
Motion Planning for Autonomous Driving with a Conformal
Spatiotemporal Lattice

Matthew McNaughton, Chris Urmson, John M. Dolan, and Jin-Woo Lee

Abstract— We present a motion planner for autonomous
highway driving that adapts the state lattice framework pi-
oneered for planetary rover navigation to the structured en-
vironment of public roadways. The main contribution of this
paper is a search space representation that allows the search
algorithm to systematically and efficiently explore both spatial
and temporal dimensions in real time. This allows the low-level
trajectory planner to assume greater responsibility in planning
to follow a leading vehicle, perform lane changes, and swerve
around obstacles in the presence of other vehicles. We show
that our algorithm can readily be accelerated on a GPU, and
demonstrate it on an autonomous passenger vehicle.

I. INTRODUCTION

A viable autonomous passenger vehicle must be able to
plot a precise and safe trajectory through busy traffic while
observing the rules of the road and minimizing risk due to
unexpected events such as sudden braking or swerving by
another vehicle, or the incursion of a pedestrian or animal
onto the road. The planner must be able to produce a plan
within a small fixed time window. In this paper we are
concerned with the production of precise short-term plans
of the vehicle location, valid for the next several seconds.

The state lattice[2] is a method for inducing a discrete
search graph on a continuous state space while respecting
differential constraints on motion. It was demonstrated in the
2007 DARPA Urban Challenge[8], where it was used to plan
motions in parking lots. The lattice planner formulation was
not readily applicable to on-road driving scenarios due to the
high density of vertices and edges that would have been nec-
essary to represent paths conforming to lanes. In this paper
we adapt the lattice to planning dynamically-feasible motions
in structured environments such as roads with moving traffic,
by conforming the lattice to the environment.

Our planner also uses a novel spatiotemporal search graph
that combines precise constraint satisfaction along selected
spatial dimensions with resolution-equivalent pruning of
states along temporal dimensions, with the effect that a large
number of variations in time and velocity can be examined
without an undue increase in the size of the state space.

Typical efforts to construct a planner that can operate
intelligently in complex environments rely on a decompo-
sition of the planning solution into a hierarchy of planners
working on successively more concrete representations of
the search space, and finer discretizations in time. Each

M. McNaughton C. Urmson, and J. Dolan are with the Robotics Institute,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA USA

J.-W. Lee is with General Motors Research and Development, Warren
MI USA

This research is supported by General Motors Company.

Fig. 1. Left: regular state lattice in an unstructured environment. The
same five paths are rigidly transformed to create a graph of kinematically
feasible actions. Right: state lattice conformed to a structured environment.
Each path must be optimized to fit its endpoints.

planner in the hierarchy must have a model of the other
planners. These models are necessarily flawed or else the
decomposition would be redundant. Mismatches in expecta-
tions of behavior between the planners can cause instability
in planned motions, especially when higher-level planners
give commands to lower level planners that turn out to be
infeasible. Our proposed planning framework mitigates this
problem by assuming more responsibility at the lower levels
— those that can decide whether an action is feasible before
attempting to execute it.

We demonstrate that our planner is able to, for example,
decide whether to distance-keep behind slower traffic or
whether to change lanes to advance past it without specific
behavioral instruction by planning within a unified optimiza-
tion framework.

II. RELATED WORK

We adapt the state lattice of Pivtoraiko et al.[2] to a
structured environment. Their state lattice is a search graph
where vertices representing kinematic states of the robot
are connected by edges representing paths that satisfy the
kinematic constraints of the robot. The vertices are placed
in a regular pattern such that the same paths, albeit rigidly
translated and rotated, can be used to connect all vertices
to form a graph dense enough that a feasible path to the
goal is likely to exist as a sequence of edges in the graph,
as Figure 1(Left) shows. This state lattice is suitable for
unstructured environments where every global robot heading
is a priori equally likely to be in the final solution. For a robot
driving on a public road, as also noted in [9], the selection
of feasible headings is not only highly constrained, but the
a priori likelihood that they would be a part of the solution
varies with location in the environment.

Therefore, the state lattice must be adapted to the environ-
ment such that only states that are a priori likely to be in the
optimal path are represented (Figure 1(Right)). The authors
in [9] show a method for constructing such a lattice for an
urban road. Their contribution is a closed-form calculation to

satisfy the endpoint constraints on a state lattice conformed
to a road, for forms of robot kinematics including typical
cars. Compared to their work, we use the method of [6] to
construct the lattice, and we propose a special augmentation
of the lattice with time and velocity dimensions in order to
plan in a dynamic environment. The authors of [9] do not
provide an evaluation of the number of lattice edges that can
be generated per second, so we are unable to compare our
approach to constructing the lattice with theirs. However, as
our experimental results show (Section V), the time taken by
our approach to construct the lattice forms a small part of
the overall time taken to search for an optimal plan through
the lattice, when considering dynamic obstacles.

Ziegler and Stiller[10] propose an augmentation of a
conformal state lattice with time and velocity dimensions in
order to plan with moving traffic. Their approach required
trajectories connecting lattice points to start and end at one
of a fixed set of times T and velocities V . The use of
fixed values in T and V makes it difficult to plan to merge
between two vehicles traveling with velocities not contained
in V . They used quintic splines with a point mass to connect
endpoints, requiring additional effort to track the path using
the vehicle kinematics. Compared to their work, we use a
more efficient method of augmenting the state lattice with
time and velocity dimensions, and we use realistic vehicle
kinematics to construct the actions. They propose that energy
cost terms useful for tuning vehicle behavior, such as squared
jerk of the path, are difficult to compose search heuristics for,
and therefore propose an exhaustive, rather than heuristic
search in order to find the optimal path. We make the same
observation and likewise perform an exhaustive search in our
planner.

Werling et al.[3] propose a planner that samples a large
number of swerve actions that take the vehicle away from
the lane center-line and then back towards it. We propose an
approach similar in spirit, but search over a regular lattice
structure that can express more complex maneuvers.

Lee and Litkouhi[7] propose a real-time path planning
algorithm for smooth lane changing. They use a polynomial
equation and find a closed-form solution with path continuity
in the second degree. This approach provides a quick and
smooth trajectory, however, it has difficulty in generating a
path for multiple obstacle avoidance.

In summary, the contribution of this paper is a planner
for an autonomous vehicle that can plot a course through
structured road environments with dynamic obstacles, while
reducing the modeling error inherent to hierarchically de-
composed planners. We demonstrate real-time performance
of the planner on a real robot.

III. METHOD

Our lattice is constructed around a lane center line defined
as a sampled function [x(s) y(s) θ(s) κ(s)] of arc length s,
also known as station. We define points p(s, `) on the road
at lateral offset `, or latitude, from the center line as p(s, `)

= [x(s, `) y(s, `) θ(s, `) κ(s, `)] where

x(s, `) = x(s) + ` cos(θ(s))
y(s, `) = y(s) + ` sin(θ(s))
θ(s, `) = θ(s)
κ(s, `) = (κ(s)−1 + `)−1.

(1)

κ(s) is the curvature of the path, such that θ(s, `) =∫ s

0
κ(s, `). To construct our lattice we define a discrete

grid (i, j) and a linear mapping (s(i), `(j)) from discrete
grid points to station and latitude using a simple linear
multiplication s(i) = asi, `(j) = a` + b`j, so that station is
monotonic increasing starting from zero and moving right in
the coordinate frame, and latitude may be positive (left) or
negative (right) w.r.t. the center line.

We compute paths between vertices in our conformed
lattice using the iterative numerical method of [6], also used
by the Tartan Racing team[1][4] in the 2007 DARPA Urban
Challenge. A path is defined as a cubic polynomial spiral,
that is, the curvature of the path is a cubic polynomial
function of arc length

κ(s) = a + bs + cs2 + ds3,

for which parameters can be found to define a path connect-
ing any pair of endpoints (x, y, θ, κ). Following [5], we use
the parameterization p = [p0 p1 p2 p3 sf], so that

κ(s) = a(p) + b(p)s + c(p)s2 + d(p)s3,

and sf is the arc length of the curve between the boundary
constraints. The coefficient functions z(p) are selected so
that

κ(0) = p0

κ(sf/3) = p1

κ(2sf/3) = p2

κ(sf) = p3.

The resulting polynomials are

a(p) = p0

b(p) = − 11p0−18p1+9p2−2p3
2sf

c(p) = 9(2p0−5p1+4p2−p3)
2s2

f

d(p) = − 9(p0−3p1+3p2−p3)
2s3

f
.

Since p0 = κ0 is given, we only need to find p =
[p1 p2 p3 sf]. Deriving the coefficients from the parameters
this way rather than the simpler p0 + p1s + p2s

2 + p3s
3

ensures that the elements of p (except for sf) are close in
magnitude, adding numerical stability to the optimization.
We use a simple bicycle model kinematics where

dxp/ds = cos [θp(s)]
dyp/ds = sin [θp(s)]
dθp/ds = κp(s),

indicating the dependence on the parameters by the subscript
p, so that the state of the system after traveling a distance s

is

xp(s) =
∫ s

0
cos [θp(s)] ds

yp(s) =
∫ s

0
sin [θp(s)] ds

θp(s) = a(p)s + b(p)s2/2 + c(p)s3/3 + d(p)s4/4
κp(s) = a(p) + b(p)s + c(p)s2 + d(p)s3.

(2)
The endpoint of the path is [xp(sf) yp(sf) θp(sf) κp(sf)],
and we wish to find parameters that make this equal to xdes.
Both θp(s) and κp(s) can be evaluated in closed form, but
the expressions for xp(s) and yp(s) are Fresnel integrals and
must be integrated numerically. We use Simpson’s method
to evaluate the integrals.

We use a shooting method to solve for the pa-
rameters satisfying the endpoint constraints. We evalu-
ate the Jacobian of the endpoint state vector xp(sf) =
[xp(sf) yp(sf) θp(sf)κp(sf)] with respect to the parameter
vector p = [p1 p2 p3 sf],

Jp(xp(sf)) =
[
dxpi(sf)

dpj

]
,

and follow the gradient to minimize the error between x
and xdes. Other authors computed the Jacobian numerically
using central differencing[5]. By using small integration
steps, this method can handle inequality constraints such
as saturation of the steering angle at points along the path,
but we assume that in highway driving scenarios such limits
are not reached. Therefore, since we assume no inequality
constraints need be enforced during the integration, we can
use fewer integration steps and calculate the Jacobian using
a symbolic differentiation with respect to the parameters of
the expression used to calculate the endpoint.

With the Jacobian we use Newton’s method for root-
finding to generate a sequence of estimates {pi} for p which
causes x to equal xdes

∆x = (xdes − xpi
(sf))

∆p = Jpi(xpi(sf))−1∆x
pi+1 = pi + ∆p

This iteration proceeds until ∆x is deemed sufficiently small,
or a maximum number of iterations is reached.

The initial guess p0 is obtained from either a precomputed
look-up table or the p vector derived for a similarly situated
pair of endpoints from the previous planning cycle. Our
approach is fast in practice despite the apparent compu-
tational expense compared to e.g. the quintic splines used
by other researchers[3], since only a couple of iterations
are typically required to re-converge. In addition, our paths
are consistent with the kinematic constraints of the robot,
sparing the complexity of verifying whether the generated
path can actually be followed. We also have greater flexibility
in selecting end point constraints, such as ending paths with
an arbitrary curvature.

A. Paths and Trajectories

We define a path τp as a continuous curve through
the state space [x y θ κ] defined by a start state x0 =
[x0 y0 θ0 κ0] and a set of cubic polynomial spiral parameters

p = [p1 p2 p3 sf], using Equation 2 to drive to an end state
xf = [xf yf θf κf]. We write τp(s) for the point at the arc
length s along the path from x0. The set of all {τp} therefore
contains all possible paths that may be derived by the method
of the previous section, irrespective of the time or velocity
at which they are traversed. Since our paths are defined as
functions of curvature w.r.t. arc length, they can be readily
followed by the vehicle at any speed, subject to constraints
on curvature rate with respect to time, lateral acceleration,
and the like.

For each path τp we can define a family of trajectories
τr by the addition of a time and velocity component to
obtain a curve through the six-dimensional state space x̂ =
[x y θ κ t v]. To obtain a trajectory τr from a path τp, we
use a starting time and velocity [t0 v0] and apply a constant
acceleration a over the course of the path. Then

τr(s) = [xp(s) yp(s) θp(s)
κp(s) t0 + t(s, v0, a) v(s, v0, a)],

where for constant acceleration a, v(s, v0, a) is the velocity
obtained at the distance s along the trajectory:

v(s, v0, a) =


√

v2
0 + 2as if v2

0 + 2as ≥ 0

undefined otherwise,

and t(s, v0, a) is the time taken to traverse the distance s:

t(s, v0, a) =


s/v0 if a = 0
v(s, v0, a)− v0

a
if a 6= 0, v(s, v0, a) ∈ R

undefined otherwise.

The set τr therefore contains all possible trajectories that may
be traversed by the vehicle using our method. Again, τr(s)
denotes the point at an arc length s along the trajectory.

We define cost functions for paths and for trajectories. The
cost function cp(τp) for paths is composed of terms that do
not require the time and velocity of the states along the path
to be evaluated, such as those for avoiding static obstacles.
The cost function cr(τr) is composed of cp plus terms
involving time, such as those penalizing lateral acceleration.
By sampling points x along a path, and then sampling the
time and velocity components at the same points to form
sample points x̂ along the trajectories defined by that path,
we are able to inexpensively evaluate many trajectories for
each path.

In the next section we describe how trajectories are
arranged into a lattice, and how the lattice is searched.

B. Spatiotemporal Lattice

Since we are searching in a dynamic environment, we
must consider both time and space. The state lattice is a
proven method for systematically searching through static
environments; however, naively adding time and velocity
dimensions can cause an unacceptable blowup in the size of
the search space. Vertices in the state lattice for static spaces
are normally defined by the vehicle state vector [x y θ κ],
such that the vehicle traverses paths that satisfy starting

and ending boundary constraints coincident with the lattice
vertices. The values of all state variables associated with
the lattice vertices are fully specified before the edges are
evaluated. If this approach is taken with the time-enhanced
state vector [x y θ κ t v], the number of lattice vertices
and edges would be too large to be tractable for driving
applications.

The size of the velocity dimension for a freeway driving
application would be at least the number of distinct velocity
values taken on as it passes over each discrete station
value used in the lattice. For a vehicle with a reasonable
acceleration time of 10 s to reach 100 km/h from a stop,
driving on a lattice with 5 m longitudinal spacing, the number
of discrete velocity values needed for the lattice would be
equal to the number of meters travelled, divided by the
longitudinal spacing, while accelerating from a standing start
up to full speed. Assuming a constant acceleration so that
v = at, p = vt = 1

2at2, and with final time tf = 10s to
reach 100 km/h

a = v(tf)/tf (3)

=
100km/h

10s
= 2.78m/s2, (4)

p(tf) =
(

1
2

) (
2.78

m

s2

)
(10s)2 = 139m, (5)

meaning that about 139/5 ≈ 28 distinct values would
be needed for a velocity dimension in the state lattice
in the naı̈ve case. The use of more gentle accelerations
would only increase this number. The time dimension
would multiply the size of the lattice by a similar fac-
tor. For a 100-meter planning horizon with a reasonable
40-centimeter lateral discretization on a 7.2 meter-wide
road, the total size of the lattice would be on the or-
der of 20 longitudinal increments× 20 lateral increments×
30 velocity increments × 30 time increments ≈ 360 000
vertices. Assuming a modest 7 paths to shift latitude with
5 accelerations each, we get ≈ 12 million trajectory edges
to evaluate at each planning cycle. This space, while not
intractable, is too large for real-time planning.

To address the graph-size problem, we first observe that in
any graph search through a continuum, one can either specify
the graph before edge evaluations begin, or specify it as the
search proceeds. In our approach, we partially construct the
graph before we search, and specify the rest as the search
proceeds. In particular, we delay the assignment of values
to the time and velocity components of the lattice vertices.
Rather, we assign to each vertex a range of times and veloci-
ties [ti, ti+1)×[vj , vj+1) which the state vector may take on,
with the actual values being assigned during the evaluation
of trajectories (Figure 2). Only a few such divisions are nec-
essary, compared to the tens required should each vertex be
assigned a point value as in Equation 3. With each vertex is
associated a state vector (x, y, a, θ, κ, [ti, ti+1) , [vj , vj+1)),
where a is the index of the incoming acceleration profile,
and is included in the lattice for reasons discussed later.
As in Equation 1, the static state variables of the lattice
are specified uniquely by the road coordinates (s, `), so the

t
v

t
v

min
(s ,l)i i

(s ,l)j j
(s ,l)k k

c
c

c
c

t t0 1 2
0

v1

v2

Fig. 2. Multiple trajectories converge into a single lattice vertex. Each
vertex in the lattice is identified with a quadrant, corresponding to a pose
on the road and a range of times and velocities. In each vertex, the ending
time and velocity value from the incoming trajectory with the minimum
cost is assigned to the lattice vertex’s (t, v) coordinates. These values are
used in turn for outgoing trajectories from the vertex.

actual dimensionality of the state vector can be simplified to
the five-dimensional (s, `, a, [ti, ti+1) , [vj , vj+1)).

We refer to the starting state as x̂0 = [x0, y0, θ0, κ0, t0, v0]
and we can assume t0 = 0 without loss of generality.
Since the starting state x̂0 is not necessarily coincident
with a vertex on the regular lattice structure, an additional
source vertex n0 is constructed with the state vector equal
to [x0, y0, θ0, κ0, 0, v0]. We choose a subset S of the states
on the regular lattice S close to n0, and plot trajectories
{τr} s.t. τr(0) = x̂0 and τr(sf) ∈ S, with one trajectory
for each (endpoint, acceleration) pair. For each of the trajec-
tory endpoints x̂f , we identify the associated lattice vertex
n = (x, y, θ, κ, a, [ti, ti+1) , [vj , vj+1)) such that t(x̂f) ∈
[ti, ti+1) and v(x̂f) ∈ [vj , vj+1). For each vertex in the
search a cost is maintained representing the minimum known
cost to reach that vertex from the source vertex. At the start of
the search they are initialized to ĉ(n)←∞. Since only one
of these trajectories will end at each vertex, we can assign the
cost ĉ(n) = c(τr) and specify the time and velocity values
t(n) ← t(x̂f), v(n) ← v(x̂f) for the vertex. These will
be the values used for trajectories outgoing from this vertex
later in the search. Subsequently, the search proceeds as a
dynamic program. Since the vehicle is constrained to move
forward, that is, strictly increasing in station, we can evaluate
edges in the graph starting at the same station simultaneously,
and groups of these can be evaluated in increasing order of
station. Figure 3 outlines the algorithm. In summary, from
each lattice vertex that has been assigned a finite cost and
a definite time and velocity, we evaluate a set of outgoing
trajectories representing the product of possible paths to
other (x, y, θ, κ) states on the road and a range of possible
accelerations to take on the way.

C. Why include acceleration in the state space?

Consider two trajectories τ1, τ2 starting at the same lattice
vertex and using the same underlying path, but with differing
accelerations. If their final states x̂1, x̂2 land in the same
[ti, ti+1) and [vj , vj+1)(Figure 4), and acceleration were not
included as a dimension in the lattice, then only one of the

for each station s = 1 · · ·#s
for each vertex n at station s

if ĉ(n) 6=∞
Form the vector

x̂n = [x(n), y(n), θ(n), κ(n), t(n), v(n)]
for each acceleration a and path parameter p

Form the trajectory τr(p, t(n), v(n), a)
Evaluate the trajectory cost c(τr)
Identify the lattice vertex nf (τr(sf)) —

—at the end of the trajectory
if ĉ(n) + c(τr) < ĉ(nf)

ĉ(n)← ĉ(n) + c(τr)
t(n1)← t(τr(sf))
v(n1)← v(τr(sf))
incoming(n1)← n // backtrace info

end if // ĉ(n)
end for // a

end if // 6=∞
end for // vertex

end for // station

Fig. 3. The dynamic programming search algorithm for the spatiotemporal
lattice.

t
v

ai
aj

Fig. 4. If acceleration is not a dimension in the lattice, multiple trajectories
proceeding from the same starting lattice vertex and differing only in their
acceleration profiles may interfere by ending in the same vertex.

accelerations would be represented in the result. By including
acceleration in the lattice we found that we could represent
a greater diversity of trajectories, and importantly, final
trajectories with more consistent acceleration profiles, than if
we simply refined the discretization of the t and v dimensions
by the amount required to overcome this problem.

D. Cost function

Each trajectory is assigned a cost representing the relative
desirability of having the vehicle follow that trajectory. The
cost function includes terms to avoid obstacles, as well as
physical limitations on the vehicle’s performance, such as the
rate of change of path curvature with respect to time. We also
use terms representing behavioral preferences, for example
to minimize the magnitude of lateral acceleration undergone
during a maneuver, which promotes passenger comfort. We
can also use cost terms to represent behavioral preferences,
such as a desired lane to drive in. The cost function is
evaluated in two parts. Since multiple trajectories use the
same underlying path, the cost function terms depending only
on (x, y, θ, κ) are evaluated before the various trajectories

using the path. Then the terms depending on a, t, v are
evaluated with each trajectory.

E. Picking the best final state

The best plan is represented by the continuous sequence
of trajectories through the lattice to the final vertex with the
smallest cost. However, freeway driving on the time scale of
seconds is a continuous process with no final goal, so it is
not obvious how to specify the final, or sink vertex of the
lattice. It is not sufficient to simply search to the furthest
station of the lattice, since a road blockage could prevent
any path from reaching the end. Nor can we simply search
to the furthest time value that appears in the lattice, since
that implies driving as slowly as possible. Safety requires us
to select a minimum planning horizon th in terms of time, to
ensure that the vehicle is following a plan that is guaranteed
to be feasible (given reasonable behavior of other traffic)
within the range limits of the sensors while the vehicle is
traveling at maximum speed, and the time required for a
controlled emergency stop. We balance our desire for the
vehicle to make rapid forward progress at a reasonable cost
with the recognition that sometimes road conditions make
this impossible. We do this by selecting the final vertex nf

to be the one that minimizes

arg min
nf

ĉ(nf)− ks(s(nf)) + kt(t(nf)), (6)

a weighted sum of the trajectory cost to reach the vertex nf ,
with a bonus for driving further and a penalty for taking extra
time. We then trace backward through the lattice from nf to
the start state, reconstructing the trajectory. Weights are tuned
manually to achieve the desired balance of forward progress
against low trajectory cost.

F. World Representation

A trajectory is evaluated by sampling (x, y, t) points
along its length and calculating the cost terms at each
sample. Intersections with static obstacles are computed by
discretizing the (x, y) space and rendering the obstacles
into a look-up table. Intersections with moving obstacles
are similarly computed by discretizing the three-dimensional
(x, y, t) space and rendering the moving obstacles into the
table at their predicted future locations.

The vehicle will always remain roughly parallel to the
road, even when changing lanes. Therefore we can expand
obstacles in a rectangular pattern complementary to the shape
of the vehicle, and perform a single look-up at each sample.
A more complex convolution is not necessary.

IV. GPU ACCELERATION

Contemporary graphics processing units (GPUs) such as
those sold by Nvidia are well suited to search on a state
lattice such as the one we have described in previous sec-
tions. Briefly, GPUs run thousands of threads at once, each
executing a simple C/C++ program that uses a few dozen
registers at once. The speed at which an individual thread
is run is sacrificed in order to increase overall throughput.
All threads must run the same program, and groups of 32

threads must actually run at the same instruction counter, or
else sacrifice throughput by running in serial, leaving some
processing elements idle. Memory operations performed by
groups of threads are much faster when they affect con-
tiguous memory locations. These performance characteristics
are well suited to dynamic programming on a regularly
structured graph, where threads each evaluate one edge, using
the same algorithm. We now argue that an exhaustive search
is necessary anyway for a driving application.

Typical state lattice planners for static domains are imple-
mented using a best-first search over the graph such as A* or
D*-lite. These algorithms are appropriate when a reasonable
heuristic estimate can be obtained for the cost-to-go to reach
the goal from any vertex. In highway driving, however, an
effective heuristic combining the many kinds of cost terms,
along with the selection of the final state, is unknown. The
worst case of the search is likely to occur - that all vertices
in the graph would have to be expanded in order to find the
optimal path. Since driving is a real-time application where
the vehicle cannot stop and deliberate on its next action,
we are concerned with minimizing the worst-case time to
find a solution. Although some driving applications have
used anytime algorithms[8] to obtain a suboptimal path that
can be refined as it is followed, even these algorithms must
find a feasible path before it can be refined to an optimal
path, and it is still not guaranteed that all vertices would not
be expanded before such a path is found. Therefore, since
all vertices must be examined in the worst case, we must
search the entire graph, which indicates a simple dynamic
programming algorithm.

V. EXPERIMENTAL RESULTS

We implemented our planner on an Nvidia GeForce GTX
260 installed with an Intel Core 2 Quad processor. The
planner was run on Boss, our autonomous SUV. To compare
the performance improvement gained by using the GPU, the
planner is also implemented to run on a normal CPU and run
in simulation on a single core. The planner runs on a 10 Hz
update cycle, providing curvature, velocity, and acceleration
commands to a controller which converts them into steering
and throttle actuation commands to the vehicle. Since Boss
cannot be run on public roads, nor at speeds greater than
30 mph, our tests were limited to small private roads with
low speeds and minimal traffic. The values we assigned
to parameters controlling the size of the search lattice are
given in Table I. We found that these values could generate
acceptable plans within the allowed planning latency. Table II
displays the time taken in each phase of the search by each
of the GPU and CPU. The GPU provides a considerable
speedup overall even accounting for the fact that only one
core is used in the CPU implementation, although the GPU
is much faster at certain tasks. Both implementations are
reasonably well-optimized, so this comparison is strongly
suggestive of the relative merits of the platforms for our
algorithm.

We tested several scenarios demonstrating the range of
abilities of the planner. Figure 5 demonstrates that the

Fig. 5. With a constraint that penalizes lateral accelerations, the planner
automatically slows the vehicle in anticipation of a tight turn. The distance
between successive samples shows the deceleration coming into the turn
and acceleration beginning near the apex of the turn. Samples are spaced
at 300 ms intervals.

(a) [0 - 3 s]

(b) [6 - 10 s]

(c) [10 - 14 s]
Fig. 6. In a test conducted at 30 km/h, the robot passes a slow-moving
human-driven vehicle in the right lane by (a) moving into the left lane, then
(b) remaining there until it passes the other vehicle, and (c) finally merging
in front of it. Samples are spaced at 100 ms intervals.

planner can choose an appropriate speed to round a tight
corner. The planner penalizes trajectories with higher lateral
accelerations up to a hard limit of 0.3 g. At the first sample
in the figure, the robot is traveling at 33 km/h. It slows to
13 km/h with a lateral acceleration of 0.11 g to round the
corner at the tenth sample and accelerates back to 32 km/h
at the last sample.

Figure 6 demonstrates a passing scenario executed on the
robot. The right lane is given a slightly lower cost to traverse
than the left lane, encouraging the robot to stay in the right
lane. The robot prefers to travel at approximately 35 km/h,
but a human-driven vehicle traveling at 20 km/h is ahead
of it in the same lane. Since the bonus awarded for driving
further by the final cost coefficient ks (Equation 6) exceeds
the slight penalty for driving in the left lane, the planner
selects a trajectory that moves into the left lane, passes the
slower vehicle, and merges back in front of it.

Figure 7 shows a more complex version of the behavior
in Figure 6, where the planner must wait for a space to
open before merging into the passing lane. Due to practical
constraints, we demonstrated this behavior in simulation. Part
(a) of the figure shows that the exploration of times and
velocities in the search allows a distance-keeping behavior
to emerge. We create a region of high cost behind obstacle
vehicles, so that the optimal path keeps the vehicle just out
of the high-cost regions.

(a) [0 - 1.5 s]

(b) [1.5 - 3.5 s]

(c) [3.5 - 5.5 s]

(d) [20 - 22 s]

(e) [22 - 24 s]
Fig. 7. In a simulation, the planner (a) distance-keeps behind a slow-
moving vehicle until a gap between faster vehicles in the next lane opens
up alongside. It (b) and (c) merges into the gap and remains there until it
passes the slower-moving vehicle, whereupon it (d) and (e) merges back in
front of it. In this scenario, the robot’s desired speed is faster than all other
vehicles. Samples are spaced at 100 ms intervals.

Parameter Value
Station increments 7
Latitude increments 19
Accelerations 7
Outgoing paths 7
Time discretizations 3
Velocity discretizations 3
Total trajectories evaluated per
cycle

≈ 400 000

TABLE I
PARAMETERS OF THE LATTICE USED IN THE EXPERIMENTS

Search Phase GPU Time CPU Time Speedup
Plan trajectories from
source pose onto lat-
tice

2 ms 12 ms 6

Update all paths in lat-
tice

0.1 ms 4 ms 40

Plan all trajectories
coming out of a single
station

2 ms 42 ms 21

Whole planning cycle 45 ms 650 ms 15

TABLE II
TIME TAKEN ON THE CPU AND GPU FOR STAGES OF THE PLANNING

CYCLE

VI. CONCLUSIONS

Our planner is able to generate reasonable plans in real-
time for a variety of traffic situations. The planner can use
a GPU to exploit the parallel structure of the search space
and significantly reduce the planning latency.

The cost function plays an important role in shaping the
final behavior, and more work is necessary to develop cost
functions for more complex behaviors.

An obvious next step in the development of the planner
is to investigate more sophisticated acceleration profiles
while maintaining execution efficiency. Using a constant
acceleration over the course of the path can lead to execution
errors, since vehicles typically cannot change acceleration
abruptly. At low speeds, constructing paths using a cubic
polynomial spiral while staying strictly within curvature rate
overly limits the maneuverability of the vehicle. A refinement
to the types of actions considered may be necessary at low
speeds.

We have not yet looked at reachability in the lattice. If
there are large portions of the lattice which are never part
of the solution, they may be trimmed in order to increase
trajectory density in other parts.

REFERENCES

[1] D. Ferguson et al. Motion planning in urban environments. Journal
of Field Robotics, 25(11-12):939–960, 2008.

[2] M. Pivtoraiko et al. Differentially constrained mobile robot motion
planning in state lattices. Journal of Field Robotics, 26(1):308–333,
March 2009.

[3] M. Werling et al. Optimal trajectories for dynamic street scenarios in
a frenét frame. In Proceedings of ICRA, pages 987–993, 2010.

[4] T. Howard et al. State space sampling of feasible motions for
high-performance mobile robot navigation in complex environments.
Journal of Field Robotics, 25(1):325–345, June 2008.

[5] T. Howard. Adaptive Model-Predictive Motion Planning for Nav-
igation in Complex Environments. PhD thesis, Carnegie Mellon
University, 2009.

[6] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation
via parametric optimal control. The International Journal of Robotics
Research, 22(1):583 – 601, July 2003.

[7] J.-W. Lee and B. Litkouhi. Control and validation of automated lane
centering and changing maneuver. In ASME Dynamic Systems and
Control Conference, 2009.

[8] M. Likhachev and D. Ferguson. Planning long dynamically-feasible
maneuvers for autonomous vehicles. In Proceedings of Robotics:
Science and Systems IV, Zurich, Switzerland, June 2008.

[9] M. Rufli and R. Siegwart. On the design of deformable input-/state-
lattice graphs. In Proceedings of ICRA, Anchorage, Alaska, 2010.

[10] J. Ziegler and C. Stiller. Spatiotemporal state lattices for fast trajectory
planning in dynamic on-road driving scenarios. In Proceedings of
ICRA, 2009.

