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Abstract

This paper studies the quasi-static motion of large legged robots that have many
degrees of freedom. While gaited walking may suffice on easy ground, rough and steep
terrain requires unique sequences of footsteps and postural adjustments specifically
adapted to the terrain’s local geometric and physical properties. This paper presents a
planner to compute these motions. The planner combines graph searching techniques
to generate a sequence of candidate footfalls with probabilistic sample-based planning
to generate continuous motions that reach these footfalls. To improve motion quality,
the probabilistic sample-based planner derives its sampling strategy from a small set
of motion primitives that have been generated offline. The viability of this approach
is demonstrated in simulation for the six-legged lunar vehicle athlete and the hu-
manoid hrp-2 on several example terrains, even one that requires both hand and foot
contacts and another that requires rappelling.

1 Introduction

One of the main potential advantages of legged robots over other types of mobile robots
(such as wheeled and track robots) is their mechanical ability to navigate on varied terrain.
However, so far this ability has not been fully exploited. One reason is the lack of an adequate
motion planner capable of computing unique sequences of footsteps and postural adjustments
specifically adapted to the local geometric and physical properties of the terrain. In this paper
we describe the design and implementation of a motion planner that enables legged robots
with many degrees of freedom to navigate safely across varied terrain. Although most of this
planner is general, our presentation focuses on two robots in particular: the six-legged lunar
vehicle athlete [70] and the humanoid hrp-2 [32].

1.1 ATHLETE and HRP-2

Athlete (shown in Fig. 1) is large and highly mobile. A half-scale Earth test model has
diameter 2.75m and mass 850kg. It can roll at up to 10km/h on rotating wheels over flat
smooth terrain and walk carefully on fixed wheels over irregular and steep terrain. With its
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Figure 1: The athlete lunar vehicle [70].

Figure 2: Pictures of lunar terrain from Apollo missions [27].

Figure 3: The humanoid hrp [32] and an example of varied terrain.
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six articulated legs, athlete is designed to scramble across terrain so rough that a fixed gait
(for example, an alternating tripod gait) may prove insufficient. Such terrain is abundant
on the Moon, most of which is rough, mountainous, and heavily cratered – particularly
in the polar regions, a likely target for future surface operations. These craters can be of
enormous size, filled with scattered rocks and boulders of a few centimeters to several meters
in diameter (Fig. 2). Crater walls are sloped at angles of between 10-45◦, and sometimes
have sharp rims [27].

In comparison, Hrp-2 (Fig. 3) is relatively light and compact, with height 1.5m and
mass 50kg, and is capable of moving at up to 4km/h. Using a fixed gait, it can walk on flat
surfaces, along narrow paths, and up stairs of constant height. It can even crawl through
tunnels, hold onto handrails, and get up after falling down [25, 32]. But like athlete,
hrp-2 is potentially capable of scrambling across rougher terrain, such as irregular outdoor
terrain or urban rubble, where a fixed gait may be insufficient.

Other robots and applications. A variety of previous work has also focused on en-
abling robots to traverse irregular terrain. Locomotion of humanoids across somewhat un-
even terrain has been studied in [39, 75]. Other legged robots including quadrupeds [28],
hexapods [65, 37], parallel walkers [74], and spherically symmetric robots [53], are capable of
walking across rougher terrain. Wheeled robots with active or rocker-bogie suspension can
also traverse rough terrain by changing wheel angles and center of mass position [17, 31, 42].
Careful descent is possible by rappelling as well, using either legs [4, 29, 69] or wheels [49].
The terrain we consider for athlete and hrp-2 is more irregular and steep than in most
previous applications, although not as steep as for free-climbing robots [9].

Careful walking also resembles dexterous manipulation. Both athlete and hrp-2 grasp
the terrain like a hand grasps an object, placing and removing footfalls rather than finger
contacts. Legged robots have to remain in equilibrium as they move (only the object must
remain in equilibrium during manipulation), and use fewer contact modes while walking (no
sliding or rolling), but still face similar challenges [6, 52]. Manipulation planning, involving
the rearrangement of many objects with a simple manipulator, is another related application.
A manipulator takes a sequence of motions with and without a grasped object (different
states of contact) just like a legged robot takes a sequence of steps [2]. In fact, for a legged
robot to navigate among movable obstacles, it may be necessary to consider both walking
and manipulation together [66].

1.2 Motion planning for legged robots

On rough terrain, the walking motion of legged robots like athlete and hrp-2 is governed
largely by two interdependent constraints: contact – i.e., keep feet, or fixed wheels, at a
carefully chosen set of footfalls; and equilibrium – i.e., apply forces at these footfalls that
exactly compensate for gravity without causing slip. The range of forces that may be applied
at the footfalls without causing slip depends on their geometry (e.g., average slope) and their
physical properties (e.g., coefficient of friction), both of which vary across the terrain. So
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every time the robot plans a step, it faces a dilemma: it can’t know the constraints on its
subsequent motion until it chooses a footfall, a choice that itself depends on the constraints.

To handle this dilemma in our planner, we make a key design choice similar to one
introduced in [9] and [26] (Section 2): to choose footfalls before computing motions. We begin
by identifying a number of potentially useful footfalls across the terrain. Each mapping of a
robot’s feet to a set of footfalls is a stance, associated with a (possibly empty) set of feasible
configurations that satisfy all motion constraints (including contact and equilibrium). A
robot can take a step from one stance to another if they differ by a single footfall and if they
share some feasible configuration, which we call a transition. Our planner proceeds in two
stages: first, we generate a candidate sequence of footfalls by finding transitions between
stances; then, we expand this sequence into a feasible, continuous trajectory by finding
paths between subsequent transitions. This two-stage planning approach is motivated by
the fact that a legged robot’s motion on irregular and steep terrain is most constrained just
as it places a foot at or removes a foot from a footfall (more generally, when it makes a new
contact or breaks one). At this instant, the robot must be able to reach the footfall (contact)
but can not use it to avoid falling (equilibrium), since the applied force is zero when the
contact is made or broken. So transitions are the “bottlenecks” of any motion: if we can find
two subsequent transitions, it is likely we can find a path between them. This statement has
been verified in our experiments.

Like the planners in [9] and [26], our planner combines graph searching to generate a
sequence of candidate footfalls with a variant of the Probabilistic-Roadmap (prm) approach
(see Chap. 7 of [14]) to generate continuous motions that reach these footfalls. But, we
add two key algorithmic tools in this framework (Section 3) to deal specifically with difficult
computational issues raised by legged robots like athlete and hrp-2. One is a method of
sampling feasible configurations (both from scratch and by perturbation) and of connect-
ing pairs of configurations with local paths. This method addresses the challenge that these
robots have many degrees of freedom with terrain contacts that close many kinematic chains.
While the closure constraint reduces the robot’s feasible space at a given stance to a sub-
manifold of the robot’s configuration space, other constraints (such as equilibrium) restrict
the feasible space further to a subset of small volume inside that manifold. Hence, sampling
feasible configurations and connecting them with feasible paths is particularly difficult and
potentially time consuming. The other tool is a powerful heuristic to generate footfalls and
guide our search through the highly combinatorial collection of stances. This heuristic ad-
dresses the challenge that moving across varied, but not extreme, terrain requires footfalls
to be properly selected, while the number of candidate stances is enormous.

Previous work. Motion planning for legged robots requires computing both a sequence of
footfalls and continuous motions that reach these footfalls. Previous planners differ primarily
in which part of the problem they consider first:

• Motion before footfalls. When it does not matter much where a robot contacts its
environment, it makes sense to compute the robot’s (or object’s) overall motion first.
For example, a manipulation planner might generate a trajectory for the grasped object
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ignoring manipulators, then compute manipulator trajectories that achieve necessary
re-grasps [34]. Similarly, a humanoid planner might generate a 2-d collision-free path
of a bounding cylinder, then follow this path with a fixed, pre-defined gait [38, 54].
A related strategy is to plan a path for the robot’s center of mass, then to compute
footfalls and limb motions that keep the center of mass stable along this path [16].
Some planners even avoid reasoning about footfalls entirely [44]. These techniques are
fast, but do not extend well to irregular and steep terrain.

• Footfalls before motion. When the choice of contact location is critical, it makes sense
to compute a sequence of footfalls first. This approach is related to the work on manip-
ulation planning presented in [2], which expresses connectivity between different states
of contact as a graph. For “spider-robots” with zero-mass legs walking on horizontal
terrain, the exact structure of this graph can be computed quickly using analytical
techniques [8]. For more general systems, the graph can sometimes be simplified by
assuming partial gaits, for example restricting the order in which limbs are moved [62]
or restricting footsteps to a discrete set [39]. But when motion is distinctly non-gaited
(as in manipulation planning [51, 58], free-climbing [9], or for athlete and hrp-2

on varied terrain), each step requires the exploration of a distinct configuration space.
This fact motivates the two-stage search strategy we adopt in Section 2.

1.3 Improving motion quality

Without additional consideration for motion quality, the above approach often generates
motion that looks unnatural and inefficient. The reason is that, while robots like athlete

and hrp-2 have many degrees of freedom (dof), we do not know in advance which of
these dof are actually useful, nor how many contacts may be needed. In some cases, there
might exist too many feasible motions. On easy terrain like flat ground or stairs of constant
height, the motion of a legged robot is lightly constrained, so that most of its dof are
unnecessary, and only feet need contact the ground. For example, although crawling would
also be feasible for hrp-2 on flat ground, we would rather see the humanoid walk upright.
Alternatively, on hard terrain like steep rock or urban rubble, the robot’s motion is highly
constrained. In this case, most of its dof are essential and additional contacts (hands, knees,
shoulders) might be required for balance. On varied terrain between these two extremes,
the number of relevant dof and the types of required contacts may change from step to
step. Since our basic planner always considers all dof (in order to find a feasible motion
whenever one exists) it may then generate needless motions of arms or other dof that are not
required for balance, or that may achieve balance in clearly sub-optimal ways. Eliminating
such motions in post-processing turns out to be particularly hard.

To solve this problem, we provide our planner with a small set of high-quality motion
primitives, similar to [39, 73]. These motion primitives might include a step on flat ground,
a step up a staircase, or a step on sloped terrain with a hand contact on a rock for balance.
Such primitives may be designed by hand, produced by off-line precomputation (for instance,
using optimization techniques), or extracted from captured motions of humans or animals.
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We record each motion primitive as a nominal path through the robot’s configuration space.
Then, instead of sampling across all of configuration space to find transitions between stances
and paths between transitions, our planner samples a growing distribution of configurations
around the nominal path associated with a chosen motion primitive. Our simulation results
demonstrate not only a marked increase in motion quality1 for legged robots walking on
varied terrain, but also a reduction in planning time. In the absence of a relevant primitive,
the planner falls back on its general sampling method.

Other ways to improve motion quality. The usual way to improve motion quality
is to post-process feasible motions using methods like “short-cut” heuristics [33, 64] and
gradient descent algorithms [67, 21]. We use similar methods in our planner, but for legged
robots it is difficult to eliminate all needless motions in post-processing. For this reason,
motion primitives and other types of maneuvers have been applied widely to robotics and
digital animation for legged robots (and other vehicles with complex dynamics). Four general
strategies have been used:

• Record and playback. This strategy restricts motion to a library of maneuvers. Natural-
looking humanoid locomotion on mostly flat ground can be planned as a sequence of
precomputed feasible steps [39]. Robust helicopter flight can be planned as a sequence
of feedfoward control strategies (learned by observing skilled human operators) to move
between trim states [20, 19, 50, 18]. Robotic juggling can be planned as a sequence of
feedback control strategies [12]. The motion of peg-climbing robots can be planned as a
sequence of actions like “grab the nearest peg” [5]. In these applications, a reasonably
small library of maneuvers is sufficient to achieve most desired motions. For legged
robots on varied terrain, such a library may grow to impractical size.

• Warp, blend, or transform. Widely used for digital animation, this strategy also re-
stricts motion to a library of maneuvers, but allows these maneuvers to be superim-
posed or transformed to better fit the task at hand. For example, captured motions
of human actors can be “warped” to allow characters to reach different footfalls [71]
or “retargetted” to control characters of different morphologies [22]. Of course, for a
digital character it is most important to look good while for a legged robot it is most
important to satisfy hard motion constraints. So although some techniques have been
proposed to transform maneuvers while maintaining physical constraints [56, 63], this
strategy seems better suited for animation than robotics.

• Model reduction. This strategy plans overall motion first, following this motion with
a concatenation of primitives. For example, another way to generate natural-looking
humanoid locomotion on flat ground is to approximate the robot as a cylinder, plan
a 2-d collision-free path of this cylinder, and follow this path with a fixed gait [38,

1Exactly how motion quality should be measured is an open question, beyond the scope of this paper.
Here, we define quality as inversely proportional to a linear combination of path length and sum-squared
distance from an upright posture.
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35, 54, 36]. A similar method is used to plan the motion of nonholonomic wheeled
vehicles [41, 40]. A related strategy plans the motion of key points on a robot or digital
actor (such as the center of mass or related ground reference points [55]), tracking these
points with an operational space controller [61]. These approaches work well when it
does not matter much where a robot or digital actor contacts its environment. When
the choice of contact location is critical, as is often the case for legged robots on varied
terrain, it makes more sense to compute a sequence of footfalls first.

• Bias inverse kinematic solutions. Like model reduction, this strategy first plans the
motion of key points on a robot or digital actor, such as the location of hands or feet.
But instead of a fixed controller, a search algorithm is used to compute a pose of the
robot or actor at each instant that tracks these points (an inverse kinematic solution).
One approach is to choose an inverse kinematic solution according to a probability
density function learned from high-quality example motions [73, 24, 46, 47]. The set
of examples give the resulting pose a particular “style.” In fact, we take a similar
approach in this paper, planning steps for a legged robot by sampling waypoints in a
growing distribution around high-quality nominal paths.

1.4 Organization of this paper

Say what this paper does not do. For example, we do not consider

dynamics, closed-loop control, visual feedback, robustness to errors (and

error recovery), etc.

2 Design of the motion planner

Our planner extends a similar one for humanoid robots [26], which was based on earlier work
for a free-climbing robot [9]. Here, we summarize our basic approach.

2.1 Motion constraints

A configuration of either athlete or hrp-2, denoted q, is a parameterization of the robot’s
placement in 3-d space. For athlete, q consists of 6 parameters defining the position and
orientation of the robot’s hexagonal chassis and a list of 36 joint angles (each leg has six
actuated, revolute joints). For hrp-2, q consists of 6 parameters defining the position and
orientation of the torso and a list of 30 joint angles. The set of all such q is the configuration
space, denoted Q, of dimensionality 42 for athlete and 36 for hrp-2.

We consider terrain that might include a mixture of flat, sloped, or rocky ground. We
assume that this terrain and all robot links are perfectly rigid. We also assume that we are
given in advance a set of links that are allowed to touch the terrain. For athlete, this set
includes only its six wheels, to which brakes are applied (to prevent rolling) while the robot is
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walking. For hrp-2, this set might include hands, feet, or knees. We call the placement of a
link on the terrain a contact, and fix the position and orientation of the link while the contact
is maintained. We call a set of simultaneous contacts a stance, denoted by σ. Consider a
stance σ with n ≥ 1 contacts. The feasible space Fσ is the set of all feasible configurations
of the robot at σ. To be in Fσ, a configuration q must satisfy several constraints:

• Contact. The n contacts form a linkage with multiple closed-loop chains. So, q must
satisfy inverse kinematic equations. Let Qσ ⊂ Q be the set of all configurations q that
satisfy these equations. This set Qσ is a sub-manifold of Q of dimensionality 42− 6n
for athlete and 36− 6n for hrp-2, which we call the stance manifold. This manifold
is empty if it is impossible for the robot to achieve the contacts specified by σ, for
example if two contact points are farther apart than the maximum span of two legs.

• Static equilibrium. To remain balanced, both athlete and hrp-2 must be able to
apply forces at contacts in σ that compensate for gravity without slipping. For valid
forces to exist, the robot’s center of mass (cm) must lie above its support polygon. But
on irregular and steep terrain, the support polygon does not always correspond to the
base of the robot’s feet. For example, both athlete and hrp-2 will slip off a flat
and featureless slope that is too steep, regardless of their cm position. To compute
the support polygon, we model each contact as a frictional point. Let r1, . . . , rn ∈ R

3

be the position, νi ∈ R
3 be the normal vector, µi be the static coefficient of friction,

and fi ∈ R
3 be the reaction force acting on the robot at each point. We decompose

each force fi into a component νT
i fiνi normal to the terrain surface (in the direction νi)

and a component (I − νiν
T
i )fi tangential to the surface. Let c ∈ R

3 be the position of
the robot’s cm (which varies with its configuration). Assume the robot has mass m,
and the acceleration due to gravity is g ∈ R

3. All vectors are defined with respect to a
global coordinate system with axes e1, e2, e3, where g = −‖g‖e3. Then the robot is in
static equilibrium if

n
∑

i=1

fi + mg = 0 (force balance) (1)

n
∑

i=1

ri × fi + c×mg = 0 (torque balance) (2)

‖(I − νiν
T
i )fi‖2 ≤ µiν

T
i fi for all i = 1, . . . , n. (friction cones) (3)

These constraints are jointly convex in f1, . . . , fn and c. In particular, (1)-(2) are
linear and (3) is a second-order cone constraint. In practice we approximate (3) by
a polyhedral cone, so the set of jointly feasible contact forces and cm positions is a
high-dimensional polyhedron [11, 9, 10]. Finally, since

c×mg = m‖g‖





−c · e2

c · e1

0
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then (1)-(2) do not depend on c · e3 (the cm coordinate parallel to gravity), so the
support polygon is the projection of this polyhedron onto the coordinates e1, e2. There
are many ways to compute this projection and to test the membership of c. An
approach that works well for our application is [10].

• Joint torque limits. The above equilibrium test assumes the robot is a rigid body,
“frozen” at configuration q. In reality, to maintain q each joint must exert a torque,
which in turn must not exceed a given bound. Let τ be the vector of all joint torques
exerted by the robot. These torques must satisfy

τ = G(q)−
n

∑

i=1

Ji(q)
T fi, (4)

where G(q) is the generalized gravity vector and Ji(q) is the Jacobian of the point on
the robot touching ri. Let ‖·‖ be a weighted L∞ norm where ‖τ‖ < 1 implies that
each joint torque is within bounds. We check joint torque limits by computing contact
forces that satisfy (1)-(4) with minimum ‖τ‖ (a linear program), and verify ‖τ‖ < 1.

• Collision. In addition to satisfying joint angle limits, the robot must avoid collision
with the environment (except at contact points) and with itself. We use techniques
based on bounding volume hierarchies to perform collision checking, as in [23, 60].

2.2 Two-stage search

We assume both athlete and hrp-2 move from one place to another by taking a sequence
of steps. Each step is a continuous motion at a fixed initial stance that ends by making or
breaking a single contact to reach a new stance. In particular, suppose the robot begins at
a configuration q ∈ Fσ at an initial stance σ. Let σ′ be a new stance that either adds one
contact to σ or removes one contact from σ. Then a single step from σ to σ′ is a feasible
path in Fσ from the initial configuration q to some final configuration q′ ∈ Fσ ∩ Fσ′ , which
we call a transition, that is feasible at both σ and σ′.

We say that two stances are connected if the robot can take a step from one to the other.
We encode necessary conditions for connectivity as a stance graph. Each node of this graph
is a stance. Two nodes σ and σ′ are connected by an edge if there is a transition between Fσ

and Fσ′ . So the existence of an edge in the stance graph is a necessary condition for the
robot to take a step from one stance to another. We encode both necessary and sufficient
conditions for connectivity as a transition graph. Each node of this graph is a transition.
Two nodes q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ are connected by an edge if there is a continuous
path between them in Fσ. So the existence of an edge in the transition graph is a necessary
and sufficient condition for the robot to take a step from one stance to another. The stance
and transition graphs represent the connectivity of the robot’s configuration space at coarse
and fine resolutions, respectively.

Our planner interweaves exploration of the stance graph and the transition graph, based
on the method of [9]. The algorithm Explore-StanceGraph searches the stance graph

9



Explore-StanceGraph(qinitial, σinitial, σfinal)

1 Q← {σinitial}
2 while Q is nonempty do

3 unstack a node σ from Q
4 if σ = σfinal then

5 construct a path [σ1, . . . , σn] from σinitial to σfinal

6 i← Explore-TransitionGraph(σ1, . . . , σn, qinitial)
7 if i = n then

8 return the multi-step motion
9 else

10 delete the edge (σi, σi+1) from the stance graph
11 else

12 for each unexplored stance σ′ adjacent to σ do

13 if Find-Transition(σ, σ′) then

14 add a node σ′ and an edge (σ, σ′)
15 stack σ′ in Q
16 return “failure”

Explore-TransitionGraph(σi, . . . , σn, q)

1 imax ← i
2 for q′ ← Find-Transition(σi, σi+1) in each component of Fσi

∩ Fσi+1
do

3 if Find-Path(σi, q, q
′) then

4 icur ← Explore-TransitionGraph(σi+1, . . . , σn, q′)
5 if icur = n then

6 return n
7 elseif icur > imax then

8 imax = icur

9 return imax

Figure 4: Algorithms to explore the stance graph and the transition graph.

(Fig. 4). It maintains a priority queue Q of nodes to explore. When it unstacks σfinal, it
computes a candidate sequence of nodes and edges from σinitial. The algorithm Explore-

TransitionGraph verifies that this candidate sequence corresponds to a feasible motion
by searching a subset of the transition graph (Fig. 4). It explores a transition q ∈ Fσ ∩ Fσ′

only if (σ, σ′) is an edge along the candidate sequence, and a path between q, q′ ∈ Fσ only
if σ is a node along this sequence. We say that Explore-TransitionGraph has reached a
stance σi if some transition q ∈ Fσi−1

∩ Fσi
is connected to qinitial in the transition graph. The

algorithm returns the index i of the farthest stance reached along the candidate sequence. If
this is not σfinal, then the edge (σi, σi+1) is removed from the stance graph, and Explore-

StanceGraph resumes exploration.
The effect of this two-stage search strategy is to postpone the generation of one-step

paths (a costly computation) until after generating transitions. It works well because, as we
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mentioned in Section 1, both athlete’s and hrp-2’s motion on irregular and steep terrain
is most constrained just as either robot places or removes a foot. In our experiments we
have observed that if we can find q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ , then a path between q
and q′ likely exists in Fσ. For example, Section 3.4 will present experiments with athlete

on a variety of terrain. In these experiments, there was a 60%-75% chance of finding a
feasible path between randomly sampled q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ . Moreover, even if
we could find no feasible path from q to q′, nearly 100% of the time we could find a feasible
path from q to a different configuration in Fσ ∩ Fσ′′ . So after sampling even a small number
of transitions, we can be reasonably sure to also find a one-step path.

Two key tools are embedded in this framework (the subroutines Find-Transition and
Find-Path, and a heuristic for ordering Q) that we discuss in the following section.

3 Tools to support the motion planner

3.1 Generating transitions

Both Explore-StanceGraph and Explore-TransitionGraph require the subroutine
Find-Transition to generate transitions q ∈ Fσ ∩ Fσ′ between pairs of stances σ and σ′.
To implement Find-Transition, we use a sample-based approach. The basic idea is to
sample configurations randomly in q ∈ Q and reject them if they are not in Fσ ∩ Fσ′ . But
since Qσ has zero measure in Q, this approach will never generate a feasible transition.
So like [68, 72, 15], we spend more time trying to generate configurations that satisfy the
contact constraint at σ (hence, at σ′ if σ′ ⊂ σ) before rejecting those that do not satisfy
other constraints. Like [26], we do this in two steps:

• Create a candidate configuration that is close to Qσ.

This step is tailored to the particular legged robot:

– Athlete: Each contact in the stance corresponds to the placement of a foot at a
footfall in the terrain. First, we create a nominal position and orientation of the
chassis: (1) given a stance σ, we fit a plane to the footfalls in a least-squares sense;
(2) we place the chassis in this plane, minimizing the distance from each hip to its
corresponding footfall; (3) we move the chassis a nominal distance parallel to the
plane-fit and away from the terrain. Then, we sample a position and orientation of
the chassis in a Gaussian distribution about this nominal placement. Finally, we
compute the set of joint angles that cause each foot to either reach or come closest
to reaching its corresponding footfall. Note that a footfall fixes the intersection
of the ankle pitch and ankle roll joints relative to the chassis (Fig. 1). The hip
yaw, hip pitch, and knee pitch joints determine this position. There are up to
four inverse kinematic solutions for these joints – or, if no solutions exist, there
are two configurations that are closest (straight-knee and completely bent-knee).
The knee roll, ankle roll, and ankle pitch determine the orientation of the foot, for
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which there are two inverse kinematic solutions. We select a configuration that
satisfies joint-limit constraints; if none exists, we reject the sample and repeat.

– Hrp-2: Each contact in the stance corresponds to the placement of a robot link
on the terrain. We select one of these links as a root and fix its location. Then,
starting from the root link, we incrementally sample joint angles (satisfying joint
angle limits) along each closed-loop kinematic chain using a bounding-bolume
technique similar to [15]. Finally, we use cyclic coordinate descent as in [68] to
adjust these joint angles so that every contact in the stance is approximately
achieved.

• Repair the candidate configuration using numerical inverse kinematics. We move the
candidate configuration to a point in Qσ using an iterative Newton-Raphson method.
For each contact, we can represent the error in position and orientation of the corre-
sponding robot link i as a differentiable function fi(q) of the configuration q. Let

g(q) =







f1(q)
...

fn(q)







so we can write the contact constraint as the equality g(q) = 0. Assume we are given a
candidate configuration q1. Then at each iteration k, we transform this configuration
by taking the step

qk+1 = qk − αk∇g(qk)
−†g(qk),

where ∇g(qk)
−† is the pseudo-inverse of the gradient of the error function, and αk is

the step size (computed using backtracking line search). The algorithm terminates
with success if at some iteration ‖g(qk)‖ < ε for some tolerance ε, or with failure if a
maximum number of iterations is exceeded.

The first step rarely generates configurations in Qσ but quickly generates configurations that
are close to Qσ. Conversely, the primary cost of the second step is in computing ∇g(qk)

−† at
every iteration, but if candidate configurations are sufficiently close to Qσ then few iterations
are necessary. So, it is the combination of these two methods that makes our sampler fast.
For athlete, the experiments corresponding to Fig. 8 show that the repair step increases the
fraction of feasible configurations from 1.9% to 18.4% and reduces the average time it takes to
generate each feasible sample from 0.64s to 0.24s. For hrp-2, the experiments corresponding
to Fig. 12 show that the repair step increases the fraction of feasible configurations from 0.4%
to 31.9% and reduces the sampling time from 0.74s to 0.06s.

Our approach quickly samples configurations that satisfy the contact constraint. One
problem with this approach is that as other constraints (such as equilibrium and joint limits)
become more restrictive, it becomes less likely that a configuration in Qσ will also be in Fσ.
This problem arises in particular for hrp-2, which in general has a smaller support polygon
and tighter joint limits than athlete. To reduce the rejection rate, we write the equilibrium
and joint-limit constraints as differentiable inequalities, and enforce them together with the
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Free-Path(q, q′)

1 if the distance from q to q′ is less than ε then

2 return true

3 qmid ← (q + q′)/2
4 if Newton-Raphson from qmid results in qmid ∈ Qσ then

5 if qmid ∈ Fσ then

6 return (Free-Path(q, qmid) & Free-Path(qmid, q
′))

7 else

8 return false

9 else

10 return false

Figure 5: Algorithm to connect close configurations with a local path.

contact equality when we repair a candidate configuration. Including these inequalities
requires a slight modification of the Newton-Raphson procedure (specifically, an active-set
method as in [13]).

Note that Explore-TransitionGraph additionally requires that we sample a single
transition in each connected component of Fσ ∩ Fσ′ . Our approach is not guaranteed to do
this, but the probability that it samples at least one in each component increases with the
number of samples.

3.2 Generating paths between transitions

Explore-TransitionGraph requires the subroutine Find-Path to generate paths in Fσ

between pairs of transitions q ∈ Fσ ∩ Fσ′ and q′ ∈ Fσ ∩ Fσ′′ . We use a variant of the proba-
bilistic roadmap approach called sbl that is bi-directional (growing trees from both q and q′)
and lazy (delaying the creation of local paths until a candidate sequence of milestones is
found) [59].

To sample configurations in Fσ, we face the same challenge discussed in the previous
section (that a random configuration has zero probability of being in Qσ), and so we use
a similar approach. However, in this case we can focus our search on a small part of fea-
sible space, near existing milestones in each tree of the roadmap. Rather than sample a
candidate configuration q ∈ Q at random, we sample it in a neighborhood of an existing
configuration q0. Close to q0, the shape of Qσ is approximated well by the hyperplane

{ p ∈ Q | ∇g(q0)
T p = ∇g(q0)

T q0 }.

So before applying the iterative method to repair the sampled configuration, we first project
it onto this hyperplane (as in [72]).

To connect milestones with local paths, we face a similar challenge, since the straight-line
path between any two configurations q and q′ will not (in general) lie in Qσ. So, we deform
this straight-line path into Qσ using the bisection method Free-Path (Fig. 5). At each
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iteration, Free-Path first applies Newton-Raphson (see Section 3.1) to the midpoint of q
and q′ to generate qmid ∈ Qσ, then it checks that qmid ∈ Fσ. If both steps succeed, the
algorithm continues to recurse until a desired resolution has been reached; otherwise, the
algorithm returns failure. The advantage of this approach is that it does not require a direct
local parameterization of Qσ, as it may be difficult to compute such a parameterization that
covers both q and q′.

3.3 Ordering the graph search

Our two-stage search strategy can be improved by ordering the stances in Q according to a
heuristic cost function g(σ) + h(σ) in Explore-StanceGraph, where stances with lower
cost are given higher priority. We define g(σ) as the minimum number of steps required to
reach σ from σinitial in the stance graph. We define h(σ) as a weighted sum of several criteria:

• Planning time. We increase the cost of σ proportional to the amount of time spent
trying to sample a transition q ∈ Fσ′ ∩ Fσ to reach it [51].

• Distance to goal. We increase the cost of σ proportional to the distance between the
centroid of its contacts and those of the goal stance σfinal.

• Footfall distribution. We increase the cost of σ proportional to the difference (in a
least-squares sense) between its contacts and those of a nominal stance on flat ground
(for example, with feet directly under each hip).

• Equilibrium criteria. We increase the cost of σ inversely proportional to the area of its
support polygon.

This heuristic reduces planning time and improves the resulting motion. It also allows us
to relax an implicit assumption – that Find-Transition and Find-Path always return
“failure” correctly. Because we implement these subroutines using a probabilistic, sample-
based approach, we are unable to distinguish between impossible and difficult queries. So
on failure of Find-Transition in Explore-StanceGraph, we still add σ to the stance
graph but give σ a high cost. Likewise, rather than delete (σ, σ′) on failure of Find-Path,
we increase the cost of σ and σ′.

3.4 Implementation and Results

We tested the planner in simulation on several example terrains. It enables athlete to
traverse terrain that are otherwise inaccessible by gaits. Table 1 shows tests on a series of
stair steps. The stairs range from 0.2 to 0.5 times the diameter of athlete’s chassis, and
require moving about 2 body lengths. Alternating tripod, four-legged, and six-legged gaits
were able to traverse the lowest stair (after some recoverable slippage), but failed on all others.
The planner, however, was able to reliably plan all stairs. We randomly sample 200 footfalls
in each terrain to use in the planner, relying on our graph search heuristic (Section 3.3) to
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Gait Planner Manual
Height Tripod Four Six

0.2 X X X 8m 5m40s
0.3 — — — 8m30s 14m
0.4 — — — 16m15s —
0.5 — — — 15m15s —

Table 1: Stair steps planned with various methods. Dashes indicates failure. Planner times
are averaged over four runs.

(a) (b)

Figure 6: Walking with an alternating tripod gait is (a) feasible on smooth terrain but (b)
infeasible on uneven terrain. Infeasible configurations are highlighted red.

identify which of these footfalls are useful. We are working on ways to better refine our
selection of footfalls (for example, during incremental sensing), but right now the benefit is
marginal. We compare the planner with footsteps chosen manually. A human operator used
a point-and-click interface place and break contacts. Motions to achieve the commanded
contact changes were planned automatically with the one-step planner. Manual operation
was straightforward for the 0.2-unit stair, but the 0.3-unit stair required a large amount
of trial-and-error and backtracking. An attempt to plan the 0.4-unit stair was stopped in
frustration after about 30 minutes.

Next, we test the planner on terrains generated to simulate a range of lunar surfaces.
Using a fractal generation method, we create height-maps of the form z = f(x, y) as triangle
mesh consisting of 32768 triangles, each about half the size of one of athlete’s wheels. All
contacts are modeled with the same coefficient of friction. Fig. 6(a) shows an alternating-
tripod gait applied to smooth, undulating terrain. The gait can traverse the terrain freely.
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Figure 7: Walking on smooth, undulating terrain with no fixed gait.

Figure 8: Walking on steep, uneven terrain with no fixed gait.

However, on irregular and steep ground, the gait does not work at all – it causes athlete

to lose balance or exceed torque limits at several locations (Fig. 6(b)). We apply our planner
to the same terrains, setting the initial and final stances at a distance of about twice the
diameter of athlete’s chassis, and sampling 200 contacts to use in the planner. Fig. 7 shows
motion on smooth ground, computed in 14 minutes and consisting of 66 steps. Fig. 8 shows
a feasible motion on irregular and steep ground, computed in 26 minutes and consisting of
84 steps.

The planner is also flexible enough to handle different robot morphologies. Fig. 9 shows
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Figure 9: Rappelling down an irregular 60◦ slope with no fixed gait.

motion to descend irregular and steep terrain at an average angle of about 60◦. In this
example, athlete is rappelling, using a tether (anchored at the top of the cliff) to help
maintain equilibrium. We included the tether with no modification to our planner, treating
it as an additional leg with a different kinematic structure. The resulting motion consisted
of 32 steps. Total computation time was 16 minutes.

4 Improving motion quality

Because we use probabilistic sample-based methods to sample transitions and plan paths
between them, the motions we generate are feasible (given an accurate terrain model) but
not necessarily high-quality. In particular, when athlete and hrp-2 walk on terrain that
is not irregular and steep, their motion is lightly constrained. Each step we generate might
contain strange or erratic motions of the arms and legs. To improve the result, we apply a
method of smoothing similar to [21, 67], which uses gradient descent to achieve criteria like
minimum path length and maximum clearance (or safety margin). However, this type of
post-processing does not eliminate all needless motion.

Moreover, because we sample each contact, we might end up trying difficult steps when
simpler ones would have led to the goal as well. For example, the robot might reach a
stance σ associated with a feasible space Fσ containing a narrow passage. With only a small
perturbation of the contacts at σ, this narrow passage is likely to disappear [30]. So although
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(a)

(b)

Figure 10: Two primitives on flat ground, to (a) place a foot and (b) remove a foot. The
support polygon – here, just the convex hull of supporting feet – is shaded blue.

additional steps might still be possible, they would be easier to compute if we had made a
better choice of contacts at σ.

4.1 Generating motion primitives

We address the limitations of our planner by using a library of motion primitives. Each
primitive is a single step of very high quality. In this section, we describe how we generate
primitives. In the following section, we will describe how they guide our selection of paths,
transitions, and contacts.

Currently, it is the responsibility of the user to decide which primitives to include in the
library. First, we need to identify a small but representative set of steps to be learned and
to specify start and goal stances (differing by a single contact) for each one. These steps
should be both important (often repeated) and broadly applicable (similar to a wide variety
of other steps). For example, we might choose to include several consecutive steps on flat
ground, each placing or removing a foot (Fig. 10). Next, we need to define a weighted set of
criteria to judge the quality of each step. For example, we might choose to minimize path
length, torque, energy, or the amount of deviation from an upright posture. Finally, we need
to decide whether to accept or reject a candidate primitive, because we are not guaranteed
that our optimization criteria correspond to our aesthetic notion of what is “natural.”
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It is the responsibility of the planner to actually compute each primitive. First, we gen-
erate an initial trajectory between the given start and goal stances by randomly sampling a
feasible transition and creating a path to reach it using prm, as in [26, 9]. Then, we opti-
mize this trajectory with respect to the given objective function using a standard nonlinear
optimization package [43]. This entire process is an off-line precomputation; several hours
were required to generate the two example primitives in Fig. 10.

The generation of motion primitives has not been the main focus of our work (here we
are interested in their application), so many improvements may be possible. For example,
we expect better results to be obtained by using the method of optimization proposed by [7].
Likewise, we might use a learned classifier to decide (without supervision) whether candidate
primitives look natural, as in [57]. Finally, we might automate the selection of primitives to
include in our library by learning a statistical model of importance (similar to location-based
activity recognition [45]) or applicability after perturbation (similar to prm planning with
model uncertainty [48]).

We record each primitive in our library as a nominal path

u : t ∈ [0, 1]→ u(t) ∈ Q

in configuration space that does one of two things:

• Adds a contact. For some σ and σ′ such that σ ⊂ σ′, u is a feasible path in Fσ

from u(0) ∈ Fσ to u(1) ∈ Fσ ∩ Fσ′ .

• Removes a contact. For some σ and σ′ such that σ ⊃ σ′, u is a feasible path in Fσ

from u(0) ∈ Fσ to u(1) ∈ Fσ ∩ Fσ′ .

We will denote the start and goal stances for each primitive u by σu and σ′
u, respectively.

In general, u will only define a feasible step between σu and σ′
u, but we will see in the next

section that it can still be used to help guide our choice of path, transition, and contact to
reach other stances.

4.2 Using primitives for planning

We use motion primitives to help our planner generate each step. We do this at three levels:
finding a path (given a transition and a final stance), finding a transition (given only the
final stance), and finding a contact (in order to define the final stance). In each case, first
we transform the primitive to better match the step we are trying to plan, then we apply
the transformed primitive to bias the sampling strategy used by our planner.

4.2.1 Finding paths

Consider the robot at an initial configuration qinitial ∈ Fσ at an initial stance σ. Assume that
we are given a final stance σ′ and a transition qfinal ∈ Fσ ∩ Fσ′ (recall qfinal is a configuration
feasible at both σ and σ′). Also assume that we are given an appropriate primitive u ⊂ Q
(as described in Section 4.1). We want to use u to guide our search for a path from qinitial
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qinitial

qfinal

u(0)

u(1)

nominal path u

transformed path û

(a)

q1 (qinitial)

q5 (qfinal)

q2

q3

q4

q̂4

(b)

q1

q5

q2

q3

q4

(c) (d)

Figure 11: Using a primitive to guide path planning. (a) Transforming a motion primitive
to start at qinitial and end at qfinal. (b) Sampling root milestones in Fσ near equally spaced
waypoints along û. (c) Growing trees to connect neighboring roots. (d) The resulting path,
which if possible is close to û (dotted).

to qfinal in Fσ. As before, we use sbl (a variant of prm) to grow trees from root config-
urations [59]. But rather than root these trees only at qinitial and qfinal, we root them at
additional configurations (similar to [1]) sampled according to the primitive u.

Transforming the primitive to match qinitial and qfinal. Although we assume u is
similar to the step we are trying to plan, it will not be identical. So first, we transform u so
that it starts at qinitial and ends at qfinal. We have chosen to use an affine transformation of
the form

û(t) = A (u(t)− u(0)) + qinitial (5)
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that maps the straight-line segment between u(0) and u(1) to the segment between qinitial

and qfinal. In other words,

û(0) = A (u(0)− u(0)) + qinitial û(1) = A (u(1)− u(0)) + qinitial

= 0 + qinitial = (qfinal − qinitial) + qinitial

= qinitial = qfinal

In particular, we select A closest to the identity matrix, minimizing

min
A

∑

i,j

(Aij − δi,j)
2 such that A (u(1)− u(0)) = qfinal − qinitial

where δij = 1 if i = j and 0 otherwise. We compute A in closed form as

A = I +
((qfinal − qinitial)− (u(1)− u(0))) (u(1)− u(0))T

‖u(1)− u(0)‖22
.

We can visualize this transformation as in Fig. 11(a). First, u is translated to start at qinitial.
Then, the farther we move along u (the more we increase t), the closer û is pushed toward
the segment from qinitial to qfinal.

Sampling root milestones. Let q1, . . . , qn be configurations evenly distributed along û
from qinitial to qfinal (Fig. 11(b)). For each i = 1, . . . , n, we test if qi ∈ Fσ. If so, we add qi

as a root milestone in our roadmap. If not, we repeatedly sample other configurations in
a growing neighborhood of qi until we find some feasible q′i ∈ Fσ, which we add as a root
instead of qi.

Connecting neighboring roots with sampled trees. For i = 1, . . . , n− 1, we check if
the root milestone qi can be connected to its neighbor qi+1 with a feasible local path (as
in [26]). If not, we add the pair of roots (qi, qi+1) to a list R. Then, we apply prm to grow
trees between every pair in R. For example, in Fig. 11(c) we add (q2, q3) and (q4, q5) to R
and grow trees to connect both q2 with q3 and q4 with q5. We process all trees in parallel.
So at every iteration, for each pair (qi, qi+1) ∈ R, we first add m milestones to the trees at
both qi and qi+1 (in our experiments, we set m = 5). Then, we find the configurations q
connected to qi and q′ connected to qi+1 that are closest. If q and q′ can be connected by a
local path, we remove (qi, qi+1) from R. When we connect all neighboring roots, we return
the resulting path; if this does not happen after a fixed number of iterations, we return
failure. Just like our original implementation, this approach will find a path between qinitial

and qfinal whenever one exists (given enough time). However, since we seed our roadmap
with milestones that are close to u, we expect the resulting motion to be similar (and of
similar quality) to this primitive whenever possible (Fig. 11(d)), deviating significantly from
it only when necessary.
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4.2.2 Finding transitions

Again consider the robot at a configuration qinitial ∈ Fσ at a stance σ. But now, assume that
we are only given a final stance σ′, so we use a primitive u to guide our search for a transition
before we plan a path to reach it.

Transforming the primitive to match σ and σ′. Since we do not know qfinal, we can
not use the same transformation (5) that we used for planning paths. Instead, we choose a
rigid-body transformation of the form

û(t) = Au(t) + b (6)

that maps the nominal stances σu and σ′
u (associated with the primitive u) as closely as

possible to the stances σ and σ′.
Recall that a stance consists of several contacts, each placing a link of the robot on the

terrain. If we model the surface of the terrain and all robot links as a triangular mesh,
then we can define the location of each placement by a finite number of points ri ∈ R

3.
For example, the face-face contact between a foot and the ground might be defined by the
vertices r1, r2, and r3 of a triangle. We consider these points to be attached to the robot,
so if the foot is placed against a different face in the terrain, the points r1, r2, and r3 move
in R

3 but remain in the same location relative to the foot. We will use these points to define
our mapping between stances.

In particular, let ri ∈ R
3 for i = 1, . . . ,m be the set of all points defining the contacts in

both σu and σ′
u, and let si ∈ R

3 for i = 1, . . . ,m be the set of all points defining the contacts
in both σ and σ′. (We assume u has been chosen so that both sets have the same number of
points.) Then we choose the rotation matrix A and translation b in (6) that minimize

min
A,b

∑

i

‖Ari + b− si‖
2
2.

We can compute A and b in closed form [3]. But, we only consider rotations A about the
gravity vector to avoid tilting the robot into an unstable orientation.

Sampling a transition. As before, we sample configurations q ∈ Qσ and keep them
if q ∈ Fσ ∩ Fσ′ . But rather than sample configurations completely at random, we sam-
ple them in a growing neighborhood of û(1). We expect a well-chosen transition to further
improve the quality of the path to reach it.

4.2.3 Finding contacts

Once more, consider the robot at a configuration qinitial ∈ Fσ and a stance σ. But now,
assume we are given neither a final stance nor a transition, but only a primitive u. If u
removes a robot link from the terrain, we immediately generate a final stance σ′ by removing
the corresponding contact from σ. But if u places a link in the terrain, we use it to guide
our search for a new contact.
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Transforming the primitive to match σ. We use the same transformation (6) to con-
struct û as for finding transitions. But here, we compute A and b to map only σu to σ, since
we do not know σ′. We use this transformation to adjust the placement of the new contact
given by u. Let ri ∈ R

3 for i = 1, . . . ,m be the set of points defining this contact. Then the
transformed contact is given by r̂i = Ari + b for i = 1, . . . ,m.

Sampling a contact. We define a sphere of radius δ, centered at (1/m)
∑

i r̂i. We in-
crease δ until the intersection of this sphere with the terrain is non-empty (initially, we set δ
approximately the size of either athlete’s or hrp-2’s foot, respectively). We randomly
sample a placement of the points r̂i on the surface of the terrain inside the sphere, by first
sampling a position of their centroid s ∈ R

3 on the surface, then sampling a rotation of r̂i

about the surface normal at s. We check that the contact defined by this placement has
similar properties (normal vector, friction coefficient) to the contact defined by u. If so, we
add it to σ to form σ′. If not, we reject it and sample another placement.

4.2.4 Deciding which primitive to use

It only remains to decide which primitive u should be used, given an initial stance σ and
configuration qinitial. We have experimented with a variety of heuristics. For example, we
might pick the primitive that most closely matches σu with σ (in other words, that minimizes
the error in a transformation of the form (6)). Likewise, we might pick the primitive that
most closely matches σ′

u with the actual terrain. If no primitives match well, we use the
basic method from Section 3 instead. However, the best approach is still not clear, and this
issue remains an important area for future work.

4.3 Implementation and results

An example of climbing a single stair. With each additional part of a step that we
compute using a primitive, we add to the quality of the result. For example, consider the
motion of hrp-2 in Fig. 12 to climb a single stair of height 0.3m (just below the knee). This
motion was planned from scratch, by randomly sampling contacts and transitions and by
using prm to generate paths. The robot does not look natural – its arm and leg motions are
erratic, and its step over the stair is needlessly long. To improve this motion, we applied the
two primitives shown in Fig. 10 (steps on flat ground). Fig. 13 shows the result of using these
primitives to plan each path. Some erratic leg motions are eliminated, such as the backward
movement of the leg in the second frame. The erratic arm motions remain, however, because
the transition in the fourth frame is the same (still randomly sampled). Fig. 14 shows the
result of using primitives to adjust this transition as well as to plan paths, eliminating most
of the erratic arm motions. Finally, Fig. 15 shows the result of using primitives to select
contacts well as plan transitions and paths. The chosen contact resulted in a much easier
step, eliminating the extreme lean in the fifth frame.
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Figure 12: Stair step planned entirely from scratch.

Figure 13: Primitives guide path planning, reducing unnecessary leg motions.

Figure 14: Primitives guide transition sampling, reducing unnecessary arm motions.

Figure 15: Primitives guide the choice of contact, resulting in an easier step.

24



Stair From scratch Adapt primitive Optimal
height Time Objective Time Objective objective
0.2m 8.61 5.03 5.42 3.04 2.19
0.3m 10.3 4.67 4.08 2.31 2.17
0.4m 12.2 5.15 10.8 3.27 2.55

Figure 16: Planning time and objective function values for stair steps, averaged over 5 runs.

Planning time and motion quality for stairs of different heights. In our experi-
ments, we have observed that planning time remains low and motion quality remains high
even when we use a primitive to plan a step that is quite different. For example, we adapted
the same two primitives in Fig. 10 to stairs of height 0.2m, 0.3m, and 0.4m. Fig. 16 shows
the results, averaged over five runs. Quality is measured by an objective function that penal-
izes both path length and deviations from an upright posture (lower values indicate higher
quality). For comparison, we report the minimum objective value achieved after a lengthy
off-line optimization. These results demonstrate that our use of primitives provides a modest
reduction in planning time but significantly improves motion quality. Note also that both
time and quality degrade gracefully as the step we are planning deviates further from the
primitive.

Comparing motion primitives with gaits For athlete, primitives work well in mod-
erately difficult terrain, which is too difficult for gaits but not so irregular that the planner
must explore all dof to find a feasible path. Fig. 21 shows a fractal-generated terrain with
moderate irregularities. A six-legged gait would lose stability and exceed torque limits at a
number of locations (Fig. 21(a)). Using the gait as a motion primitive, the planner is able
to find a natural-looking feasible path in about 8 minutes (Fig.21(b)).

More difficult terrains can only be traversed with a larger number of primitives. For
example, on the problems in Table 1, the planner could not reliably adapt flat-ground gaits
to stair steps higher than 0.2 times the diameter of the chassis, not much better than the
gaits themselves.

A variety of other examples. We have tested our planner in many other example envi-
ronments. Fig. 17 shows hrp-2 on uneven terrain (using the primitives in Fig. 10), in which
the highest and lowest point differ by 0.5m. Fig. 18 shows hrp-2 climbing a ladder with
rungs that have non-uniform spacing and that deviate from horizontal by up to 15◦. The
primitives for this example were generated on a ladder with horizontal, uniformly spaced
rungs. Fig. 19 shows hrp-2 making several sideways steps among boulders, using the hands
for support. Here, the primitives were generated by stepping sideways on flat ground while
pushing against a vertical wall. Fig. 20 shows hrp-2 traversing very rough terrain with
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Figure 17: A planar walking primitive adapted to slightly uneven terrain.

Figure 18: A ladder climbing primitive adapted to a new ladder with uneven rungs.

slopes up to 40◦. This motion was generated with a larger set of primitives (including steps
of several heights, a pivot step, and a high step using the hand for support). In all of these
examples, contacts were sampled on-the-fly (using motion primitives), not placed by hand.
Planning for the first three examples took about one minute on a 1.8 GHz pc. The fourth
example took about eight minutes.

26



Figure 19: A side-step primitive using the hands for support, adapted to a terrain with
large boulders. Hand support is necessary because the robot must walk on a highly sloped
boulder.

Figure 20: A motion on steep and uneven terrain generated from a set of several primitives.
A hand is being used for support in the third configuration.

5 Conclusion

In this paper we described the design and implementation of a motion planner that enables
legged robots with many degrees of freedom to walk safely across varied terrain. We focused
on two robots in particular: the six-legged lunar vehicle athlete(which has wheels on the
end of each leg, but can fix these wheels to walk), and the humanoid hrp-2. Both robots
are capable of walking carefully over terrain so rough that a fixed gait is insufficient. We
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(a) (b)

Figure 21: On moderately rough terrain, (a) using a gait fails (infeasible configurations are
shaded), but (b) using this gait as a motion primitive succeeds.

made a key design choice in our planner – to choose footfalls before computing motions –
because on this type of terrain, a legged robot’s motion is most constrained just as it places
or removes a foot. We presented several tools embedded in our planner (for sampling, local
connection, and search heuristics) that extend previous techniques to satisfy the specific
needs of athlete and hrp-2. To improve motion quality, we also described how to derive a
sampling strategy from a small set of motion primitives (such as a fixed gait on flat ground)
that were generated offline. We demonstrated the flexibility of our planner with simulation
results for both athlete and hrp-2 that included both walking and rappelling motions on
several example terrains.

There are many opportunities for future work. For example, our planner takes a reason-
able amount of time for off-line computation (less than one hour), so it may help human
tele-operators (for example, pilots at jpl) design difficult motions more quickly. A similar
approach was used to plan motions for the recent Mars rovers. However, our planner is
still too slow to be used on-the-fly (which may require computation times of less than five
minutes). We are also developing better heuristics for deciding which motion primitives to
generate and for choosing primitives appropriate to each step. Other important issues in-
clude incremental sensing and a consideration of dynamics, neither of which are addressed
in this paper.
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