the complexity
of C are bothO(mnλ6(mn)). Hereλs(q) is the maximum length of(q, s)-Davenport–
Schinzel sequences [36], which is nearly linear inq for any fixeds. They also showed
that the complexity ofC is Ä(m2n2) in the worst case. Thus the complexity ofC is
near-quadratic inmn. The goal then was to computeC in time that is also near-quadratic
in mn. The first result in this direction was obtained by Kedem and Sharir [24], where
anO(mnλ6(mn) logmn)-time algorithm was proposed. However, this algorithm turned
out to have a technical difficulty. The algorithm constructsC in two stages. The first
stage computes asupersetof all the vertices ofC, where each such vertex is a free critical
placement ofP in Q, as defined above, and then aims to filter out the spurious vertices
(nonfree placements). The filtering process is rather complicated, and some of the cases
are not handled correctly [24].

Two subsequent papers aimed to fix Kedem and Sharir’s algorithm. The first solution,
given by Sharir and Toledo [37], processesQ into several range-searching data structures,
and then it queries these structures with each placement ofP produced by the algorithm
of Kedem and Sharir [24] to discard nonfree placements. The overall running time
of their algorithm is close toO(m3n2). This is significantly more expensive for large
values ofm, which is what we assume here. The second solution, proposed by Kedem
et al. [25], correctly computes the connected components ofC that containI andF , but
does not always compute the entire free space. The time complexity of their algorithm
is O(mnλ6(mn) logmn). For other solutions to the problem, which are less efficient
but also apply to the case whenP is nonconvex, see [10]. These results leave open the
problem of whether the entire free space can be computed in time that is near quadratic
in mn.

The case in which scaling is allowed and we seek the largest placement ofP insideQ
has been studied in [14], [17], and [37]. Chazelle gave anO(m3n3(m+ n) log(m+ n))-
time algorithm to compute the largest placement ofP insideQ. Using generalized Delau-
nay triangulations induced byP in Q, Chew and Kedem [17] gave anO(m4n2α(n) logn)-
time algorithm for computing a largest free similar placement ofP in Q; hereα(n) is
the inverse Ackermann’s function. A variant of this algorithm also solves the motion-
planning problem forP in Q, with the additional advantage of finding a “high-clearance”
motion, whereP aims to stay as far away from the boundary ofQ as possible; see [17]
for a more precise definition of high clearance. Sharir and Toledo [37] proposed another
algorithm that combines parametric searching [29] with a construction of the entire con-
figuration space for the fixed-size case, as in the preceding paragraph; the running time
of their algorithm is close toO(m3n2). If only translation and scaling are allowed, the
largest homothetic placement ofP insideQ can be computed in timeO(mnlogn), using
the generalized Voronoi diagram of∂Q induced byP [20], [28].

In [2] a much simpler situation is discussed whereQ is also a convex polygon. The
resulting problems are still challenging and have an interesting geometric structure. It
is shown there that a largest scaled copy ofP that can fit insideQ can be computed
in O(mn2 logn) time. The maximum combinatorial complexity of the four-dimensional
spaceC ′ of all similar placements ofP inside Q is proven to be2(mn2). It is shown
thatC ′ can be computed inO(mn2 logn) time. It is interesting that no better bounds are
known for the space of allcongruentplacements.

204 P. K. Agarwal, B. Aronov, and M. Sharir

New Results and Methods. We present a randomized divide-and-conquer algorithm for
computingC, whose expected running time isO(mnλ6(mn) logmnlogn). The merge
step of the algorithm is based on a line-sweep algorithm. Our technique is quite general
and can be applied to other problems, as discussed in a remark at the end of Section 2.3.
This is the first correct solution for computing all ofC whose running time is near
quadratic inmn. Our algorithm is rather simple, at least conceptually. It has the advantage
that it is easy to parallelize, which is needed in our solution to the largest-placement
problem, see Section 4. Even for the task of computing only a portion ofC, our algorithms
are simpler than the ones in [25] and [37]. In addition, we can preprocessC in O((mn)2+ε)
time so that we can efficiently answerreachability queries: for any two placements of
P, we can determine inO(logmn) time whether there is a collision-free motion from
one to the other (i.e., whether they lie in the same connected component ofC). A variant
of the algorithm can also produce a path connecting the two placements, in additional
time proportional to the combinatorial complexity of the path. No claims of optimality
of the resulting path are made.

Using an approach based on parametric searching, similar to that of [37], we can
find the largest similar placement ofP in Q, in randomized expected time
O(mnλ6(mn) log3 mnlog2 n), thus improving significantly over the previous bounds
in [17] and [37]. Parametric searching requires an “oracle” procedure that has to deter-
mine, for a given size ofP, whether the correspondingC is nonempty, which we can
do using our algorithm for computing the entireC. Notice that we can neither use the
algorithm by Kedem et al. [25] here nor the one by Kedem and Sharir [24], since the
former may miss some of the components ofC and the latter may produce placements
that are not free.

The paper is organized as follows. Section 2 describes the randomized algorithm
for computing the free configuration space. Section 3 presents the data structures for
answering reachability queries, and Section 4 describes the algorithm for computing a
largest copy ofP that can be placed insideQ.

2. Constructing the Free Configuration Space

Consider a convexm-gon P translating and rotating rigidly in a general polygonal
environmentQ bounded byn edges, without scaling. Recall that a placement ofP can
be parametrized by(x, y, θ), where(x, y) ∈ R2 is the position of a reference point ofP
andθ ∈ [−π, π] is the counterclockwise angle by whichP is rotated from some fixed
reference orientation. For the sake of convenience, we represent a placement ofP by
(x, y, tan(θ/2)), so that the set of all placements isR3. Note that, with this representation,
special treatment is required forθ = ±π because, for any(x, y) ∈ R2, (x, y,−π) and
(x, y,+π) represent the same physical placement ofP. In brief, even though at these
points tan(θ/2) → ±∞, we represent them explicitly. At the end of our construction
we glue together the two cross sectionsθ = −π , θ = +π . This is necessary to preserve
connectivity along paths that cross the surfaceθ = ±π .

We assume thatP and Q are ingeneral position. In our context, this means that
no two obstacle vertices have the samex-coordinate and there is no placement ofP

Motion Planning for a Convex Polygon in a Polygonal Environment 205

Fig. 2. Typical degeneracies.

at which four “independent” constraints imposed onP by its possible contacts withQ
are simultaneously satisfied. Each constraint corresponds to a set of placements ofP at
which a vertex ofP touches an edge ofQ, an edge ofP touches a vertex ofQ, or the
segment connecting two points of contact (betweenP andQ) is normal to the edge of
P or Q involved in one of these contacts. See [27] for details. Fig. 2 illustrates several
degeneracies (i.e., placements not in general position).

We triangulateQc, the complement ofQ, using Steiner points if necessary, so that
the degree of each vertex in the triangulation is bounded by a constant; such a triangu-
lation can be constructed, e.g., by computing the vertical decomposition ofQc and by
triangulating each trapezoid of the vertical decomposition. From now on we assume, for
technical reasons, thatQc is the union ofn pairwise disjoint open triangular obstacles,
some of which may be unbounded. Note that the newn is larger than the originaln
by only a constant factor. Also observe that replacing general polygonal obstacles with
disjoint open triangles adds zero-width “passages” toQ. However, it does not affect the
free configuration spaceC in any significant way, as long asP has nonempty interior.

We useP(Z) to denoteP at a placementZ. We define acontactto be a triple(e, v,1),
wheree is an edge of the obstacle1 andv is a vertex ofP, or e is an edge ofP andv
is a vertex of1.1 In the former case there is a unique contact triple corresponding to a
physical contact ofv ande, and in the latter case, since each vertex ofQ is incident to
O(1) triangular obstacles, there are onlyO(1) contact triples corresponding to such a
physical contact. The total number of contacts is thereforeO(mn). If 1 is not important
or is obvious from the context, we omit1. A placementZ of P involvesa contact
(e, v,1) if the vertexv lies on the edgeewhenP is placed atZ. Z is calledlocally free
if P(Z) does not intersect1.

We present a randomized algorithm for computing the boundary∂C of the free con-
figuration spaceC. More precisely, we compute each connected component of∂C, de-
compose it intoxy-monotone patches, and represent each patch as a planar map, using
any standard representation (see, e.g., [32] and [38]). The expected running time of the
algorithm isO(mnλ6(mn) logmnlogn) and is thus close to the the worst-case complex-
ity bound forC. As usual for this type of algorithm, the expectation is over the random

1 Unlike Leven and Sharir [27], we include1 in the definition of a contact because a vertex may be shared
by several triangular obstacles, and we prefer to regard(e, v,11) and(e, v,12), wherev is a common vertex
of 11 and12, as two different contacts (especially while analyzing the running time of the algorithm), even
though, geometrically, they correspond to the same contact.

206 P. K. Agarwal, B. Aronov, and M. Sharir

choices made by the algorithm, for any fixed input, and not over any assumed distribution
of the input data.

2.1. Overall Approach

Our algorithm is based on the following approach. For each (open) triangular obstacle
1, let K (1) denote the set offorbiddenplacements ofP at which it intersects1. These
are open sets, andC is the complement of their union, so it suffices to compute the
boundary of the unionK = ⋃1 K (1). For each obstacle10, we compute the faces of
∂K that lie in∂K (10), and then patch these faces together to construct∂K . This leads
to the following simple high-level description of our algorithm: Fix an obstacle10,
and compute the intersectionsA(1) = K (1) ∩ ∂K (10), for every obstacle1 6= 10.
Construct the two-dimensional union of the setsA(1), and form its complement within
∂K (10). This complement is exactly the portion of∂K that is contained in∂K (10). After
applying this procedure to all obstacles10, we have computed all the two-dimensional
faces of∂C and the edges and vertices incident to them. Thus for each facef of ∂C, we
have the list of all faces adjacent tof . We can glue together these faces, by performing a
depth-first search on the graph dual to∂C, to obtain an appropriate discrete representation
of the entire boundary ofK , and thus also of∂C. We omit the details concerning the
gluing process, since they are straightforward and have been described earlier, see, e.g.,
[23] and [38]. Note that this approach does not identify which connected component
of C is adjacent to each face ofC. We show in Section 3.2 that we can compute this
information in an additionalO(mnλ6(mn) logmn) time.

We now describe in detail how to compute∂K (10). Note that∂K (10) consists of all
(free or nonfree) placements ofP at which its boundary makes a locally free contact
with ∂10. We partition∂K (10) into O(m) patches so that the same locally free contact
(e, v,10) is made for all placements ofP within each patch. The boundary of each
patch corresponds to placements at whichP makes simultaneously two (locally free)
contacts with10; here we regard a vertex ofP touching a vertex of10 or an edge of
P overlapping an edge of10 as “double” contacts. If a patch is notxy-monotone, we
further partition it into a constant number ofxy-monotone patches. This allows us to
use the(x, y)-coordinate system when manipulating objects contained in a patch. Such
a partition is easy to obtain inO(m) time. We refer to the resulting patches ascontact
surfaces. It is easily checked that a contact surface has constant description complexity,
in the sense that each patch is a portion of an algebraic surface of bounded degree and
its boundary consists ofO(1) algebraic arcs of bounded degree.

Repeating the process for every choice of10, we obtain a collection ofO(mn)
two-dimensional contact surfaces. For each such surfaceπ ⊂ ∂K (10), we compute
the intersections1π = π ∩ K (1), for all obstacles1 6= 10, and constructAπ =
π\(⋃16=10

1π), the complement of their union withinπ .2 If π represents contacts of

2 If two obstacles11,12 share a vertexv, then for an edgee ∈ P, we have two contacts(e, v,11) and
(e, v,12). Letπ1 ⊆ ∂K (11) andπ2 ⊆ ∂K (12) denote the corresponding contact surfaces, and letπ denote
the set of all placements at which the edgee of P touches the vertexv. Thenπ1, π2 ⊆ π . Although the two
contact surfaces may not be identical, it is easily seen thatAπ1 = Aπ2, so it suffices to compute only one of

Motion Planning for a Convex Polygon in a Polygonal Environment 207

an edgee and a vertexv, then Aπ corresponds to placements at whichv is in contact
with e andP does not intersect the interior of any obstacle. (As noted earlier, this holds
independently of the triangle10 containingeorv. Hence, for convenience, we denote the
above contact surface simply asπe,v, with the corresponding triangle10 being implicit
in this notation.) Gluing these complements together will give us∂K , as above. We refer
to the sets1π asvirtual π -obstacles.

Let π = πe,v be a fixed contact surface. We can parametrizeπ by (ρ, tan(θ/2)),
whereρ measures the displacement alongeof its contact withv andθ is the orientation
of P. For an obstacle1, constructing1π is easy: Note that, for any fixedθ , the locus
of placements contained in1π with orientationθ is a line segment. (Indeed, the only
motion available forP in this set is translation parallel toe; the set of such translations at
which the two convex polygonsP and1 intersect is a line segment.) The combinatorial
nature of an endpoint of this segment (i.e., the pair of features whose contact defines
the endpoint) changes at only those orientations at which either (a) the line parallel toe
through some vertex ofP passes through some vertex of1, or (b) an edge ofP becomes
parallel to an edge of1. There areO(m) such orientations and there are onlyO(1)
changes in the structure at each such orientation, so∂1π consists ofO(m) arcs. As
shown in [34], each such arc is a section of an algebraic curve of degree at most 4.1π

can easily be computed inO(m logm) time by sorting and processing these orientations
in increasing order. The total time needed to produce the sets1π , over all1, is thus
O(n) × O(m logm) = O(mnlogm). The above arguments imply that each1π is θ -
monotone (in the coordinate frame representingπ). However,1π need not be connected.
Indeed, it can have as many asÄ(m) components in the worst case; see Fig. 3.

2.2. Computing Aπ

We fix a triangular obstacle10 and computeAπ = π\(
⋃
16=10

1π) using a randomized
divide-and-conquer approach. We randomly divide the set of virtualπ -obstacles into
two equal subsets (so that every such partition occurs with equal probability), recursively
compute the complements of their two unions inπ , denoted byA1, A2, and compute
Aπ = A1∩ A2 using a standard sweep-line procedure. Since the boundaries of obstacles
are not disjoint, the edges ofA1 andA2 may overlap, so extra (albeit standard) care needs
to be taken to handle degeneracies while computingA1∩ A2 by a sweep-line algorithm.
We assume, as is standard, an appropriate model of computation, in which various basic
operations on the arcs forming the boundaries of the virtual obstacles (such as intersecting
a pair of such arcs) can be performed inO(1) time. If an edge ofA1 crosses an edge of
A2, then their crossing point is a vertex ofA1∩ A2; and if an edge ofA1 overlaps an edge
of A2, then the endpoints of their overlap are vertices ofA1 or A2, so the total time spent
in the divide and merge steps isO((|Aπ | + |A1| + |A2|) logmn), where|Aπ |, |A1|, and
|A2| are the numbers of vertices of these respective sets. Letκπ denote the total number
of vertices in all the intermediate unions of all recursive subproblems produced by the

them. If two obstacles11, 12 share an edgee andv is a vertex ofP, 11 and12 lie on opposite sides ofe,
so there are no locally free placements that realize contacts(e, v,11) and(e, v,12), so there is no need to
process the corresponding contact surface.

208 P. K. Agarwal, B. Aronov, and M. Sharir

Fig. 3. 1π may consist ofÄ(m) connected components.P is a sector of a regular polygon centered atv;
1 is placed at a distance frome which is between the radii of the inscribed and circumscribed circles of the
polygon, ande is relatively short, so thatP cannot be slid alonge and then rotated so that a different edge is
facing up, without overlapping1.

algorithm. (If a vertex appears ink intermediate unions, then we count itk times.) The
total time to computeAπ , for a fixedπ , including the time spent in computing the virtual
π -obstacles, isO((mn+ κπ) logmn).

Applying this procedure to each of theO(mn) contact surfaces independently and
gluing the results together, we construct∂K in time O((m2n2+∑π κπ) logmn), where
the summation is taken over all contact surfaces. We prove in Section 2.3 that the expected
value of

∑
π κπ is O(mnλ6(mn) logn), which implies that the expected running time of

the overall algorithm isO(mnλ6(mn) logmnlogn). Hence, we can conclude:

Theorem 2.1. Given a convex polygon P with m edges and a polygonal environment
Q with a total of n edges, we can compute the boundary of the entire free configuration
spaceC by a randomized algorithm in expected time O(mnλ6(mn) logmnlogn).

2.3. Bounding the Expected Value of
∑

π κπ

In this section we prove that the expected value of
∑

π κπ is O(mnλ6(mn) logn). For
simplicity, assume thatn, the total number of triangular obstacles, is of the form 2h + 1
for some integerh. Any vertexζ that can appear on an intermediate unionU produced
by the algorithm, while computingAπ for some contact surfaceπ = πe,v, is either an
endpoint of an edge of a virtualπ -obstacle or an intersection of the boundaries of some
pair of virtualπ -obstacles. There are a total ofO(m2n2) vertices of individual virtualπ -
obstacles, and each of them may be countedO(logn) times in

∑
π κπ (once at each level

of recursion). Therefore it suffices to bound the number of intersection points between

Motion Planning for a Convex Polygon in a Polygonal Environment 209

Fig. 4. A triple-contact vertex.

the boundaries of virtual obstacles. Letζ be such an intersection point. Supposeπ is a
portion of∂K (10) for some obstacle10. Thenζ represents a placement ofP at which
the following conditions hold:

(a) P makes three simultaneous contacts with the obstacle boundaries, one of which
is the contact(e, v,10) definingπ and no two contacts involve the same edge–
vertex pair;

(b) P is disjoint from the union of all the obstacles1 whose corresponding virtual
π -obstacles participate inU and there is no other placement in a sufficiently small
neighborhood ofζ that satisfies the same three contacts; and

(c) P is disjoint from10.

Conditions (b) and (c) imply thatP is openly disjoint from the three obstacles involved
in the three contacts thatP makes.

A triple-contact vertexζ is a quadruple(Z,C1,C2,C3), whereZ is a (not necessarily
free) placement ofP at which∂P makes three simultaneous (vertex–edge or edge–vertex)
contactsC1,C2, andC3, each involving a distinct edge–vertex pair, andP is locally free
in the sense that it does not intersect the obstacles corresponding to the three contacts
and that noZ′ in a sufficiently small neighborhood ofZ satisfies the same property. See
Fig. 4. Since the degree of each vertex ofQ is bounded by a constant, each placement
Z gives rise toO(1) triple-contact vertices. If the actual contacts are not important, we
will not distinguish betweenζ and the corresponding placementZ of P. We say that
a triple-contact vertexζ haslevel k (with respect to the full collection of obstacles) if
removal of somek other obstacles (not containing the at most three that participate in the
triple contact) causesζ to become a free placement, relative to the remaining obstacles,
and no set of fewer thank obstacles has this property. Note that level-0 vertices are
exactly the triple-contact vertices ofC.

If two contacts in a triple-contact vertex are formed by the same obstacle1i , then
an edge ofP must overlap an edge of1i at the corresponding placement, or a vertex
of P must coincide with a vertex of1i . It is easily checked that the total number of
such placements, regardless of their level, isO(m2n2) and that each of them is counted
O(logn) times in

∑
π κπ . In what follows we therefore consider only those triple-contact

vertices at which each of the three contacts is made by a different obstacle.

210 P. K. Agarwal, B. Aronov, and M. Sharir

Let Fk denote the number of level-k (triple-contact) vertices for the givenP andQ.
For a level-k vertexζ , let pk denote the expected number of recursive subproblems of
any size that containζ in their output (we momentarily prove an upper bound onpk that
does indeed depend only onk and not on the choice ofζ). Then the expected value of∑

π κπ is easily seen to be

E

[∑
π

κπ

]
=

n−3∑
k=0

Fk pk.

We first obtain a bound onpk. Fix a triple-contact vertexζ that appears on the
boundary of free configuration space with respect to the three obstacles defining the
triple contact. Supposeζ is a vertex at levelk, with respect to the full set of obstacles.
Note that, throughout its execution, the algorithm encounters sets of virtual obstacles
of cardinality 2i , for i = 0, . . . , h. Fix one suchi . We bound the probability thatζ
occurs during the execution of the algorithm, for any contact surface, while processing
subproblems involvingr = 2i obstacles. The previous discussion implies thatζ lies at
the intersection of three contact surfaces. Fix one of these contact surfacesπ . Thenζ
appears in some fixed subproblem involvingr obstacles in the construction carried out
within π if and only if theser obstacles include the other two obstacles definingζ and
do not include any of thek obstacles that “cover”ζ . Since every set ofr obstacles not
containing the obstacle inducingπ has the same probability of being the set of input
obstacles to our fixed subproblem, the probability ofζ appearing in the output of the
subproblem is

(n−3−k
r−2

)
/
(n−1

r

)
. (Recall that we ignore vertices that are determined by fewer

than three obstacles; these vertices appear as vertices of some virtualπ -obstacle, so we
already have a bound on their number, as above.) Thus the expected contribution of a
level-k vertexζ to the output size of all subproblems during a run of the algorithm is

pk ≤
h∑

i=0

3 · 2h−i

(n−3−k
2i−2

)(n−1
2i

) .

Here we used the fact thatζ may appear in the construction in each of the three different
contact surfaces that defineζ , and that, in any fixed recursive construction withinπ ,
there are 2h−i subproblems involving 2i obstacles each. Hence,

E

[∑
π

κπ

]
≤

n−3∑
k=0

(
Fk

h∑
i=0

3 · 2h−i

(n−3−k
2i−2

)(n−1
2i

))

=
h∑

i=0

3 · 2h−i
n−3∑
k=0

(n−3−k
2i−2

)(n−1
2i

) Fk . (1)

To bound this sum, we letG(r) denote the expected number of level-0 vertices forP
in an environment obtained by picking a random sample ofr of then triangular obstacles,
where any subset ofr obstacles is chosen with equal probability. We expressG(r) in
terms of F1, F2, . . . , Fn−3. What is the probability that a level-k vertexζ defined by
three contacts, as above, is counted inG(r)? In other words, what is the probability that
it corresponds to a vertex of the free configuration space, in the environment defined

Motion Planning for a Convex Polygon in a Polygonal Environment 211

by r randomly selected obstacles? It is defined by three obstacles and “covered” byk
other obstacles, so, arguing as before, the probability is

(n−3−k
r−3

)
/
(n

r

)
. Thus, the expected

number of free triple-contact vertices arising in ther -sample is

G(r) =
n−3∑
k=0

(n−3−k
r−3

)(n
r

) Fk.

Puttingr = 2i + 1, we obtain

G(2i + 1) =
n−3∑
k=0

(n−3−k
2i−2

)(n
2i+1

) Fk = 2i + 1

n

n−3∑
k=0

(n−3−k
2i−2

)(n−1
2i

) Fk . (2)

Substituting (2) into (1), we obtain

E

[∑
π

κπ

]
≤

h∑
i=0

3 · 2h−i n

2i + 1
G(2i + 1)

= O(n2) ·
h∑

i=0

G(2i + 1)

2i (2i + 1)
.

Recall that each placement ofP gives rise toO(1) triple-contact vertices, soG(2i + 1)
is proportional to the combinatorial complexity of the free configuration spaceC for P
moving amidst 2i + 1 obstacles, which, as noted above, is known to beO(2i mλ6(2i m))
[27]. Therefore

E

[∑
π

κπ

]
= O(n2) ·

h∑
i=0

2i mλ6(2i m)

2i (2i + 1)
= O(mnλ6(mn) logn),

as claimed.

Remark. As mentioned in the Introduction, our approach is quite general and can be
extended to compute the union of a family of three-dimensional regions in many other
cases. For example, letP = {P1, . . . , Pk} be a collection ofk convex polyhedra inR3

with a total of n faces. We can use the same algorithm to compute the boundary of⋃
P as follows. For each faceπ of a polyhedronPi ∈ P, we first compute the set

Qπ = {π ∩ Pj | 1 ≤ j 6= i ≤ k}, and then computeπ\⋃ Qπ using the randomized
divide-and-conquer algorithm described above. Using essentially the same reasoning,
the total expected running time of the algorithm isO(k3 logn + nk logk log2 n) time.
This is a consequence of the fact, proven in [9], that the complexity of the union is
O(k3 + nk logk). If the polyhedra are obtained as Minkowski sums of somek disjoint
convex polyhedra with a common convex polyhedron, the boundary of the union can
be computed in randomized expectedO(nk logk log2 n) time, as the complexity of the
union is now onlyO(nk logk) [8], [9].

3. Motion-Planning Queries for P in Q

In this section we describe data structures that answer efficiently the following two types
of queries involvingP and the polygonal environmentQ:

212 P. K. Agarwal, B. Aronov, and M. Sharir

Free-placement query:Is a given placementZ of P free with respect toQ (i.e., does
Z ∈ C)? If Z is free, then, optionally, return also a placementZ′ that lies on∂C
directly aboveZ in the (+y)-direction (i.e., return the first placement at whichP
touches an obstacle as we translateP from Z in the(+y)-direction).

Motion-planning query: Given two placementsI and F of P, determine whether
there is a collision-free path forP insideQ from I to F (i.e., whetherI andF lie in
the same connected component ofC). If the answer is “yes,” then also return such a
path for P from I to F . The first part of the query (to determine only whetherF is
reachable fromI) is called areachability query.

Both types of queries call for a point-location data structure in the three-dimensional
spaceC. Since the topology ofC can be rather complicated, the known techniques, such
as the point-location data structure by Preparata and Tamassia [33], do not seem to
be directly applicable. We propose a different point-location data structure, tailored to
our application. We first describe the data structure for free-placement queries and then
extend it to answer reachability and motion-planning queries.

3.1. Free-Placement Queries

Let E be the set of obstacle edges (here we consider only the original edges of∂Q
and ignore the “inner passages” created by the triangulation ofQc). Recall thatP(Z)
denotesP at a placementZ. For a placementZ and for a subsetE′ ⊆ E, we define
Z′ = σ(Z, E′) to be the first placement at whichP intersects a segment ofE′ as we
translateP from Z in the (+y)-direction (Fig. 5); if P(Z) itself intersects an edge in
E′, thenσ(Z, E′) = Z. For a given placementZ, we aim to determine whetherZ is
free, and if the answer is yes, we also want to returnσ(Z, E). To simplify the analysis,
we assume thatQ is bounded, so thatσ(Z, E) always exists. IfQ is unbounded, we
artificially clip it within a sufficiently large square, so that all placements ofP at which
P touches an obstacle vertex lie inside the square, and add the top edge of the square
to E.

Fig. 5. A placementZ of P andσ(Z, E).

Motion Planning for a Convex Polygon in a Polygonal Environment 213

Data Structure. We construct a segment treeT on thex-projections of the segments
in E. Each nodev ∈ T is associated with an intervalδv; let Wv = δv ×R be the vertical
strip erected onδv. Let p(v) denote the parent of a nodev. An interval I is stored at a
nodev if δv ⊆ I andδp(v) 6⊆ I . Let Ev ⊆ E be the set of segments corresponding to the
intervals stored at nodev, and letSv ⊆ E denote the set of segments having at least one
endpoint in the interior ofWv; we clip the segments ofSv andEv within Wv. We sort the
segments ofEv in the increasing order of their intercepts with any vertical line within
Wv, which is a well-defined order, since the endpoints of the (clipped) segments inEv
lie on the boundary ofWv and their relative interiors are pairwise disjoint. Note that a
segment can appear in setsSv of at mostO(logn) nodesv of T (the nodes lying on the
two paths ofT to the leaves whose strips contain the endpoints of the segment).

We construct two data structures onSv. The first structure answers line-intersection
queries, i.e., queries that determine whether a query line intersects any of the segments
in Sv. We dualize each segmente∈ Sv to a double wedge3 e∗, construct the arrangement
of the resulting double wedges, preprocess the arrangement for planar point-location
queries, and mark each face of the arrangement that is contained in at least one of the
double wedges. The size of this data structure isO(|Sv|2) and it can be constructed in
time O(|Sv|2 log|Sv|); see, e.g., [1]. A lineL intersects a segment ofSv if and only if the
point L∗ dual toL lies in a marked face. This can be determined inO(log|Sv|) time.

Next, we construct a two-level data structure onSv. For each segmente ∈ Sv, we
mark one of its endpoints; letAv be the set of these points. We preprocessAv into a
halfplane range-searching data structure, using the algorithm by Chazelle et al. [16]. Their
algorithm chooses a parameterr (greater than a constant specified by their algorithm)
and constructs a family ofcanonical subsetsof Av so that there areO((|Sv|/r j)2+δ)
canonical subsets of size betweenr j andr j+1, for any integer 1≤ j ≤ logr n; here
δ > 0 is an arbitrarily small constant. For a query lineL, Av can be partitioned into
O(logr n) canonical subsets so that all points within each canonical set lie on the same
side of L. This partition can be computed inO(logn) time. For each canonical set,
we construct the following second-level structure. LetAv,i be thei th canonical subset,
let Sv,i ⊆ Sv be the set of segments whose marked endpoints are inAv,i , and letVv,i
be the set of all endpoints of the segments inSv,i . We usez = tan(θ/2) to denote the
parametric representation of the orientation ofP. For each segmente ∈ Sv,i and for
every vertexp ∈ P, we define two partially defined bivariate functionsy = fe,p(x, z)
andy = ge,p(x, z) as follows: For a given pair(x0, z0) let y0 be they-value so that, at
the placementZ0 = (x0, y0, z0), the vertexp of P(Z0) lies in the relative interior ofe
andP(Z0) lies below(resp.above) the line containinge. If y0 exists, then it is unique,
and we puty0 = fe,p(x0, z0) (resp.y0 = ge,p(x0, z0)); otherwise, fe,p(x0, z0) (resp.
ge,p(x0, z0)) is undefined; See Fig. 6(i) for an illustration to the definition offe,p(·, ·).
Next, for each endpointξ of a segmente in Sv,i and for every edgeγ of P, we define
two functions fξ,γ (x, z) andgξ,γ (x, z) as follows. For a given pair(x0, z0), let y0 be
the y-value so that at the placementZ0 = (x0, y0, z0), the vertexξ lies onγ and both

3 In the duality that we use, the dual of a pointp(a,b) is the linep∗ : y = −ax+ b and the dual of a line
L : y = αx+ β is the pointL∗(α, β). The dual of a segmente= pq is the double wedge formed by the lines
p∗ andq∗ that does not contain the vertical line passing through the intersection point ofp∗ andq∗ (which is
the point dual to the line supportinge).

214 P. K. Agarwal, B. Aronov, and M. Sharir

Fig. 6. (i) y0 = fe,p(x0, z0); fe,q(x0, z0), fe,r (x0, z0) are not defined. (ii)y1 = fξ,γ (x1, z1); fζ,γ (x1, z1) is
not defined.

obstacle edges incident toξ lie above(resp.below) the line supportingγ . If y0 exists,
then it is unique and we sety0 = fξ,γ (x0, z0) (resp.y0 = gξ,γ (x0, z0)); otherwise the
respective functions are undefined. See Fig. 6(ii) for an illustration to the definition of
fξ,γ (·, ·). We compute the lower envelopeFv,i of

{ fe,p | e∈ Sv,i and p a vertex ofP} ∪ { fξ,γ | ξ ∈ Vv,i andγ an edge ofP}
and the upper envelopeGv,i of

{ge,p | e∈ Sv,i and p a vertex ofP} ∪ {gξ,γ | ξ ∈ Vv,i andγ an edge ofP}.

These envelopes can be computed and preprocessed inO((m|Sv,i |)2+δ) time, for any
δ > 0, for point location, so that, for any given pair(x0, z0), Fv,i (x0, z0) andGv,i (x0, z0)

can be computed inO(logmn) time [4]. We store these envelopes as the secondary
structures of thei th canonical subset. Choosingr = nδ and summing the complexity of
these envelopes over all canonical subsets, the total size of the two-level data structure
constructed onSv is O((m|Sv|)2+δ). Summing over all nodes of the segment tree, the
overall size of the data structure isO((mn)2+δ), for slightly larger but still arbitrarily
smallδ > 0. The total time spent in constructing these structures isO((mn)2+δ).

Answering a Query. The query procedure determines whetherZ0 is a free placement.
If the answer is “yes,” then it also returnsσ(Z0, E), the placement that lies on∂C directly
aboveZ0 in the(+y)-direction.

Let Z0 = (x0, y0, z0) be a query placement. We can determine inO(logm) time the
leftmost and rightmost vertices,` andr , of P(Z0). We can test inO(logn) time whether
` lies inside an obstacle. If so, we can conclude thatZ0 is not a free placement. We can
thus assume that̀lies in Q. We use the following simple lemma to answer the query.

Lemma 3.1. Let Z0 be a placement so that P(Z0) does not lie completely inside Qc.
If P(Z0) intersects(resp. touches) an obstacle, then there exists a nodev in the segment

Motion Planning for a Convex Polygon in a Polygonal Environment 215

tree T so that at least one of` and r lies in Wp(v) and(at least) one of the following two
conditions is satisfied:

(i) P(Z0) intersects(resp. touches) a segment of Ev, or
(ii) ` and r do not lie in Wv and P(Z0) intersects(resp. touches) a segment of Sv.

Proof. SupposeP(Z0) intersects an obstacle. SinceP(Z0) 6⊆ Qc, there must exist an
obstacle edgee that intersects∂P(Z0). Let ξ be an intersection point ofe and∂P(Z0),
and letu be the leaf ofT whose stripWu containsξ . Letw be the unique ancestor ofu so
thate ∈ Ew. If ` or r lies in Wp(w), then condition (i) holds withv = w. Otherwise, let
z be the lowest ancestor ofw such thatWp(z) contains one of̀ or r . Sincez is a proper
ancestor ofw, we havee∈ Sz. Hence condition (ii) holds in this case withv = z.

Let V1 = {v ∈ T | ` ∈ Wp(v) or r ∈ Wp(v)} andV2 = {v ∈ V1 | `, r 6∈ Wv}. The
above lemma suggests that, to test whetherP(Z0) is free, it suffices to searchEv for
all v ∈ V1 and Sv for all v ∈ V2. Note that|V2| ≤ |V1| = O(logn). For each node
v ∈ V1, we test whetherP(Z0) intersects a segment ofEv. We first compute the left
and right endpoints,̀∗ andr ∗, respectively, of the portion of the segment`r insideWv.
We determine inO(logn) time the segmentsè ,er of Ev lying immediately abovè
andr , respectively. Ifè 6= er , then`∗r ∗, and thereforeP(Z0), intersects an obstacle
edge and we stop (see Fig. 7 (i)). Otherwise,`∗r ∗ does not intersect any segment ofEv.
We pute = è = er and determine inO(logm) time a vertexξ ∈ P(Z0) ∩Wv on the
top boundary ofP(Z0) ∩ Wv that touches the supporting line ofP(Z0) ∩ Wv parallel
to e. If ξ lies abovee, thenP(Z0) intersectse and thereforeZ0 is not a free placement.
Similarly we can determine inO(logm) time whetherP(Z0) intersects the segment of
Ev lying immediately beloẁ ∗r ∗. If P(Z0) does not intersect these segments ofEv,

Fig. 7. (i) è 6= er at a nodev ∈ V1. (ii) P(Z0) does not intersect any segment ofEv at a nodev ∈ V1.
(iii) P(Z0) does not intersect any segment ofSv,i at a nodev ∈ V2.

216 P. K. Agarwal, B. Aronov, and M. Sharir

it avoids all segments ofEv (clipped withinWv). We can then determine inO(1) time
the placementZv = (x0, y1, z0) so that the vertexξ of P(Zv) touchese (see Fig. 7(ii));
if there is no such placement,y1 is set to+∞. It is easily seen thatZv = σ(Z0, Ev),
providedP(Z0) does not intersect any (clipped) segment ofEv. Repeating this step for
all nodes ofV1, we can determine inO(logmnlogn) time whetherP(Z0) intersects any
segment of

⋃
v∈V1

Ev; if it does not, then we also obtainZ1 = σ(Z0,
⋃
v∈V1

Ev).
Next, for each nodev ∈ V2, we test whetherP(Z0) intersects any segment ofSv.

We first determine inO(logn) time whether the lineL supporting the segment̀r
intersects any segment ofSv, using the line-intersection data structure. SinceL ∩Wv =
`r ∩Wv ⊂ P(Z0) ∩Wv, we conclude that ifL intersectsSv, thenZ0 is not free, so we
stop immediately. Otherwise, we query the halfplane range-searching data structure with
L. Let Sv,i be one of theO(1) canonical subsets of the query output (see Fig. 7(iii)).

Lemma 3.2. Let Z0 be a placement as above. If a canonical subset Sv,i lies above(resp.
below) L, then P(Z0) intersects some(clipped) segment of Sv,i if and only Fv,i (x0, z0) <

y0 (resp. Gv,i (x0, z0) > y0).

Proof. SupposeSv,i lies aboveL. First assume thatP(Z0) does not intersect any
segment ofSv,i . Letebe a segment ofSv,i andp a vertex ofP so that theirx-projections
intersect at placementZ0 of P. If P(Z0) does not intersectSv,i , thene lies abovep at
placementZ0, i.e., fe,p(x0, z0) ≥ y0. Similarly, if ξ is an endpoint ofSv,i andγ an edge
of P so that theirx-projections intersect at placementZ0, then fξ,γ (x0, z0) ≥ y0. Hence,
Fv,i (x0, z0) ≥ y0.

Next, assume thatP(Z0) intersects a segmenteof Sv,i . Then either one of the endpoints
ξ of e lies insideP or a vertexp of P lies abovee. In the former case,fξ,γ (x0, z0) < y0,
whereγ is the edge ofP lying vertically aboveξ ; while in the latter case,fe,p(x0, z0) <

y0. This completes the proof of the lemma.

In view of the above lemma, we can determine inO(logmn) time whetherP(Z0)

intersects any segment ofSv,i . If P(Z0) does not intersect any segment ofSv,i , then
(x0, Fv,i (x0, z0), z0) = σ(Z0, Sv,i). Repeating this procedure for all canonical sets of
the query output and for all nodesv ∈ V2, we can determine inO(logmnlogn) time
whetherP(Z0) intersects any segment of

⋃
v∈V2

Sv. If it does not, we also obtainZ2 =
σ(Z0,

⋃
v∈V2

Sv). Now σ(Z0, E) is the lowest ofZ1 andZ2.
The query time can be improved toO(logmn) by constructing the segment tree with

a larger fan-out, e.g., as described in [16], without increasing the asymptotic size and
preprocessing time. Omitting the technical details of this improvement, we summarize
the analysis in the following theorem:

Theorem 3.3. Given a parameterε > 0, a convex polygon P with m edges, and a
polygonal environment Q with a total of n edges, we can preprocess P and Q in time
O((mn)2+ε) into a data structure of size O((mn)2+ε), so that we can determine in
O(logmn) time whether a given placement Z0 is free. If Z0 is free, we can also compute
σ(Z0, E) within the same time bound, where E is the set of edges in Q.

Motion Planning for a Convex Polygon in a Polygonal Environment 217

3.2. Reachability and Motion-Planning Queries

Returning to the original motion-planning query problem, we show that the data structure
given above and the algorithm described in Section 2 can be used to answer reachability
queries efficiently. The idea is to “retract”C onto a one-dimensional network connecting
the vertices ofC and reduce the motion-planning problem to path planning in this network.
This retraction approach has been used extensively in the past for motion planning [11]–
[13], [31].

We preprocessP and Q for free-placement queries, using Theorem 3.3. Next, we
compute all the connected components of∂C, using the algorithm described in Section 2.
The algorithm computesAπ for each contact surfaceπ = πe,v, and then glues them
together. Actually, it computes a refinement∂C∗ of ∂C so that each two-dimensional
face of∂C∗ is x-monotone, which implies that there is a path along the edges of∂C∗
between any pair of vertices of the same connected component of∂C∗. We preprocess
(thexy-projection of) eachAπ for efficient planar point-location queries.

A natural choice for constructing the one-dimensional network is the 1-skeleton of
∂C∗, but it is not sufficiently connected to capture the connectivity ofC, because the
boundary of a connected componentCi of C need not be connected. LetAi be a connected
component of∂Ci , and letζi = (xi , yi , zi) be a point onAi with the maximumy-
coordinate. We callAi aninnercomponent of∂Ci if ζ+i = (xi , yi +ε, zi), for sufficiently
small ε > 0, lies inCi . We refer toζi as theapexof Ai ; see Fig. 8. IfAi is an inner
component, then we may assume that a vertexp of P touches a vertex ofQ at ζi , soζi

is either a vertex ofAi or a point of locally maximumy-coordinate on an edge ofAi .
Furthermore, atP(ζi) the reference pointo lies vertically above the contact vertexp,
i.e., the directed line segmentpo is parallel to they-axis and oriented upward. Hence,
there are onlyO(mn) apex placements.

Defineζ ′i = σ(ζi , E), whereE is the set of all obstacle edges, and letAj be the
connected component of∂C containingζ ′i . Obviously Aj also belongs to∂Ci . We can
computeζ ′i in O(mn) time using a naive procedure. Ifζi is not a vertex ofAi , we addζi as
a vertex ofAi and split atζi the edge ofAi containingζi . Similarly, we addζ ′i as a vertex
of Aj and split atζ ′i the edge, or the face, containingζ ′i . To split a facef , we pass through

Fig. 8. An apex placement.

218 P. K. Agarwal, B. Aronov, and M. Sharir

ζ ′i an arcγ that lies onf and is parallel to thexz-plane, extendγ in both directions until
it hits ∂ f , and split the edges off hit by γ at the hitting points. We also add the edge
(ζi , ζ

′
i) to the resulting network. We repeat this procedure for all inner components of∂C.

The total time spent in this step isO(m2n2). This step connects together all the boundary
components of each connected component ofC. Let ∂C∗∗ denote the resulting structure,
and letG denote the 1-skeleton of∂C∗∗. The following property ofG is obvious.

Lemma 3.4. If Z , Z′ are two vertices of the same connected component ofC, then Z
and Z′ belong to the same connected component of G.

We perform a depth-first search onG and identify and label all vertices that lie in the
same connected component ofG, so that we can determine inO(1) time whether two
given vertices ofG belong to the same connected component. Finally, we construct a
spanning forestT of G, so that for any two verticesζ, ζ ′ lying in the same connected
component ofG, we can return the path fromζ to ζ ′ in T in time proportional to its
length.

We now answer a reachability or a motion-planning query as follows. LetI =
(xI , yI , zI) and F = (xF , yF , zF) be two given placements. Using the free-placement
data structure, we first determine whether bothI andF are free. If so, we also compute
I ′ = σ(I , E) andF ′ = σ(F, E), and the contact surfacesπI andπF containingI ′ and
F ′, respectively. By locatingI ′ in AπI , we can determine inO(logmn) time the edge
eI that lies immediately aboveI ′ in the(+x)-direction. LetI ′′ be the point on the edge
eI whosey-coordinate isyI ′ , let γI be the arc fromI ′ to I ′′ lying in AπI and parallel to
thexz-plane, and letvI be an endpoint ofeI . Similarly, we computeeF , F ′′, γF , andvF

for the final placementF . Using Lemma 3.4, we can determine inO(1) time whether
vI andvF belong to the same connected component of∂C.

If vI andvF belong to the same component, we can also compute a path fromI to F .
Let5I be the path composed of they-vertical segmentI I ′, the arcγI , and the portion
of eI from I ′′ to vI . Define5F in an analogous manner. Finally, let5 be the path inG
from vI to vF . Then the path obtained by concatenating5I , 5, and5F is a path inC
from I to F . Hence, we obtain the following theorem.

Theorem 3.5. Given a parameterε > 0, a convex polygon P with m edges, and
a polygonal environment Q with a total of n edges, we can preprocess, in additional
O((mn)2+ε) time, the (already computed) spaceC of all free congruent placements of
P inside Q into a data structure of size O((mn)2+ε) so that, for any two query free
placements I and F of P, we can determine, in O(logmn) time, whether there exists a
collision-free motion of P from I to F. If one exists, we can return such a path in time
proportional to its complexity, which is at most O(mnλ6(mn)).

4. Finding the Largest Placement ofP insideQ

As mentioned in the Introduction, we use the parametric-searching technique of Megiddo
[29] (see also [5] and [7]) to compute a largest free similar placement ofP inside Q.
The parametric-searching paradigm requires an “oracle” procedure to determine, for a

Motion Planning for a Convex Polygon in a Polygonal Environment 219

given scaling factors > 0 of P, whetherCs, the free configuration space correspond-
ing to s P moving within Q, is nonempty. Using Theorem 2.1, we can obtain an oracle
that performs this task in expected timeO(mnλ6(mn) logmnlogn). An efficient im-
plementation of the parametric search, however, also requires aparallel implementation
of the oracle, in Valiant’s comparison model [39]. Fortunately, the algorithm provided
by Theorem 2.1 is easy to parallelize, because all recursive subproblems at the same
depth can be performed in parallel. In fact, the only part of this algorithm that does not
parallelize in a straightforward manner is the sweep-line procedure used in the merge
step, because the standard implementation of line-sweeping is inherently sequential. We
therefore perform the merge step in the parallel version using a different approach, based
on segment trees, such as the one used in Section 5 of [7]. As argued in [7], the merge
step requiresO(logmn) time usingO(mnλ6(mn) logmn) processors, under Valiant’s
model of computation.

Omitting all further details, we conclude that one can computeCs in O(logmnlogn)
parallel steps, usingO(mnλ6(mn) logmn) expected number of processors, in Valiant’s
comparison model. Megiddo [29] showed that if the sequential algorithm for the oracle
runs in timeTs and the parallel algorithm runs in timeTp using5 processors, then the
parametric searching takesO(Tp5+TsTp log5) time, provided that all the control-flow
decisions made by the parallel version can be expressed as sign tests of constant-degree
polynomials in the parameter whose critical value is being sought (the scaling factors,
in our case), or are independent of this parameter. Since this is the case for our algorithm,
we obtain the following result.

Theorem 4.1. Given a convex polygon P with m edges and a polygonal environment
Q with a total of n edges, we can compute a largest free placement of P inside Q in
randomized expected time O(mnλ6(mn) log3 mnlog2 n).

5. Concluding Remarks

In this paper we studied the motion-planning problem for a convexm-gon P inside a
polygonal environmentQ with a total ofn vertices. We presented an efficient algorithm
for computing the entire free configuration space, whose expected time complexity is
O(mnλ6(mn) logmnlogn), which is near optimal in the worst case. We applied the
algorithm to solve the following two problems:

(a) answering free-placement and motion-planning queries forP insideQ,
(b) finding a largest free placement ofP insideQ.

We conclude with two open problems:

1. What is the combinatorial complexity of the four-dimensional configuration space
of all free placements ofP in Q, when scaling is also allowed? Is it also near-
quadratic inmn? See the Introduction for the analogous result whenQ is convex.

2. Agarwal and Sharir [6] gave a randomized algorithm, withO(n3/2+ε) expected
running time, to find a placement of a longest segment that can be placed inside
a simplen-gon. Can one also obtain subquadratic algorithms for finding a largest

220 P. K. Agarwal, B. Aronov, and M. Sharir

placement of a segment inside an arbitrary polygonal environment, or for finding
the largest copy of a given triangle that can be placed inside a convex polygon?

References

1. P. K. Agarwal, Ray shooting and other applications of spanning trees with low stabbing number,SIAM J.
Comput. 21 (1992), 540–570.

2. P. K. Agarwal, N. Amenta, and M. Sharir, Largest placement of one convex polygon inside another,
Discrete Comput. Geom. 19 (1998), 95–104.

3. P. K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensions with applications,
SIAM J. Comput. 26 (1997), 1714–1732.

4. P. K. Agarwal, O. Schwarzkopf, and M. Sharir, Overlay of lower envelopes in three dimensions and its
applications,Discrete Comput. Geom. 15 (1996), 1–13.

5. P. K. Agarwal and M. Sharir, Algorithmic techniques for geometric optimization, in:Computer Science
Today: Recent Trends and Developments, (J. van Leeuwen, ed.), Lecture Notes in Computer Science,
vol. 1000, Springer-Verlag, Berlin, 1995, pp. 234–253.

6. P. K. Agarwal and M. Sharir, Efficient randomized algorithms for some geometric optimization problems,
Discrete Comput. Geom. 16 (1996), 317–337.

7. P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric searching in geometric optimization,
J. Algorithms17 (1994), 292–318.

8. B. Aronov and M. Sharir, On translational motion planning in 3-space,SIAM J. Comput. 26 (1997),
1785–1806.

9. B. Aronov, M. Sharir, and B. Tagansky, The union of convex polyhedra in three dimensions,SIAM J.
Comput. 26 (1997), 1670–1688.

10. F. Avnaim, J.D. Boissonnat, and B. Faverjon, A practical exact motion planning algorithm for polygonal
objects amidst polygonal obstacles,Proc.Workshop on Geometry and Robotics, Lecture Notes in Computer
Science, vol. 391, Springer-Verlag, Berlin, 1989, pp. 67–86.

11. S. Basu, R. Pollack, and M.-F. Roy, Computing roadmaps of semi-algebraic sets,Proc. 28th Ann. ACM
Symp. Theory of Computing, 1996, pp. 168–173.

12. J. Canny,The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, 1987.
13. J. Canny, Computing roadmaps in general semialgebraic sets,Comput. J. 36 (1993), 409–418.
14. B. Chazelle, The polygon containment problem, in:Advances in Computing Research, vol. 1

(F. P. Preparata, ed.), JAI Press, London, 1983, pp. 1–33.
15. B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, and J. Snoeyink, Computing a face in an arrangement

of line segments and related problems,SIAM J. Comput. 22 (1993), 1286–1302.
16. B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range searching and new

zone theorems,Algorithmica8 (1992), 407–429.
17. L.P. Chew and K. Kedem, A convex polygon among polygonal obstacles: placement and high-clearance

motion,Comput. Geom. Theory Appl. 3(2) (1993), 59–89.
18. K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II,Discrete Comput.

Geom. 4 (1989), 387–421.
19. M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental construction,Discrete

Comput. Geom. 14 (1995), 261–286.
20. S. Fortune, A fast algorithm for polygon containment by translation,Proc. 12th Internat. Colloq.

Automata, Languages and Programming, 1985, pp. 189–198.
21. L. Guibas, D. Knuth, and M. Sharir, Randomized incremental construction of Voronoi and Delaunay

diagrams,Algorithmica7 (1992), 381–413.
22. D. Halperin, L. E. Kavraki, and J.-C. Latombe, Robotics, in:Handbook of Discrete and Computational

Geometry(J. E. Goodman and J. O’Rourke, eds.), CRC Press, Boca Raton, FL, 1997, pp. 755–778.
23. D. Halperin and M. Overmars, Spheres, molecules, and hidden surface removal,Proc. 10th Ann. ACM

Symp. Computataion Geometry, 1994, pp. 113–122.
24. K. Kedem and M. Sharir, An efficient motion planning algorithm for a convex rigid polygonal object in

2-dimensional polygonal space,Discrete Comput. Geom. 5 (1990), 43–75.

Motion Planning for a Convex Polygon in a Polygonal Environment 221

25. K. Kedem, M. Sharir, and S. Toledo, On critical orientations in the Kedem–Sharir motion planning
algorithm for a convex polygon in the plane,Discrete Comput. Geom. 17 (1997), 227–239.

26. D. Leven and M. Sharir, An efficient and simple motion planning algorithm for a ladder moving in
two-dimensional space amidst polygonal barriers,J. Algorithms8 (1987), 192–215.

27. D. Leven and M. Sharir, On the number of critical free contacts of a convex polygonal object moving in
two-dimensional polygonal space,Discrete Comput. Geom. 2 (1987), 255–270.

28. D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-dimensional
space using generalized Voronoi diagrams,Discrete Comput. Geom. 2 (1987), 9–31.

29. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,J.Assoc.Comput.
Mach. 30 (1983), 852–865.

30. N. Miller and M. Sharir, Efficient randomized algorithms for constructing the union of fat triangles and
of pseudo-disks, Manuscript, 1991.

31. C.Ó’Dúnlaing, M. Sharir, and C. Yap, Generalized Voronoi diagrams for a ladder: II. Efficient construction
of the diagram,Algorithmica2 (1987), 27–59.

32. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York,
1985.

33. F.P. Preparata and R. Tamassia, Efficient point location in a convex spatial cell-complex,SIAM J. Comput.
21 (1992), 267–280.

34. J.T. Schwartz and M. Sharir, On the piano movers’ problem: I. The case of a rigid polygonal body moving
amidst polygonal barriers,Comm. Pure Appl. Math. 36 (1983), 345–398.

35. M. Sharir, Algorithmic motion planning, in:Handbook of Discrete and Computational Geometry(J. E.
Goodman and J. O’Rourke, eds.), CRC Press, Boca Raton, FL, 1997, pp. 733–754.

36. M. Sharir and P. K. Agarwal,Davenport–Schinzel Sequences and Their Geometric Applications,
Cambridge University Press, New York, 1995.

37. M. Sharir and S. Toledo, Extremal polygon containment problems,Comput. Geom. Theory Appl. 4 (1994),
99–118.

38. S. Sifrony and M. Sharir, A new efficient motion planning algorithm for a rod in two-dimensional polygonal
space,Algorithmica2 (1987), 367–402.

39. L. Valiant, Parallelism in comparison problems,SIAM J. Comput. 4(3) (1975), 348–355.

Received September9, 1997,and in revised form September24, 1998.

