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Motion Planning for Kinematic Stratified Systems
With Application to Quasi-Static Legged
Locomotion and Finger Gaiting

Bill Goodwine and Joel W. Burdick

Abstract—We present a general motion planning algorithm for
robotic systems with a “stratified” configuration space. Such sys-
tems include quasi-static legged robots and kinematic models of ob-
ject manipulation by finger repositioning. Our method is an exten-
sion of a nonlinear motion planning algorithm for smooth systems
to the stratified case, where the relevant dynamics are not smooth.
The method does not depend upon the number of legs or fingers;
furthermore, it is not based on foot placement or finger placement
concepts. Examples demonstrate the method.

Index Terms—Stratified systems, nonlinear motion planning,
legged locomotion, robotic manipulation.

. INTRODUCTION

HIS PAPER considers the motion planning problem for
systems whose governing physics impose a “stratified”
structure on the system’s configuration space. A more formal
notion of a stratified configuration space is presented in Section
ll. Stratification naturally arises in the context of legged loco-
motion and object manipulation via finger repositioning. Thesey. 1. Top: schematic of simple hexapod robot. Bottom: definition of
operations are characterized in part by the system making &ifgmatic variables.
breaking contact with its environment. The configuration spaces
(or c-space) of these systems are “stratified” into subsets thaglti-fingered hand manipulation. The method is independent
correspond to different contact states. The governing dynamiglthe number of legs (or fingers) and many other aspects of
equations depend upon the contact state, and are discontindbiigbot’s morphology. In the legged locomotion context, it is
during the making and breaking of contact. distinct from previous planning methods in that it is not based
The goal of our motion planning scheme is to determir@n foot placement concepts, and therefore the computationally
the control inputs (e.g., mechanism joint variable trajectorieByirdensome calculation of foot placement can be avoided.
which will steer the walking robot from a starting configurationnstead, our approach focuses on control inputs.
to a desired final configuration, or to manipulate the graspedAs a concrete example of when such a planner is needed,
object from an initial to a final configuration via a combinaconsider the six-legged hexapod in Fig. 1 (this model will be
tion of finger repositioning and finger motions. The planndiilly explored in Section V). Each leg has only two degrees
must simultaneously plan the mechanism’s motion durir@f freedom—the robot can only lift its legs up and down and
a single contact state, as well as determine when to charmgeve them forward and backward. Conventional hexapods are
contact states. This paper presents a general motion planrdggigned with three independent degrees of freedom per leg.
methodology for this class of systems, which includes allhe limited control authority in this design may be desirable
quasi-static legged locomotors and many kinematic modelsibfpractical situations because it decreases the mechanical com-
plexity of the robot. This leg geometry can also probably be im-
) ) ) lemented at very small size scales using MEMS technology.
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the stratified sense as defined in [1] and [2]. Otherwise, it is nstability and force closure [13]-[15], motion planning as-
necessarily possible to determine a set of system inputs whathming continuous contact [16]—[18] and haptic interfaces and
steer the robot to the desired final configuration. Given the asther sensing [19]-[21]Finger gaiting where fingers make
sumption of controllability, this paper addresses how to plan taed break contact with the object has been less extensively
robot’s leg (or finger) movements so that it can approximatebponsidered. Finger gaiting has been implemented in certain
follow a given trajectory. A conventional “foot-placement” apinstances [22]-[24] and also partially considered theoretically
proach, where the foot can be placed as necessary to implenj2b}—[27]. Perhaps the approach which most closely mirrors
vehicle motion will clearly not work for the hexapod of Fig. 1that of the subject of this proposal is in [12] where notions of
because sideways leg placement is impossible. controllability and observability from “standard” control theory
Our approach is an extension of the method by Lafferriesge applied to grasping (however, these results are limited to
and Sussmann [3] for motion planning for a class of nonlinetre linear case and do not allow for fingers to intermittently
kinematic systems whose equations of motion are smootiontact the object). When applied to manipulation, our method
However, since legged robots (and grasping hands) intermien seemlessly integrate point contact finger repositioning, and
tently make and break contact, their equations of motion are n®tthe first algorithm to do so with this amount of generality.
smooth. Hence, the method of [3] can not be directly applieEixtending this method to include rolling contact manipulation
Section Il introduces the notion of stratified configuration is feasible, though nontrivial. This extension will be the subject
space, which is decomposed into various subspaces (or strafa future publication.
depending upon which combination of feet are in contact To make the paper self-contained, Section Il presents some
with the ground. We extend the approach of [3] by using tHmasic nonlinear control concepts and provides a brief overview
stratified c-space structure in a novel wdy.is likely that of the motion planning method of [3] (due to space limitations,
other methods for steering smooth systems (sucl#jdscan acomprehensive summary is, unfortunately, not possible). Sec-
be similarly extended by adopting our framewor¢k main tion Ill introduces our notion of a stratified c-space. Section IV
contribution of this work is the introduction of a geometrigresents our algorithm in the context of quasi-static legged lo-
framework that supports the extension of prior nonholonoméommotion, while Section V applies this algorithm to the system
motion planning techniques to this class of systems. of Fig. 1. Section VI sketches the application of these ideas to
Our approach is general and thus works independently moiilti-fingered hand manipulation, and presents an example.
the number of legs (fingers). It may be true that for a given
guasi-static legged robot, one could develop a specific motion Il. BACKGROUND
planner that would perform as well, or possibly better, than the ) - ) ] ]
technique described in this paper. The key advantage of this apWe assume the reader is familiar with the basic notation and
proach is its generality. It is particularly well suited to the tasfermalism of differential geometry and nonlinear control theory,
of quickly designing a planner during the preliminary stage® in [28]. The following definitions and classical theorems are
of legged robot system design. While the techniques outlinégviewed so that the starting point of our development will be
in this paper are applicable to both locomotion and a class @gar-
hand manipulation problems, the bulk of the paper will focus on The equations of motion for smooth kinematic nonholonomic
locomotion, with the application to hand manipulation brieflpysStems take the form of a driftless nonlinear affine control

sketched at the end of the paper. system evolving on a configuration manifolt!:
There is avastliterature on the analysis and control of legged
robotic locomotion. Prior efforts have typically focused either =gz + -+ g l@)Um, x e M. 1)

on a particular morphology (e.g., biped [5], quadruped [6], [7],
or hexaped [8]) or a particular locomotion assumption (e.dSjnce we restrict our analysis to quasi-static locomotion and
guasi-static [8] or hopping [9]). Less effort has been devoted kinematic models of multi-fingered manipulation, the governing
uncovering principles that span all morphologies and assurmggtuations of motion will piecewise take the form of (1) on each
tions. Some general results do exist. For example, the bifurctrata. Recall that the Lie bracket between two control vector
tion analysis in [10], many optimal control results such as thofelds, g1 (z) andg»(x), is computed as
in [11] and the fundamental conservation of momentum and en-
ergy results that underlie Raibert’s hopping results [9] have gen- 9g2(x)
eral applicability. However, none of these methods directly use [91(2), 92(z)] = T or 1(@) O 2(z)
the inherent geometry of stratified configuration spaces to for- ) )
mulate results which span morphologies and assumptions. @p# can be interpreted as the leading order term that results from
work makes a novel connection with recent advances in ndR€ sequence of flows
linear geometric control theory. We believe that this connection
is a useful and necessary step toward establishing a solid basis ¢-92 o 79 o ¢p92 o ¢p9*(x) = ¢£Zl’921(a:) +0(%) (2
for locomotion engineering.

In contrast to robotic legged locomotion, many results iwhere¢d: (xo) represents the solution of the differential equa-
robotic grasping and manipulation are formulated in a mannion & = g, (x) at timee starting fromz.
that is independent of the morphology of the gripper [12]. The results from [3] are formulated primarily by way of
Vast efforts have been directed toward tealysisof grasp formal computationsFor example, the flow along the vector

dg1 (z)
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field g; can be considered by itformal exponentialof g;, whether or not there are motg's than the dimension of the
denoted by configuration space, i.e., whether> m.
A basic fact from differential geometry is that all flows of (1)

2
7 (z) == €9 (z) = <I + tg: + t_g2 + - ) (3) can be represented in the (formal) form
2 T

S(t) — Chs (t)bs Chsfl(t)bsfl . Chz(t)bz Chl (t)bl (7)
where terms of the form! are partial differential operatoradt
vector fields) and Lie brackets are represented by commutatiggy some functionsh,, ko, . . . , k., called thebackward Philip

[91,92] = 9192 — g2g1. In order to use (3), composition MustHa|| coordinates Furthermore, as shown in [3§(¢) satisfies
be from left to right, as opposed to right to left for flows, e.gthe formal differential equation

P72 o it = e9r*re92t2, where both sides of this equation mean

“flow along g, for timet; and then flow along- for timet,.” A S‘(t) = S)(byvr + -+ - + bsws), S(0) =1. (8)
rigorous justification for the use of such a formal representation

is somewhat lengthy and can be found in [3], [29]. Essentialllf,we define theadjoint mapping

the approach in [3] is to represent vector fields with “indetermi-
nates,” for which expansions of the form of (3) can be justified.
The relationship between the flow along vector fields sequep-_ .. . .
tially is given by the Campbell-Baker—Hausdorff formula [30]{illen itis straightforward to show that

_ —hibiy Jhib;
Adefhibi bj =c b]e s

Theorem 1: Given two smooth vector fieldg, , g» the com- ) 5 )
position of their exponentials is given by Ad i, oo by = [ pia(be ) by, (9)
k=1
eIt od2 — poitoetslon,gelt 15 (lon,lon.g2]]o2,[01, 021D 4

for some polynomialg; 5 (k). (For a complete derivation, see
where the remaining terms may be found by equating terd®2]). Equating coefficients of thi in (8) with the derivative of
in the (noncommutative) formal power series on the right- arfd), and using (9), yields differential equations having the form
left-hand sides. .
h=A(h)yv h(0)=0. (20)
A. Trajectory Generation for Smooth Systems ) ) ) N
_ _ These equations specify the evolution of the backward Philip
A nonholonomic control system typically does not havgy,) coordinates in response to the fictitious inputs, which were
enough controls to directly drive the system along a givgg,nd via 6).
trajectory, i.e., the number: in (1) is less than the c-space gyample 1: Here we present a simple example illustrating

dimension. In the method of [3], this deficit is manageghe computation of the Philip Hall coordinates. More compli-
by using an “extended system,” where "fictitious controls,.aieq examples are presented in detail in [32]. Consider a two
corresponding to higher order Lie bracket motions, are add

i ut system on a three dimensional configuration manifold:
If enough Lie brackets are added to the system to span all

possible motion directions (which is possible if the system & = gi(x)ur + g2z )ua.
is locally controllable), then the motion planning problem
becomes trivial for the extended system. Assume that the sdiy1, g2, [91, g2]} spansl. M atallz € M.

Theextended systerm constructed by adding Lie brackets tar he extended system is
the original system from (1),
T = bl(a:)vl + bg(ﬂ?)vg + bg(ﬂ?)vg,
T = blvl +--- brnvrn + brn+lvrn+l +---+ bsvs (5)

where
whereb;, = g; fori = 1,...,m, and theb,, 41, ..., b5 cor-
respond to higher order Lie brackets of tfie chosen so that bi=q
dim(span{b;(x),...,bs(x)}) = dim(T, M) at eachw € M. by = go

Thew;’s wherei > m are calledictitious inputssince they do

not correspond with any actual system inputs. A technical re-

quirement is that the higher order Lie brackets must belongtpe formal differential equation is

the Philip Hall basis (see [31], [32] for a definition) for the Lie

algebra of vector fields oi/. S(t) = S(t)(b1v1 + bava + baws), (11)
The control inputs; which steer the extended system can be

found as follows. If it is desired to start at the pojnand finish and the formal exponential is

at the pointy, define a curvey(t), ¢ € [0, 1] connecting andgq

and solve

bz = [g1, 92]-

S(t) — Chg (t)bg Ch2 (t)bz Chl(t)bl'

A(t) = by (4(£))vr + -+ - + by (())s (6) Differentiating the formal exponential yields:

for the fictitious controlsy;. This will simply involve inverting < (t) = el o (1)hgehz (b2 g (Dbr y chaltbs phe (t)be

a square matrix or determining a pseudo-inverse, depending on X ha(t)byeMt (Wb gha()bs pha(tbz cha(Wbify (1)p,
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rearranging gives Lie brackets, each of the individual flows starting from the
left-most exponential can be simply represented by a sequence
S(t) = S(¢) (e*hl“)ble*h? (t)b2 hg(t)bgehz(t)bz6h1(t)b1> of four piecewise constant inputs as indicated in (2). The expo-
O (B ] nentialse®n (Vo ehm-1(Wbm-1 M1t simply represent
+5(1) (‘3 ha(t)bze ) +S5(hi(b1, concatenated flows directly along each of the control vector
fields g1(z), g2(2), ..., gm(z), these flows are accomplished

and using the adjoint notation by letting the corresponding input be “on” (i.ey, = 1) for the

Yo . corresponding time represented /by 1).
5(t) = 5(1) (Ade”‘z(”"z et ha(t)bs We only provide detailed computations for systems of degree
+ Ad__nyion h2(t)b2 + hl(t)bl) (12) two since, in practice physical systems that require Lie bracket
. ’ motions of order greater than two may be inconvenient to con-

which is in the form of (8). trol since many motions are needed to effect even a small motion
Expanding the formal exponentials to second order accorditig? higher order Lie bracket direction.
to (3) gives the following coefficients for eadh(t) in the pre-  Example 2:Returning to the previous example, since
ceding equation: hi(t),« = 1,2,3 are known, the final sequence of flows is
) given by
hl(t) . bl
hg(t) by — hl(t)(blbg _ bel) = by — hl(t)bg 11'1( h3(1)) OU’Q( h3(1)) o;ul( h3(1)) © _U’Q( h3(1))
his(t) : bs. Lie brackety;=[g:,9-] approximation
In particular, the coefficient ofi,(t) is computed as follows followed by
(terms higher than second order are dropped): wa(ha(1)) 0 uy (e (1))
Ad *“lm"lh?(t)b? where the notatiom, () means that;; = 1 for time¢if ¢ > 0
< ~ R (8 + hl( % ) oru;, = —1 for time |¢| if ¢ < 0 ando means concatenation,
i.e., u1(t) o uz(t) means that the flow for. follows the flow
SN for uy. O
X ot <I +ha ()b + hl(t)bl) For systems with Lie brackets of order greater than two in
1 ‘ the extended system, the procedure involves some additional
= (b2 — h1(t)b1b2) <I +hi(8)by + —hf(t)bf> ha (%) steps to which we direct the interested reader to [3], [29]. In
particular, for higher order systems, it is easier to determine the
= (b2 + ha(#)baby (t)blb2)h2( ) real inputs using the “forward” rather than backward Philip Hall
= (b2 — hi(t)[b1, b2])hz(t) coordinates. The transformation from the backward to forward
= (by — hl(t)bg)hQ( ). coordinates is an algebraic transformation (see [3]). Addition-

ally, since the piecewise approximation to the flow along Lie
Equating the coefficients of thfg’s in (12) and (11) (using the bracket is only approximate, relatively straightforward correc-

preceding computations) tions to this must be computed when determining a piecewise
. approximation to flows along vector fields of degree greater than
hi(t) = v two.
hQ(t) = vy If the system is nilpoterit, this method exactly steers the
hg(t) = hy(t)vs + vs. system to the desired final state; otherwise, the systemis steered

to a point that is, at worst, half the distance to the desired state

Solving these differential equations for thie provides the [3]. The algorithm can be iterated to generate arbitrary preci-

amount of time the system must flow along each of the extendgi@n. This iterated method also includes the notion of a “crit-

system basis vector fields in (7). [0 ical” step length. Reference [3] estimates the critical step length
Next one must determine the actual inputs using the Phify@und, and shows via simulations that the actual critical length

Hall coordinates. For systems with extended systems only ig-typically larger than the estimated bound.

cluding Lie brackets up to second order, this is a straightforward

procedure. Having determined the Philip Hall coordinates from IIl. STRATIFIED CONFIGURATION SPACES

(10), the flow for the system is of the form of (7), where the e method reviewed in Section I1-A can not be directly used

Philip Hall coordinatesf;(t) are now known. Therefore, thef, |egged or multi-fingered robots because their governing

final position of the system is given by equations of motion are not smooth. To adapt this method

S(1) = s (s gles 1 (Dbay ez (D Gl (D (and similar nonholonomic motion planning methods) to these
systems, we use the notion oftatified configuration space.

(recall that for the formal representation, composiVhile the stratified conceptis equally applicable to locomotion

t'?n b|5 }from , left to }I’Ight) , Since the exponentials 1, system of the form (1) is said to hailpotent of orderk if all the Lie
el (1)bs , € va1(1) oo, miDbett gre second  order brackets between control vector fields of order greater thare 0.
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and multi-fingered manipulation, the language of locomotiorid- 3-  Four-level stratification.
is used below for simplicity.

Let S, denote a robot's configuration manifold, which deany other submanifolds containingare calledhigher strata
scribes the robot's position and orientation as well as all ¥¥hen making comparisons among different strata, we will refer
the mechanism’s joint variables. The robot's possible confi§ higher codimension (i.e., lower dimensional) stratéoaser
urations will be subjected to constraints if one or more of igirata and lower codimension (i.e., higher dimensional) strata
feet (fingers) are in contact with the ground (object). The saghigher strata
of configurations corresponding to one contact is generically aWhenever an additional foot contacts the ground, the robot
codimension one submanifold 6%. Let S; c S, denote the IS subjected to additional constraints. For “point-like” feet, this
codimension one submanifold 6§ that corresponds to all con-may be a holonomic constraint; whereas, some contacts are
figurations where only théth foot contacts the terrain. That thebetter characterized by nonholonomic constraints. Regardless
{S;} are submanifolds can be demonstrated by noting that étthe constraint type, the system’s equations of motion will
of points corresponding to ground contact can be described®jange in a nonsmooth manner. Otherwise, the system'’s
the preimage of a function describing the foot’s height. We gefiquations of motion are smooth, though generally different in
erally assume that;, is, at least locally, defined by a level set ofach strata. Hence, the discontinuities are localized to regions
a function®;(z):S, — R. For legged robotic locomotion sys-Of transition between strata.
tems, these function®; are naturally defined by the height of The equations of motion at € S; are written as
the robot’s foot off of the ground so that the level séfs*(0) .
are of interest. & = gra(@)urs + - 91 (T)uLn, (3)

When both theth and;th feet are on the ground, the corre-

. : . ) . wheren; depends upon the codimension$f and the nature
_spondmg setof s_tates IS a_codlmensmn 2_subman|fo% thiat of the additional constraints imposed on the systeriinWe
is formed by the intersection of the two single contact subm

ag- . . . .
. . . ssume that the vector fields in the equations of motion for an
ifolds. Denote, the intersection 6f and.S;, by S;; = .5; N S;. d y

The struct fth f i {told T bined i bgiven stratum are well defined at all points in that stratum, in-
€ structure of tne configuration maniiold for a biped IS a cluding points contained in any substrata of that stratum. For

stractly illustrated in Fig. 2. For systems with larger numbe@xample, the vector fields_;(<) are well defined fot: € ;.

of legs (fingers), further intersections, corresponding to mof\?ote, however, that they dwtrepresent the system’s equations

cpmpllca_ted contact states, can be similarly defined in a "€Clfmotion in the substrata, but, nonetheless, are still well defined
sive fashion:S;;, = S; N.S; N S, = S; N S, etc. Denote an

bit int " t (or “stratum’” D as vector fields.
arbifrary intersection se (or"s ratum ) By = Pl tn T T Fig. 3illustrates, via a graph-like structure, a four-level strati-
{i142...1,}, and assume thai; is a regular submanifold of

S This i icallv true for riaid bod hani it thfication,which corresponds to a four-legged walker. A node cor-
stor.ataslf |sSgener|ca y true for rgid body mechanisms. ?esponds to a stratum, and the presence of an edge connecting

., S;, are locally described by the functions - o :
Pk : . . nodes indicates that it is possible to move between the strata
G, ,P,,,...,2,;,, thenSr will be a submanifold ofS if the P
functions®,, , ®,,,. .., ®;, are functionally independent. If the

that are connected by the edge. The ability to move between
. . . . . _two strata depends upon the mechanics of a given problem, and
functlonséf_correspgnq to foot heights, this functional Inde\'/viII generally be obvious from the characteristics of a given
pendence will be satisfied for Iegge_d ro_pots. problem. Whether or not edges between nodes are permissible
We say that_the robot c-space SB’atIf!eCP and Cf"‘” ea<_:h is considered in more detall in [2]. When a configuration mani-
of the submanifoldsS; a stratum The highest codimension

trat taining th it lled thebott at d fold is consistent with the above description, we will refer to it
stratum containing the pointis calle ottom stratumand o o vfiod configuration space

L i Definition 1: Let Sy be a manifold, and functions®;:S5q —
2Note that the terms “stratification” and “strata” are also used in other cop; . b h that the | | — ot g
texts to describe the topology of orbit spaces of Lie group actions, and ar&tat = 1, ..., 7 be such that the leve sets = ¢; _ (0) C 0

slight generalization of the notion of a foliation [33]. are regular submanifolds ¢, for eachi, and the intersection
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of any number of level sets; ;, i, = ©; ( )N <I>i_21(0) N
-Ne; (0) m < n,is also aregular submamfold 55. Then

SO and the function®,, define astratified configuration space
Locomotion gaits have a straightforward interpretation in a

stratified configuration space. In particular, we specifjait as

an ordered sequence of strata:

G=1{51,5,--+,51,,51,,, =51, } (14)

wheren is the number of different contact states in the gait. In
this ordered sequence, the first and last element are identical,
indicating that the gait is a closed loop in the strata graph. For
the gait to be meaningful, the system must be able to switch
from stratumSy, to Sy, , for eachi. We further assume that the
specified gait or gaits satisfy the gait controllability conditions

of [2] so that arbitrary trajectories can be tracked. Fig. 4. Sequence of flows.
For a given strata$;, thedistributiondefined by the span of
the control vector fields active afi; is vector fields associated with each stratum in one common space.
In this case, that common space will be the bottom stratum. This
Ag, =span{gs; ,,---, 951 1, 1. concept will be encapsulated below in the definition of a “strat-

ified extended system.” We first introduce some examples to
Theinvolutive closureof Ag,, denoted byAs,, is the closure show how we can consider vector fields defined on different
of Ag, under Lie bracketing. The controllability of a given gaitgtrata in a common space. Additional examples that deal with
(14), can be determined by lettiy = A;,. If S;._, C Sr,, more subtle issues can be found in [34].
thenD; = D; 1+Ay,.Else, ifSy, € Sr,_,, thenD; = (D; 1N Example 3: Consider the conceptual biped configuration
T'Sy,) + Ay, In[2]it s shown thatifdim(D,,) = dim(7%,5) space as shown in Fig. 2. Assume that on strais the
the system igyait controllablefrom zq. For a more rigorous yector fieldg, ; moves the system off &, and ontoS;, and
discussion and summary of stratified system controllability, S@8rrespondinglyg,; moves the system off of1, onto S,.
[1] and [2]. Also, we consider the vector fields » andg» », defined onS;
andS- respectively. Consider the following sequence of flows,
IV. LEGGED TRAJECTORY GENERATION starting from the poinkg € S1»

This section extends the procedure outlined in Section I _ P ol o g ol ogl2 o ¢h ().
to kinematic systems having a stratified c-space. We focu NI ING NG NG
on quasi-static legged locomotion in this section. Section VI 512<—Sz on S2 Sz<—512 S12=51 0N Sy 51<—512
sketches the extension to basic finger gaiting manipulation. (15)
Assume that the robot starts at a configuraficand seeks to
reach a final configuration. By a configuration, we mean the

position and orientation of the body, as well as the Conflguratl 5., This sequence of flows is illustrated in Fig. 4. In this

of the legs. We assume th"?‘t bgtlandg lie in the same botiom eguence, the system first moved off of the bottom stratum into
stratum, denoted by . This corresponds to the legged robo%“ flowed along the vector field, », flowed back onto the
starting and stopping with the same set of feet in contact W'bottom stratum, off of the bottom stratum orftg, along vector
the ground. Eliminating this requirement is a simple eXtenS'%eld 2. and back to the bottom stratum. ’

2,2

of the algorithm described below.
The switching behavior associated with stratified systems ¢ nNOtlce that from the Campbell-Baker—Hausdorff formula

not be accounted for in the methods of Section I.A. Howevef.- - (4)], if the Lie bracket between two vector fields is zero,

the method can be extended to legged and fingered robotic sbse-n their flows commute. Thus, if

The notation 515 — S;” means that the flow takes the system
from S to S12 and “onS1” means that the flow lies entirely

tems via the notion of atratified extended systeom S. [91.1,912] =0 and [go1,922] =0, (16)
A. The Stratified Extended System we can reorder the sequence of flows in (15) by interchanging
he flow alongg, ; andg; » and the flows along, ; andg, » as

On each strata, only one set of controls (or governing eq
tions) is in effect. Generally, the equations of motion in the
bottom strata WI|| be dlfferent than those in higher strata. Fur- zp= g2 o ¢teg21 ¢g2 1 %1 Lot . %1 (o)
thermore, it will be typically true that the goal can not be
reached by remaining if5. Hence, some switching amongst interchanged interchanged
the strata will be necessary. However, since the bottom strata = ¢4 | o ¢;2 (o), 17)
is defined by the intersection of higher strata, the equations of
motion in the higher strata are valid at points arbitrarily close to
the bottom strata. As shown below, it is possible to consider thet; = ¢3 andty = ¢6. O

ollows

on s;.
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Note thatg, » andg» » are vector fields in the equations ofheight of that foot relative to the ground. Furthermore, for each
motion for strataS; and.S,, respectively, buhot on stratum stratum comprising the given gait, we assume that the system’s
S12. However, the sequence of flows in (15) occurs on differesguations of motion are independent of the foot height, i.e., the
strata, where the flows are governed by vectors fields associatebot’s motion is independent of whether a particular foot is
with each stratum. This flow yields the same net result as the ety close to the ground, or very far from the ground, but may
flow in (17), where the vector fields are evaluated on the bottobe dependent upon whether or not a foot is in or out of contact
stratum, even though they are not part of the equations of motieith the ground. When this is so, the Lie bracket of the vector
there. Furthermore, we note that if the vector figjgds andgz »  field controlling foot height with any other vector field is zero,
are tangent to the substratusi,, then the resulting flow given and the decoupling requirement is satisfied. Additionally, the
in (17) will remain inSy-. In fact, it is implicitly required in the tangency requirements for canceling the flows associated with
above argument that at leagt, is tangent taS;». raising and lowering the foot will automatically be satisfied.

If the bottom stratum is described by the level set of a function This is arguably a strict assumption. However, for kinematic,
® 5, and ifavector fieldy, » is nottangent to the bottom stratumJegged robots this assumption will aimost always be satisfied
then(d®p,g12) = f1 # 0. Also, since the vector fielg; ; (see Section V for an example).

moves the foot out of contact, we similarly hawb® 5,91 1) = Examples 3 and 4 show that in given a stratified system,
f2 # 0. Then, the vector fieldj1 2 = g1.2 — (f1/f2)91,1, IS the vector fields on any stratum (other than vector fields cor-
tangent toSp because responding to lifting or replacing feet) can be considered as part

of the equations of motion in the bottom stratum if either certain
(d®g,g12) = (dPg,91.2) — ﬁ(d<I>B,gl71> =0. (18) Lie bracket and tangency conditions are met, or if Assumption
f2 1 is satisfied. If the vector fields are not tangent to the bottom
Henceforth, we will just assume that the vector field on thgiratum, they are modified as in Example 3.
higher stratum is tangent to the lower stratum, and note that if itWe have shown above that it is possible to consider vector
is not tangent, we can modify it to be so in the above manneiffields in higher strata as part of the equations of motion for the
The above example shows how one can effectively determisigstem on the bottom stratum. Based on this observation, we
the influence of a control that is defined in a higher stratuintroduce the following.
on the net evolution of the system in the lower stratum. The Definition 2: Extended Stratified System Thextended
following example shows how motions that are analogous to Lératified systemon the bottom strataSg, is the driftless
Bracket motions can be realized by controlsdifferenthigher system comprised of the vector fields on the bottom strata,
strata. chosen vector fields from the higher strata, and Lie brackets
Example 4: Consider the sequence of flows of vector fields fromSg and higher strata, i.e., it is a system

. . . . . . taking the form:
xf = (7):;2,1 © (7):;12,2 © (7)9120,1 © d)fgl,l © d)fgl,z © (7)971,1

0Py 0B 0B 00, 00, 09 (w0)  E= D@V bn(@um + bV - B

The first six flows in this example are the same as in Example from higher strata

3. Following the first six flows are six more wherein the flows + f’n+1vn+1 +o b, (19)
that are entirely or$y, i.e., the flow alongy; », and entirely on any Lie brackets
Sy, i.e., the flow alongy. 2, are in the negative direction. If the
Lie brackets are zero as in (16), ahd= t,y2,¢: = 1,4,7,10 where the{b,...,b,} spanT,Sy, the inputsv,,...,v, are
these flows can be rearranged as real, and the inputs, 1, . .., v, are fictitious.
. . . . With this definition, we have effectively increased the class

Tp=¢ly,, 005, 09, ©¢g (o). of vector fields that we may employ when using the motion

planning algorithm presented in Section II.

Now, if to =15 = tg = 11

z= d)t—léz,z ° (/)t_sm ° 25212 ° (/)32172(330) B. The Motion Planning Algorithm
_ d)f;l,z,gz,z} + O(#%) (o), For the purposes of motion planning, the method presented

in Section Il could be used in conjunction with the stratified ex-

wheret = to = t5 = tg = t11 < 1. Thus, this sequencetended systems. The basic idea is to use the stratified extended
provides a net flow inS;» in the direction of the Lie bracket system to plan the motion in the bottom stratum in order to ob-
between vector fields which are in the equations of motion dain the fictitious inputs. We can determine the actual inputs by
different strata,S; andS.,. O the method in Section Il with the modification that whenever

In Examples 3 and 4, it was required that certain Lie brackdtse system must flow along a vector field in a higher stratum, it
be zero. While one could simply check that these conditions awitches to that stratum by lifting the appropriate foot or feet,
metin a given situation, the following assumption will guaranteffowing along the vector field, and then replacing the appro-
this condition. priate foot or feet, as in Example 3.

Assumption 1:If it is necessary to lift a foot from the ground  Specifically, the algorithm to generate trajectories that move
during a gait cycle, we assume that the robot can directly contrtile system from initial configuratiop to final configurationg
(via a single control, or a combination of control inputs), thes as follows.
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1) Construct theextended stratified systenil9), on the the method of constructing of the real inputs from the fictitious

bottom strataSs. inputs, we have thatu;|| < CA/*, wherek is the degree of
2) Find a nominal trajectoryy(t), that connectg andgq. nilpotency of the system, or the degree of the nilpotent approx-
Given~(t), solve imation.
Pick a ball,3, of radiusR, and letK be the maximum norm
(@) = bi(x)vr + -+ bp(2)vp of all the (first order) vector fieldsy; for all points in3. Recall

o _ _ _ _ that the real inputsy; were given by a sequence of inputs which
for the fictitious inputsy;. As discussed in Section IV.C, approximate the flow of the extended system. Denote this se-
it may be necessary to decompose the entire trajectfyence by, where the superscript indexes the input, and the
from the initial point to final point into smaller subtrajec-subscript indexes its position in the sequence. The maximum
tories. . distance that the system can possibly flow from the starting

3) For each path segment in each strata, compute the aciight, ., is given by the sum of the distances of the individual
controls that steer the system alon(f). As discussed flows. Leta,, = max;co 1 {|[«(t) — .||} denote the point in
previously, this solution might require the transformatiohe flow that is maximally distant from the starting point (this
of the backward Philip Hall coordinates to forward Philigs not necessarily the final poing;). To guarantee stability,
Hall coordinates if the degree of the Lie brackets in thge must show thallz,, — z|| < R. However, this distance,
extended system is greater than two. ||z — 2| is necessarily bounded by the sum of the norms of

4) Flow along each first order vector field, and approximaigach individual flow associated with one real control inpait,
higher order vector fields as illustrated in Example 3. Ipg
general, it will be necessary to switch strata between some )
of these flows. lom ol <3 ‘/0 oot dtH'

C. Gait Stability "

Before we illustrate this method in Section V, we consider tHdowever,|[u} || < CAY* and||g;(z)|| < K Vx € B. Thus

additional issue of and stability. There is not an inherent mecha-

nism in the straightforward application of the method of Section | T — 2] < Z KCAY* (20)

Il to guarantee the stability of the gait. Recall that the method is ¥

. from which the fttious mputs are cetermined. 1t o e SINCe = [le; ~ z], by choosing the desired fnal point

N put ) . |:Iose enough to the starting point, the trajectory will not inter-

portant to note that the actually realized trajectory will generalé/ect the stability boundary

potbefy(t). Thus,.merely pic.:k.ing an initial trajectony(t) which {\Iote that since\ is raisea to the power df/k, if k is large

Is always staple IS not sufﬁ.cn.ant. One also T“P.S‘ gugrantee t.rt}?en it may be necessary to makeexceedingly small in order

wifhmi:]heogtzgﬂ;ef:;r?des\”atlons from the initial trajectory “?o ensure stability. However, the bound expressed in (20) is itself
- 1ty boL ' . : yery conservative since it sums the length of a bound on each

Stability considerations can pe incorporated into the_ rnethondividual flow in the series. In actuality, because the largest

as f(_)lllows. Assume that there is a means for determining .t s correspond to the Lie brackets oforéesimply summing
iﬁ?\ilt():/ocr)\fﬁ tr;?a‘:’i?tnl(fe?])b)léor?iggjecr)]];e?]::a;rsﬁ?r:ﬁﬂaItu \?v%tg%ﬂeir component lengths will give a conservative bound. Given
g ) ' ese two observations, an appropriate step length may often be
Y(z) < 0, the system is unstable, whér{z) > 0, the system best determined experimentally
Eoif(;);?, a::dowzféf )SIS: tﬁét?rﬁtisa}llstin;clfor(;zt)th?njts?bt;lclaw The same observations also apply to obstacle avoidance. If
selectedyéucltlf( ) >y0 ' ! ' the robot traverses an environment with obstacles, we assume
U o that the nominal trajectory is designed by an holonomic or rigid

The overall approach is to, when necessary, t"?‘ke steps tha} aorgy planner in such a manner as to avoid obstacles. Ensuring

t;’;nﬁgvsr;céu%Zn?ein;ériot?natézz dsz?tserrr?aile rr:gt'ir;iztgr?:jeésn'rt'ﬁr%t the actual trajectory also avoids the obstacles, requires that
. q P o e nominal trajectory be analogously broken into sufficiently
is necessary to measure the length of a flow, we will either con- : . '

. . . . . small steps to ensure that the actual trajectory remains suffi-
sider the system locally iR™ or equip the configuration man- ciently close to it

ifold with a metric. Given a desired step along the trajectory,
y(t),t € [0,1], let R = min{||x — ¢||,c € ¥1(0)}, i.e., the
distance from the step’s starting point to the closest point on the
stability boundary. We want to ensure that the system’s trajec-The approach is illustrated by generating control inputs that
tory does not intersect the skt 1(0). Letx, andxz ; denote the will steer a simplified model of the hexapod of Fig. 1 to walk
starting and final trajectory points. Without loss of generality, letver flat terrain (see Section VI for an example involving ma-
~(t) = z + t(xzy — x,) be a desired straight line path betweenipulation of a curved object, which is analogous to locomo-
the starting and end points. Also, It= ||z —z,||. Recall that tion over uneven terrain). This hexapod model is adapted from
the fictitious inputsy; were determined by solving an equatiora similar robot model presented previously in [35]. The key dif-
of the form~%(t) = g1(v(#))v1 + - -+ + gs(7(¢))vs for thew;.  ficulty in this example is the fact that the legs are kinematically
We have thafjv;|| < C||7(¢)|| = CA, for some constant’. By insufficient, making sideways motion difficult. Assume that the

V. EXAMPLE
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robot walks with a tripod gait alternating movements of legs
1-4-5 with movements of legs 2-3-6. With the tripod gait as-
sumption, this robot has four control inputs. The inputsand
uo respectively control the forward and backward angular leg
displacements of legs 1-4-5 and legs 2-3-6, while inpgtand b
u4 respectively control the height of legs 1-4-5 and 2-3-6.

The equations of motion can be written as follows.

i = cosB(a(hi)ur + B(ha)usz)

7 = sin 6(a(hy)ur + B(he)ug)

0 = la(hy)uy — 1B (ha)us
(})lzuﬁ d)2=u2 SN o

hi=u3; hy=1u4

where(z,y, 8) represents the planar position of the center {95 Stability margin for hexapod tripod gait.

massgp, is the front to back angular deflection of legs 1-445, -

is the angular deflection of legs 2-34s the leg length and; where (z,y, 8) represents the planar posmon of a reference
is the height of the legs off the ground. The functiori, ) and rame attached to the robot's centey, is the angle of legs

3(hs) are defined by 1-4-5 and¢>2.is the angle of Ie_gs 2_-3-6. The variabkesandu.,

are both 0 since the legs maintain ground contactglet and
1, ifh; =0 1, ifhe =0 g12,2 represent the first and second columns in (21).
ahy) = {0, if hy >0 Plha) = {0, if ho >0 " If legs 1-4-5 are in contact with the ground, but legs 2-3-6 are
) ) ) ) not in contact, the equations of motion are

Note that these equations require some foot slippage in order to )

describe the motion of a robot like the one illustrated in Fig. 1. x cos¢ 0 0

Since the robot walks in a tripod gait, stability is ensured if the Y sin 00 uy

robot’s center of mass remains above the triangle defined by the 01 _ L 00 o (22)

tripod of feet which are in contact with the ground. Considering P1 100 Uy

the motion of legs 1-4-5, the center of mass of the robot must P2 0 10

be at leasb = (I, /4) + Isin ¢; from the front of the robot to ha 0 01

ensure stability, wheré, denotes the length of the body. Seavhereh; is the height of legs 2-3-6 ang; is constrained to be
Fig. 5. Alternatively, if the center of mass is located a distan@ Label columns one, two and three in (22)., g1, andg; s,
b from the front of the robot, then stability is ensured during theespectively. If legs 2-3-6 are in ground contact and legs 1-4-5

motion if both of these constraints are satisfied are not, the equations of motion are
. I T 0 cosf O
—1

¢1 <sin <<b_z>/1> g 0 sin6 0|

4 1
31 o9 - 0

¢o > —sin~! <<Tb - b) /l) . o | 0 0 U2 (23)

b2 0 1 o) \"

Denote the stratum when all the feet are in contact= ha 0 0 1

f = 1) by 51, the stratum when tripod one is in contéat= " \yherey, is constrained to be 0. The columns in (23) are denoted

1,8 = 0), by 51, the stratum when tripod two is in contaqt927179272’ andg, 3.

(¢ = 0,6 = 1), by Sy and the stratum when no legs are i "ror ‘motion planning purposes, we must select enough
contact( = /3 = 0), by So. Note that this system satisfies the,ector fields to span the tangent space of the bottom stratum,

requirements of Assumption 1 since, regardless of the values©f - a simple calculation shows that the set of vector fields,
« andf3, the vector fields moving the foot out of contact with th%g12 G129, 012,921, [g12.1, g12.2]} SpansTLSis for all z €

grou_nd are of the forn@(a/ahi)}, and the equations of motion ¢ . "Note thallgis 1, g12.2] = (—21sin6, 20 cos 6,0,0,0)7.
are independent of the foot heiglits The stratified extended systei® constructed from the ex-

The equations of motion in the bottom strasa; (where all  tenqed system that uses the vector fields from all strata.
the feet maintain ground contact), are

T = 12101+ G12,2U2 4+ g1,2U3+ 92,1 V4 + [G12,1, g12,2]Us (24)

& cosf cosb
o gin@ sin# or, in greater detail
) | = “ 21 ; -
0| = l =l <u2 ) (21) T cosf cos@ 0 0 —2lsiné vy
</?1 1 0 ] sinf sinf 0 0 2lcosé Vo
P2 0 1 6 (=1 ¢ -1 00 0 v3
3Reference [1] shows that the hexapod is small time locally gait controllable | @1 1 0 01 0 Uy
when a tripod gait is used. P2 0 1 1 0 0 Vs
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Let the starting and ending configurations be: 1y
pP= (x7y797¢17¢27hlah2) = (0707070707070) 0.8
q:(xayaead)lad)?ahlah?):(1a1a0a0a0a0a0)' 0.6
A path that connects these pointsyig) = (¢,¢,0,0,0,0,0), '
t € [0,1]. Equatingy(t) with with the stratified extended system 04
and solving for the fictitious controls yields 0.2
vy {(cosf + sin @) x
V2 {(cosf + sin @) 02 04 06 08 1 12 14
vy | = = | —l(cos@ +sinb) , _ _
s 21 _1 (COS 9 1 sin 9) Fig. 6. Straight trajectory.
v (cos @ — sin )

In order to execute these flows, the robot must switch from the

or, sincef(t) = 0, and if we letl = 1 bottom stratum to the higher strata when executing a control

V1 1 input associated with a fictitious input for a higher strata.
V2 1 1 Thus, the total control sequence is
U3 = = -1 .
V4 -1 3 1 1
v 1 Z(UI O U O —U O —Ug) O U2 © UL O €Uy O <_§U/2>
For a system which is nilpotent of order 2, we have from (9) o (—eus) 0 cus o — <1u1> o (—eus)
(where they's from (24) are substituted for thg's in (9) in the 2 )

order that they appear in (24
yapp (24) The first four terms in the sequence approximate the Lie bracket

hy=wu motion on the bottom stratum. Thg'(3/4) term denotes the

hay = vo length of time each control input is “on.” The next two terms
hg = vy are the contribution of the; andwus terms individually on the

. bottom stratum. The next term represents a small flow associ-
}f‘* =l ated with removing legs 2-3-6 out of contact with the ground,
hs = v3 + hive and the following term corresponds to legs 2-3-6 moving back

to their initial position. Since the legs are not in contact with

which yields ; !
the ground, this motion does not cause the body of the robot to

hi(1) = ho(1) = 1 move. The next input corresponds to legs 2-3-6 moving back
2 1 into contact with the ground. The next three inputs correspond
h3(1) = ha(l) = — = to legs 1-4-5 performing an analogous motion.
3 2 Fig. 6 shows the path of the robot’s center as it follows a
hs(1) = 1 straight line trajectory, which is broken into four equal seg-

. . . . ments. Due to the nilpotent approximation, there is some small
Since the nilpotent approximation is of order two, there is g error. Better accuracy can be obtained by use of a higher

need to transform to forward Philip Hall coordinates. Instead,yer nilpotent approximation or a second iteration of the algo-
we can directly construct a sequence of controls to move in thgm from the robot's ending position. Note that the main body
desired direction. _ _ axis is oriented along the-axis in this example. Since the legs
Let o denote concatenation of cont_rol inputs, so that, for eXz 1 ot move immediately sideways, the robot's motion must
ample,u; o u; denotes that, =1 fortime 2, (1) followed by i1, de “parallel-parking-like” behavior to follow this line.
uz = 1 for time h»(1). Considering the vector fields oft2,  There is no inherent limitation in the method which requires
(9121, 912,2 and[g12,1, g12,2]), the system needs to flow alonge rajectory to be broken down into subsegments, however,
the first two vector fields for(1/2) seconds, and construct &peare are two reasons to do so. First, since the method is based
piecewise approximation to the flow along the third Lie brackq}pon decomposing a desired trajectory into flows along the
vector field for(3/4) seconds. The control sequence to approsyjjin Hall basis vector fields, the final trajectory is only related
imately move the system in the direction of the flow of the Ligy he desired trajectory in that the end points are the same
bracket is (or approximately the same for nilpotent approximations).
25) Breaking the path into segments leads to better overall tracking.
Second, robot stability requirements may also demand smaller
where each of the individual control inputs is equal to one fateps.
v/ (3/4) seconds [recall (2)]. To flow alongy; 1,41 = 1 for The approach is general enough that approximate tracking of
(1/2) seconds. Similarly to flow along» 1,42 = 1 for (1/2) arbitrary trajectories is possible. Fig. 7 shows the hexapod fol-
seconds. lowing an ellipse while maintaining a constant angular orienta-
On the higher strata, to flow along 1,u; = —1 for (1/2) tion. Fig. 8 shows the results when a smaller step size is used.
seconds and to flow alongs 1,4, = —1 for (1/2) seconds. In the first simulation, the elliptical trajectory is broken into 30

U1 0 U © —UL O —Ug (
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Fig. 9. Hexapod leaving footprints.

-0.2
-0.3

Fig. 7. Elliptical trajectory.

y

0.5

R’E x
1 2
. Fig. 10. Nominal obstacle avoidance trajectory.

Fig. 9 depicts the footprints left by the hexapod as it follows
a straight line diagonal path while simultaneously rotating at a
constant rate. The complex pattern of the footfalls suggests that
any technique that is based on foot placement would be very
difficult to apply to this system.

Finally, we consider obstacle avoidance. While the nominal
initial trajectory~(¢) musta priori avoid any obstacles, this con-
straint alone will not guarantee that the actual motion avoids
obstacles. If the trajectory is divided into sufficiently small seg-
ments, as suggested in Section 1V-C, then obstacle avoidance
can be realized. Fig. 10 shows a desired nominal path (indicated
by a black line) of the hexapod'’s body center through a set of ob-
segments. In the second, it is divided into 60 segments. In thigcles. The walls of the environment are indicated by dark grey
example, part of the trajectory tracking error is due to the nilp@egions. The lighter grey regions correspond to locations of the
tent approximation, but another contribution to the error is thghot's center where some vehicle orientations may cause the
simplicity of the model. Some directions are more “difficult” forhexapod to intersect the walls (i.e., the grey regions are the pro-
the system to execute than others due to the kinematic limijacted silhouettes of the c-space obstacles).
tions of the leg design. Because this mechanism can not executgo make the problem more challenging, we also specify that
“crab-like” gaits, its tracking error during sideways motions inthe robot rotates at a uniform rate as it follows the nominal tra-
creases, as this direction corresponds to a Lie bracket directigidtory. A real-world scenario where this might be desirable is

Also plotted in these figures is the stability criterion. Let tha patrol robot that must constantly scan in all directions. Fig. 11
body length be 2 units of length and let the center of mass fiep) shows the path of robot’s center of mass when the trajec-
located a distance of 0.75 units from the front of the robot. Thetory is not finely divided enough to satisfy the criteria of Section
the stability criterion isp; < 0.25 [rad] and¢, > —.85 [rad]. IV-C (it is subdivided into 100 subtrajectories). Since the path
In Figs. 7 and 8 the stability limits fop; are indicated by the of the center of mass intersects the lighter grey regions during
straight horizontal lines. In the first case, where the robot takpertions of its motion, the robot would realistically bump into
bigger steps, the stability condition is violated. However, in thihe walls in this example. However, if the nominal trajectory is
second case it is not. sufficiently subdivided (into 300 subtrajectories in this case) to

0.2

e

100 200 300 40H|[RHHITBHH (DO

0.1
|

t

-0.1

Fig. 8. Elliptical trajectory with smaller steps.



220 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002

Fig. 12. Four fingers manipulating an object.

Fig. 11. Top: obstacles not avoided. Bottom: obstacles avoided.

satisfy the requirement of Section IV-C, the robot avoids the
walls, as illustrated in the bottom part of Fig. 11.

VI. MULTI-FINGERED HAND MANIPULATION Fig. 13. Finger kinematics.

The methodology described above can be almostimmediately
applied to object manipulation via finger gaiting in a multi-fin-S1234, 5123, S124, S134, and S234 Where the subscripts denote
gered hand as long as the equations of motion can be writihich fingers are in contact with the object.
in the form of a kinematic system. This may be difficult in the Since the nominal trajectory stays away from the fingers’
case of rolling contact because the equations of motion may l#ematic singularities, the finger tip velocities can be consid-
come extremely complicated. Preliminary efforts to overconf§ed as system inputs. This input choice will simplify the com-
this limitation can be found in [36]. The application of this apputations and make the equations of motion satisfy (16). One
proach leads to an object manipulation planning strategy tif@n not generally choose the inputs in this way, (for example,
is independent of the geometry of the grasped object and indéen the the finger tips are in rolling contact with the object);
pendent of the manipulating hand’s morphology. The methodhgwever, the more general cases still fits within the framework
also independent of the type of contact between the finger a@fdhe stratified motion planning method outlined in Section I1I.
object (e.g., “point contact with friction,” “soft finger” etc.) and The equations of motion for such a grasped system are
independent of the morphology of the manipulating “fingersstraightforward, though possibly tedious, to derive (see [32] for
(i.e., independent of the number of joints, etc.). details). The equations of motion on the bottom stratum are of
Consider the “egg-shaped” object in Fig. 12 whose surfacethe form
parameterized by .
&= g1(x)ur + - + go(x)ue
(1 + ;—’) COS U COS v

. ) U € .2 and on the higher strata are of the form
c(u,v) = [ (1+ %) cosusinv |,

(
3 & v e (—7T, ) .
2 SinLu & = gi(x)ur+- - +ge(x)us+g7(x )ur+gs(x)us + go(x)ug

=%
2

Mk

S

This object is to be manipulated by four, three DOF fingemshere the first 6 inputs are associated with the finger tip veloc-
whose kinematic model is shown in Fig. 13. A “point contadties for the three fingers contacting the object, and inputs 7-9
with friction” model is assumed. are the three degrees of freedom for the finger that is not in con-
The stratified c-space will consist of a total of 16 differentact with the object. Note thgt () throughge () will take the

strata, corresponding to all the possible combinations of fingeerm (0,...,1,...,0) since they are the unconstrained finger
contacts. However, as will be clear shortly, the system fip velocities of the finger which is not contacting the object,
manipulable if it is restricted to only five strata: when all fouand thus they will satisfy (16). Therefore, they may be incor-
fingers are in contact plus each of the four cases where oplgrated into the equations of motion for the bottom stratified
one of the fingers is out of contact. Denote these strata eended system.
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As the object rotates, each finger's nominal configuration is
such that it contacts the object along that same axis. This can be
determined by equating the forward kinematics for each finger
with the point on the object’s surface that intersects the respec-
tive = /4 radial from the origin, and then, using the kinematics
of each finger, determine the desired joint configurations. For
this particular example, this trajectory is difficult to compute
analytically, but is simple to do numerically for each step of the
system’s motion. The desired trajectory is decomposed into 10
subsegments, and a sequence of six “snapshots” from the ma-
nipulation is shown in Fig. 14.

VII. CONCLUSION

Our method provides a general means to solve the trajec-
tory generation problem for many types of legged robotic and
multi-fingered systems. The simulations indicate that the ap-
proach is rather simple to apply. The method is independent of
the number of legs (fingers) and is not based on foot (finger)
placement principles. For a given legged robot mechanism, a
specifically tuned leg-placement-based algorithm may lead to
motions which use fewer steps or results in less tracking error.
However, for the purposes of initial design and evaluation of
a legged mechanism, our approach affords the robotic design
engineer an automated way to implement a realistic trajectory
generation scheme for a quasi-static robot of nearly arbitrary
Fig. 14.  Snapshots of computer simulation of object manipulation via fingmorphobgy_ More importantly, we believe that our approach
repositioning. provides an evolutionary path for future research and general-

izations.

Incorporating these unconstrained finger tip velocity vector gince many interesting robotic systems (such as bipeds) are
fields for each of the four higher strata gives a stratified extendgglt kinematic, an algorithm for solving the trajectory genera-
system of the form tion problem for such systems is necessary. However, since the
state of the art for solving the trajectory generation problem for
smooth systems with drift is still in its infancy, it may be dif-
ficult to make headway along these lines until more complete
results for the smooth case become known.

& =g1(x)u + -+ gs(x)ug

On *;1234
+ g7($)u7 + gs(@)us + go(x)ug
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