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Abslrucl - A new motion planning framework is presented 
that enables multiple mobile robots with limited ranges of 
sensing and communication to maneuver and achieve goals 
safely in dynamic environments. To combine the respective 
advantages of centralized and de-centralized planning, this 
framework is based on the concept of centralized planning 
within dynamic robot networks. As the robots move in their 
environment, localized robot groups form networks, within 
which world models and robot goals can be shared. 
Whenever a network is formed, new information then 
becomes available to all robots in this network. With this 
new information, each robot uses a fast, centralized planner 
to compute new coordinated trajectories on the fly. Planning 
over several robot networks is decentralized and distributed. 
Both simulated and real-robot experiments have validated 
the approach. 

1. INTRODUCTION 

When many robots operate in the same environment, 
high-level motion planning is required for the robots to 
reach their goals while avoiding collisions among~ 

themselves and with static and moving obstacles. In 
unknown or partially known environments, it is unlikely 
that a system of sensors can provide global knowledge. In 
addition, continuous inter-robot communication is usually 
not feasible. Instead, only robots that are sufficiently close 
to each other can exchange information, e.g., share their 
goals and local world models. 

This paper introduces a new planning framework that 
exploits the changing communication links between 
robots, as the robots move, to combine the respective 
advantages of centralized and decentralized planning. 
More precisely, our approach is based on dynamic robot 
networks that are capable of: 1) forming dynamically 
whenever communication and sensing capabilities permit; 
2) sharing world models and robot goals within each 
network; and 3) constructing “on the fly” coordinated 
trajectories for all robots in each network using a fast 
centralized motion planner. 

An overview of this approach is presented in Section 11. 
A background review (Section 111) justifies the choices 
made in our approach. We then describe aspects of our 
framework in more detail, namely the representation of 
partial world models (Section IV) and the planning 
technique (Section V). Section VI presents the test-
platform used for simulations and robot experiments. 
Section VI1 gives some experimental results. 
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a) 	 6)
Fig. 1 Example with 5 robou. Dashed lines behveen robots depict 
communication links. In a) the robots fom two distinct networks Net0 
and Netl. In b), WOrobots have moved, and the WOnetworks in a) have 
merged intoNet2 

11.PLANNING IN DYNAMIC NETWORKS 

A .  Network Formation 

When any two robots are within communication range 
of each other, they establish a communication link. Define 
G to be the graph whose nodes are the robots and edges 
are the communication links. A network of robots is any 
group of k t 1 robots forming a maximal connected 
component of G. So, any two robots in a network can 
communicate through one or several communication 
links, but two robots from different networks can not. 

Fig. l a  shows an environment with 5 robots, where 2 
networks have formed. In Netl, the top and bottom robots 
can exchange information via their communication links 
with the middle robot. Because robots are moving to 
achieve their goal locations, the networks are dynamic. 
Robots may leave networks and/or form new networks 
(see Fig. Ib). An application level protocol ensures that at 
any time robots in each network can access the local 
sensing information of all other robots in the same 
network, and hence share a common world model. 

B. Planning Process 

Motion planning in a network N is triggered by any one 
of the following events: 

.	N just got formed, i.e., two robots from different 
networks entered one another’s communication range. 

A significant change in the world model occurs, e.g., a 
robot in N senses a new obstacle. 

.	A new goal location is requested for one or several 
robots in N .  
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I 
a) All three robots (grey circles) are at their initial locations. The WOleA 
robots are in communication range and form a network. Their 
centralized planners create coordinated collision-free trajectories that 
lead toward the goals (cross-hairs). The right robot f o m  a network by 
itself, and its uajectorj' is planned independently from the other two.The 
robots Stan moving along these trajectories. 
I II , I 

b) As the robots move along their trajectories, thc middle robot and the 
right robot entcr communication range with each other, and all three 
robots now forma largernetwork. 

c )  A new plan is made for all three ro 
eonsise of collision-free trajectories for all three robots. 

I 

d) As robots move along their new trajectories, they leave 
communication range of each other and some network li&s arc broken. 
They continue to follow the planned trajectories. 

Fig. 2 Top-down view of a planning example with three robots. In each 
of the  fours snapshots, the illustration on the left shows the robots 
folowing thelr trajectories to their respective goals (cross-hairs). The 
diagram on the right depicts the communication range of each robot and 
the existing communication links. 

When such a triggering event occurs, data is exchanged 
between the robots in N ,  so that each one gets an updated 
world model that combines the local world model and 
goal of every robot. Once robots have shared this 
information, each robot runs its own copy of a centralized 
motion planner to construct coordinated trajectories for all 
robots in the network. When the planner terminates, each 
robot broadcasts its plan to all other robots in the network. 
Each robot selects the same hest plan and immediately 
starts executing its trajectory in this plan. The planner is a 
single-query probabilistic-roadmap (PRM) planner similar 
to the one presented in [12] (see Section V). 

This process is illustrated in Fig. 2 on a simple example 
involving 3 robots, with no obstacles. A triggering event 
automatically occurs at the start of the process, as the first 
networks get formed. 

Since robots also have limited sensing, the world model 
shared through a network is partial. Planning is done 
using this model. As robots move, their sensors may 
detect previously unknown obstacles or a change in the 
trajectoly followed by a known obstacle. Such an event 
triggers a re-planning operation within the network where 
the new obstacle or change of trajectoly was detected. 

111.BACKGROUND REVIEW 

Most previous work on multi-robot motion planning 
can he grouped into centralized and decentralized 
planning [2,23]. While centralized planning considers all 
robots together as if they were forming a single multi- 
body robot [4,6,17,22,26,27], a decentralized planner 
plans for each robot separately before coordinating the 
individual plans by tuning the robot velocities along their 
respective paths [1,3,9,14,15,19,21,25]. A variant of 
decentralized, called prioritizing planning, plans for one 
robot at a time, in some sequence, considering thc robots 
whose trajectories have already been planned as moving 
obstacles [5,10]. 

Centralized planners can be advantageous because they 
allow the possibility of completeness and global 
optimization. For example, it was shown in 1233 that a 
centralized planner based on PRM techniques can reliably 
solve problems requiring the tight coordination of 
multiple articulated arms, while decentralized planners 
based on similar PRM techniques fail often. On the other 
hand, centralized planning may take more time due to the 
high dimensionality of the configuration spaces that are 
searched. A worse drawback is that they require all 
information (partial world models and robot goals) to be 
centralized in one single place, which is only possible if 
the robots have unlimited communication capabilities. 
This is not the case in many practical settings. 

A major advantage of decentralized planning is that it 
allows for distributed planning. Each robot can then plan 
its own trajectoly using its own partial model of the 
environment. If two robots eventually get close to one 
another and risk colliding, simple velocity-tuning 
techniques or reactive techniques can be used to locally 
coordinate their motions. However, a fully distributed 
approach fails to exploit the fact that localized groups of 
robots can exchange information to improve planning. 

While decentralized planning is potentially less 
computationally intensive because it searches several 
configuration spaces of smaller dimensionality, it cannot 
offer any completeness or optimality guarantee. Various 
attempts have been made to improve the outcome of 
decentralized planners (e.g., [3,5,l I]). In particular, a 
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negotiation scheme between localized groups of robots is 
used in [3] to assign priority orders to robots, which allow 
the decentralized planner to compute trajectories of 
reduced lengths. This negotiation scheme demonstrates 
the benefits of localized inter-robot communication, and 
is the technique most closely related to the robot network 
planning framework presented in this paper. But de- 
centralized planning remains intrinsically incomplete. 

The planning approach presented in this paper exploits 
the respective advantages of centralized and decentralized 
planning. In each robot network, it uses a centralized 
single-query PRh4 planner to increase completeness and 
still provide fast on-the-fly planning. However, planning 
is distributed over the various networks -hence, planning 
over multiple networks is decentralized to accommodate ~ 

the fact that robots from different networks cannot share 
information. The triggering event caused by the merging 
of two previously distinct networks into a single network 
leads the robots in this new network to take advantage of 
the information they now share by centrally re-planning 
their coordinated trajectories. 

Planning with incomplete world models and on-the-fly 
re-planning when a sensor detects the presence of a still 
unknown obstacle or a change in an obstacle’s trajectory 
have previously been described in [12, 161 for a single 
robot. We use similar techniques, but extend them to 
multiple robot networks. 

IV. WORLD MODEL 

Describing the world model in a concise but useful 
form is necessary to allow for information sharing 
between robots in the same network. In the experimental 
system that we have built, world models simply consist of 
a list of robots and their descriptions, and a list of 
obstacles and their descriptions. The following table 
outlines the information stored in each list: 

World Model Description 
1) List of Robot Descriptions 

- State (position and velocity) 
~ Size (Radius) 

-Most Recent Update Time 

- Information Source 

-Goal position 

- Current Trajectory 

2) List of Obstacle Descriptions 
- State (position and velocity) 
- Size (Radius) 
- Most Recent Update Time 
- Information Source 

Robots report their own size and state, while obstacle 
sizes and states are estimated by robot sensors. The most 
recent update time is useful when updating world models 

with information received from other robots. The 
information source is a robot ID that indicates which 
robot sensed (or communicated with) the object. It is used 
to keep track of which robots are currently in the network. 
Several assumptions were made to allow such a concise 
world model: 

.	Each robot has access to its own state relative to a 
global coordinate system (e.g., GPS). 

Each object is approximated as a circular object to 
allow its geomeby to he described by a single 
parameter, its radius. 

Each obstacle has constant linear velocity estimated by 
a robot’s sensor. As in 1121, if at any later time its 
trajectory is found to diverge by more than some 
threshold from the predicted trajectory (either because 
the obstacle did not move at constant velocity, or 
because the error in the velocity estimate was too high), 
then the robot that detects this divergence calls for the 
construction of a new plan within its network. The 
planner “grows” the obstacles (and the robots) to allow 
for some errors in predicted trajectories ofthe objects. 

All objects in the environment are easily identifiable by 
robot sensors, which can also precisely estimate their 
positions and velocities. Any discrepancy between two 
local world models can he easily resolved. 

The second assumption is rather easy to eliminate, as it 
has been shown before that PRM planners can efficiently 
deal with geometrically complex robots and obstacles 
(e.g.. [22]). In [12], the third assumption has been shown 
to be quite reasonable, even when obstacle velocities 
change frequently, provided that (re-)planning is fast 
enough. The last assumption is more crucial. In OUI 

experimental system, it is enforced by engineering the 
vision system appropriately (Section VI). In the future, it 
will he important to relax this assumption by using more 
general sensing systems and data fusion techniques [20]. 

V. MOTION PLANNING ALGORITHM 

As indicated earlier, motion planning within a robot 
network is done using a centralized single-query PRM 
planner (more precisely, several copies of this planner 
running in parallel). This planner searches the joint 
statextime space C of the k robots in this network. The 
state of each robot is defined by the two coordinates of its 
center and two velocity parameters, so C has 4k+l 
dimensions. This representation can easily he extended to 
other robots. For instance, we have implemented a version 
of the planner for robots in three-dimensional space [SI. 
The planner searches C for a collision-free trajectory from 
the initial state of the robots to their goal state. The 
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resulting trajectory defines the coordinated motions of the 
robots to their respective goals. 

Our planner searches C by incrementally building a tree 
of milestones (the roadmap), as described in [12,13,17]. 
.At each iteration, it selects a milestone m in the current 
roadmap, generates a collision-free state m ’ at random in 
a neighborhood of m in C and, if the path from m to m’ 
tests collision-free, installs m’ as a new milestone in the 
roadmap. The search terminates when m’ falls into an 
“endgame” region around the goal. See [12] for details. 

As in [12,24], our planner satisfies kinodynamic 
constraints as follows: to generate each new milestone m’, 
it picks a control input at random and integrates the 
equations of motion of the robots over a short duration. 

We name our planner Kinodynamic Randomized 
Motion Planning - KRMP. As shown in [12], under 
reasonable assumptions on the free space, the probability 
of not finding a plan when one exists decreases 
exponentially to 0 as the number of milestones increases. 
This is a major advantage over our previous work in [7,9], 
which used a decentralized prioritized planning approach. 
Note, however, that the fact that the planner is 
prohabilistically complete does not imply that the entire 
system is also probabilistically complete. The robots use 
partial world models and thus need to re-plan their 
trajectories when they encounter discrepancies in their 
model, (e.g. new obstacles). Since there is no guarantee 
that a series of complete plans is itself a complete plan, 
the robots are not guaranteed to find a global plan if one 
exists. While it is unclear to what extent the notion of 
completeness applies when planning for global goals with 
only partial knowledge of the environment, it is still 
desirable to achieve completeness in the system’s 
components whenever this is possible. 

The work in [U]also demonstrated empirically that the 
above techniques successhlly compute trajectories for a 
single robot with kinodynamic motion constraints, in real-
time. To enable motion planning within robot networks, 
KRMP extends this previous work to accommodate 
multiple robots. Modified techniques are needed to 1) 
select milestones for expansion, 2) generate new 
milestones, and 3) define the endgame region. Below we 
present the technique used to generate new milestones. 

When planning for multiple robots, one may generate 
m ’ using the following “parallel” approach first, pick the 
control inputs for all the robots at random; next, integrate 
the motions of all the robots concurrently; if no collision 
is detected, then record the endpoint as a new milestone, 
otherwise pick another set of control inputs. We found 
that this technique yields a high rejection rate, especially 
in tight space. This led us to develop the following 
“sequential” approach: consider the robots in some order, 
pick the control inputs one robot at a time and integrate 
their motion (considering the previous robots as moving 
obstacles); if the motion collides, pick new control inputs 
or change the motion of a previous robot. Experiments 

show that this sequential approach makes it possible to 
get each new milestone much faster, without affecting the 
probabilistic completeness of the overall planner. 

Finally, we take advantage of the various processors 
available in a robot network by concurrently running a 
separate copy of KRMP on each robot of the network. 
Each copy uses a different seed of the random number 
generator, hence constructs different roadmaps. We set 
the same timeout constraint (typically, a small fraction of 
a second) on every robot. Each robot then returns a plan 
or its failure to generate one. The same best plan is 
selected by the robots and each robot immediately 
executes its new trajectory. This is made possible 
because we use a PRM planning approach. 

VI. EXPEIUMENTAL TEST-PLATFORM 

A .  Micro-Autonomous RoverS Test-Plotform 

Located in the Aerospace Robotics Lab at Stanford 
University, the Micro-Autonomous Rovers (MARS) test -
platform is used to model mobile robots in a two-
dimensional workspace. The platform consists of a large 
3m x 2m flat, granite table with six autonomous robots 
that move ahout the table’s surface. The robots are 
cylindrical in shape and use two independently driven 
wheels that allow them to rotate on the spot, but inhibit 
lateral movement (nonholonomic constraint). Each robot 
is equipped with its own planner (copy of KRMP) and 
controller that are located off-hoard. 

B. Sensors 

An overhead vision system is used to track the states of 
all objects on the table. The vision system processor 
calculates these states and publishes them to all 
applications that subscribe (see Section VI). This makes 
global state information available to all robots. To 
simulate the limited sensing range that would occur when 
sensors are mounted on robots, the object states are 
filtered such that robots only receive state information 
regarding objects within some preset range of the robot. 

C. Network Communication 

Fig. 3 shows the computerinetwork architecture of the 
MARS test-platform. All the processing is done off-
board. Two processors are assigned to each robot, 
respectively for planning and control. These computers 
are connected through a LAN. All communication within 
the LAN is accomplished with Real Time Innovation’s 
Network Data Delivery Service (NDDS) software. 
Because a LAN is used for inter-robot communication 
instead of a wireless medium, there are no physical 
barriers to limit the range of communication. Hence the 
communication barrier is simulated. 
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I I I I 

Fig. 3 Network architectureof MARS test-platform 

NDDS is based on a puhlishhbscribe architecture. To 
broadcast messages by flooding a robot network, the 
sender will publish a message to which all robots 
subscribe. Before robots can receive their subscriptions, 
the messages are filtered so that only robots within some 
predetermined range of the sender will receive the 
message. This effectively simulates a discrete physical 
communication range. 

VU. EXPERIMENTS 

A. Physical Experiments 

To illustrate the applicability of the planner to a 
physical system, real robot experiments with up to 5 
robots have been carried out. One example of such an 
experiment is illustrated in Fig. 4. The left photos are 
screen-shots of the CUI taken throughout the experiment. 
The right photos show the physical hardware, and were 
taken at the same time as the corresponding GUI screen-
shots. In the CUI, robots are depicted as small circles and 
obstacles are depicted as larger circles. Robot goal 
locations are indicated by cross-hairs, and lines leading to 
the goals depict the trajectories. When robots form a 
network as described in Section 11, it is indicated by a 
color change. Hence robots within a network have a 
common color, and this color will differ between 
networks. 

All five robots are initially located at the close end of 
the table (i.e. bottom of the GUI screen). Communication 
and sensing ranges were limited to 0.75 m. Robot colors 
indicate that 2 networks have formed on startup, one in 
the bottom left and one in the bottom right. As the 
experiment progresses, the robots follow their trajectories 
to reach their goal locations at the far end of the table. 

.. . .. 

I I I 
Fig. 4 Example expenment on the W S test-platform involving 5 
robots and 3 obstacles. 

Along the way, networks are continually changing as 
illustrated by the robots changing colors between frames. 
A result of this is real-time re-planning. This is illustrated 
by the fact that trajectories change between frames. 
Throughout the experiment, robots planned an average of 
3.4 times, and planning times were an average of 9 ms. 

B. Simulations 

The physical experiments shown above validate the 
planner’s ability to function on real robots. However, the 
limited number of robots and obstacles available prevent 
us from performing experiments that demonstrate the 
planner’s ability to handle more complex scenarios. 

A.single scenario was simulated that incorporates 12 
robots, 6 static obstacles and 6 moving obstacles. The 
workspace was given dimensions 4m x 6m while robots 
and obstacles had diameters of 0.14m. 
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Fig. 5 Screen-shot of the test scenario. 

To add complexity to the scenario, 4 of the moving 
obstacles were directed towards a network of 2 robots 
with little room to maneuver, (see middle of Fig. 5) .  Also, 
2 networks of 2 robots were placed between a row of 3 
obstacles and a workspace boundary. 

The scenario was run 25 times with different initial 
random seeds. Despite the apparent difticulty of the 
scenario, the planner demonstrated fast planning times (an 
average of 15.8 ms), while planning for up to 5 robots in a 
network. To provide an idea of the level of complexity, 
robots formed on average 49 different networks 
throughout simulations that lasted several minutes. 

VIII. CONCLUSIONS 

The motion planning framework presented has 
demonstrated its effectiveness in planning for multiple 
mobile robots within a hounded workspace. It plans with 
a high probability of success in environments involving 
robots, stationary obstacles and moving obstacles. 
Planning times of less than 100 ms allowed the robots to 
plan on-the-fly and react to changes in the environment. 

Future work includes incorporating more sophisticated 
methods of modeling the environment into the 
communication system. Another future direction will be 
to investigate the effects of varying the ratio between 
sensor range and communication range. 
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