
Received January 17, 2021, accepted January 24, 2021, date of publication February 3, 2021, date of current version February 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3056903

Motion Planning for Dual-Arm Robot Based on
Soft Actor-Critic

CHING-CHANG WONG 1, SHAO-YU CHIEN1, HSUAN-MING FENG2, AND HISASUKI AOYAMA3
1Department of Electrical and Computer Engineering, Tamkang University, New Taipei City 25137, Taiwan
2Department of Computer Science and Information Engineering, National Quemoy University, Kinmen County 892, Taiwan
3Department of Mechanical and Intelligent Systems Engineering, University of Electro-Communications, Tokyo 182-8585, Japan

Corresponding author: Ching-Chang Wong (wong@ee.tku.edu.tw)

This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, under Grant MOST 108-2221-E-032-045,

Grant MOST 109-2221-E-032-038, and Grant MOST 109-2918-I-032-002.

ABSTRACT In this paper, a motion planning method based on the Soft Actor-Critic (SAC) is designed

for a dual-arm robot with two 7-Degree-of-Freedom (7-DOF) arms so that the robot can effectively avoid

self-collision and at the same time can avoid the joint limits and singularities of the arm. The left-arm and

right-arm of the dual-arm robot each have a neural network to control its position and orientation. Dual-

agent training, distributed training structure, and progressive training environment are used to train neural

networks. During the training process, the motion of one arm is regarded as the environment of the other

arm, and the two agents are trained at the same time. In the input part of the neural network of the proposed

method, all parameters come from the angle of each axis and kinematic calculation, no additional sensors

are needed, so the method is easier to transplant to different dual-arm robots. With some appropriate neural

network inputs and reward functions design, the robot can perform the expected self-collision avoidance and

effectively avoid the joint limits and singularities of the arm. Finally, some experiments of the simulation tests

in the Gazebo simulator and actual tests in a laboratory-made dual-arm robot are presented to illustrate the

proposed SAC-based motion planning method is feasible and practicable in the avoidance of self-collision,

joint limits, and singularities.

INDEX TERMS Dual-arm robot, soft actor-critic (SAC), deep reinforcement learning (DRL), motion

planning, self-collision avoidance.

I. INTRODUCTION

Small-volume large-variety manufacturing process has

become a trend in production. Compared with single-arm

robots, dual-arm robots have better adaptability and flexibil-

ity. However, a dual-arm robot is like placing two robots close

to each other, so the collision of robots needs to be considered.

Zhou et al. used the concept of a flag, which will be activated

when one arm enters a specific area to prevent the other arm

from entering the same area [1]. Lam et al. used invisible

sensitive skin inside the arm, but this method is mainly

used to prevent the arm from colliding with the surrounding

people [2]. Afaghani and Aiyama proposed a collision-map

method for collision detection, which makes one arm to be

an obstacle in the path of the other one [3]. There are also

methods of using the redundant angle characteristics of the

7-DOF robotic arm to avoid self-collision. The objective

The associate editor coordinating the review of this manuscript and

approving it for publication was Ze Ji .

function of the optimal trajectory is used to determine the

angle of the redundant axis to deal with the problem of

self-collision and singularity [4]. Su et al. also discussed

the redundancy and operability of redundant robots, such

as the redundancy optimization control of anthropomorphic

robots [5], and the application of redundant robots in medical

treatment [6]. Another similar method is to constrain arm

movements by formulating potential collisions and joint

limits into linear inequalities [7]. Currently, a more mature

collision-free method has been developed to plan the tra-

jectory in an off-line manner before the arm starts to move

[8]–[12]. The method that is more widely studied today is

to generate the repulsion vector by the distance between

the links, which is inversely proportional to the distance

between the links, thereby changing the trajectory of the arm

movement to achieve the effect of self-collision avoidance

[13], [14], some studies have added vision, and derived

this method to avoid obstacles in the environment at the

same time [15], [16].

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 26871

https://orcid.org/0000-0003-1095-728X
https://orcid.org/0000-0002-8968-9902

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

On the other hand, Machine Learning (ML) has been a

very popular topic in recent years, and has been widely used

in various fields. In 2012, the Reinforcement Learning (RL)

method were used for the robot motion control [17], [18]. In

2013, Mnih et al. proposed Deep Q-Network (DQN) [19],

which combined RL with the Deep Neural Network (DNN)

and achieved breakthrough results. James and Johns used the

DQN method to control the rotation angles of the joints of

the robotic arm, so that the arm can perform gripping tasks

[20]. In 2015, DeepMind proposed the Deep Deterministic

Policy Gradient (DDPG) algorithm [21], which improved

the problem of poor performance of previous RL methods

when the range of output was continuous space, so there

are more studies using DDPG for robot control, and all

have achieved good results [22]–[24]. Meng et al. [25] and

Ai et al. [26] used a learning-based method in robot control.

Su et al. proposed an improved Recurrent Neural Network

(RNN) scheme to perform the trajectory control of redundant

robot [27]. In 2018, Haarnoja et al. proposed a Soft Actor-

Critic (SAC) algorithm [28]. They used an additional value

network to approximate the Q network, which has better

performance in high-dimensional models, and use Hindsight

Experience Replay (HER) to improve sample efficiency, and

the entropy term of SACmakes it have better exploration per-

formance. Due to the rise of ML, the application of robots has

made rapid progress. Robots can gradually complete more

complex and difficult tasks through ML methods. Su et al.

proposed a model-free method based on Deep Convolutional

Neural Network (DCNN) regression algorithm to achieve

tool dynamics identification for bilateral teleoperation [29].

In 2019, Varin et al. compared the learning effects of two rein-

forcement learning methods (Proximal Policy Optimization

and Soft Actor-Critic) in four action spaces (torque, joint PD,

inverse dynamics, and impedance control). The experimental

results showed that different action spaces will have different

benefits for learning, and model-based controller modeling

can effectively reduce the complexity of the problem [30].

In 2020, Akimov also used SAC to realize the movement

control of the legged robot, and split the learning process into

two stages. The experimental results showed that the agent

after learning in the second stage can also handle the tasks

in the first stage [31]. However, no matter what methods are

used for motion planning, safety is one of the most important

concerns. One is the safety of the people around, and the other

is the safety of the robot itself. This paper mainly discusses

the latter, that is, how to avoid damage caused by the robot’s

self-collision. Kim et al. proposed a motion planning algo-

rithm that combines TD3 and HER, and applied the algorithm

to 2-DOF and 3-DOF manipulators. The experimental results

showed that the algorithm can generate smoother and shorter

path, but it did not consider collision avoidance, which led to

the failure of some tasks [32]. Prianto et al. used SAC to pro-

vide a path planningmethod formulti-arm, which can find the

shortest path for any starting point and target point in a static

environment [33]. Ha et al. used SAC to provide a method

for learning a closed-loop decentralized multi-arm motion

planner. Their experiments demonstrate that the resulting

motion planning policy performs well not only in challenging

multi-arm motion planning tasks but directly generalizes to

tasks with a higher number of arms [34]. In this paper, a

SAC-based motion planning method is proposed to control

a dual-arm robot with two 7-DOF arms so that while learning

to move the arm to the target point, it can also learn to dynam-

ically avoid self-collision, joint limits, and singularities.

The rest of this paper is organized as follows: In Section II,

the proposed SAC-based motion planning method and its

network structure, reward functions, and training methods

are clearly described. In Section III, some simulation test

experiments in the Gazebo simulator with a large number

of random tasks are presented to illustrate the necessity and

effectiveness of these methods. Moreover, a laboratory-made

dual-arm robot is used to do some practical experiments to

verify that it can indeed run on the actual dual-arm robot.

Finally, the conclusions are summarized in Section IV.

II. SAC-BASED MOTION PLANNING METHOD

A motion planning method based on the Soft Actor-Critic

(SAC) is designed for a dual-arm robot with two 7-DOF arms.

The design goal is to let a dual-arm robot move its arms to

a target point while avoiding self-collision, joint limits, and

singularities. SAC is one of theDeepReinforcement Learning

(DRL) algorithms. Its training is to update network param-

eters by maximizing entropy and rewards. Some training

methods that help to improve the learning effect of agents are

proposed in this paper. Moreover, the selected neural network

structure and reward functions are also very important for the

network training. Thus, four main parts are presented in this

section: (a) deep reinforcement learning, (b) neural network

design, (c) reward function, and (d) training method. They are

described as follows:

A. DEEP REINFORCEMENT LEARNING

The main concept of Reinforcement Learning (RL) is to learn

through the interaction between the agent and the environ-

ment. After the agent chooses an action, it will get a corre-

sponding state and a reward from the environment. Through

the learning in this continuous interactive process, an opti-

mal policy can be obtained. The traditional reinforcement

learning methods usually select the best action based on a

lookup table, while the agent of DRL uses a DNN to select

actions. This method greatly improves the ability to solve

high-dimensional or more complex problems, and is also

more applicable in a continuous action space to make an

action policy.

In this paper, the left-arm and right-arm of the dual-arm

robot are controlled by their respective agents. Therefore,

the agent in the DRL is one of the arms and the environ-

ment is the entire dual-arm robot. Taking the right-arm as an

example, the agent will receive the states and rewards from

the environment, and the output control commands to move

the arm to the target point, while avoiding collisions, joint

limits, and singularities during the movement. The obstacles

26872 VOLUME 9, 2021

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

of the right-arm to avoid collisions are the body and left-arm

of the dual-arm robot.

The SAC algorithm is an off-policy actor-critic algorithm

based on the maximum entropy RL framework. There are

three neural networks: 1) value network (V): It is used to

represent a state value function, 2) soft Q-network (Q): It is

used to represent a soft Q-function, and 3) policy network

(5): It is used to represent a policy function. The policy

network training of SAC is to update the network param-

eters by maximizing entropy and reward. The parameters

of these three networks can be optimized by the training

process that minimizes errors. The pseudocode of the SAC

and the symbol table used in the proposed SAC-based motion

planning method are respectively shown in Algorithm 1 and

Appendix [28]. The parameter training of these three net-

works is described as follows:

Algorithm 1 Soft Actor-Critic

Input ψ , ϑ1, φ; Initial parameters

ψ̄ ← ψ, ϑ2← ϑ1; Set target network weights

D← σ ; Initialize an empty replay buffer

for each iteration do

at ∼ 5φ (at|st) ; Sample action at from

st+1 ∼ p (st+1|st, at) ; Execute at and sample next state st+1
D← D ∪ {(st, at, r(st, at), st+1)}; Store the transition in the

replay buffer D

if it’s time to update then

for each gradient step do

B = {(st, at, r(st, at), st+1)}; Sample a batch B

from buffer D

ψ ← ψ − λV
⌢

∇ψ JV (ψ) ; Update value network weights

ϑi← ϑi − λ5
⌢

∇ϑiJQ (ϑi) ; for i ∈ {1, 2}; Update the

Q-function parameters

φ← φ − λV
⌢

∇φJ5 (φ) ; Update policy weights

ψ̄ ← τψ + (1− τ)ψ̄; Update target network weights

end for

end if

end for

Output ψ , ψ̄ , ϑ, φ; Optimized parameters

In the parameter training of the value network Vψ , the

parameters ψ are trained to minimize the squared residual

error. It can be expressed by

JV(ψ) = Est∼D

[

1/2
(

Vψ (st)

− Eat∼5φ
[

Qϑ (st, at)− log
∏

φ
(at | st)

])2
]

(1)

where D is the replay buffer, which contains the distri-

bution of the state and action of the previous sample.

The equations for optimizing the parameters ψ can be

expressed by

∇̂ψJV(ψ) = ∇ψVψ (st)



Vψ (st)

−
(

Qϑ (st, at)− log
∏

φ
(at | st)

)]

(2)

Based on the gradient of (1), its purpose is to optimize the

parameters of the network to minimize the squared residual

error between the output of the value network and the output

of the Q-network minus the entropy of the policy function

5φ .

In the parameter training of the soft Q-network Qϑ ,

the parameters ϑ are trained to minimize the soft Bellman

residual. It can be expressed by

JQ(ϑ) = E(st,at) ∼ D

[

1/2
(

Qϑ (st, at)−
⌢

Q (st, at)
)2

]

(3)

where
⌢

Q (st, at) = r (st, at)+ γEst+1∼p
[

V9 (st+1)
]

(4)

and the equations for optimizing the parameters ϑ can be

expressed by

⌢

∇ϑ JQ(ϑ) = ∇ϑQϑ (st , at) [Qϑ (st, at)
−

(

r (st, at)+ γVψ̄ (st+1)
)]

(5)

where Vψ̄ is an additional value function called the target

value function. Based on the stochastic gradients of the loss

function described by (3), its purpose is to update the param-

eters of the network to minimize the error between the output

of Q network prediction and the sum of reward and the output

of value function.

In the parameter training of the policy network 5φ , the

parameters φ are trained to minimize the equation which is

expressed by

J5(φ) = Est∼D
[

log5φ (at | st)− Qϑ (st, at)
]

(6)

and the equations for optimizing the parameters φ can be

expressed by

⌢

∇φJ5(φ) = ∇φ log5φ (at | st)
+

[

∇at log5φ (at | st)−∇atQ (st, at)
]

∇φat (7)

where

at = fφ (εt; st) (8)

where εt is an input noise vector sampled from spherical

Gaussian. Based on the approximate gradient of (6), its pur-

pose is to update the parameters of the network to minimize

the error between log5φ(at|st) and the output of Q-network.
The algorithm collects experience and current policy from the

environment and uses batch random gradients sampled from

the buffer to update the function to approximate the target

value. It is feasible to use off-policy data from the buffer,

because both expectations and policy can be trained entirely

on off-policy data and evaluated for state and action.

B. NEURAL NETWORK DESIGN

In the neural network design section, there are three main

parts: 1) neural network structure, 2) outputs of policy net-

work, and 3) inputs of policy network. They are described as

follows:

VOLUME 9, 2021 26873

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

1) NEUAL NETWORK STRUCTURE

In the neural network structure of the SAC, there are three

main neural networks: value network, soft Q network, and

policy network. In this paper, the used network structure

and the related hyperparameters are shown in Table 1. All

layers are connected in the form of full connection layer.

The outputs of the proposed policy network are the variation

of the desired position, orientation, and redundant angle of

the pose of the robot arm, including 8 parameters, while

the output of the value network and the soft Q network is

a single parameter. Therefore, the number of neurons in the

output layer of the three networks is 8, 1, and 1, respectively.

The inputs of the three networks are the robot state and

target information, including 55 parameters, and the input

of the soft Q network additionally includes the output of

the policy network. Therefore, the number of neurons in the

input layer of the policy network, soft Q network, and value

network are 55, 63, and 55, respectively. In the part of hidden

layers, the number of layers used in the policy network, soft

Q network and value network are 5, 3, and 3, respectively.

The activation function of the hidden layers are the Leaky-

ReLU function [35]. The difference from the ReLU function

is that Leaky-ReLU can make the neural network less prone

to gradient vanishing during the training process [36]. In the

part of selecting the activation function of the output layer,

if the ReLU function or the Leaky-ReLU function is used,

the output will only be a positive value. Since the control

command of the arm requires a positive or negative value,

the Tanh function is selected as the activation function of the

output layer of the policy network. And the range of Tanh

function is [−1, 1], which can prevent the output value of the
policy network from being too large and causing the arm to

move too fast.

2) OUTPUTS OF POLICY NETWORK

The outputs of the policy network are the variation of the

desired position, orientation, and redundant angle of the pose

of the robot arm. All output values are in the form of the

amount of change per unit time to control the arm. In the

orientation part, the quaternion representation is used, thus,

there are a total of 8 parameters in these three outputs of

the policy network. The definitions of outputs, parameters,

and symbols are shown in Table 2. Due to the Tanh function,

these 8 outputs range from −1 to 1. Thus, the output values

are respectively multiplied by a constant term to limit the

maximum amount of change per unit time in the position,

orientation, and redundant angle. In order to limit the moving

speed of the arm to less than 0.6 m/s, the angular velocity

of the orientation and the redundant angle are less than 1.25π

rad/s, and because the cycle time of the arm is 0.008 s, so these

three outputs are multiplied by the constant terms 1/300,

1/100, and 1/100, respectively.

3) INTPUTS OF POLICY NETWORK

The inputs of the policy network are the information that

the network can obtain in the environment. Therefore, it is

TABLE 1. Network structure and hyperparameters of three neural
networks of SAC.

TABLE 2. Outputs used in the policy network.

important to properly select some useful information to let the

network have a good learning efficiency and result. The main

purpose of this paper is to discuss how to effectively move

the arm from the current position to the target position and

avoid self-collision during the moving process. Therefore,

it is necessary to let the network know the current information

and target information of the arm, and the relative relationship

between the two arms. In addition, because the outputs of

the network are the control commands in the workspace,

it is necessary to let the network know the joint information,

the working reach, and the expected angle of each axis. Thus,

the selected input of the policy network mainly includes six

items and there are a total of 55 parameters in these six inputs.

The definitions of inputs, parameters, and symbols are shown

in Table 3. The six inputs are described as follows:

The current information Scurr is mainly used to pro-

vide information about the current position, orientation, and

redundant angle of the arm to the neural network. It is defined

by

Scurr =
(

poscurr , quat curr , ϕcurr
)

(9)

where poscurr is the current position of the arm, quatcurr is

quaternion of the current orientation of the arm, and ϕcurr
is the current redundant angle of the arm. In the orientation

part, the interpolated quaternion representation is used to

ensure that the rotation of orientation will not encounter the

gimbal lock problem [37]. In the redundant axis part, the

redundant axis can be effectively used to avoid joint limits and

singularities. Therefore, the angle of the redundant axis will

be determined by the policy network in this paper. In addition,

26874 VOLUME 9, 2021

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

TABLE 3. Inputs used in the policy network.

if the standard deviation between the input parameters is too

large, it will cause training difficulties, so the ranges of all the

parameter values of Scurr are normalized between−1 and 1 in
this paper.

The target information Tvec is mainly used to provide

information about the position and orientation of the arm at

the target to the neural network. Compared with the absolute

target position and orientation, the relative relationship has a

higher correlation with the network output. It can point out

the reference direction of the control command to a certain

extent. It is defined by

Tvec =
(

pos rec , quatvec, quat rev
)

(10)

where posvec, quatvec, and quatrev are respectively the position

vector, the orientation vector, and the reverse orientation

vector. Among them, the orientation vector is the shortest

trajectory in spherical linear interpolation, and the reverse

orientation vector is the longer trajectory opposite the short-

est trajectory in spherical linear interpolation. The position

vector posvec is defined by

posvec = poscurr − postar (11)

where postar is the target position of the arm. The orientation

vector quatvec is defined by

quatvec=q1−quatcurr; q1=Slerp
(

quattar, quatcurr
)

(12)

where q1 is the first quaternion calculated by the spherical

linear interpolation method [38] and quattar is the quaternion

of the target orientation of the arm. The reverse orientation

vector quatrev is defined by

quatrev = qrev − quatcurr;

qrev = Slerprev
(

quattar, quatcurr
)

(13)

where qrev is the first quaternion calculated by the reverse

spherical linear interpolation method. Since the redundant

angle does not affect the position and orientation of the arm,

the target information of the arm in this paper does not include

the redundant angle.

The collision information Cindx is mainly used to provide

information about the degree of collision between the links of

the two arms to the neural network. The degree of approach-

ing collision is converted from the distance between the links.

One arm of a dual-arm robot contains five links, which are the

body, shoulder, upper arm, forearm, and end links. There are

twenty-five combinations of the distance between each link of

the dual-arm robot. However, when considering the collision

situation between each link, it can be found that because the

left-arm and the right-arm have the same body link, and the

position of the shoulder link is fixed. Only the positions of

the upper arm link, forearm link, and end link will change

during the movement of a single arm, thus it does not need

to consider the collision between the body link and shoulder

link and other links. Therefore, twenty-five combinations can

be reduced to fifteen. Thus, the collision information between

two links Cindx is defined by

Cindx = (c1, c2, c3, · · · , c15) (14)

where ci is the i-th link-collision index and defined by

ci = dlmt i − dcurr i + 1; for i ∈ {1, 2, · · · , 15} (15)

where dlmt is the minimum limit distance between two links

and dcurr is the current distance between two links. The

defined minimum limit distance between two links of each

group is shown in Table 4. The difference in this value is

due to different links with different diameters. If the distance

between two links is less than this limit, it will be regarded

as a collision event. The closer the value of the link-collision

index is to 1, the higher the chance of collision between two

links.

The joint information Jinfo is mainly used to let the neu-

ral network learn to avoid exceeding the joint limits during

movement, and it also helps the neural network to avoid

reaching the singularities of the arm during the motion plan-

ning process. It can be expressed by

Jinfo = (Pe,Pw, θlmt) (16)

where Pe, Pw, and θlmt are respectively the elbow joint posi-

tion, the wrist joint position, and the index of joint limit. The

purpose of the elbow and wrist joints as the inputs is to enable

the neural network to understand how different orientation

and redundant angle changes during movement will affect the

position changes of the links. The i-th index of joint limit is

defined by

θlmt i =
(

2× θcurr i − θmin i

|θmax i − θmin i|
− θmu i

)

;

for i ∈ {1, 2, · · · , 7} (17)

VOLUME 9, 2021 26875

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

TABLE 4. Minimum distance (m) between two links of each group.

where θmin i and θmax i are respectively the minimum limit

angle and maximum limit angle of each axis.

The working reach rindx is mainly used to let the neural

network learn to avoid exceeding the working reach of the

arm during movement. It is defined by

rindx =
(‖Pw − Ps‖

rlmt

)

(18)

where Pw and Ps are respectively the current positions of the

wrist joint and shoulder joint, and rlmt is the working reach

limit.

The target angle θtar of each axis is mainly used to provide

the neural network to compare with the current angle of each

axis. It is defined by

θtar = (θtar1, θtar2, · · · , θtar7) (19)

where θtar i is the target angle of i-th axis. These 7 input values

are the angles of each axis obtained by the inverse kinematics

solution under the condition that the redundant angle is zero

degree at the target point.

C. REWARD FUNCTIONS

In the reward functions of the proposed method, there are two

main parts: 1) dense reward: It guides the neural network to

learn how to control the movement of the arm to the target

point, and 2) sparse reward: It guides the neural network to

learn how to avoid self-collision, joint limits, and singulari-

ties. They are described as follows:

1) DENSE REWARD

The dense reward is to give a reward value for each output

(action) of the neural network (agent). The purpose of the

dense reward defined in this paper is mainly used to guide the

learning of the neural network to move the arm to the position

and orientation of the target. The defined dense reward Rd is

expressed by

Rd = Rpos + Rang + Rquat − 1 (20)

where Rpos, Rang, and Rquat are a position reward, an angle

reward, and an orientation reward, respectively. The dense

reward is the sum of the three rewards of position reward,

angle reward, and orientation reward plus a constant term

‘‘−1’’. The purpose of this constant term is to enable the

neural network to learn effectively. The position reward Rpos

is defined by

Rpos = −
∥

∥postar − poscurr
∥

∥ (21)

where poscurr and postar are respectively the current position

and target position of the arm. Equation (21) directly takes

the negative value from the Euclidean distance of these two

positions, so if the current position is closer to the target

position, the value of the position reward is larger. However,

if the reward is calculated simply by the distance in space,

it means that a sphere is drawn with the target position as

the center, and the reward value at any point on this sphere is

the same. Therefore, the angle reward Rang is also added to

the dense reward to consider the direction of the movement

vector posvec of the arm. The angle reward Rang is defined by

Rang = −
Rpos × cos θv + Rpos

2
(22)

where

cos θv =
posvec ·

(

postar − poscurr
)

∥

∥posvec
∥

∥

∥

∥postar − poscurr
∥

∥

(23)

where θv is the angle between the arm’s movement vector

posvec and the vector from the starting point to the target

point. When the arm is closer to the target position, the value

of Rpos will be closer to zero, and the cosine value of the

angle θv does not have this characteristic. This will cause

that the impact of distance reward will gradually decrease

when the arm is closer to the target position, while the impact

of angle reward will be expanded. Therefore, through the

calculation of (22), the angle reward Rang can be changed

from the original cosine range of [−1, 1] to the range of

[0,Rpos], so that it can be balanced the position reward Rpos

and the angle reward Rang both affect the online learning in

terms of distance and angle. Finally, the orientation reward

Rquat is defined by

Rquat=−
∥

∥quatcurr−quattar
∥

∥+
∥

∥

∥
quatcurr−quatoptar

∥

∥

∥
−2;

quatoptar=−quattar (24)

where quatcurr and quattar are respectively the current quater-

nion and target quaternion of the arm. quatoptar is the opposite

vector of quattar. However, two quaternions opposite to each

other represent the same orientation, which means that quattar
and quatoptar are both target quaternions of the arm, so it

is necessary to consider the distance between the current

quaternion and these two target quaternions at the same time.

Since the Euclidean distance of two target quaternions is 2,

the range of the sum of the distance between any quaternion

and these two target quaternions is [2, 2
√
2], then add the con-

stant term ‘‘−2’’ tomake its value range become [0, 2
√
2−2].

Finally, it takes a negative value to indicate that when the

current quaternion is closer to the target quaternion, the value

of the orientation reward Rquat is the larger.

26876 VOLUME 9, 2021

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

2) SPARSE REWARD

The sparse reward is to give a reward value given by the

environment only under certain conditions. The purpose of

the sparse reward defined in this paper is to guide the learning

of the neural network to avoid the problems of self-collision,

joint limits, and singularities, so the sparse rewards in this

paper include four items: (a) self-collision occurs; (b) joint

limit is exceeded, (c) working reach is exceeded, and (d) near

singularity. The reward value is set to −8 when the above

situation occurs. Among them, the definition of self-collision

is the same as (15). When ci is greater than 1, it means that

a collision occurs. The definition of exceeding the joint limit

is the same as (17). When θlmt i is greater than 1 or less than

−1, it means that the joint limit is exceeded. The definition

of exceeding working reach is the same as (18). When rindx is

greater than 1, it means that the working reach is exceeded.

And the definition of near the singularity is defined as the

case where the angular velocity of any axis exceeds π rad/s.

D. TRAINING METHODS

The proposed method for the dual-arm robot has two agents,

which control the left-arm and the right-arm, respectively.

Since the training process of the two neural networks is the

same, the network training flowchart of the SAC using the

right-arm as an example is shown in Fig. 1. There are three

training methods in the training process: 1) dual-agent train-

ing, 2) distributed training architecture, and 3) progressive

training environment. They are described as follows:

1) DUAL-AGENT TRAINING

The main purpose of the dual-agent training is to train two

neural networks simultaneously in one environment [39].

The flowchart is shown in Fig. 2. At the beginning of each

round, the environment will randomly generate a set of start-

ing points and target points. The agent will output control

commands to the controller, and the controller will control

the rotation of each axis motor to move the arm according to

the joint angles obtained by kinematics, and then the current

state of the armwill be used to make a new environment state.

Because the left-arm and the right-arm are learning at the

same time, and the randomly generated starting point will

cause the arm to have a large displacement in an instant. This

phenomenon does not happen in actual situations. Therefore,

when one of the arms reaches the target point, it must wait

for the other arm to reach the target point, and then the

new starting points and target points of the two arms will be

regenerated for a new training round. This method can ensure

that the status information of the two arms is continuous

during each round of training, so that the networks of the two

arms can correctly learn at the same time.

2) DISTRIBUTED TRAINING ARCHITECTURE

The main purpose of the distributed training architecture is

to quickly accumulate more empirical data and improve the

efficiency of network training [40]. The distributed training

FIGURE 1. Network training flowchart of the SAC to avoid self-collision,
joint limits, and singularities for the right-arm.

FIGURE 2. Flowchart of the dual-agent training for the motion planning.

architecture used in this paper is shown in Fig. 3. Similarly,

it is implemented in a multiple thread manner. An agent

interacts with four environments at the same time during

the network training, and each environment uses a different

random seed to randomly generate starting points and tar-

get points. The empirical data of the four environments are

respectively stored in four buffers as training samples, and

then samples are sequentially extracted from the four buffers

to train the neural network. Since each movement of the arm

is continuous and related, the empirical data generated by

each group of the dual-arm robot are respectively stored in

different registers. This method can ensure that the neural

network extract data from a buffer, it will not get empirical

VOLUME 9, 2021 26877

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

FIGURE 3. Distributed training architecture of the dual-agent training for
the dual-arm robot.

data from different dual-arm robots. In the four environments,

the arms between different environments will not affect each

other, which means that each arm will only interact with arm

agent in the same environment.

3) PROGRESSIVE TRAINING ENVIRONMENT

The main purpose of the progressive training environment is

to effectively train the network. It takes an average of several

hundreds of times to move the arm from the starting point

to the target point. It is quite difficult at the beginning of

the training, so a way that gradually increases the difficulty

of completing the task is used to train the network. At first,

the training environment is set up to make it easy for the

network to complete the task. When the number of completed

tasks gradually increases, slowly increase the difficulty of the

environment to effectively train the network. There are two

main ways: (i) conditions for completing the task and (ii)

ranges of the randomly generated starting point and target

point. They are described as follows:

In the part of conditions for completing the task,

the Euclidean distance between the current position (orien-

tation) and the target position (orientation) of the arm is used

to make a judgment whether the neural network completed

a task. In order to make the neural network easier to obtain

positive rewards, a larger error from the target point is given

at the beginning of the training. It makes the neural network

easier to learn how to complete the task, and then gradually

reduce this error to increase difficulty. The initial value of

the error from the target point is 0.08 meters. Each time the

task is successfully completed, the distance is multiplied by

0.993 until it is reduced to 0.01meters. And the initial value of

the Euclidean distance error between the current quaternion

and the target quaternion is 0.4 units. Each time the task is

successfully completed, the distance is multiplied by 0.993

until it is reduced to 0.2 units.

In the randomly generated range of the starting point and

target point, due to the limited working reach of the arm,

the randomly generated direction may cause the angle of each

axis to exceed its joint limit. Therefore, seven random values

are used to generate the angle θi of the seven axes of the

arm, and then the corresponding information needed for the

network training is calculated from the kinematics. The angle

θi of each axis can be expressed by

θi = rani × S× gi +mui; for i ∈ {1, 2, · · · , 7} (25)

where rani is a random value from −0.5 to 0.5, S is a ran-

dom angle range control item, gi and mui are respectively

expressed by

gi = |θmax i − θmin i| (26)

and

mui =
θmax i + θmin i

2
(27)

This method randomly generates an angle within the joint

limit of each axis. The larger the random range S, the more

difficult the task to be completed. The value of S is set to

0.5 at the beginning of the training, and each time the task is

completed, the random angle range control itemS is increased

by 0.004 until the value of S increases to 0.95. For example,

if the limit of the first axis is 180, the maximum random

range of the first axis is 171 during training. This is because

the output of the policy network has a certain degree of

randomness during training, so the starting or target point too

close to the joint limit will affect the effect of learning. And a

small S value at the beginning of training can make the arm in

a safer state that is less likely to encounter collision and joint

limit problems.

III. EXPERIMENTAL RESULTS

In the experiment, there are twomain parts: (a) simulation test

experiment and (b) actual test experiment. They are described

as follows:

A. SIMULATION TEST EXPERIMENT

The main purpose of this experiment is to verify the effec-

tiveness of the proposed SAC-based motion planning method

for the dual-arm robot and the necessity of various network

inputs and reward functions used in the trainingmodes. In this

verification process, the Gazebo simulator is used and a large

number of random tasks are used to test the proposed method,

and these test results will be compared with the linear trajec-

tory planning method in workspace, the trajectory planning

method in joint space, and Decentralized Multi-arm Motion

Planner (DMAMP) proposed by Ha et al. [34]. Among them,

only the experimental results of DMAMP method are used

for comparison, the other three methods use the same random

seed to generate 1,000 random tasks in the experiment. The

26878 VOLUME 9, 2021

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

FIGURE 4. Description of the dual-arm robot constructed in Gazebo
simulator.

dual-arm robot constructed in the Gazebo simulator is shown

in Fig. 4. It mainly compares the occurrence probability of

the following three items: self-collision, out of joint limits,

and near the singularities. The test experiments are mainly

divided into four parts: 1) completely random task, 2) random

positions and fixed orientation, 3) collision-prone zone test,

and 4) different network inputs and reward functions. They

are described as follows:

1) COMPLETELY RANDOM TASK

In this experiment of completely random task, the purpose

is to test all possible tasks within the working reach of the

dual-arm robot. The starting point and target point of the com-

pletely random task are generated through (25) to generate

random angles of each axis as in training, and the value of

S is equal to 1, which means that the area of the completely

random task is equal to the working reach of the arm. In the

completely random task, the overlap ratio of the working

reach of the two arms is about 0.3, so it is compared with

the data obtained by the DMAMP method in easy tasks

[34]. As shown in Table 5, the occurrence probabilities of

three problems in the four methods are compared. Since

the trajectory planning method in the joint space uses the

starting angle and the target angle of each axis to plan the

speed of the motor, and the output of the DMAMP method

is the motion planning of each axis, the problem of joint

limit and singularity does not occur in these two methods.

From the experimental data described in Table 5, it can be

found that in the self-collision item, the proposed method has

a significantly lower occurrence probability than the other

three methods. In the two items of joint limit and singularity,

the performance of the proposed method is also superior to

the linear trajectory planning method in workspace. In this

experiment, the definition of near the singularity is defined

as the case where the angular velocity of any axis exceeds π

rad/s. From the experimental data in Table 5, it can be found

that due to different orientation changes, it is frequent for the

arm to produce a task that crosses the shoulder coordinate

quadrant or the wrist coordinate quadrant in a completely

random task, so there are still some cases of joint limits and

singularities.

TABLE 5. Comparison of three methods in the experiment of completely
random task.

TABLE 6. Comparison of three methods in the experiment of random
position and fixed orientation.

2) RANDOM POSITIONS AND FIXED ORIENTATION

In this experiment of random position and fixed orientation,

the purpose is to test some simple scenario to verify the

effectiveness of the proposed method. Compared with the

completely random task, the random position and fixed ori-

entation experiments has no orientation changes. The fixed

orientation means that the Euler angles of the starting point

and the target point of all test tasks are set to zero degrees, that

is, roll= pitch= yaw= 0. The randomposition is the position

of the wrist joint obtained from the angle randomly generated

by the front four-axis motor of the arm, and based on this

position, combine with a fixed orientation to obtain the ran-

dom starting and target point. In this experiment, the occur-

rence probabilities of three problems in the three methods are

compared, as shown in Table 6. From the experimental data

described in Table 5 and Table 6, it can be found that since

the test scenario is simpler than the completely random task,

the occurrence probability of the three items by the proposed

method has also decreased significantly, and the occurrence

probability of the self-collision is only 0.3%. However, the

other two methods did not greatly improve in these simpler

tasks.

3) COLLISION-PRONE ZONE TEST

In this experiment of collision-prone zone, the purpose is to

test random tasks in the zone where the task area of the two

arms are completely overlapped to verify the effectiveness of

the proposed method in an environment with a high risk of

self-collision. The collision-prone zone is defined as an area

centered on the body of the dual-arm robot and extending

20 cm to the left and right sides. That is, with the origin of

the Y-axis as the center, the range of 20 cm each extends

toward the positive axis and the negative axis. Similarly, this

VOLUME 9, 2021 26879

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

TABLE 7. Comparison of three methods in the experiment of
collision-prone zone test.

experiment is tested by 1,000 sets of random tasks, including

random positions and random orientations. To ensure that

all the random tasks are within the collision-prone zone,

if the randomly generated starting point or target point is not

within the defined zone, a new random task is regenerated

until both are within the defined zone. Since the task areas

of the two arms are completely overlapped, it is compared

with the data obtained by the DMAMP method in hard tasks

[34]. As shown in Table 7, the occurrence probabilities of

three problems in the four methods are compared. Since this

experiment limits all the starting point and the target point are

in the zone where the task areas of two arms are completely

overlapped, the occurrence probability of collision between

the two arms will be higher and the occurrence probability

of collision with the robot body also increases. From the

experimental data described in Table 5 and Table 7, it can

be found that in the self-collision item, all the occurrence

probabilities of the four methods are increased. But in this

experiment, the proposed method is still significantly better

than the other three methods.

4) DIFFERENT NETWORK INPUTS AND REWARD FUNCTIONS

In this experiment of different network inputs and reward

functions, the purpose is to verify the necessity of design-

ing network inputs and the effectiveness of reward function.

There are five main items for this comparison and verifi-

cation: (i) network inputs without considering Jinfo (joint

information), (ii) network inputs without considering Rlmt

(working reach index), (iii) network inputs without consid-

ering θtar (each axis angle of the target), (iv) network inputs

without considering quatrev (quaternion of reverse spherical

linear interpolation), and (v) reward function without consid-

ering the constant term. The completely random task of the

random position and random orientation is used to test in this

experiment. Re-train the above five different network training

mode, and also train 12,000 rounds. The comparison of the

occurrence probability in the three items of self-collision,

joint limit, and singularity is shown in Table 8. From the

comparison of the experimental data, it can be seen that

the reward function without considering the constant term is

the most obvious effect on the self-collision, joint limit, and

singularity. In the comparison of the four items that without

considering the network input, the working reach index Rlmt,

TABLE 8. Comparison of training modes of the proposed method with
different network inputs and reward functions.

the joint information Jinfo, and the quaternion of reverse

spherical linear interpolation quatrev have the largest impact

on the self-collision, joint limit, and singularity, respectively.

These results can verify that the proper selection of network

inputs and reward functions have a great influence on the

results of network training, and the proposed method does

have a good effect on avoiding the problem of self-collision,

joint limit, and singularity.

B. ACTUAL TEST EXPERIMENT

The main purpose of this experiment is to verify the effective-

ness of the proposed motion planning method applied to the

actual dual-arm robot. An experimental scenario is designed

and shown in Fig. 5. There are three areas named A, B, and C.

In the C area, some white round objects are stacked in three

positions named a, b, and c. In this experiment, one of the

three positions a, b, and c in the C area is respectively selected

to be the target position of the right-arm and the left-arm in

a random way, and then let the right-arm and the left-arm

respectively suck-and-place the object at the selected target

position to the A area and the B area. The purpose is to verify

that the proposed motion planning method can effectively

avoid collisions when the right-arm and left-arm of the robot

are performing the task of sucking and placing objects at the

same time. In the experimental design, if the placed distances

between the three positions a, b and c are too close to each

other, the motion planning method will make the dual-arm

robot only have one arm to suck object at a time, that is, two

arms take turns to suck objects. Therefore, the placed distance

between the three positions in this experiment satisfies the

following two conditions: (i) The distance is large enough

so that the left-arm and the right-arm are usually very close

when sucking objects at the same time. For example, when

the left-arm sucks the object at the ‘‘b’’ position, the right-

arm can suck the object at the ‘‘a’’ position at the same time.

(ii) The distance is small enough so that the left-arm and the

right-arm cannot simultaneously suck objects far away from

themselves. For example, when the left-arm sucks the object

at the ‘‘a’’ position, the right-arm cannot suck the object at the

26880 VOLUME 9, 2021

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

FIGURE 5. Experimental scenario of the actual dual-arm robot testing.

‘‘b’’ position, otherwise the two armswill collide. This design

can test that the proposed method can indeed make the robot

have the ability to avoid self-collision, and the two arms can

still suck objects when the distance between the two arms is

relatively small.

The test process of this experiment is shown in Fig. 6.

The left-arm and the right-arm will first randomly select a

target position respectively, and the proposed motion plan-

ning neural network is used to control each arm to move

above the selected target position. Then, the linear trajectory

planning method in workspace is used to move the arm

down and suck the object at the target position with the

suction cup. After confirming that the object is sucked, raise

the arm, and use the motion planning neural network to

control the arm to the placement area A or B to place the

object. If 12 objects have been sucked and placed, the test

is completed and the two arms move back to their initial

positions. For detail, one experimental video of the actual

test of the proposed motion planning method is shown in

https://www.youtube.com/watch?v=nFY-CMmZpXA. The

experimental results are photographed in Fig. 7, where the

blue dot and the red dot respectively represent the current

target points of the left-arm and the right-arm, including the

position of the target object or the location of the placement

area. The movement states of the left-arm and right-arm in

each picture of Fig. 7 are described as follows:

(a) The initial positions of the right-arm and the left-

arm.

(b) The new target objects randomly selected by the

right-arm and left-arm are the same object at the ‘‘a’’

position.

(c) The left-arm and right-arm simultaneously move to

above the ‘‘a’’ position.

(d) Since the right-arm is closer to the ‘‘a’’ position,

the left-arm performs the self-collision avoidance

function to let right-arm suck the object at the ‘‘a’’

position first.

(e) After the right-arm sucks the object, the target posi-

tion of the right-arm is changed to the ‘‘A’’ area.

(f) The right-arm places the sucked object to the ‘‘A’’

area and the left-arm moves to above the ‘‘a’’

position.

FIGURE 6. Flow chart of the actual dual-arm robot testing.

(g) The new target objects randomly selected by the

right-arm and the left-arm are objects at the ‘‘b’’

position and the ‘‘c’’ position, respectively.

(h) The left-arm and the right-arm simultaneously move

to above the target position selected by each other.

(i) Because the left-arm and the right-arm must be stag-

gered to suck the target object, and the right-arm is

closer to the ‘‘b’’ position, the left-arm performs a

self-collision avoidance function to let the right-arm

suck the object at the ‘‘b’’ position first.

(j) The right-arm places the sucked object to the ‘‘A’’

area, and the left-arm moves to above the ‘‘c’’

position.

(k) After the left-arm sucks the object, the target position

of the left-arm is changed to the ‘‘B’’ area.

(l) The new target objects randomly selected by the

right-arm and the left-arm are objects at the "b" posi-

tion and the ‘‘a’’ position, and the two arms move to

above the selected position, respectively.

(m) The left-arm performs the self-collision avoidance

function to avoid collision with the right-arm.

(n) The right-arm completes the suck-and-place task.

(o) The left-arm completes the suck-and-place task.

Since the selected target objects are in a random manner,

the target objects selected by the left-arm and the right-

arm may be the same. For example, as shown in Fig. 7 (b),

the target objects selected by the two arms are the same.

Another situation is that the selected target object needs to

interlace two arms to simultaneously suck the object. For

example, as shown in Fig. 7 (l), the left-arm wants to suck the

object at the ‘‘a’’ position and the right-arm wants to suck the

object at the ‘‘b’’ position.When the dual-arm robot performs

the task of sucking and placing objects with both arms, if the

proposed method is not used, there is a very high probability

that the left-arm and the right-arm will collide. Therefore,

the test results of this experiment can verify that the proposed

method has good execution results in the task of sucking and

placing objects, and verify that it can indeed run on the actual

dual-arm robot.

VOLUME 9, 2021 26881

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

FIGURE 7. Experimental snapshots of the proposed motion planning
method for the dual-arm robot.

On the other hand, it can be found from the experimental

results that if the two arms will collide in the moving process,

one arm will automatically reserve space for the other arm

to avoid collision. The self-collision avoidance result of the

motion planning method for the dual-arm robot is shown

in Fig. 8. The movement states of the left-arm and right-arm

in each picture are described as follows:

(a) The new target objects randomly selected by the

right-arm and left-arm are the same object at the ‘‘c’’

position.

(b) The left-arm and right-arm simultaneously move

towards to above the ‘‘c’’ position.

(c) The two arms tend to collide with each other. Since

the left-arm is closer to the ‘‘c’’ position, the right-

arm stops moving forward at this time.

(d) The left-arm moves above the ‘‘c’’ position and the

right-arm keeps waiting.

FIGURE 8. Snapshots of avoidance results of the proposed motion
planning method for the dual-arm robot.

(e) Although the target point of the right-arm is above

the ‘‘c’’ position, the right-arm moves slowly back-

ward to avoid the collision because the left-arm is

sucking the object at the ‘‘c’’ position.

(f) The left-armmoves toward the placement area ‘‘B’’.

(g) After the left-arm leaves, the right-arm moves to

above the ‘‘c’’ position.

(h) The right-arm moves to above the ‘‘c’’ position,

while the left-arm moves to above the ‘‘b’’ position

(the two arms do not interfere with each other).

(i) The two arms perform sucking tasks at the same

time.

If the left-arm and the right-armwill not interfere with each

other in the process, the two arms can also perform the suck-

and-place task at the same time without waiting. The process

is shown in Fig. 8 (g) to Fig. 8 (i). In the entire task of sucking

and placing objects, it is not necessary to set waiting points

through a strategy. Instead, the proposed method is used to

enable the dual-arm robot to autonomously decide when it

needs to wait, move back, or move directly to the target point.

IV. CONCLUSION

A SAC-based motion planning method is proposed to

make the dual-arm robot avoid self-collision, joint limits,

and singularities. There are five main contributions in this

research. First of all, in the motion planning part, a real-

time method is proposed so that the implemented control

network of one arm of the dual-arm robot can control the

arm without considering the trajectory of the other arm. The

proposed method does not need to plan the trajectories of

26882 VOLUME 9, 2021

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

TABLE 9. Symbol table of the proposed SAC-based method.

the two arms in advance before performing the action so that

the left-arm and the right-arm can be easily operated inde-

pendently. Therefore, the proposed method allows the dual-

arm robot to have higher flexibility. Secondly, in the part to

transplant to other systems, the proposed method can simul-

taneously consider the collision problem between all links,

without calculating the corresponding virtual repulsive force

or the gradient of the minimum distance function between

all links. Therefore, the proposed method can be more easily

transplanted to different robot systems. Thirdly, in the neural

network training part, three training methods of the dual-

agent training, distributed training architecture, and progres-

sive training environment are used to let the neural network

training effectively. Fourthly, in the simulation training part,

a 3D simulation environment is established in the Gazebo

simulator to train the neural networks of the left-arm and the

right-arm of the dual-arm robot. The proposed method can

directly map the control commands of the arm according to

various information calculated by the joint angles of the arm.

Therefore, without adding additional sensors, the proposed

method can let the trained network achieve the purpose of

avoiding self-collision, joint limits, and singularities. Finally,

in the part to verify the practicability and feasibility of the

proposed method, a complete test on a real laboratory-made

dual-arm robot is conducted. It can be seen from the exper-

imental results that the proposed method can effectively let

the dual-arm robot avoid the self-collision, joint limits, and

singularities.

APPENDIX

See Table 9.

REFERENCES

[1] J. Zhou, K. Nagase, S. Kimura, and Y. Aiyama, ‘‘Collision avoidance of

two manipulators using RT-middleware,’’ in Proc. IEEE/SICE Int. Symp.

Syst. Integr., Kyoto, Japan, Dec. 2011, pp. 1031–1036.

[2] T. L. Lam, H. W. Yip, H. Qian, and Y. Xu, ‘‘Collision avoidance

of industrial robot arms using an invisible sensitive skin,’’ in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura, Portugal, Oct. 2012,

pp. 4542–4543.

[3] A. Y. Afaghani and Y. Aiyama, ‘‘On-line collision avoidance between

two robot manipulators using collision map and simple escaping method,’’

in Proc. IEEE/SICE Int. Symp. Syst. Integr., Kobe, Japan, Dec. 2013,

pp. 105–110.

[4] Y. Chua, K. P. Tee, and R. Yan, ‘‘Robust optimal inverse kinematics with

self-collision avoidance for a humanoid robot,’’ in Proc. IEEE RO-MAN,

Gyeongju, South Korea, Aug. 2013, pp. 496–502.

[5] H. Su,W.Qi, Y. Hu, H. R. Karimi, G. Ferrigno, and E.DeMomi, ‘‘An incre-

mental learning framework for human-like redundancy optimization of

anthropomorphic manipulators,’’ IEEE Trans. Ind. Informat., early access,

Nov. 9, 2020, doi: 10.1109/TII.2020.3036693.

[6] H. Su, C. Yang, G. Ferrigno, and E. De Momi, ‘‘Improved human–robot

collaborative control of redundant robot for teleoperated minimally inva-

sive surgery,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1447–1453,

Apr. 2019.

[7] P. Bosscher and D. Hedman, ‘‘Real-time collision avoidance algorithm

for robotic manipulators,’’ Ind. Robot, Int. J., vol. 38, no. 2, pp. 186–197,

Mar. 2011.

[8] Y. Choi, D. Kim, S. Hwang, H. Kim, N. Kim, and C. Han, ‘‘Dual-arm

robot motion planning for collision avoidance using B-spline curve,’’ Int.

J. Precis. Eng. Manuf., vol. 18, no. 6, pp. 835–843, Jun. 2017.

[9] B. Lee and C. G. Lee, ‘‘Collision-free motion planning of two robots,’’

IEEE Trans. Syst., Man, Cybern., vol. SMC-17, no. 1, pp. 21–32, Jan. 1987.

[10] C. Chang,M. J. Chung, and B. H. Lee, ‘‘Collision avoidance of two general

robot manipulators by minimum delay time,’’ IEEE Trans. Syst., Man,

Cybern., vol. 24, no. 3, pp. 517–522, Mar. 1994.

[11] Z. Bien and J. Lee, ‘‘A minimum-time trajectory planning method for two

robots,’’ IEEE Trans. Robot. Autom., vol. 8, no. 3, pp. 414–418, Jun. 1992.

[12] J. Lee, ‘‘A dynamic programming approach to near minimum-time trajec-

tory planning for two robots,’’ IEEE Trans. Robot. Autom., vol. 11, no. 1,

pp. 160–164, Feb. 1995.

VOLUME 9, 2021 26883

http://dx.doi.org/10.1109/TII.2020.3036693

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

[13] R. C. Luo, B.-H. Shih, and T.-W. Lin, ‘‘Real time human motion imitation

of anthropomorphic dual arm robot based on Cartesian impedance con-

trol,’’ in Proc. IEEE Int. Symp. Robot. Sensors Environ., Washington, DC,

USA, Oct. 2013, pp. 25–30.

[14] R. C. Luo,M.-C. Ko, Y.-T. Chung, and R. Chatila, ‘‘Repulsive reaction vec-

tor generator for whole-arm collision avoidance of 7-DoF redundant robot

manipulator,’’ in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics,

Besaçon, France, Jul. 2014, pp. 1036–1041.

[15] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, ‘‘A depth space approach

to human-robot collision avoidance,’’ in Proc. IEEE Int. Conf. Robot.

Autom., Saint Paul, MN, USA, May 2012, pp. 338–345.

[16] A. De Luca and F. Flacco, ‘‘Integrated control for pHRI: Collision avoid-

ance, detection, reaction and collaboration,’’ in Proc. 4th IEEE RAS

EMBS Int. Conf. Biomed. Robot. Biomechatronics (BioRob), Rome, Italy,

Jun. 2012, pp. 288–295.

[17] E. A. Pohlmeyer, B. Mahmoudi, S. Geng, N. Prins, and J. C. Sanchez,

‘‘Brain-machine interface control of a robot arm using actor-critic rain-

forcement learning,’’ in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,

San Diego, CA, USA, Aug. 2012, pp. 4108–4111.

[18] S. Adam, L. Busoniu, and R. Babuska, ‘‘Experience replay for real-time

reinforcement learning control,’’ IEEE Trans. Syst., Man, Cybern. C, Appl.

Rev., vol. 42, no. 2, pp. 201–212, Mar. 2012.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement

learning,’’ 2013, arXiv:1312.5602. [Online]. Available: http://arxiv.org/

abs/1312.5602

[20] S. James and E. Johns, ‘‘3D simulation for robot arm control with deep

Q-learning,’’ 2016, arXiv:1609.03759. [Online]. Available: http://arxiv.

org/abs/1609.03759

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, ‘‘Continuous control with deep reinforce-

ment learning,’’ 2015, arXiv:1509.02971. [Online]. Available: http://arxiv.

org/abs/1509.02971

[22] S. Gu, E. Holly, T. Lillicrap, and S. Levine, ‘‘Deep reinforcement learn-

ing for robotic manipulation with asynchronous off-policy updates,’’ in

Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Singapore, May 2017,

pp. 3389–3396.

[23] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,

N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, ‘‘Leveraging

demonstrations for deep reinforcement learning on robotics problems

with sparse rewards,’’ 2017, arXiv:1707.08817. [Online]. Available:

http://arxiv.org/abs/1707.08817

[24] L. Tai, G. Paolo, and M. Liu, ‘‘Virtual-to-real deep reinforcement learning:

Continuous control of mobile robots for mapless navigation,’’ in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vancouver, BC, Canada,

Sep. 2017, pp. 31–36.

[25] W.Meng, S. Q. Xie, Q. Liu, C. Z. Lu, andQ. Ai, ‘‘Robust iterative feedback

tuning control of a compliant rehabilitation robot for repetitive ankle

training,’’ IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 173–184,

Feb. 2017.

[26] Q. Ai, D. Ke, J. Zuo, W. Meng, Q. Liu, Z. Zhang, and S. Q. Xie, ‘‘High-

order model-free adaptive iterative learning control of pneumatic artificial

muscle with enhanced convergence,’’ IEEE Trans. Ind. Electron., vol. 67,

no. 11, pp. 9548–9559, Nov. 2020.

[27] H. Su, Y. Hu, H. R. Karimi, A. Knoll, G. Ferrigno, and E. De Momi,

‘‘Improved recurrent neural network-based manipulator control with

remote center of motion constraints: Experimental results,’’ Neural Netw.,

vol. 131, pp. 291–299, Nov. 2020.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochas-

tic actor,’’ 2018, arXiv:1801.01290. [Online]. Available: http://arxiv.

org/abs/1801.01290

[29] H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, and E. D. Momi, ‘‘Deep

neural network approach in robot tool dynamics identification for bilateral

teleoperation,’’ IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2943–2949,

Apr. 2020.

[30] P. Varin, L. Grossman, and S. Kuindersma, ‘‘A comparison of action spaces

for learning manipulation tasks,’’ 2019, arXiv:1908.08659. [Online].

Available: http://arxiv.org/abs/1908.08659

[31] D. Akimov, ‘‘Distributed soft actor-critic with multivariate reward repre-

sentation and knowledge distillation,’’ 2019, arXiv:1911.13056. [Online].

Available: http://arxiv.org/abs/1911.13056

[32] M. S. Kim, D. K. Han, J. H. Park, and J. S. Kim, ‘‘Motion planning of robot

manipulators for a smoother path using a twin delayed deep deterministic

policy gradient with hindsight experience replay,’’ Appl. Sci., vol. 10, no. 2,

pp. 575–589, Jan. 2020.

[33] E. Prianto, M. S. Kim, J. H. Park, J. H. Baen, and J. S. Kim, ‘‘Path plan-

ning for multi-arm manipulators using deep reinforcement learning: Soft

actor–critic with hindsight experience replay,’’ Sensors, vol. 20, no. 20,

pp. 5911–5932, Oct. 2020.

[34] H. Ha, J. Xu, and S. Song, ‘‘Learning a decentralized multi-arm motion

planner,’’ 2020, arXiv:2011.02608. [Online]. Available: http://arxiv.

org/abs/2011.02608

[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve

neural network acoustic models,’’ in Proc. 30th Int. Conf. Mach. Learn.,

Atlanta, GA, USA, 2013, pp. 3–8.

[36] B. Xu, N. Wang, T. Chen, and M. Li, ‘‘Empirical evaluation of rectified

activations in convolutional network,’’ 2015, arXiv:1505.00853. [Online].

Available: http://arxiv.org/abs/1505.00853

[37] A. L. Schwab and J. P. Meijaard, ‘‘How to draw Euler angles and utilize

Euler parameters,’’ in Proc. Int. Design Eng. Tech. Conf., Comput. Inf. Eng.

Conf., Philadelphia, PA, USA, 2006, pp. 259–265.

[38] K. Shoemake, ‘‘Animating rotation with quaternion curves,’’ in Proc. 12th

Annu. Conf. Comput. Graph. Interact. Techn., 1985, pp. 245–254.

[39] L. Busoniu, R. Babuska, and B. De Schutter, ‘‘A comprehensive survey of

multiagent reinforcement learning,’’ IEEE Trans. Syst., Man, Cybern. C,

Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[40] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep rein-

forcement learning,’’ in Proc. Int. Conf. Mach. Learn., New York, NY,

USA, 2016, pp. 1928–1937.

CHING-CHANG WONG received the B.S.

degree from the Department of Electronic Engi-

neering, TamkangUniversity, Taiwan, in 1984, and

the M.S. and Ph.D. degrees from the Department

of Electrical Engineering, Tatung Institute of Tech-

nology, Taiwan, in 1986 and 1989, respectively. He

joined the Department of Electrical and Computer

Engineering, Tamkang University (TKU), in 1989,

where he served as the Department Chairman,

from 2006 to 2010. He established the Robotics

Engineering Institute, in 2007. He is currently a Distinguished Professor.

He established the Intelligent Automation and Robotics Center, in 2011. He

has published and coauthored over 300 technical articles and 20 patents.

His current research interests include intelligent control, humanoid robot,

mobile robot manipulator, and deep reinforcement learning for robotic

applications. He was elevated as a Fellow of The Institution of Engineering

and Technology (IET), the Chinese Automatic Control Society (CACS),

and the Robotics Society of Taiwan (RST), in 2009, 2015, and 2019,

respectively. He was a recipient of the Outstanding Automatic Control

Award from the CACS, Taiwan, in 2009, and the Outstanding Robotics

Engineering Award from the RST, in 2018. He received the Outstanding and

Premium Research Awards (2011∼2020) from the Ministry of Science and

Technology (MOST), Taiwan. From 2009 to 2010, he served as the Chair of

the IEEE Robotics and Automation Taipei Chapter.

26884 VOLUME 9, 2021

C.-C. Wong et al.: Motion Planning for Dual-Arm Robot Based on SAC

SHAO-YU CHIEN was born in Keelung, Tai-

wan, in 1995. He received the B.S. and M.S.

degrees from the Department of Electrical and

Computer Engineering, Tamkang University, Tai-

wan, in 2017 and 2019, respectively, where

he is currently pursuing the Ph.D. degree. His

major research interests include robotmanipulator,

robotic applications, and machine learning.

HSUAN-MING FENG received the B.S. degree

in automatic control engineering from Feng-Chia

University, Taichung, Taiwan, in 1992, and the

M.S. and Ph.D. degrees in computer science and

information engineering from Tamkang Univer-

sity, New Taipei City, Taiwan, in 1994 and 2000,

respectively. He is currently a Full Professor with

the Department of Computer Science and Infor-

mation Engineering, National Quemoy University.

His current research interests include fuzzy sys-

tems, machine learning, neural networks, wireless networks, optimal learn-

ing algorithms, image processing, and robot systems.

HISASUKI AOYAMA was born in Japan, in 1958.

He received the bachelor’s degree in mechanical

engineering for production, the master’s degree in

precisionmachinery, and the Ph.D. degree in preci-

sion engineering from the Tokyo Institute of Tech-

nology, Tokyo, Japan, in 1981, 1983, and 1988,

respectively. From 1983 to 1988, he worked with

the Research Laboratory of Precision Machinery

and Electronics, Tokyo Institute of Technology. He

became an Associate Professor with the Depart-

ment of Precision Engineering, Shizuoka University. From 1989 to 1990,

he was a Visiting Researcher with the College of Manufacturing, Cranfield

Institute of Technology, U.K. He was with the Department of ECE, North

Carolina State University, USA, in 1996. He was an Associate Professor

with the Department of Mechanical Engineering and Intelligent Systems,

University of Electro-Communications, in 1997. He became a Professor,

in 2002, and the Director of the Micro Robotics and Mechatronics Group

and the Global Alliance Laboratory Project. Hewaswith the KingMongkut’s

Institute of Technology Ladkrabang, Thailand, in 2017. His research interests

include micro/precision engineering, micro metrology, and its industrial and

biomedical applications.

VOLUME 9, 2021 26885

