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MOTION PLANNING FOR A NONLINEAR STEFAN PROBLEM

William B. Dunbar1, Nicolas Petit2, Pierre Rouchon2 and Philippe Martin2

Abstract. In this paper we consider a free boundary problem for a nonlinear parabolic partial dif-
ferential equation. In particular, we are concerned with the inverse problem, which means we know
the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order
to determine what the trajectories of the system should be for steady-state to steady-state boundary
control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic
nonlinearity. We prove convergence of a series solution and give a detailed parametric study on the
series radius of convergence. Moreover, we prove that the parametrization can indeed can be used for
motion planning purposes; computation of the open loop motion planning is straightforward. Simu-
lation results are given and we prove some important properties about the solution. Namely, a weak
maximum principle is derived for the dynamics, stating that the maximum is on the boundary. Also,
we prove asymptotic positiveness of the solution, a physical requirement over the entire domain, as the
transient time from one steady-state to another gets large.
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1. Introduction

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In
particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary
a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the
system should be for steady-state to steady-state boundary control.

The classical Stefan problem models a column of liquid in contact at 0 degrees with an infinite strip of ice, as
depicted in Figure 1. The problem is thoroughly explored in [1] and a catalogue of various problems reducing to
problems of the Stefan type is given in [14]. We investigate a modified Stefan problem that includes a diffusion
term and a nonlinear reaction term. This can be seen as a simple model of a chemically reactive and heat
diffusive liquid surrounded by ice, as considered under a more general form in [2].

Define (x, t) 7→ u(x, t) as the temperature in the liquid and t 7→ y(t) as the position of the liquid/solid
interface, given a position x and time t. The functions h(t) and ψ(x) are the temperatures at the fixed end
(x = 0) and at initial time (t = 0), respectively. The nonlinear Stefan problem is to determine a u(x, t) and y(t),
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Figure 1. The system under consideration: liquid phase governed by a nonlinear heat equation
with boundary control, in contact with an infinite solid phase.

given h(t) and ψ(x), that satisfy

ut = uxx − νux − ρu2, ∀(x, t) ∈ DT ,
u(0, t) = h(t) ≥ 0, 0 < t ≤ T
u(x, 0) = ψ(x) ≥ 0, 0 ≤ x ≤ y(0)
u(y(t), t) = 0, ux(y(t), t) = −ẏ(t), 0 < t ≤ T















(1)

where

DT ≡ {(x, t) : 0 < x < y(t), 0 < t ≤ T } ,

and the boundaries defined in the last three conditions are denoted in order as

BT ≡ {(0, t) : 0 < t ≤ T } ∪ {(x, 0) : 0 ≤ x ≤ y(0)} ∪ {(y(t), t) : 0 < t ≤ T } ≡ B1
T ∪B2

T ∪B3
T .

The notation ẏ(t) is the time derivative of y(t) and ν, ρ ≥ 0, T > 0. This model arises from a classical
energy balance. The equation ux(y(t), t) = −ẏ(t) expresses the fact that all of the heat energy arriving at
the liquid-solid interface is utilized in the melting process. In the model, the thermal conductivity coefficient
and a parameter equal to the product of the solid density and the latent heat of fusion are normalized to one.
Of course it is possible to use different values for these coefficients using changes of scales for x, t and u, as
described in [1] (p. 282).

As in [1], we refer to DT and BT as the parabolic interior and parabolic boundary, respectively. Figure 2
gives a graphical 2-D representation of the interior and boundary. The inverse problem and its solution are
stated here as a definition.

x

t

x=y(t)

B
T

D
T

T

0

Figure 2. Picture of parabolic interior and boundary for free boundary problem.

Definition 1.1. A solution of (1) for a known function y ∈ C∞[0, T ], with all derivatives known, is a function
u = u(x, t) defined in DT ∪ BT such that uxx, ut ∈ C(DT ), u is bounded, satisfies the conditions of (1)
and u ∈ C(DT ∪BT ).
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The inverse problem is precisely a non-characteristic Cauchy problem with Cauchy data: u(y(t), t) = 0,
ux(y(t), t) = −ẏ(t) [7]. Given y(t) and a solution u to the inverse problem, we have the initial profile ψ(x) and
the boundary control h(t), both of which must be non-negative according to (1). Physically, the temperature
everywhere in the liquid column should be non-negative; we will return to this point in the latter sections of
the paper.

The flatness approach [3, 4] for partial differential equations are a means of solving inverse problems. The
explicit parametrization of the trajectories of the systems is the key to straightforward motion planning strategies
that can incorporate optimization [11, 12].

Recent work on these parametrization include [9,10] where approximate controllability of any initial condition
to steady state is explored. The series expansion techniques used for heat equations have been used since the
work of Gevrey, while inverse problems have been addressed as early as the work by Hill [7]. Specifically, Hill
gives a complete solution to the inverse Stefan problem with a linear heat equation, i.e. ut = uxx. Recently
a nonlinear heat equation over a constant spatial domain, with a quadratic reaction term, was examined by
Rudolph and Lynch [10].

In this paper we combine the two issues: the free boundary (Stefan) problem with a quadratic nonlinearity.
Using the work in [10] as a starting point, we prove convergence of a series solution. Then a detailed parametric
study on the series radius of convergence is carried out. Moreover, we prove that the parametrization can indeed
can be used for motion planning purposes; computation of the open loop motion planning is straightforward.
Simulation results are given and we prove some important properties about the solution. Namely, a weak
maximum principle is derived for the equation in (1), stating that the maximum is on the boundary. Also, we
prove asymptotic positiveness of the solution, a physical requirement over the entire domain, as the transient
time from one steady-state to another gets large.

The Stefan problem we consider is a first step towards a more complex problem for multidimensional reaction-
diffusion systems investigated in [5], where three chemical species balance equations contain second order reac-
tion terms. Extension of our approach to a fourth order radiation term, i.e. the Stefan–Boltzmann condition,
is a subject for future work. A model with this condition arises in crystal growth furnaces, where a solid phase
is surrounded by an infinite liquid phase. Note that in our work, either phase may be modelled with equivalent
computations (after the appropriate sign changes). We feel the work presented here can highlight some of the
difficulties and challenges of problems that arise in motion planning for crystal growth models.

2. Series solutions and convergence

2.1. Outline

In Section 2.2 we establish a lower bound on the radius of convergence of a series solution, denoted η∗, that
depends upon the physical constants of the model ρ and ν. The radius η∗ also depends upon M and R, the
Gevrey constants of the function ẏ(t). The definition of a Gevrey function is given implicitly in Theorem 2.1
(and also in [8]), from which it is clear that the associated constants (M and R in this case) characterize the
aggressiveness of the trajectories of the system. In Section 2.3 we make use of several lemmas to construct
parametric expressions for lower bounds on the radius. Specifically, Lemma 2.4 allows us to bound η∗ from
below by a unique root to a quartic polynomial that depends only upon ρ, ν, R, where the root is compared
to M directly. In Lemma 2.5 we use a convexity argument to bound the root from Lemma 2.4 by an analytic
expression that also depends only upon ρ, ν, R. The two lemmas are then combined in Theorem 2.6 to give the
main result regarding convergence of the series solution; namely, the radius of convergence is bounded by an
analytic expression.

2.2. Series solution

Consider the series solution

u(x, t) =
∞
∑

n=0

an(t)

n!
[x− y(t)]n. (2)
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For the solution (2) to satisfy

ut = uxx − νux − ρu2, ∀(x, t) ∈ DT ,

the an(t) coefficients must satisfy the recurrence equation

an = ȧn−2 − an−1ẏ + νan−1 + ρ

n−2
∑

k=0

(

n− 2

k

)

an−2−k ak, n ≥ 2, (3)

with a0 = 0 (arising from the u(y(t), t) = 0 condition) and a1 = −ẏ (arising from the Stefan condition
−ux(y(t), t) = ẏ(t)). From (3) it is clear that given y(t), all the series coefficients an(t) and therefore the
temperature u(x, t) and boundary conditions h(t) and ψ(x) are uniquely determined.

By majorizing the series in (2), we will prove that this solution converges absolutely. We now state the first
of two main theorems in the paper. The proof makes use of two lemmas stated in the Appendix.

Theorem 2.1. Given that ẏ ∈ C∞[0, T ] is Gevrey of order (α− 1) for 1 ≤ α ≤ 2, i.e.

∃M,R > 0 such that

∣

∣

∣
y(l+1)(t)

∣

∣

∣
≤M

l!α

Rl
, ∀ l = 0, 1, 2, ...,∀t ∈ [0, T ]

the radius of convergence of the series has as a lower bound the unique positive root η = η∗ of the polynomial

(

ρM

2

)

η3 +

(

1

R

)

η2 +

(

ν +M

2

)

η − 1 = 0. (4)

Proof. By induction on n, we prove that for all n = 0, 1, 2, ..., the coefficients satisfy the bound

∣

∣

∣
a(l)

n (t)
∣

∣

∣
≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1
, ∀ l = 0, 1, 2, ..., (5)

for some A > 0. The coefficient a0 = 0 satisfies (5) trivially and we examine n = 1 as the base case, since the
recurrence is defined for n ≥ 2. Namely, for a1 = −ẏ,

∣

∣

∣
a
(l)
1 (t)

∣

∣

∣
=
∣

∣

∣
y(l+1)(t)

∣

∣

∣
≤M

l!α

Rl
≤ M

Rl
l!α(l + 1)α,

and the last inequality is strict when l > 0. By inductive hypothesis, we assume now that (5) holds for all
i = 0, 1, ..., n− 1 and prove that it must also hold for i = n. Taking an absolute value and l time derivatives
of (3), after the triangle inequality we have

∣

∣

∣
a(l)

n

∣

∣

∣
≤
∣

∣

∣
a
(l+1)
n−2

∣

∣

∣
+ ν

∣

∣

∣
a
(l)
n−1

∣

∣

∣
+

l
∑

m=0

(

l

m

)

∣

∣

∣
a
(l−m)
n−1

∣

∣

∣

∣

∣

∣
y(m+1)

∣

∣

∣
+ ρ

n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

∣

∣

∣
a
(r)
n−2−k

∣

∣

∣

∣

∣

∣
a
(l−r)
k

∣

∣

∣
. (6)

The first two terms in (6) can be majorized using (5) as

∣

∣

∣
a
(l+1)
n−2

∣

∣

∣
≤ MAn−3

Rl+n−2

(l + n− 1)!α

(n− 2)!α−1
=

MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

R

A2

(n(n− 1))α−1

(l + n)α

]

,

ν
∣

∣

∣
a
(l)
n−1

∣

∣

∣
≤ ν

MAn−2

Rl+n−2

(l + n− 1)!α

(n− 1)!α−1
=

MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

ν
R

A

nα−1

(l + n)α

]

·



MOTION PLANNING FOR A NONLINEAR STEFAN PROBLEM 279

The third term in (6) is majorized as

l
∑

m=0

(

l

m

)

∣

∣

∣
a
(l−m)
n−1

∣

∣

∣

∣

∣

∣
y(m+1)

∣

∣

∣
≤

l
∑

m=0

(

l

m

)

M2An−2

Rl+n−m−2Rm

(l + n−m− 1)!αm!α

(n− 1)!α−1

=
MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

MR

A

n!α−1

(l + n)!α
1

(n− 1)!α−1

l
∑

m=0

(

l

m

)

(l + n−m− 1)!αm!α

]

.

Using Lemma A.1 and Lemma A.2, we can bound the term

l
∑

m=0

(

l

m

)

(l + n−m− 1)!αm!α ≤
[

l
∑

m=0

(

l

m

)

(l + n−m− 1)!m!

]α

=

[

(n− 1)!(n+ l)!

n!

]α

,

resulting in

l
∑

m=0

(

l

m

)

∣

∣

∣
a
(l−m)
n−1

∣

∣

∣

∣

∣

∣
y(m+1)

∣

∣

∣
≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

MR

A n

]

·

The fourth (nonlinear) term in (6) is majorized as

ρ
n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

∣

∣

∣
a
(r)
n−2−k

∣

∣

∣

∣

∣

∣
a
(l−r)
k

∣

∣

∣
≤ ρ

n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

M2An−4

Rl+n−4

(n+ r − k − 2)!α(l + k − r)!α

(n− k − 2)!α−1k!α−1

≤ MAn−1

Rl+n−1

(l+n)!α

n!α−1

[

ρMR3

A3

n!α−1

(l+n)!α

n−2
∑

k=0

(

n−2

k

)

1

(n−k−2)!α−1k!α−1

{

l
∑

r=0

(

l

r

)

(n+r−k−2)!(l+k−r)!
}α ]

,

where the last inequality makes use of Lemma A.2. Using Lemma A.1 we have

n−2
∑

k=0

(

n− 2

k

)

1

(n− k − 2)!α−1k!α−1

{

l
∑

r=0

(

l

r

)

(n+ r − k − 2)!(l + k − r)!

}α

=

n−2
∑

k=0

(

n− 2

k

)

1

(n− k − 2)!α−1k!α−1

{

k!(n− k − 2)!(n+ l − 1)!

(n− 1)!

}α

=
n−2
∑

k=0

(

n− 2

k

)

(n− k − 2)! k!

{

(n+ l− 1)!

(n− 1)!

}α

=
n−2
∑

k=0

(n− 2)!

{

(n+ l− 1)!

(n− 1)!

}α

= (n− 1)(n− 2)!

{

(n+ l − 1)!

(n− 1)!

}α

=
(n+ l − 1)!α

(n− 1)!α−1
,

resulting in

ρ

n−2
∑

k=0

l
∑

r=0

(

n− 2

k

)(

l

r

)

∣

∣

∣
a
(r)
n−2−k

∣

∣

∣

∣

∣

∣
a
(l−r)
k

∣

∣

∣
≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

ρMR3

A3

n!α−1

(l + n)!α
(n+ l− 1)!α

(n− 1)!α−1

]

=
MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

ρMR3

A3 n

(

n

n+ l

)α]

·



280 W.B. DUNBAR, N. PETIT, P. ROUCHON AND P. MARTIN

Collecting the terms for (6) and noticing that for n ≥ 1, l ≥ 0, and α ≥ 0,
[

n
n+l

]α

≤ 1 holds, we have

∣

∣

∣
a(l)

n

∣

∣

∣
≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

R

A2

(n− 1)α−1

n
+

(ν +M)R

A n
+
ρMR3

A3 n

]

·

The terms in the square brackets are bounded as

max
n≥2, α∈[1,2]

(n− 1)α−1

n
=

(n− 1)1

n

∣

∣

∣

(n≥2)
≤ 1, max

n≥2

1

n
=

1

2
·

With these bounds, we have

∣

∣

∣
a(l)

n

∣

∣

∣
≤ MAn−1

Rl+n−1

(l + n)!α

n!α−1

[

1

R

(

R

A

)2

+
(ν +M)

2

(

R

A

)

+
ρM

2

(

R

A

)3
]

·

Given (M, R, ρ, ν), the parameter A is chosen such that

[

1

R

(

R

A

)2

+
(ν +M)

2

(

R

A

)

+
ρM

2

(

R

A

)3
]

= 1, (7)

implying that (5) is proven by induction. Using (5) and the Cauchy–Hadamard formula, the radius of conver-
gence is given by

1

lim supn→∞ |an/n!|1/n
≥
[

lim
n→∞

∣

∣

∣

∣

MAn−1

Rn−1

∣

∣

∣

∣

1/n
]−1

= lim
n→∞

R

A

[

A

MR

]1/n

=
R

A
·

Denoting this lower bound on the radius of convergence as η ≡ R/A and substituting into (7) yields (4).
Existence and uniqueness of the positive root η = η∗ are now proven. First, given (M, R, ν, ρ) > 0 define the
positive, analytic and strictly increasing function η 7→ f(η) as

f(η) =

(

ρM

2

)

η3 +

(

1

R

)

η2 +

(

ν +M

2

)

η. (8)

The positive root η∗ of the equation f(η∗)−1 = 0 exists and is unique since (f(·)−1)(η) is analytic and strictly
increases from −1 to +∞ as η grows from 0 to +∞.

Remark 2.2. We give here analytic expressions of the first five coefficients of the series (2) so one can see how
the successive derivatives of y appear

a1 = −ẏ
a2 = −ẏ(ν + ẏ)

a3 = −ÿ + ẏ3 − ν2ẏ

a4 = −ÿ(2ν + ẏ) − ẏ4 + νẏ3 + (ν2 + 2ρ)ẏ2 − ν3ẏ

a5 = −y(3) − 3ν2ÿ + ẏ5 − 2νẏ4 + 4ρẏ3 +
(

4ÿ + 2ν(ν2 + 4ρ)
)

ẏ2 + (νÿ2 − ν4)ẏ.
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2.3. Parameterizations of radius of convergence

This section is concerned with constructing parametric lower bounds on η∗. We first derive by an easy
calculation a lower bound that is suitable for most values of the physical parameters ρ and ν. This bound is
then complemented with another lower bound that is more tedious to derive but is less conservative for specific
values of the physical parameters, namely when ρ is large and ν is small.

The first bound is achieved using the following lemma:
Lemma 2.3. For all a, b, c strictly positive real parameters, the unique positive root η0 of

aη3 + bη2 + cη − 1 = 0

is lower bounded by

−c+
√

c2 + 4(a/c+ b)

2(a/c+ b)
·

Proof. The function η 7→ aη3 + bη2 + cη− 1 is analytic and strictly increases from −1 to +∞ as η grows from 0
to +∞. Define h1(η) = aη3 + bη2, h2(η) = 1 − cη. The graphs of h1 and h2 intersect at η0. Since h1 > 0
on ]0,+∞[ it is clear that η0 < 1/c.

On ]0, 1/c[ it is easy to check that h1(η) < (a/c + b)η2. On this interval h1 is a strictly increasing function
while h2 is strictly decreasing. Let η̂ be the unique positive root of (a/c+b)η2 = 1−cη we get that h1(η̂) < h2(η̂)
which yields η̂ < η0. Finally

η0 >
−c+

√

c2 + 4(a/c+ b)

2(a/c+ b)
· �

When a = ρM/2, b = 1/R and c = (ν +M)/2, it is clear that η0 corresponds to η∗.
The second lower bound is derived from the following lemmas:

Lemma 2.4. Given R, ν, ρ > 0, define the function (η,M) 7→ f(η,M) as

f(η,M) =

(

ρM

2

)

η3 +

(

1

R

)

η2 +

(

ν +M

2

)

η. (9)

Let M∗ be the unique positive root of f(M∗,M∗) = 1. Then, for any given M with 0 < M ≤ M∗, the root η∗

of f(η∗,M) = 1 satisfies η∗ ≥M∗.

Proof. The positive root M∗ of the equation f(M∗,M∗) − 1 = 0 exists and is unique since (f(·) − 1)(M,M)
is analytic and strictly increases from −1 to +∞ as M grows from 0 to +∞. Since f is a strictly increasing
function of η and M , f(η∗,M) = 1 = f(M∗,M∗) with M ≤M∗ implies that M∗ ≤ η∗.

From the lemma, M = M∗ is the unique positive root of the polynomial

(ρ

2

)

M4 +
1

2

(

R+ 2

R

)

M2 +
(ν

2

)

M − 1 = 0, (10)

giving a lower bound on the radius of convergence provided M ≤ M∗. The next lemma gives a strict lower
bound on M∗ using a convexity argument. Defining the functions

g1(M) = aM4 + bM2, g2(M) = 1 − cM, where a =
ρ

2
, b =

1

2

(

R+ 2

R

)

, c =
ν

2
,

and it is clear that g1(M
∗) = g2(M

∗). The functions, their intersection point M∗ and the line cdM are shown
in Figure 3, where d = g1(1/c) > 0.
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d

1

g1(M)

g2(M)

M*^M

cdM

1/c

Figure 3. Illustration of convexity argument for strict lower bound on M∗.

The point M̂ satisfies cdM̂ = g2(M̂), so after some algebra we have that

d =
a+ c2b

c4
, M̂ = [c(d+ 1)]

−1
=
[

c+ bc−1 + ac−3
]−1

.

Substituting in for the parameters and treating ν 7→ M̂(ν) as a function given (R, ρ), we have

M̂(ν) =

[

ν

2
+

4ρ

ν3
+
R+ 2

νR

]−1

· (11)

Lemma 2.5. Given R, ρ > 0 and defining ν̂ = argmaxν>0 M̂(ν), we have the following strict bounds on M∗

defined in Lemma 2.4:

M∗ > M̂(ν), for all ν ∈ [ν̂,+∞[

M∗ > M̂(ν̂), for all ν ∈ [0, ν̂[ .

Proof. We first compute ν̂ by taking the derivative of M̂ with respect to ν, yielding

dM̂(ν)

dν
= −M̂(ν)2

[

1

2
− 12ρ

ν4
− R+ 2

ν2R

]

·

Over the domain ν ∈]0,+∞[, M̂(ν) > 0 so setting the derivative to zero to find the extremum requires the
bracketed expression to be zero, which is equivalently

ν4 − 2(R+ 2)

R
ν2 − 24ρ = 0.

The unique positive solution to this squared-quadratic is

ν̂ =





(

R+ 2

R

)

+

[

(

R+ 2

R

)2

+ 24ρ

]1/2




1/2

. (12)

The second derivative at ν̂ is negative, verifying that the extremum is indeed a maximum. Observe that for all
R > 0 and ρ ≥ 0, ν̂ ≥

√
2. Also, ν̂ =

√
2 if and only if (R, ρ) = (+∞, 0). For a given (R, ρ) > 0, g1(M) is a

strictly convex function, i.e.

cdM > g1(M), ∀M ∈]0, 1/c[.
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It is clear that M∗ and M̂ are in the domain ]0, 1/c[. By the convexity of g1 then,

cdM∗ > g1(M
∗) = 1 − cM∗ ⇒ M∗ > [c(d+ 1)]

−1
= M̂(ν),

which holds for all ν ∈]0,+∞[. The trouble with M̂(ν) as a bound for M∗ over ν ∈ [0, ν̂[ is that as ν → 0,

M̂(ν) → 0 while M∗ is increasing up to the solution of the equation g2(M) = 1. Since we know M∗ > M̂(ν)
for ν = ν̂ and M∗ is increasing as ν decreases from ν̂ to 0, we can (conservatively) choose the lower bound

on M∗ to remain at the maximum M̂(ν̂) for all ν ∈ [0, ν̂[.

We now give the main analytic result of the paper regarding convergence of the proposed solution, making
use of the two lower bounds derived above.

Theorem 2.6. Given ν, ρ > 0 and assuming that ẏ ∈ C∞[0, T ] is Gevrey of order (α − 1) for 1 ≤ α ≤ 2, i.e.

∃M, R > 0 such that
∣

∣

∣
y(l+1)(t)

∣

∣

∣
≤M

l!α

Rl
, ∀ l = 0, 1, 2, ...,

the radius of convergence of the series (2) is greater than

η̂ =
−R(ν +M)2 +

√

R2(ν +M)4 + 16(ρMR2(ν +M) + R(ν +M)2)

4(ρRM + ν +M)
· (13)

Furthermore, if M∗ ≥M , M∗ given by (10), then the radius of convergence of the series (2) is greater than the

following quantities

M̂(ν), for all ν ∈ [ν̂,+∞[

M̂(ν̂), for all ν ∈ [0, ν̂[







(14)

where M̂ , ν̂ are given by (11), (12), respectively.

Proof. We get the first lower bound (13) from Lemma 2.3 where we make a = ρM/2, b = 1/R, c = (ν +M)/2.
From Theorem 2.1, η∗ is a lower bound on the radius of convergence. Since M∗ ≥M by assumption we can

apply Lemma 2.4, and with Lemma 2.5 we have

η∗ ≥M∗ > M̂,

giving the stated result in (14).

Remark 2.7. Let us here characterize the different lower bounds on the radius of convergence, given the
parameter values ρ, ν, M and R. Calculating η∗ numerically will of course result in the least conservative
bound. Of the two analytic lower bounds, equation (13) is less conservative than (14) for most values of the
physical parameters ρ and ν. Only when ρ is large and ν < ν̂ does (14) become less conservative. Specifically,

in that case, η̂ ∝ ρ−1/2 and M̂ ∝ ρ−1/4 and thus η̂ approaches zero faster than M̂ as ρ approaches infinity.
Numerical comparisons between these bounds are given in the simulation studies in Section 3.2.

3. Properties of solution application

The output domain is y : [0, T ] → R and we define y(t) = φ(t/T ). Then, given φ : [0, 1] → R with Gevrey
bounds

∃Mφ, Rφ > 0 such that
∣

∣

∣
φ(l+1)(t)

∣

∣

∣
≤Mφ

l!α

Rl
φ

, ∀ l = 0, 1, 2, ..., (15)
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and observing that

y(l)(t) =
1

T l
φ(l)(t/T ),

the Gevrey bounds on y(t) become,

∣

∣

∣
y(l+1)(t)

∣

∣

∣
≤ Mφ

T

l!α

(RφT )l
= M

l!α

Rl
, M ≡Mφ/T, R ≡ RφT.

Thus, given the function φ : [0, 1] → R, the conditions of Theorem 2.6 can be checked by substituting M = Mφ/T
and R = RφT .

In the following, we give numerical simulations and discuss theoretical properties about the results. The time
bound parameter T is shown to be important for guaranteeing desirable properties of the solution. Intuition
about the physical problem suggests that smaller T will require more aggressive trajectories for steady-state to
steady-state boundary control. Using the recurrence relation, we prove that as T grows we can approximate
the series solution to second order by an analytic expression. The expression guarantees that the temperature
profile in the liquid column remains above the thawing point of ice (0 degrees which is the temperature of the
interface).

3.1. Physical aspects of solution

The classical Stefan problem assumes the given initial profile satisfies ψ(x) ≥ 0 in B2
T and the boundary

control satisfies h(t) ≥ 0 in B1
T . In this case, from a Weak Maximum/Minimum Principle, the temperature

in DT never exceeds or drops below the temperature of the column on BT (see Sect. 1.6 in [1]). Thus, it is a
given that the temperature everywhere is non-negative since u ≥ 0 in BT .

For the inverse nonlinear problem, we are faced with guaranteeing that our solution satisfies this physical
requirement that the temperature in the liquid column never drops below the freezing point. The specific Gevrey
function chosen for ẏ(t) will be required to satisfy certain properties. In Section 17.2 of [1], y(t) is shown to be
an increasing function and strictly increasing if ψ or h are nonzero in every neighborhood of t = 0. Of course,
we cannot expect a converse-like result without a similar assumption imposed on y(t). Specifically we assume
that given any ǫ ∈]0, 1/2[,

ẏ(t) > 0, ∀t ∈ [T ǫ, T (1− ǫ)], (16)

and ẏ(t) = 0 ⇐⇒ t = 0 or t = T . Moreover, for steady-state behavior we assume that

y(0) = L, y(T ) = L+ ∆L, where L,∆L ∈ R
+, and y(m)(0) = y(m)(T ) = 0, ∀m = 1, 2, 3, ...

From (3), an(0) = an(T ) = 0, for all n = 0, 1, 2, ... As a result, u(x, 0) = u(x, T ) = 0. So u = 0 on the open
line ∂DT ≡ {(x, T ) : 0 < x < y(T )} and on B2

T and B3
T .

Proving that the temperature satisfies u(x, t) ≥ 0 for all (x, t) in DT − ∂DT and for all t in B1
T would

thus assure that u(x, t) ≥ 0 in DT ∪ BT . Given a Weak Minimum Principle, we could assure the same if we
proved u(x, t) ≥ 0 in B1

T . We do not establish a Weak Minimum Principle here. Instead we derive a Weak
Maximum Principle, that serves as a sanity check for numerical experiments (i.e. the interior temperature should
never exceed the maximum boundary temperature) and focus on a detailed analytic study. It is shown that
approximate steady-state to steady-state boundary control can guarantee non-negativeness of the temperature
in the entire domain.

3.2. Numerical simulations

For practical purposes of course the series solution (2) is truncated for implementation. Specifically, for y(t)
defined by the function given in Appendix B, we here take the first 10 terms to approximate the solution u(x, t).
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Steady-state to steady-state simulations are considered and so, as shown above, ψ ≡ 0. In Figure 4 we show
the temperature profile for T = 100, ρ = 1.5, ν = 0.5, L = 1, and L + ∆L = 2. For this case, we compute
η∗ = 2.1849, which guarantees convergence of the desired domain. To give a case where the more conservative,
analytic lower bounds (13) and (14) in Theorem 2.6 guarantee convergence, see Figure 5. For this temperature
profile, the parameters are T = 100, ρ = 1.2, ν = 0.5, L = 0.25, and L + ∆L = 0.5. The analytic expressions
yield η̂ = 2.5165 and M̂ = 0.50302. For this case, we also computed η∗ = 2.586 showing the conservatism
of (14) quantitatively.

The lower bounds on the radius of convergence can also be compared analytically as T becomes large. In
that case, η∗ and η̂ approach 2/ν, while M̂ approaches (ν/2 + 4ρ/ν3 + 1/ν)−1, again displaying the relative
conservatism of (14). In both simulations, the time bound T was chosen large enough such that the temperature
in the column remained non-negative. An asymptotic analysis of how large T needs to be to ensure non-
negativity is detailed in Section 3.4.
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Figure 4. Temperature profile for transition from column length 1 to 2.
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Figure 5. Temperature profile for transition from column length 0.25 to 0.5.



286 W.B. DUNBAR, N. PETIT, P. ROUCHON AND P. MARTIN

3.3. The Weak Maximum Principle (WMP)

A powerful tool for the study of linear initial-boundary-value problems is the Weak Maximum Principle [1].
We now state this tool as it applies to (1).

Theorem 3.1. For a solution u of ut = uxx − νux − ρu2 in a bounded DT , with ν, ρ ≥ 0, which is continuous

in DT ∪BT ,

max
DT ∪BT

u = max
BT

u.

Proof. The proof follows along the lines of the proof of the Weak Maximum Principle (Th. 1.6.1) for ut = uxx

given in [1]. From Definition 1.1, the value of u is bounded in DT ∪ BT and we denote this bound |u| ≤ U .
Define

v(x, t) = u(x, t) + ε exp[W (x− C)]

over DT ∪ BT , where ε, W > 0 and |y(t)| ≤ C ≡ L + ∆L. Then v assumes its maximum on BT . Otherwise,
there exists a point (x0, t0) ∈ DT such that

max
DT ∪BT

v = v(x0, t0).

Hence at (x0, t0) ∈ DT ,

L(v) ≡ vxx − vt − νvx − ρv2 ≤ 0,

since 0 < x < y(t), 0 < t ≤ T in DT and

vxx(x0, t0) ≤ 0 (at a maximum),

vx(x0, t0) = 0 (at an extremum),

vt(x0, t0) ≥ 0 (at a maximum over a right-closed domain),

where vt(x0, t0) may be positive in DT only when t0 = T . However, throughout DT ,

L(v) = uxx − ut − νux − ρ {u+ ε exp[W (x− C)]}2

+εW 2 exp[W (x− C)] − νεW exp[W (x− C)]

= εW (W − ν) exp[W (x− C)] − ρ
{

2uε exp[W (x− C)] + ε2 exp[2W (x− C)]
}

= ε exp[W (x− C)] {W (W − ν) − ρ (2u+ ε exp[W (x− C)])}
> ε exp[−WC] {W (W − ν) − ρ(2U + ε)} ,

where the inequality follows from 0 < x < C in DT , which implies exp(W (x − C)) ∈] exp(−WC), 1[, and from
choosing W large enough, namely such that

W (W − ν) > ρ(2U + ε).

As a result, L(v) > 0. Thus by contradiction v assumes its maximum value on BT .
Since u ≤ v on DT ∪BT and v ≤ maxBT

v,

u ≤ max
BT

v ≤ max
BT

u+ εmax
BT

exp[W (x− C)].
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As ε can be chosen arbitrarily small,

u ≤ max
BT

u. �

The Weak Maximum Principle is typically accompanied by its dual, the Weak Minimum Principle, as the latter
principle can be directly derived from the former by replacing u with (−u) in the heat equation. With a
quadratic nonlinearity of course, (−u) does not satisfy the same equation so we do not have a dual principle as
directly. The simulation studies have indicated that there is a Weak Minimum Principle, but we do not pursue
the theoretical version here. In the next section, to assure positivity of the temperature in the liquid column,
we examine asymptotic behavior of the solution u as our time bound T is made large.

3.4. Asymptotics of the solution

In this section, it is shown that positivity of the temperature everywhere in the column can be guaranteed
with as much resolution, up to the boundaries of the domain, as desired given a sufficiently large T .

Lemma 3.2. Consider the problem (1) and series solution (2), where the output y : [0, T ] → R is defined as

y(t) = φ(t/T ), given φ : [0, 1] → R satisfying (15). When T is large enough, the series is uniformly approximated

to second order in (1/T ) by

− ẏ(t)
ν

(exp [ν(x− y(t))] − 1) .

Proof. First, we prove by induction that the recurrence equation (3) can be expressed as

an = −νn−1ẏ + F̂n(y(g(n)), y(g(n)−1), ..., ẏ), n ≥ 1, (17)

where F̂n is a multivariate polynomial, in ẏ and its time derivatives up to order g(n), that has no constant

terms and no terms affine in ẏ. It is also clear from the (3) that F̂ is time-invariant, i.e. t does not appear
explicitly. By induction it can be shown that g(n) ∈ N is given by g(n) = 1 + floor((n − 1)/2), which means
that g(n± 2) = g(n)± 1. The base case a1 = −ẏ, and the next term a2 = −νẏ − ẏ2, satisfy (17). By inductive
hypothesis we assume (17) holds for i = 2, ..., n− 1 and show that it also holds for i = n. From (3) we have

an =
d

dt

[

−νn−3ẏ + F̂n−2(y
(g(n−2)), ..., ẏ)

]

+ (ν − ẏ)
[

−νn−2ẏ + F̂n−1(y
(g(n−1)), ..., ẏ)

]

+ ρ

n−2
∑

k=0

(

n− 2

k

)

[

−νn−3−kẏ + F̂n−2−k(y(g(n−2−k)), ..., ẏ)
] [

−νk−1ẏ + F̂k(y(g(k)), ..., ẏ)
]

.

Given the properties on F̂m, for any m = 1, ..., n− 1, we can rewrite it as

F̂m

(

y(g(m)), ..., ẏ
)

= ẏ F̂ 1
m

(

y(g(m)), ..., ẏ
)

+ F̂ 2
m

(

y(g(m)), ..., ÿ
)

,

where F̂ 1
m and F̂ 2

m have no constant terms. Observe that

d

dt
F̂m

(

y(g(m)), ..., ẏ
)

= ÿF̂ 1
m

(

y(g(m)), ..., ẏ
)

+ ẏF̄ 1
m+2

(

y(g(m+2)), ..., ẏ
)

+ F̄ 2
m+2

(

y(g(m+2)), ..., ÿ
)

,

where F̄ i
m+2 ≡ d/dt(F̂ i

m), i = 1, 2. As F̂ i
m has no explicit dependence on t, F̄ i

m+2 can have no constant terms.

Thus, d/dt(F̂m(y(g(m)), ..., ẏ)) has no constant terms or terms that are affine in ẏ, and we rewrite it as

d

dt
F̂m

(

y(g(m)), ..., ẏ
)

= F̄m+2

(

y(g(m+2)), ..., ẏ
)

.
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Returning to the expression for an and applying the previous result for m = n− 2 we have

an =
[

−νn−3ÿ + F̄n

(

y(g(n)), ..., ẏ
)]

− νn−1ẏ + νn−2ẏ2 + (ν − ẏ) F̂n−1

(

y(g(n−1)), ..., ẏ
)

+ ρ

n−2
∑

k=0

(

n− 2

k

)

[

−νn−3−kẏ + F̂n−2−k

(

y(g(n−2−k)), ..., ẏ
)] [

−νk−1ẏ + F̂k

(

y(g(k)), ..., ẏ
)]

= − νn−1ẏ + F̂n

(

y(g(n)), ..., ẏ
)

,

where we have defined F̂n as the collected terms and it is clear that F̂ also has no terms affine in ẏ or constant
terms. Note that we do not claim that collecting terms in the last step does not result in the cancellation
of terms. We only prove that it is not possible to generate new terms that are affine in ẏ or constant. This
concludes that induction and proves (17).

The next step is rewrite (17) with F̂n as a function of the given output φ and its derivatives, as

an(t) = −νn−1ẏ(t) + F̂n

(

φ(g(n))(t/T )

T g(n)
, ...,

φ̇(t/T )

T

)

, n ≥ 1, t ∈ [0, T ].

Given the properties on the multivariate polynomial F̂ , the lowest order terms in 1/T that are possible are ẏ2

and ÿ, which means that as T → +∞, F̂n = O(1/T 2) uniformly and

an(t) = −νn−1ẏ(t) +O(1/T 2), n ≥ 1, t ∈ [0, T ].

Using this as the recurrence equation for the series solution, we can write (2) as

u(x, t) = − ẏ(t)
ν

∞
∑

n=1

1

n!
[ν(x− y(t))]n +O(1/T 2)

∞
∑

n=1

1

n!
[x− y(t)]n

= − ẏ(t)
ν

(exp [ν(x − y(t))] − 1) +O(1/T 2) (exp [x− y(t)] − 1)

= − ẏ(t)
ν

(exp [ν(x − y(t))] − 1) +O(1/T 2),

which concludes the proof.

We can visualize the implications of Lemma 3.2 by looking at the an coefficients. Figure 6 shows the first ten
coefficients for the parameter case study corresponding to Figure 4 with T = 10, in which case the temperature
in the liquid does go negative. Figure 7 shows the coefficients for T increased to 100, corresponding exactly to
the case in Figure 4. From the proof of the lemma, equation (17) implies that as T increases the coefficients

approach an ≃ −νn−1ẏ(t) = −νn−1φ̇(t/T )/T . So as T increases, all of the coefficients approach the shape of −ẏ
(a negative definite, symmetric function) and decrease in amplitude, both trends observable from the figures.

The following result guarantees that up to arbitrarily small precision, we can achieve steady-state to state-
state boundary control while maintaining a positive temperature in the entire liquid column, provided the upper
bound on time T is large enough.

Lemma 3.3. Consider the problem (1) and series solution (2), where we take ν > 0. The output y : [0, T ] → R

is defined as y(t) = φ(t/T ), given φ : [0, 1] → R satisfying (15). Assume φ is a strictly increasing function, so

y(t) satisfies (16). Given any 1/2 > εt > 0 and L > εx > 0, there exists Tmin > 0 such that for all T > Tmin

the temperature satisfies

u(x, t) > 0, ∀ (x, t) ∈ Dε
T ∪Bε

T ,
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where

Dε
T ≡{(x, t) : 0 < x < y(t) − εx, T εt < t ≤ T (1 − εt)}

Bε
T ≡{(0, t) : Tεt < t ≤ T (1 − εt)}

∪ {(x, T εt) : 0 ≤ x ≤ y(Tεt) − εx}
∪ {(y(t) − εx, t) : Tεt < t ≤ T (1 − εt)} ·

A graphical 2-D representation of the ε interior and boundary Dε
T , B

ε
T is given in Figure 8.
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Figure 8. Picture of parabolic ε interior and boundary for Stefan problem.

Proof. By assumption,

φ̇(s) > 0, ∀s ∈ [εt, (1 − εt)].

Define γ ≡ mins φ̇(s) > 0, with s ∈ [εt, (1 − εt)]. Also, observe that

x− φ(t/T ) ≤ −εx < 0, ∀ (x, t) ∈ Dε
T ∪Bε

T .

Now, we apply Lemma 3.2 to get

u(x, t) = − φ̇(t/T )

Tν
(exp [ν(x− φ(t/T ))] − 1) +O(1/T 2)

≥ − γ

Tν
(exp [−νεx] − 1) +O(1/T 2), ∀ (x, t) ∈ Dε

T ∪Bε
T .

Since γ, ν, εx > 0, the term −γ(exp [−νεx] − 1)/ν is strictly positive. Therefore, there exists a Tmin that
depends on γ (i.e. on εt) and εx such that for T > Tmin, the positive term dominates and u(x, t) > 0 for all
(x, t) ∈ Dε

T ∪Bε
T .

For the simulation parameters used for the case of Figure 4, we numerically investigated values for εt as T
increases, with the results given in Table 1. The values for εt reported are lower bounds, meaning we (conserva-
tively) estimate the largest distance from the boundary at which negative temperatures occur. The distance is
a lower bound for the following reason: if for a given εt we have a T that satisfies Lemma 3.3, for any ε > εt, the
same T will result in a positive u in Dε

T ∪Bε
T . The trend of the table is that as εt decreases, T must increase,

as implied by Lemma 3.3. From the table, the simulation corresponding to Figure 4 (T = 100) is guaranteed to
have positiveness up to εt = 0.058.

Table 1. Estimation of εt parameter for Lemma 3.3.

T 5 10 50 100 500

εt 0.267 0.190 0.0851 0.0580 0.0217

4. Conclusions and future work

The problem treated in this paper includes two technical difficulties: the moving boundary and a quadratic
reaction term. When combined, these issues make convergence substantially more difficult to study. We derived
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conservative results that can indeed be used in practice, as shown in the simulation section. We underlined
that the solution we propose has to be used very carefully or the formal solution might not satisfy the physical
requirement of the model (non-negativity of the temperature in the liquid phase).

An issue for future work is the study of approximate controllability of the model studied in this paper.
Replacing the zero initial condition u(x, 0) = 0 by an arbitrary initial condition u(x, 0) = ψ(x), is it still
possible to steer the system approximately to zero in finite time, i.e. u(x, T ) ≈ 0?

Usually, such a result arises from a projection of the initial condition onto the formal series expression (refer

to [9]). Straightforward conditions are thus available for formal series of the form u(x, t) =
∑∞

i=0 y
(n)(t) x2n

(2n)!

using the fact that the set of polynomials x2n, n ∈ N is dense in the set of L2 functions. In a simple manner,
the conditions result in specified values for all the derivatives of y at the initial time 0.

In our case the series expansion is much different. Due to the moving boundary and the nonlinear effect, no
simple identification between the (ai) coefficients and the derivatives of y can be achieved. Moreover, both even
and odd polynomials appear for most derivatives of y, ruling out classical density results, e.g. Stone–Weierstrass
theorem [15]. All this makes the situation more convoluted and difficult to handle. Gathering terms it seems
possible to derive solvable conditions in terms of the successive derivatives of y and some projections of the
initial condition ψ(x). This point is currently under investigation but we sketch an explicit procedure here.

Treating a non zero initial condition

Let us sketch here how one can derive the conditions on the successive derivatives of y. From the series
solution (2) and remembering that a0 = 0 from the boundary condition, one gets

ψ(x) = u(x, 0) =
∞
∑

n=1

an(0)

n!
(x− y(0))n

=

∞
∑

n=1

a2n−1(0)
(x− y(0))2n−1

(2n− 1)!

(

1 +
a2n(0)

2n a2n−1(0)
(x− y(0))

)

where the last line assumes that every ratio a2n

a2n−1
, for n = 1, 2, ..., has a limit around zero.

Denoting Pn(x) = (x−y(0))2n−1

(2n−1)!

(

1 + a2n(0)
2n a2n−1(0) (x− y(0))

)

, the initial condition reads

ψ(x) =

∞
∑

n=1

a2n−1(0)Pn(x). (18)

This idea is then to project ψ onto a basis of such polynomials. To do so it is necessary to derive an orthonormal
set of polynomials from the set Pn, n ∈ N∗. Step by step we follow the Gram–Schmidt procedure. Let us use

〈f, g〉 =
∫ y(0)

0
f(s)g(s)ds as a dot product and ‖f‖2 = 〈f, f〉 as a norm.

First let us define P̃1 = P1/‖P1‖ and π1 = 〈ψ, P̃1〉 the projection of ψ onto P̃1. It is easy to check that π1 ∈ R

depends only on ẏ(0). We shall note 〈ψ, P̃1〉 = π1(ẏ(0)).

Then, following the orthonormalization procedure, we define P̃2 = g2/‖g2‖ where g2 = P2 − 〈P2, P̃1〉P̃1. We

want to project ψ onto P̃2. Before doing so, let us consider the following result: for p > 1 the coefficients a2p−1

and a2p are of the polynomial form

a2p−1 = −y(p) + h2p−1

(

ẏ, ..., y(p−1)
)

(19)

a2p = −y(p) (p ν + (3 − p)ẏ) + h2p

(

ẏ, ..., y(p−1)
)

(20)
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where h2p−1 and h2p are polynomials of their variables. This result is complemented by the special cases
a1 = −ẏ and a2 = −ẏ(ν + ẏ). The proof follows from an easy induction. For sake of numerical experiments,
exact expressions of the first five ai are given in the Appendix.

This last property allows us to state that the coefficients of the Pn polynomial depend upon ẏ(0), ...,

y(n)(0) only. Furthermore, by the orthonormal construction of the P̃n, the coefficients of the P̃n depend upon

ẏ(0), ..., y(n)(0) only. Thus the projection πn = 〈ψ, P̃n〉 depend only upon ẏ(0), ..., y(n)(0), and so

πn = 〈ψ, P̃n〉 = πn

(

ẏ(0), ..., y(n)(0)
)

.

So far we have a projection of ψ onto an orthonormal basis. We have now to recombine the obtained coefficients
to derive conditions upon the (ai) coefficients. From

ψ(x) =

∞
∑

i=1

πi

(

ẏ(0), ..., y(i)(0)
)

P̃i

and

P̃i =
∞
∑

j=i

〈P̃i, Pj〉Pj

we get after recombination

ψ(x) =
∞
∑

j=1

j
∑

i=1

πi

(

ẏ(0), ..., y(i)(0)
)

〈P̃i, Pj〉Pj .

So it is possible to identify the coefficients in (18) for j = 1, 2, ... as

a2j−1 =

j
∑

i=1

πi

(

ẏ(0), ..., y(i)(0)
)

〈P̃i, Pj〉 ·

Finally we substitute the expressions (19) and (20) in these last relations to get a set of equations to be solved
in terms of the successive derivatives of y:

−ẏ(0) = π1 (ẏ(0)) 〈P̃1, P1〉
−y(2)(0) + h3 (ẏ(0)) = π1 (ẏ(0)) 〈P̃1, P2〉 + π2 (ẏ(0), ÿ(0)) 〈P̃2, P2〉

...



















· (21)

These equations are solvable for “small” initial conditions x 7→ ψ(x) in the L2 sense. Indeed, the projection of

such initial conditions onto the P̃i orthonormal polynomials are small, so the πi , i ∈ N∗ are small. This last
property makes the set of equations solvable, since its jacobian gets closer to (minus) identity.

This procedure must be looked at in greater detail prior to any implementation. Density of the P̃i polynomials
obtained through the Gram Schmidt procedure is an open issue (unfortunately the use of Stone–Weierstrass
theorem is not straightforward and a dedicated approach seems required). Nonetheless numerical evaluations of
the successive derivatives of y corresponding to a prescribed initial condition seem tractable. While the number
of such coefficients to be computed to approximate ψ within some given tolerance is not known, we feel that
such a result would be important for stabilization purposes.
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Appendix A. Technical lemmas

Lemma A.1.

i!j!(i+ j + l+ 1)!

(i+ j + 1)!
=

l
∑

r=0

(

l

r

)

(j + r)!(i + l − r)!, i, j, l ≥ 0.

Proof. This result directly follows from the Chu–Vandermonde identity [13] that gives

(i+ j + 2)l =
l
∑

r=0

(

l

r

)

(j + 1)r(i+ 1)l−r

where (a)n = a(a+ 1)...(a+ n− 1) is the Pochhammer Symbol. One can use

(i+ j + 2)l =
(i+ j + l + 1)!

(i+ j + 1)!

(j + 1)r =
(j + r)!

j!

(i+ 1)l−r =
(i+ l − r)!

i!

and get after substitution

i!j!(i+ j + l + 1)!

(i+ j + 1)!
=

l
∑

r=0

(

l

r

)

(j + r)!(i + l − r)! �

Lemma A.2. For α, ck ≥ 1 and bk ≥ 0, k = 0, 1, ..., l,

l
∑

k=0

ck(bk)α ≤
(

l
∑

k=0

ckbk

)α

, l ≥ 0.

The proof is an easy extension of that for the case ck = 1, ∀k = 0, 1, ..., l, given in [6].

Appendix B. Gevrey functions bounds

In this section we give the derivation of the constants Mφ and Rφ. The Gevrey function φ̇ used in the
simulations is given by the function φ, defined as

φ(τ) =







L+ ∆L if τ ≥ 1,
L+ ∆Lg(τ) if 1 > τ > 0,
L if τ ≤ 0,

where,

g(τ) =
f(τ)

f(τ) + f(1 − τ)
, τ ∈ [0, 1] and f(τ) =

{

e−
1
τ if τ > 0,

0 if τ ≤ 0.
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The function φ defines a smooth transition from L to L + ∆L in liquid column length. The function chosen
above is based upon an unpublished work of François Malrait done at École des Mines, which guarantees that

g(τ) ≤ f(τ)

m
where 0 < m ≤ f(τ) + f(1 − τ).

Given f defined above, it is easy to show that m = 2e−2. The function ġ(τ) is symmetric (ġ(τ) = ġ(1 − τ)) so
in estimating Gevrey bounds we can restrict the domain of τ to [0, 1/2]. Also, C ∋ z 7→ g(z) is holomorphic in
the infinite strip {z = x+ iy ∈ C : 0 < x < 1}. To identify estimates for the bounds on the Gevrey constants
we utilize Cauchy’s integral formula, namely for g(τ) we have

g(k)(τ) =
k!

2πrk

∫ +π

−π

e−ikθg
(

τ + reiθ
)

dθ,

where r ∈]0, 1/2[ and k = 1, 2, 3, ...
Taking the absolute value we have

∣

∣

∣
g(k)(τ)

∣

∣

∣
≤ k!

2πrk

∫ +π

−π

∣

∣g
(

τ + reiθ
)∣

∣ dθ ≤ k!e2

4πrk

∫ +π

−π

∣

∣f
(

τ + reiθ
)∣

∣ dθ.

Bounding the integrand

∣

∣

∣
e−1/{τ+reiθ}

∣

∣

∣
= exp

[ −(τ + r cos(θ))

τ2 + 2rτ cos(θ) + r2

]

·

Choosing r = µτ , 0 < µ < 1, we can simplify as

exp

[ −(τ + r cos(θ))

τ2 + 2rτ cos(θ) + r2

]

= exp

[ −(1 + µ cos(θ))

τ (1 + 2µ cos(θ) + µ2)

]

·

The last expression in the brackets is an even function of θ ∈ [−π,+π] so we need only consider the behavior
for θ ∈ [0,+π]. Over this range, the expression is a decreasing function of θ; to verify this, the derivative with
respect to θ yields −(µ − µ3) sin(θ)/τ , which is always negative since 1 > µ > 0. Thus we can maximize the
bracketed expression by evaluating it at θ = 0 as

exp

[ −(1 + µ cos(θ))

τ (1 + 2µ cos(θ) + µ2)

]

≤ exp

[−(1 + µ)

τ(1 + µ)2

]

= exp

[ −1

τ(1 + µ)

]

·

Returning to the integral equation with the definition for r gives

k!e2

4πµkτk

∫ +π

−π

exp

[ −1

τ(1 + µ)

]

dθ =
k!e2

2µkτk
exp

[ −1

τ(1 + µ)

]

·

It is easy to show that

max
τ∈[0,1/2]

{

τ−k exp

[ −1

τ(1 + µ)

]}

≤ e−kkk(1 + µ)k.

The bound now becomes

k!e2

2µkτk
exp

[ −1

τ(1 + µ)

]

≤ k!e2

2

(

k

e

)k (
1 + µ

µ

)k

, for any µ ∈]0, 1[.
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The best bound we can achieve is derived from the limiting behavior as µ→ 1, resulting in

∣

∣

∣
g(k)(τ)

∣

∣

∣
≤ k!e2

2

(

2k

e

)k

≃ k!2
e2

2
√

2π

2k

√
k
, ∀ k = 1, 2, 3, ..., τ ∈ [0, 1],

where the last step utilizes Stirling’s approximation. For reference, we also have the bounds

∣

∣

∣
f (k)(τ)

∣

∣

∣
≤ k!2√

2π

2k

√
k
, ∀ k = 1, 2, 3, ...

These parameterizations verify that g and f are Gevrey order 1. As we want the Gevrey constants for φ̇, we
can write the bounds as

∣

∣

∣
φ(k+1)(τ)

∣

∣

∣
= ∆L

∣

∣

∣
g(k+1)(τ)

∣

∣

∣
≤ ∆L

(k + 1)!2 e2 2k+1

2
√

2π(k + 1)
=

∆Le2

√
2π

k!2 2k(k + 1)3/2,

where k = 0, 1, 2, ... With the bounds 2k(k + 1)3/2 ≤ 2k(k + 1)2 ≤ 4k, we have bounds for φ̇ Gevrey order 1,
namely

∣

∣

∣
φ(k+1)(τ)

∣

∣

∣
≤Mφ

k!2

Rk
φ

, Mφ ≡ ∆Le2

√
2π

, Rφ ≡ 1

4
·

The value of the column length increase ∆L is the only non-constant in these Gevrey bounds. To characterize
these bounds, consider normalizing the model coefficients ρ = ν = 1 and examine the radius of convergence η∗

as a function of column length as shown in Figure 9, where we assume 0 < L≪ 1. For guaranteed convergence
of the solution over the domain, η∗ > ∆L and the plot shows that this is the case when ∆L ∈ [0.0, 0.45]. For
an initial column length L > 0.6, a time bound T larger than 1 is also clearly required for even small column
length increases.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

∆L

Normalized Radius of Convergence vs. Column Growth Length

η*

∆L

Figure 9. For normalized model coefficients (ρ = ν = 1), the locus of the radius of conver-
gence η∗ as a function of the column length increase ∆L.
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