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Motion Planning for Kinematic Stratified Systems
With Application to Quasi-Static Legged

Locomotion and Finger Gaiting
Bill Goodwine and Joel W. Burdick

Abstract—We present a general motion planning algorithm for
robotic systems with a “stratified” configuration space. Such sys-
tems include quasi-static legged robots and kinematic models of ob-
ject manipulation by finger repositioning. Our method is an exten-
sion of a nonlinear motion planning algorithm for smooth systems
to the stratified case, where the relevant dynamics are not smooth.
The method does not depend upon the number of legs or fingers;
furthermore, it is not based on foot placement or finger placement
concepts. Examples demonstrate the method.

Index Terms—Stratified systems, nonlinear motion planning,
legged locomotion, robotic manipulation.

I. INTRODUCTION

T HIS PAPER considers the motion planning problem for
systems whose governing physics impose a “stratified”

structure on the system’s configuration space. A more formal
notion of a stratified configuration space is presented in Section
III. Stratification naturally arises in the context of legged loco-
motion and object manipulation via finger repositioning. These
operations are characterized in part by the system making and
breaking contact with its environment. The configuration spaces
(or c-space) of these systems are “stratified” into subsets that
correspond to different contact states. The governing dynamical
equations depend upon the contact state, and are discontinuous
during the making and breaking of contact.

The goal of our motion planning scheme is to determine
the control inputs (e.g., mechanism joint variable trajectories)
which will steer the walking robot from a starting configuration
to a desired final configuration, or to manipulate the grasped
object from an initial to a final configuration via a combina-
tion of finger repositioning and finger motions. The planner
must simultaneously plan the mechanism’s motion during
a single contact state, as well as determine when to change
contact states. This paper presents a general motion planning
methodology for this class of systems, which includes all
quasi-static legged locomotors and many kinematic models of
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Fig. 1. Top: schematic of simple hexapod robot. Bottom: definition of
kinematic variables.

multi-fingered hand manipulation. The method is independent
of the number of legs (or fingers) and many other aspects of
a robot’s morphology. In the legged locomotion context, it is
distinct from previous planning methods in that it is not based
on foot placement concepts, and therefore the computationally
burdensome calculation of foot placement can be avoided.
Instead, our approach focuses on control inputs.

As a concrete example of when such a planner is needed,
consider the six-legged hexapod in Fig. 1 (this model will be
fully explored in Section V). Each leg has only two degrees
of freedom—the robot can only lift its legs up and down and
move them forward and backward. Conventional hexapods are
designed with three independent degrees of freedom per leg.
The limited control authority in this design may be desirable
in practical situations because it decreases the mechanical com-
plexity of the robot. This leg geometry can also probably be im-
plemented at very small size scales using MEMS technology.
However, such decreased kinematic complexity comes at the
cost of requiring more sophisticated control and motion plan-
ning theory. Note that for this model, it is not immediately clear
if the robot can move “sideways.”

The issue of this mechanism’s ability to move sideways is the
controllability problem. Previous work by the authors has con-
sidered controllability tests for stratified systems. We assume
throughout this paper that a given system isgait controllablein

1042-296X/02$17.00 © 2002 IEEE
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the stratified sense as defined in [1] and [2]. Otherwise, it is not
necessarily possible to determine a set of system inputs which
steer the robot to the desired final configuration. Given the as-
sumption of controllability, this paper addresses how to plan the
robot’s leg (or finger) movements so that it can approximately
follow a given trajectory. A conventional “foot-placement” ap-
proach, where the foot can be placed as necessary to implement
vehicle motion will clearly not work for the hexapod of Fig. 1,
because sideways leg placement is impossible.

Our approach is an extension of the method by Lafferriere
and Sussmann [3] for motion planning for a class of nonlinear
kinematic systems whose equations of motion are smooth.
However, since legged robots (and grasping hands) intermit-
tently make and break contact, their equations of motion are not
smooth. Hence, the method of [3] can not be directly applied.
Section III introduces the notion of astratified configuration
space, which is decomposed into various subspaces (or strata)
depending upon which combination of feet are in contact
with the ground. We extend the approach of [3] by using the
stratified c-space structure in a novel way.It is likely that
other methods for steering smooth systems (such as[4]) can
be similarly extended by adopting our framework. A main
contribution of this work is the introduction of a geometric
framework that supports the extension of prior nonholonomic
motion planning techniques to this class of systems.

Our approach is general and thus works independently of
the number of legs (fingers). It may be true that for a given
quasi-static legged robot, one could develop a specific motion
planner that would perform as well, or possibly better, than the
technique described in this paper. The key advantage of this ap-
proach is its generality. It is particularly well suited to the task
of quickly designing a planner during the preliminary stages
of legged robot system design. While the techniques outlined
in this paper are applicable to both locomotion and a class of
hand manipulation problems, the bulk of the paper will focus on
locomotion, with the application to hand manipulation briefly
sketched at the end of the paper.

There is avastliterature on the analysis and control of legged
robotic locomotion. Prior efforts have typically focused either
on a particular morphology (e.g., biped [5], quadruped [6], [7],
or hexaped [8]) or a particular locomotion assumption (e.g.,
quasi-static [8] or hopping [9]). Less effort has been devoted to
uncovering principles that span all morphologies and assump-
tions. Some general results do exist. For example, the bifurca-
tion analysis in [10], many optimal control results such as those
in [11] and the fundamental conservation of momentum and en-
ergy results that underlie Raibert’s hopping results [9] have gen-
eral applicability. However, none of these methods directly use
the inherent geometry of stratified configuration spaces to for-
mulate results which span morphologies and assumptions. Our
work makes a novel connection with recent advances in non-
linear geometric control theory. We believe that this connection
is a useful and necessary step toward establishing a solid basis
for locomotion engineering.

In contrast to robotic legged locomotion, many results in
robotic grasping and manipulation are formulated in a manner
that is independent of the morphology of the gripper [12].
Vast efforts have been directed toward theanalysisof grasp

stability and force closure [13]–[15], motion planning as-
suming continuous contact [16]–[18] and haptic interfaces and
other sensing [19]–[21].Finger gaiting, where fingers make
and break contact with the object has been less extensively
considered. Finger gaiting has been implemented in certain
instances [22]–[24] and also partially considered theoretically
[25]–[27]. Perhaps the approach which most closely mirrors
that of the subject of this proposal is in [12] where notions of
controllability and observability from “standard” control theory
are applied to grasping (however, these results are limited to
the linear case and do not allow for fingers to intermittently
contact the object). When applied to manipulation, our method
can seemlessly integrate point contact finger repositioning, and
is the first algorithm to do so with this amount of generality.
Extending this method to include rolling contact manipulation
is feasible, though nontrivial. This extension will be the subject
of a future publication.

To make the paper self-contained, Section II presents some
basic nonlinear control concepts and provides a brief overview
of the motion planning method of [3] (due to space limitations,
a comprehensive summary is, unfortunately, not possible). Sec-
tion III introduces our notion of a stratified c-space. Section IV
presents our algorithm in the context of quasi-static legged lo-
comotion, while Section V applies this algorithm to the system
of Fig. 1. Section VI sketches the application of these ideas to
multi-fingered hand manipulation, and presents an example.

II. BACKGROUND

We assume the reader is familiar with the basic notation and
formalism of differential geometry and nonlinear control theory,
as in [28]. The following definitions and classical theorems are
reviewed so that the starting point of our development will be
clear.

The equations of motion for smooth kinematic nonholonomic
systems take the form of a driftless nonlinear affine control
system evolving on a configuration manifold,

(1)

Since we restrict our analysis to quasi-static locomotion and
kinematic models of multi-fingered manipulation, the governing
equations of motion will piecewise take the form of (1) on each
strata. Recall that the Lie bracket between two control vector
fields, and , is computed as

and can be interpreted as the leading order term that results from
the sequence of flows

(2)

where represents the solution of the differential equa-
tion at time starting from .

The results from [3] are formulated primarily by way of
formal computations. For example, the flow along the vector
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field can be considered by itsformal exponentialof ,
denoted by

(3)

where terms of the form are partial differential operators (not
vector fields) and Lie brackets are represented by commutation:

. In order to use (3), composition must
be from left to right, as opposed to right to left for flows, e.g.,

, where both sides of this equation mean
“flow along for time and then flow along for time .” A
rigorous justification for the use of such a formal representation
is somewhat lengthy and can be found in [3], [29]. Essentially,
the approach in [3] is to represent vector fields with “indetermi-
nates,” for which expansions of the form of (3) can be justified.
The relationship between the flow along vector fields sequen-
tially is given by the Campbell–Baker–Hausdorff formula [30].

Theorem 1: Given two smooth vector fields the com-
position of their exponentials is given by

(4)

where the remaining terms may be found by equating terms
in the (noncommutative) formal power series on the right- and
left-hand sides.

A. Trajectory Generation for Smooth Systems

A nonholonomic control system typically does not have
enough controls to directly drive the system along a given
trajectory, i.e., the number in (1) is less than the c-space
dimension. In the method of [3], this deficit is managed
by using an “extended system,” where “fictitious controls,”
corresponding to higher order Lie bracket motions, are added.
If enough Lie brackets are added to the system to span all
possible motion directions (which is possible if the system
is locally controllable), then the motion planning problem
becomes trivial for the extended system.

Theextended systemis constructed by adding Lie brackets to
the original system from (1),

(5)

where for , and the cor-
respond to higher order Lie brackets of the, chosen so that

at each .
The ’s where are calledfictitious inputssince they do
not correspond with any actual system inputs. A technical re-
quirement is that the higher order Lie brackets must belong to
the Philip Hall basis (see [31], [32] for a definition) for the Lie
algebra of vector fields on .

The control inputs which steer the extended system can be
found as follows. If it is desired to start at the pointand finish
at the point , define a curve connecting and
and solve

(6)

for the fictitious controls . This will simply involve inverting
a square matrix or determining a pseudo-inverse, depending on

whether or not there are more’s than the dimension of the
configuration space, i.e., whether .

A basic fact from differential geometry is that all flows of (1)
can be represented in the (formal) form

(7)

for some functions , called thebackward Philip
Hall coordinates. Furthermore, as shown in [3], satisfies
the formal differential equation

(8)

If we define theadjoint mapping

then it is straightforward to show that

(9)

for some polynomials . (For a complete derivation, see
[32]). Equating coefficients of the in (8) with the derivative of
(7), and using (9), yields differential equations having the form

(10)

These equations specify the evolution of the backward Philip
Hall coordinates in response to the fictitious inputs, which were
found via (6).

Example 1: Here we present a simple example illustrating
the computation of the Philip Hall coordinates. More compli-
cated examples are presented in detail in [32]. Consider a two
input system on a three dimensional configuration manifold:

Assume that the set spans at all .
The extended system is

where

The formal differential equation is

(11)

and the formal exponential is

Differentiating the formal exponential yields:
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rearranging gives

and using the adjoint notation

(12)

which is in the form of (8).
Expanding the formal exponentials to second order according

to (3) gives the following coefficients for each in the pre-
ceding equation:

In particular, the coefficient of is computed as follows
(terms higher than second order are dropped):

Equating the coefficients of the’s in (12) and (11) (using the
preceding computations)

Solving these differential equations for the provides the
amount of time the system must flow along each of the extended
system basis vector fields in (7).

Next one must determine the actual inputs using the Philip
Hall coordinates. For systems with extended systems only in-
cluding Lie brackets up to second order, this is a straightforward
procedure. Having determined the Philip Hall coordinates from
(10), the flow for the system is of the form of (7), where the
Philip Hall coordinates, are now known. Therefore, the
final position of the system is given by

(recall that for the formal representation, composi-
tion is from left to right). Since the exponentials

are second order

Lie brackets, each of the individual flows starting from the
left-most exponential can be simply represented by a sequence
of four piecewise constant inputs as indicated in (2). The expo-
nentials simply represent
concatenated flows directly along each of the control vector
fields , these flows are accomplished
by letting the corresponding input be “on” (i.e., ) for the
corresponding time represented by .

We only provide detailed computations for systems of degree
two since, in practice physical systems that require Lie bracket
motions of order greater than two may be inconvenient to con-
trol since many motions are needed to effect even a small motion
in a higher order Lie bracket direction.

Example 2: Returning to the previous example, since
are known, the final sequence of flows is

given by

Lie bracket approximation

followed by

where the notation means that for time if
or for time if and means concatenation,
i.e., means that the flow for follows the flow
for .

For systems with Lie brackets of order greater than two in
the extended system, the procedure involves some additional
steps to which we direct the interested reader to [3], [29]. In
particular, for higher order systems, it is easier to determine the
real inputs using the “forward” rather than backward Philip Hall
coordinates. The transformation from the backward to forward
coordinates is an algebraic transformation (see [3]). Addition-
ally, since the piecewise approximation to the flow along Lie
bracket is only approximate, relatively straightforward correc-
tions to this must be computed when determining a piecewise
approximation to flows along vector fields of degree greater than
two.

If the system is nilpotent,1 this method exactly steers the
system to the desired final state; otherwise, the system is steered
to a point that is, at worst, half the distance to the desired state
[3]. The algorithm can be iterated to generate arbitrary preci-
sion. This iterated method also includes the notion of a “crit-
ical” step length. Reference [3] estimates the critical step length
bound, and shows via simulations that the actual critical length
is typically larger than the estimated bound.

III. STRATIFIED CONFIGURATION SPACES

The method reviewed in Section II-A can not be directly used
for legged or multi-fingered robots because their governing
equations of motion are not smooth. To adapt this method
(and similar nonholonomic motion planning methods) to these
systems, we use the notion of astratified configuration space.
While the stratified concept is equally applicable to locomotion

1A system of the form (1) is said to benilpotent of orderk if all the Lie
brackets between control vector fields of order greater thank are 0.
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Fig. 2. Abstract depiction of the stratified structure of a biped robot c-space.

and multi-fingered manipulation, the language of locomotion
is used below for simplicity.

Let denote a robot’s configuration manifold, which de-
scribes the robot’s position and orientation as well as all of
the mechanism’s joint variables. The robot’s possible config-
urations will be subjected to constraints if one or more of its
feet (fingers) are in contact with the ground (object). The set
of configurations corresponding to one contact is generically a
codimension one submanifold of . Let denote the
codimension one submanifold of that corresponds to all con-
figurations where only theth foot contacts the terrain. That the

are submanifolds can be demonstrated by noting that set
of points corresponding to ground contact can be described by
the preimage of a function describing the foot’s height. We gen-
erally assume that , is, at least locally, defined by a level set of
a function . For legged robotic locomotion sys-
tems, these functions, are naturally defined by the height of
the robot’s foot off of the ground so that the level sets
are of interest.

When both theth and th feet are on the ground, the corre-
sponding set of states is a codimension 2 submanifold ofthat
is formed by the intersection of the two single contact subman-
ifolds. Denote, the intersection of and , by .
The structure of the configuration manifold for a biped is ab-
stractly illustrated in Fig. 2. For systems with larger numbers
of legs (fingers), further intersections, corresponding to more
complicated contact states, can be similarly defined in a recur-
sive fashion: , etc. Denote an
arbitrary intersection set (or “stratum”) by

, and assume that is a regular submanifold of
. This is generically true for rigid body mechanisms. If the

strata are locally described by the functions
, then will be a submanifold of if the

functions are functionally independent. If the
functions correspond to foot heights, this functional inde-
pendence will be satisfied for legged robots.

We say that the robot c-space isstratified2 and call each
of the submanifolds a stratum. The highest codimension
stratum containing the point is called thebottom stratum, and

2Note that the terms “stratification” and “strata” are also used in other con-
texts to describe the topology of orbit spaces of Lie group actions, and are a
slight generalization of the notion of a foliation [33].

Fig. 3. Four-level stratification.

any other submanifolds containingare calledhigher strata.
When making comparisons among different strata, we will refer
to higher codimension (i.e., lower dimensional) strata aslower
strata, and lower codimension (i.e., higher dimensional) strata
ashigher strata.

Whenever an additional foot contacts the ground, the robot
is subjected to additional constraints. For “point-like” feet, this
may be a holonomic constraint; whereas, some contacts are
better characterized by nonholonomic constraints. Regardless
of the constraint type, the system’s equations of motion will
change in a nonsmooth manner. Otherwise, the system’s
equations of motion are smooth, though generally different in
each strata. Hence, the discontinuities are localized to regions
of transition between strata.

The equations of motion at are written as

(13)

where depends upon the codimension of and the nature
of the additional constraints imposed on the system in. We
assume that the vector fields in the equations of motion for any
given stratum are well defined at all points in that stratum, in-
cluding points contained in any substrata of that stratum. For
example, the vector fields are well defined for .
Note, however, that they donotrepresent the system’s equations
of motion in the substrata, but, nonetheless, are still well defined
as vector fields.

Fig. 3 illustrates, via a graph-like structure, a four-level strati-
fication, which corresponds to a four-legged walker. A node cor-
responds to a stratum, and the presence of an edge connecting
nodes indicates that it is possible to move between the strata
that are connected by the edge. The ability to move between
two strata depends upon the mechanics of a given problem, and
will generally be obvious from the characteristics of a given
problem. Whether or not edges between nodes are permissible
is considered in more detail in [2]. When a configuration mani-
fold is consistent with the above description, we will refer to it
as astratified configuration space.

Definition 1: Let be a manifold, and functions
be such that the level sets

are regular submanifolds of , for each , and the intersection
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of any number of level sets,
, is also a regular submanifold of . Then

and the functions define astratified configuration space.
Locomotion gaits have a straightforward interpretation in a

stratified configuration space. In particular, we specify agait as
an ordered sequence of strata:

(14)

where is the number of different contact states in the gait. In
this ordered sequence, the first and last element are identical,
indicating that the gait is a closed loop in the strata graph. For
the gait to be meaningful, the system must be able to switch
from stratum to for each . We further assume that the
specified gait or gaits satisfy the gait controllability conditions
of [2] so that arbitrary trajectories can be tracked.

For a given strata, , thedistributiondefined by the span of
the control vector fields active on is

The involutive closureof , denoted by , is the closure
of under Lie bracketing. The controllability of a given gait,
(14), can be determined by letting . If ,
then . Else, if , then

In [2] it shown that if
the system isgait controllable from . For a more rigorous
discussion and summary of stratified system controllability, see
[1] and [2].

IV. L EGGEDTRAJECTORYGENERATION

This section extends the procedure outlined in Section II
to kinematic systems having a stratified c-space. We focus
on quasi-static legged locomotion in this section. Section VI
sketches the extension to basic finger gaiting manipulation.

Assume that the robot starts at a configurationand seeks to
reach a final configuration. By a configuration, we mean the
position and orientation of the body, as well as the configuration
of the legs. We assume that bothand lie in the same bottom
stratum, denoted by . This corresponds to the legged robot
starting and stopping with the same set of feet in contact with
the ground. Eliminating this requirement is a simple extension
of the algorithm described below.

The switching behavior associated with stratified systems can
not be accounted for in the methods of Section II.A. However,
the method can be extended to legged and fingered robotic sys-
tems via the notion of astratified extended systemon .

A. The Stratified Extended System

On each strata, only one set of controls (or governing equa-
tions) is in effect. Generally, the equations of motion in the
bottom strata will be different than those in higher strata. Fur-
thermore, it will be typically true that the goal can not be
reached by remaining in . Hence, some switching amongst
the strata will be necessary. However, since the bottom strata
is defined by the intersection of higher strata, the equations of
motion in the higher strata are valid at points arbitrarily close to
the bottom strata. As shown below, it is possible to consider the

Fig. 4. Sequence of flows.

vector fields associated with each stratum in one common space.
In this case, that common space will be the bottom stratum. This
concept will be encapsulated below in the definition of a “strat-
ified extended system.” We first introduce some examples to
show how we can consider vector fields defined on different
strata in a common space. Additional examples that deal with
more subtle issues can be found in [34].

Example 3: Consider the conceptual biped configuration
space as shown in Fig. 2. Assume that on stratum, the
vector field moves the system off of and onto , and
correspondingly, moves the system off of onto .
Also, we consider the vector fields and , defined on
and respectively. Consider the following sequence of flows,
starting from the point

on on
(15)

The notation “ ” means that the flow takes the system
from to and “on ” means that the flow lies entirely
in . This sequence of flows is illustrated in Fig. 4. In this
sequence, the system first moved off of the bottom stratum into

, flowed along the vector field , flowed back onto the
bottom stratum, off of the bottom stratum onto, along vector
field and back to the bottom stratum.

Notice that from the Campbell–Baker–Hausdorff formula
[see (4)], if the Lie bracket between two vector fields is zero,
then their flows commute. Thus, if

and (16)

we can reorder the sequence of flows in (15) by interchanging
the flow along and and the flows along and as
follows

interchanged interchanged

on

(17)

if and .
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Note that and are vector fields in the equations of
motion for strata and , respectively, butnot on stratum

. However, the sequence of flows in (15) occurs on different
strata, where the flows are governed by vectors fields associated
with each stratum. This flow yields the same net result as the net
flow in (17), where the vector fields are evaluated on the bottom
stratum, even though they are not part of the equations of motion
there. Furthermore, we note that if the vector fields and
are tangent to the substratum , then the resulting flow given
in (17) will remain in . In fact, it is implicitly required in the
above argument that at least is tangent to .

If the bottom stratum is described by the level set of a function
, and if a vector field is not tangent to the bottom stratum,

then . Also, since the vector field
moves the foot out of contact, we similarly have

. Then, the vector field, , is
tangent to because

(18)

Henceforth, we will just assume that the vector field on the
higher stratum is tangent to the lower stratum, and note that if it
is not tangent, we can modify it to be so in the above manner.

The above example shows how one can effectively determine
the influence of a control that is defined in a higher stratum
on the net evolution of the system in the lower stratum. The
following example shows how motions that are analogous to Lie
Bracket motions can be realized by controls ondifferenthigher
strata.

Example 4: Consider the sequence of flows

The first six flows in this example are the same as in Example
3. Following the first six flows are six more wherein the flows
that are entirely on , i.e., the flow along , and entirely on

, i.e., the flow along , are in the negative direction. If the
Lie brackets are zero as in (16), and
these flows can be rearranged as

Now, if

where . Thus, this sequence
provides a net flow in in the direction of the Lie bracket
between vector fields which are in the equations of motion on
different strata, and .

In Examples 3 and 4, it was required that certain Lie brackets
be zero. While one could simply check that these conditions are
met in a given situation, the following assumption will guarantee
this condition.

Assumption 1:If it is necessary to lift a foot from the ground
during a gait cycle, we assume that the robot can directly control,
(via a single control, or a combination of control inputs), the

height of that foot relative to the ground. Furthermore, for each
stratum comprising the given gait, we assume that the system’s
equations of motion are independent of the foot height, i.e., the
robot’s motion is independent of whether a particular foot is
very close to the ground, or very far from the ground, but may
be dependent upon whether or not a foot is in or out of contact
with the ground. When this is so, the Lie bracket of the vector
field controlling foot height with any other vector field is zero,
and the decoupling requirement is satisfied. Additionally, the
tangency requirements for canceling the flows associated with
raising and lowering the foot will automatically be satisfied.

This is arguably a strict assumption. However, for kinematic,
legged robots this assumption will almost always be satisfied
(see Section V for an example).

Examples 3 and 4 show that in given a stratified system,
the vector fields on any stratum (other than vector fields cor-
responding to lifting or replacing feet) can be considered as part
of the equations of motion in the bottom stratum if either certain
Lie bracket and tangency conditions are met, or if Assumption
1 is satisfied. If the vector fields are not tangent to the bottom
stratum, they are modified as in Example 3.

We have shown above that it is possible to consider vector
fields in higher strata as part of the equations of motion for the
system on the bottom stratum. Based on this observation, we
introduce the following.

Definition 2: Extended Stratified System Theextended
stratified systemon the bottom strata, , is the driftless
system comprised of the vector fields on the bottom strata,
chosen vector fields from the higher strata, and Lie brackets
of vector fields from and higher strata, i.e., it is a system
taking the form:

from higher strata

any Lie brackets

(19)

where the span , the inputs are
real, and the inputs are fictitious.

With this definition, we have effectively increased the class
of vector fields that we may employ when using the motion
planning algorithm presented in Section II.

B. The Motion Planning Algorithm

For the purposes of motion planning, the method presented
in Section II could be used in conjunction with the stratified ex-
tended systems. The basic idea is to use the stratified extended
system to plan the motion in the bottom stratum in order to ob-
tain the fictitious inputs. We can determine the actual inputs by
the method in Section II with the modification that whenever
the system must flow along a vector field in a higher stratum, it
switches to that stratum by lifting the appropriate foot or feet,
flowing along the vector field, and then replacing the appro-
priate foot or feet, as in Example 3.

Specifically, the algorithm to generate trajectories that move
the system from initial configuration to final configuration
is as follows.
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1) Construct theextended stratified system, (19), on the
bottom strata .

2) Find a nominal trajectory, , that connects and .
Given , solve

for the fictitious inputs, . As discussed in Section IV.C,
it may be necessary to decompose the entire trajectory
from the initial point to final point into smaller subtrajec-
tories.

3) For each path segment in each strata, compute the actual
controls that steer the system along . As discussed
previously, this solution might require the transformation
of the backward Philip Hall coordinates to forward Philip
Hall coordinates if the degree of the Lie brackets in the
extended system is greater than two.

4) Flow along each first order vector field, and approximate
higher order vector fields as illustrated in Example 3. In
general, it will be necessary to switch strata between some
of these flows.

C. Gait Stability

Before we illustrate this method in Section V, we consider the
additional issue of and stability. There is not an inherent mecha-
nism in the straightforward application of the method of Section
II to guarantee the stability of the gait. Recall that the method is
based on the selection of a trajectory for the extended system,

, from which the fictitious inputs are determined. It is im-
portant to note that the actually realized trajectory will generally
notbe . Thus, merely picking an initial trajectory which
is always stable is not sufficient. One also must guarantee that
the method’s inherent deviations from the initial trajectory lie
within the stability bounds.

Stability considerations can be incorporated into the method
as follows. Assume that there is a means for determining the
stability of the system by means of a scalar-valued function
of the configuration . For convenience, assume that when

, the system is unstable, when , the system
is stable, and when , the system is on the stability
boundary. In our analysis, the initial trajectory, , must be
selected such .

The overall approach is to, when necessary, take steps that are
“small enough” to ensure that the system remains stable. Since
the flow sequences are composed of small motions and a norm
is necessary to measure the length of a flow, we will either con-
sider the system locally in or equip the configuration man-
ifold with a metric. Given a desired step along the trajectory,

, let , i.e., the
distance from the step’s starting point to the closest point on the
stability boundary. We want to ensure that the system’s trajec-
tory does not intersect the set . Let and denote the
starting and final trajectory points. Without loss of generality, let

be a desired straight line path between
the starting and end points. Also, let . Recall that
the fictitious inputs, were determined by solving an equation
of the form for the .
We have that , for some constant . By

the method of constructing of the real inputs from the fictitious
inputs, we have that , where is the degree of
nilpotency of the system, or the degree of the nilpotent approx-
imation.

Pick a ball, , of radius , and let be the maximum norm
of all the (first order) vector fields, for all points in . Recall
that the real inputs, were given by a sequence of inputs which
approximate the flow of the extended system. Denote this se-
quence by , where the superscript indexes the input, and the
subscript indexes its position in the sequence. The maximum
distance that the system can possibly flow from the starting
point, , is given by the sum of the distances of the individual
flows. Let denote the point in
the flow that is maximally distant from the starting point (this
is not necessarily the final point, ). To guarantee stability,
we must show that . However, this distance,

is necessarily bounded by the sum of the norms of
each individual flow associated with one real control input,,
i.e.,

However, and . Thus

(20)

and since , by choosing the desired final point
close enough to the starting point, the trajectory will not inter-
sect the stability boundary.

Note that since is raised to the power of , if is large,
then it may be necessary to makeexceedingly small in order
to ensure stability. However, the bound expressed in (20) is itself
very conservative since it sums the length of a bound on each
individual flow in the series. In actuality, because the largest
flows correspond to the Lie brackets of order, simply summing
their component lengths will give a conservative bound. Given
these two observations, an appropriate step length may often be
best determined experimentally.

The same observations also apply to obstacle avoidance. If
the robot traverses an environment with obstacles, we assume
that the nominal trajectory is designed by an holonomic or rigid
body planner in such a manner as to avoid obstacles. Ensuring
that the actual trajectory also avoids the obstacles, requires that
the nominal trajectory be analogously broken into sufficiently
small steps to ensure that the actual trajectory remains suffi-
ciently close to it.

V. EXAMPLE

The approach is illustrated by generating control inputs that
will steer a simplified model of the hexapod of Fig. 1 to walk
over flat terrain (see Section VI for an example involving ma-
nipulation of a curved object, which is analogous to locomo-
tion over uneven terrain). This hexapod model is adapted from
a similar robot model presented previously in [35]. The key dif-
ficulty in this example is the fact that the legs are kinematically
insufficient, making sideways motion difficult. Assume that the
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robot walks with a tripod gait3 , alternating movements of legs
1-4-5 with movements of legs 2-3-6. With the tripod gait as-
sumption, this robot has four control inputs. The inputsand

respectively control the forward and backward angular leg
displacements of legs 1-4-5 and legs 2-3-6, while inputsand

respectively control the height of legs 1-4-5 and 2-3-6.
The equations of motion can be written as follows.

where represents the planar position of the center of
mass, is the front to back angular deflection of legs 1-4-5,
is the angular deflection of legs 2-3-6,is the leg length and
is the height of the legs off the ground. The functions and

are defined by

if
if

if
if

Note that these equations require some foot slippage in order to
describe the motion of a robot like the one illustrated in Fig. 1.
Since the robot walks in a tripod gait, stability is ensured if the
robot’s center of mass remains above the triangle defined by the
tripod of feet which are in contact with the ground. Considering
the motion of legs 1-4-5, the center of mass of the robot must
be at least from the front of the robot to
ensure stability, where denotes the length of the body. See
Fig. 5. Alternatively, if the center of mass is located a distance

from the front of the robot, then stability is ensured during the
motion if both of these constraints are satisfied

Denote the stratum when all the feet are in contact
by , the stratum when tripod one is in contact

, by , the stratum when tripod two is in contact
, by and the stratum when no legs are in

contact , by . Note that this system satisfies the
requirements of Assumption 1 since, regardless of the values of

and , the vector fields moving the foot out of contact with the
ground are of the form , and the equations of motion
are independent of the foot heights.

The equations of motion in the bottom strata, (where all
the feet maintain ground contact), are

(21)

3Reference [1] shows that the hexapod is small time locally gait controllable
when a tripod gait is used.

Fig. 5. Stability margin for hexapod tripod gait.

where represents the planar position of a reference
frame attached to the robot’s center, is the angle of legs
1-4-5 and is the angle of legs 2-3-6. The variablesand
are both 0 since the legs maintain ground contact. Let and

represent the first and second columns in (21).
If legs 1-4-5 are in contact with the ground, but legs 2-3-6 are

not in contact, the equations of motion are

(22)

where is the height of legs 2-3-6 and is constrained to be
0. Label columns one, two and three in (22) and ,
respectively. If legs 2-3-6 are in ground contact and legs 1-4-5
are not, the equations of motion are

(23)

where is constrained to be 0. The columns in (23) are denoted
, and .

For motion planning purposes, we must select enough
vector fields to span the tangent space of the bottom stratum,

. A simple calculation shows that the set of vector fields,
spans for all

. Note that .
The stratified extended systemis constructed from the ex-

tended system that uses the vector fields from all strata.

(24)

or, in greater detail
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Let the starting and ending configurations be:

A path that connects these points is
. Equating with with the stratified extended system

and solving for the fictitious controls yields

or, since , and if we let

For a system which is nilpotent of order 2, we have from (9)
(where the ’s from (24) are substituted for the’s in (9) in the
order that they appear in (24)

which yields

Since the nilpotent approximation is of order two, there is no
need to transform to forward Philip Hall coordinates. Instead,
we can directly construct a sequence of controls to move in the
desired direction.

Let denote concatenation of control inputs, so that, for ex-
ample, denotes that for time followed by

for time . Considering the vector fields on ,
( and ), the system needs to flow along
the first two vector fields for seconds, and construct a
piecewise approximation to the flow along the third Lie bracket
vector field for seconds. The control sequence to approx-
imately move the system in the direction of the flow of the Lie
bracket is

(25)

where each of the individual control inputs is equal to one for
seconds [recall (2)]. To flow along for

seconds. Similarly to flow along for
seconds.

On the higher strata, to flow along for
seconds and to flow along for seconds.

Fig. 6. Straight trajectory.

In order to execute these flows, the robot must switch from the
bottom stratum to the higher strata when executing a control
input associated with a fictitious input for a higher strata.

Thus, the total control sequence is

The first four terms in the sequence approximate the Lie bracket
motion on the bottom stratum. The term denotes the
length of time each control input is “on.” The next two terms
are the contribution of the and terms individually on the
bottom stratum. The next term represents a small flow associ-
ated with removing legs 2-3-6 out of contact with the ground,
and the following term corresponds to legs 2-3-6 moving back
to their initial position. Since the legs are not in contact with
the ground, this motion does not cause the body of the robot to
move. The next input corresponds to legs 2-3-6 moving back
into contact with the ground. The next three inputs correspond
to legs 1-4-5 performing an analogous motion.

Fig. 6 shows the path of the robot’s center as it follows a
straight line trajectory, which is broken into four equal seg-
ments. Due to the nilpotent approximation, there is some small
final error. Better accuracy can be obtained by use of a higher
order nilpotent approximation or a second iteration of the algo-
rithm from the robot’s ending position. Note that the main body
axis is oriented along the-axis in this example. Since the legs
can not move immediately sideways, the robot’s motion must
include “parallel-parking-like” behavior to follow this line.

There is no inherent limitation in the method which requires
the trajectory to be broken down into subsegments, however,
there are two reasons to do so. First, since the method is based
upon decomposing a desired trajectory into flows along the
Philip Hall basis vector fields, the final trajectory is only related
to the desired trajectory in that the end points are the same
(or approximately the same for nilpotent approximations).
Breaking the path into segments leads to better overall tracking.
Second, robot stability requirements may also demand smaller
steps.

The approach is general enough that approximate tracking of
arbitrary trajectories is possible. Fig. 7 shows the hexapod fol-
lowing an ellipse while maintaining a constant angular orienta-
tion. Fig. 8 shows the results when a smaller step size is used.
In the first simulation, the elliptical trajectory is broken into 30
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Fig. 7. Elliptical trajectory.

Fig. 8. Elliptical trajectory with smaller steps.

segments. In the second, it is divided into 60 segments. In this
example, part of the trajectory tracking error is due to the nilpo-
tent approximation, but another contribution to the error is the
simplicity of the model. Some directions are more “difficult” for
the system to execute than others due to the kinematic limita-
tions of the leg design. Because this mechanism can not execute
“crab-like” gaits, its tracking error during sideways motions in-
creases, as this direction corresponds to a Lie bracket direction.

Also plotted in these figures is the stability criterion. Let the
body length be 2 units of length and let the center of mass be
located a distance of 0.75 units from the front of the robot. Then,
the stability criterion is [rad] and [rad].
In Figs. 7 and 8 the stability limits for are indicated by the
straight horizontal lines. In the first case, where the robot takes
bigger steps, the stability condition is violated. However, in the
second case it is not.

Fig. 9. Hexapod leaving footprints.

Fig. 10. Nominal obstacle avoidance trajectory.

Fig. 9 depicts the footprints left by the hexapod as it follows
a straight line diagonal path while simultaneously rotating at a
constant rate. The complex pattern of the footfalls suggests that
any technique that is based on foot placement would be very
difficult to apply to this system.

Finally, we consider obstacle avoidance. While the nominal
initial trajectory musta priori avoid any obstacles, this con-
straint alone will not guarantee that the actual motion avoids
obstacles. If the trajectory is divided into sufficiently small seg-
ments, as suggested in Section IV-C, then obstacle avoidance
can be realized. Fig. 10 shows a desired nominal path (indicated
by a black line) of the hexapod’s body center through a set of ob-
stacles. The walls of the environment are indicated by dark grey
regions. The lighter grey regions correspond to locations of the
robot’s center where some vehicle orientations may cause the
hexapod to intersect the walls (i.e., the grey regions are the pro-
jected silhouettes of the c-space obstacles).

To make the problem more challenging, we also specify that
the robot rotates at a uniform rate as it follows the nominal tra-
jectory. A real-world scenario where this might be desirable is
a patrol robot that must constantly scan in all directions. Fig. 11
(top) shows the path of robot’s center of mass when the trajec-
tory is not finely divided enough to satisfy the criteria of Section
IV-C (it is subdivided into 100 subtrajectories). Since the path
of the center of mass intersects the lighter grey regions during
portions of its motion, the robot would realistically bump into
the walls in this example. However, if the nominal trajectory is
sufficiently subdivided (into 300 subtrajectories in this case) to
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Fig. 11. Top: obstacles not avoided. Bottom: obstacles avoided.

satisfy the requirement of Section IV-C, the robot avoids the
walls, as illustrated in the bottom part of Fig. 11.

VI. M ULTI-FINGERED HAND MANIPULATION

The methodology described above can be almost immediately
applied to object manipulation via finger gaiting in a multi-fin-
gered hand as long as the equations of motion can be written
in the form of a kinematic system. This may be difficult in the
case of rolling contact because the equations of motion may be-
come extremely complicated. Preliminary efforts to overcome
this limitation can be found in [36]. The application of this ap-
proach leads to an object manipulation planning strategy that
is independent of the geometry of the grasped object and inde-
pendent of the manipulating hand’s morphology. The method is
also independent of the type of contact between the finger and
object (e.g., “point contact with friction,” “soft finger” etc.) and
independent of the morphology of the manipulating “fingers”
(i.e., independent of the number of joints, etc.).

Consider the “egg-shaped” object in Fig. 12 whose surface is
parameterized by

This object is to be manipulated by four, three DOF fingers
whose kinematic model is shown in Fig. 13. A “point contact
with friction” model is assumed.

The stratified c-space will consist of a total of 16 different
strata, corresponding to all the possible combinations of finger
contacts. However, as will be clear shortly, the system is
manipulable if it is restricted to only five strata: when all four
fingers are in contact plus each of the four cases where only
one of the fingers is out of contact. Denote these strata as

Fig. 12. Four fingers manipulating an object.

Fig. 13. Finger kinematics.

, and where the subscripts denote
which fingers are in contact with the object.

Since the nominal trajectory stays away from the fingers’
kinematic singularities, the finger tip velocities can be consid-
ered as system inputs. This input choice will simplify the com-
putations and make the equations of motion satisfy (16). One
can not generally choose the inputs in this way, (for example,
when the the finger tips are in rolling contact with the object);
however, the more general cases still fits within the framework
of the stratified motion planning method outlined in Section III.

The equations of motion for such a grasped system are
straightforward, though possibly tedious, to derive (see [32] for
details). The equations of motion on the bottom stratum are of
the form

and on the higher strata are of the form

where the first 6 inputs are associated with the finger tip veloc-
ities for the three fingers contacting the object, and inputs 7–9
are the three degrees of freedom for the finger that is not in con-
tact with the object. Note that through will take the
form since they are the unconstrained finger
tip velocities of the finger which is not contacting the object,
and thus they will satisfy (16). Therefore, they may be incor-
porated into the equations of motion for the bottom stratified
extended system.
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Fig. 14. Snapshots of computer simulation of object manipulation via finger
repositioning.

Incorporating these unconstrained finger tip velocity vector
fields for each of the four higher strata gives a stratified extended
system of the form

on

from
...

from

where all the vector fields except those on the first line corre-
spond to free finger tip motion. Tedious detailed calculations
show that spans the tangent space to the c-space,
so the system is stratified manipulable. Since no Lie brackets are
necessary to make the system stratified manipulable, this system
is already in extended form, and the actual control inputs are the
same as the “fictitious” inputs presented in Sections II and III.

Assume that the initial and final configurations are identical
(as illustrated in Fig. 12), and that the desired motion is a pure
rotation of about the axis .
Using exponential coordinates, then, the object’s nominal con-
figuration as a function of time is given by Rodrigues’ formula:

For the object’s initial and final configuration in Fig. 12, each
finger is oriented at an angle of relative to the - and -axes.

As the object rotates, each finger’s nominal configuration is
such that it contacts the object along that same axis. This can be
determined by equating the forward kinematics for each finger
with the point on the object’s surface that intersects the respec-
tive radial from the origin, and then, using the kinematics
of each finger, determine the desired joint configurations. For
this particular example, this trajectory is difficult to compute
analytically, but is simple to do numerically for each step of the
system’s motion. The desired trajectory is decomposed into 10
subsegments, and a sequence of six “snapshots” from the ma-
nipulation is shown in Fig. 14.

VII. CONCLUSION

Our method provides a general means to solve the trajec-
tory generation problem for many types of legged robotic and
multi-fingered systems. The simulations indicate that the ap-
proach is rather simple to apply. The method is independent of
the number of legs (fingers) and is not based on foot (finger)
placement principles. For a given legged robot mechanism, a
specifically tuned leg-placement-based algorithm may lead to
motions which use fewer steps or results in less tracking error.
However, for the purposes of initial design and evaluation of
a legged mechanism, our approach affords the robotic design
engineer an automated way to implement a realistic trajectory
generation scheme for a quasi-static robot of nearly arbitrary
morphology. More importantly, we believe that our approach
provides an evolutionary path for future research and general-
izations.

Since many interesting robotic systems (such as bipeds) are
not kinematic, an algorithm for solving the trajectory genera-
tion problem for such systems is necessary. However, since the
state of the art for solving the trajectory generation problem for
smooth systems with drift is still in its infancy, it may be dif-
ficult to make headway along these lines until more complete
results for the smooth case become known.

ACKNOWLEDGMENT

The authors would like to thank some anonymous reviewers
for their helpful and insightful comments.

REFERENCES

[1] B. Goodwine and J. Burdick, “Gait controllability for legged robots,” in
Proc IEEE Int. Conf. Robotics and Automation, 1998.

[2] B. Goodwine and J. W. Burdick, “Controllability of kinematic systems
on stratified configuration spaces,”IEEE Trans. Automat. Contr., vol.
46, pp. 358–368, 2002.

[3] G. Lafferriere and H. J. Sussmann, “A differential geometric approach
to motion planning,” inNonholonomic Motion Planning, X. Li and J. F.
Canny, Eds. Norwell, MA: Kluwer, 1993, pp. 235–270.

[4] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning:
Steering using sinusoids,”IEEE Trans. Automat. Contr., vol. 38, pp.
700–716, 1993.

[5] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain,” in IEEE Int. Conf. Robotics and Automation, Sacramento, CA,
1991, pp. 1405–1411.

[6] J. K. Lee and S. M. Song, “Path planning and gait of walking machine
in an obstacle-strewn environment,”J. Robot. Syst., vol. 8, pp. 801–827,
1991.

[7] M. Berkemeire, “Modeling the dynamics of quadrupedal running,”Int.
J. Robot. Res., vol. 16, no. 9, pp. 971–985, 1998.

[8] S. M. Song and K. J. Waldron,Machines that Walk: The Adaptive Sus-
pension Vehicle. Cambridge, MA: MIT Press, 1989.



222 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002

[9] M. H. Raibert,Legged Robots that Balance: MIT Press, 1986.
[10] J. J. Collins and I. Stewart, “Hexapodal gaits and coupled nonlinear os-

cillator models,”Biolog. Cybernet., vol. 68, pp. 287–298, 1993.
[11] C. H. Chen, K. Mirza, and D. E. Orin, “Force control of planar power

grasp in the digits system,” in4th Int. Symp.on Robotics and Manufac-
turing, 1992, pp. 189–194.

[12] D. Prattichizzo and A. Bicchi, “Dynamic analysis of mobility and gras-
pability of general manipulation systems,”IEEE Trans. Robot. Automat.,
vol. 14, pp. 241–258, Apr. 1998.

[13] E. Rimon and J. W. Burdick, “Configuration space analysis of bodies in
contact—i,”Mechanism Machine Theory, vol. 30, no. 6, pp. 897–912,
Aug. 1995.

[14] , “Configuration space analysis of bodies in contact—ii,”Mecha-
nism Machine Theory, vol. 30, no. 6, pp. 913–928, Aug. 1995.

[15] K. B. Shimoga, “Robot grasp synthesis algorithms: A survey,”Int. J.
Robot. Res., vol. 15, no. 3, pp. 230–266, 1996.

[16] D. J. Montana, “The kinematics of contact and grasp,”Int. J. Robot. Res.,
vol. 7, no. 3, pp. 17–25, 1988.

[17] J. C. Trinkle and R. P. Paul, “Planning for dexterous manipulation with
sliding contacts,”Int. J. Robot. Res., vol. 9, no. 3, pp. 24–48, 1990.

[18] L. Han, Y. S. Guan, Z. X. Li, Q. Shi, and J. C. Trinkle, “Dextrous ma-
nipulation with rolling contacts,” inProc. IEEE Int. Conf. on Robotics
and Automation, Albuquerque, NM, 1997, pp. 992–997.

[19] R. S. Fearing and T. O. Binford, “Using a cylindrical tactile sensor for de-
termining curvature,”IEEE Trans. Robot. Automat., vol. 7, pp. 806–817,
Dec. 1991.

[20] K. Salisbury and C. Tarr, “Haptic rendering of surfaces defined by im-
plicit functions,” inProc. ASME Int. Mechanical Engineering Congress
and Exposition, 1997, pp. 61–67.

[21] K. Salisbury, D. Brock, T. Massie, N. Swarup, and C. Zilles, “Haptic
rendering: Programming touch interation with virtual objects,” inProc.
Symp. on Interactive 3D Graphics, 1995, pp. 123–130.

[22] T. Okada, “Object handling system for manual industry,”IEEE Trans.
Syst., Man Cybernet., vol. 9, pp. 79–89, 1979.

[23] M. K. Hor, “Control and task planning of the four finger manipulator,”
Ph.D dissertation, New York University, New York, 1987.

[24] R. S. Fearing, “Implementing a force strategy for object reorientation,”
in Proc. IEEE Int. Conf. on Robotics and Automation, 1986, pp. 96–102.

[25] J. Hong and G. Lafferriere, “Fine manipulation with multifinger hands,”
in IEEE Int. Conf. on Robotics and Automation, 1990, pp. 1568–1573.

[26] I.-M. Chen and J. W. Burdick, “A qualitative test forn-finger force-
closure grasps on planar objects with applications to manipulation and
finger gaits,” in Proc. IEEE Int. Conf. on Robotics and Automation,
1993, pp. 814–820.

[27] B. Goodwine and J. Burdick, “Stratified motion planning with applica-
tion to robotic finger gaiting,” inProc. IFAC World Congress, 1999.

[28] A. Isidori, Nonlinear Control Systems, 2nd ed. Berlin, Germany:
Springer-Verlag, 1989.

[29] M. Kawski and H. J. Sussmann, “Noncommutative power series and
formal lie-algebraic techniques in nonlinear control theory,” inOper-
ators, Systems, and Linear Algebra, U. Helmke, D. Pratzel-Wolters, and
E. Zerz, Eds, Stuttgart: Teubner, 1997, pp. 111–128.

[30] V. S. Varadarajan,Lie Groups, Lie Algebras, and Their Representa-
tions. Berlin, Germany: Springer-Verlag, 1984.

[31] J.-P. Serre,Lie Algebras and Lie Groups: Springer-Verlag, 1992.
[32] R. M. Murray, Z. Li, and S. S. Sastry,A Mathematical Introduction to

Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.
[33] R. Abraham, J. E. Marsden, and T. Ratiu,Manifolds, Tensor Analysis,

and Applications. Berlin, Germany: Springer-Verlag, 1988.
[34] J. W. Goodwine, “Control of stratified systems with robotic applica-

tions,” Ph.D. dissertation, California Inst. Technology, Pasadena, 1998.
[35] S. D. Kelly and R. M. Murray, “Geometric phases and robotic locomo-

tion,” J. Robot. Syst., vol. 12, no. 6, pp. 417–431, 1995.
[36] B. Goodwine, “Stratified motion planning with application to robotic

finger gaiting,” inProc. 10th World Congress on the Theory of Machines
and Mechanisms, 1999.

[37] G. Lafferriere and H. J. Sussmann, “Motion planning for controllable
systems without drift,” inProc. IEEE Int. Conf. on Robotics and Au-
tomation, Sacramento, CA, 1991.

[38] H. J. Sussmann, “A product expansion for the Chen series,” inTheory
and Applications of Nonlinear Control Systems, C. I. Byrnes and A.
Lindquist, Eds. Amsterdam, The Netherlands: Elsevier, 1986, pp.
323–335.

[39] R. M. Murray, “Nilpotent bases for a class of nonintegrable distributions
with applications to trajectory generation for nonholonomic systems,”
Math. Control Signals Syst., vol. 7, pp. 58–75, 1994.

Bill Goodwine received the B.S. degree in mechanical engineering from the
University of Notre Dame, Notre Dame, IN, the J.D. degree from Harvard Uni-
versity, Cambridge, MA, and the M.S. and Ph.D. degrees in applied mechanics
from the California Institute of Technology, Pasadena.

His current research interests are in hybrid and stratified control systems,
robotic locomotion, and distributed control.

Dr. Goodwine has been the recipient of the National Science Foundation CA-
REER award.

Joel W. Burdick received the B.S. degrees in mechanical engineering and
chemistry from Duke University, Chapel Hill, NC, and the M.S. and Ph.D.
degrees in mechanical engineering from Standford University, Stanford, CA.

He joined the department of Mechanical Engineering at the California In-
stitute of Technology, Pasadena, in May 1988 and is currently a professor of
Mechanical Engineering and Bioengineering. His current research interests in-
clude robotic locomotion, sensor based robot motion planning, multi-fingered
robotic grasping, neural prosthetics, and applied nonlinear control theory.

Prof. Burdick has been the recipient of the National Science Foundation Pres-
idential Young Investigator award, the Ofiice of Naval Research Young Inves-
tigator award, and the Feynman fellowship. He has also received the ASCIT
award for excellence in undergraduate teaching and the GSA award for excel-
lence in graduate student education.


