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Abstract— This paper provides a detailed analysis of the
motion planning subsystem for the MIT DARPA Urban Chal-
lenge vehicle. The approach is based on the Rapidly-exploring
Random Trees (RRT) algorithm. The purpose of this paper is
to present the numerous extensions made to the standard RRT
algorithm that enable the on-line use of RRT on robotic vehicles
with complex, unstable dynamics and significant drift, while
preserving safety in the face of uncertainty and limited sensing.
The paper includes numerous simulation and race results that
clearly demonstrate the effectiveness of the planning system.

I. INTRODUCTION

The DARPA Urban Challenge (DUC) was the third install-

ment of a series of ground-breaking races for autonomous

ground robots. The major new feature of the DUC compared

to previous races was the introduction of traffic, with up

to 70 robotic and human-driven vehicles on the course,

resulting in hundreds of unscripted robot-on-robot (and robot

on human driven vehicle) interactions. In order to ensure

safe operations, all vehicles were required to abide by the

traffic laws and rules of the road. For example, vehicles were

expected to stay in the correct lane, maintain a safe speed,

yield to other vehicles at intersections, pass other vehicles

when safe to do so, recognize blockages and execute U-turns

when needed, and park in an assigned space.

Developing a robotic vehicle that could complete the

DUC was a major systems engineering effort, requiring the

development and integration of state-of-the-art technologies

in planning, control, and sensing [1], [2]. This paper provides

additional details on the motion planning subsystem of MIT’s

vehicle, called Talos. This subsystem computes a path to

reach a goal point specified by a higher-level subsystem (the

Navigator), while avoiding collisions with other vehicles,

static obstacles, and abiding by the rules of the road. The

output of the motion planning subsystem is in turn fed to

a lower-level system (the Controller), interfacing directly to

the vehicle, and responsible for the execution of the motion

plan.

There are many approaches to the motion planning prob-

lem available in the literature; and we will not discuss

their relative merits but refer the reader to [3]–[7]. The

primary challenges in designing the motion planning sub-

system for DUC resulted from: (i) complex and unstable

vehicle dynamics, with substantial drift, (ii) limited sensing
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capabilities in an uncertain, time-varying environment, (iii)

temporal and logical constraints, arising from the rules of

the road. Our planning system is based on the Rapidly-

exploring Random Trees (RRT) algorithm [8], an incremental

sampling-based method [6, Section 14.4]. The main reasons

for this choice were: (i) Sampling-based algorithms are appli-

cable to very general dynamical models; (ii) The incremental

nature of the algorithms lends itself easily to real-time, on-

line implementation, while retaining certain completeness

guarantees; (iii) Sampling-based methods do not require the

explicit enumeration of constraints, but allow trajectory-wise

checking of possibly very complex constraints.

However, the application of incremental sampling-based

motion planning methods to robotic vehicles with complex

and unstable dynamics, such as the Landrover LR3 used for

the race, is far from straightforward. For example, the unsta-

ble nature of the vehicle dynamics requires the addition of

a path-tracking control loop whose performance is generally

hard to characterize. Moreover, the momentum of the vehicle

at speed must be taken into account, making it impossible to

ensure collision avoidance by point-wise constraint checks.

In fact, to the best of our knowledge, RRTs have never been

used in on-line planning systems for robotic vehicles with

the above characteristics, but have been restricted either to

simulation, or to kinematic, essentially driftless, robots (i.e.,

can stop instantaneously by setting the control input to zero).

The rest of the paper is organized as follows. Following the

overview of the algorithm in Section II, Section III presents

several extensions made to RRT. Section IV discusses the

effectiveness of our motion planning system, based on the

analysis of actual data collected during the DUC race.

II. OVERVIEW OF THE APPROACH

A. Problem Statement

Given a near-term target, and a low-level controller that

can track a path and a speed command, the problem state-

ment for the motion planner is to provide a path and a speed

command to the controller, such that the vehicle avoid obsta-

cles and stay in lane boundaries. In order to account for the

dynamic nature of the urban driving, the planner must be able

to quickly react to the change in the perceived environment.

Furthermore, the perceived information has inherent noise,

and the RRT must be robust to the uncertainties.

B. Rapidly-exploring Random Tree (RRT)

RRT algorithms grow a tree of dynamically feasible tra-

jectories by sampling numerous points randomly. In contrast

to the standard RRT, which samples the input to the vehicle,

our RRT algorithm samples the input to the controller [9].
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Fig. 1. Motion plans are propagated using the vehicle’s dynamical model.
Propagated paths are then evaluated for feasibility.

The dynamically feasible trajectory is obtained by running

forward a simulation of the closed-loop system, consisting

of the vehicle model and the controller. By using a stable

closed-loop system, this approach has the advantage of

enabling the efficient use of RRT algorithms on vehicles

with unstable open-loop dynamics. For example, since the

controller generates high-rate commands that stabilize and

guide the vehicle along a given path, the motion planner

output does not need to be very dense in time. As shown

in Figure 1, the tree consists of the input to the controller

(shown in blue) and the predicted trajectory (shown in green

and red).

Algorithm 1 shows the overall flow. Similar to the stan-

dard RRT, the algorithm performs sampling (line 5), node

selection (6), expansion (7), and constraint check (9), in this

order. The planner provides the command to the controller at

a fixed rate, and the tree expansion continues until this time

limit is reached (23). The best trajectory is selected and then

sent to the controller (28), and the tree expansion is resumed

after updating the vehicle states and the situational awareness

(2). The major extensions to RRT are presented in Section III.

The plan being executed is continuously monitored for

collisions; should it become infeasible, and no other feasible

trajectory is found while the car is moving, the planner

commands an emergency braking maneuver. Such emergency

conditions may arise only as a consequence of mismatches

between the physical world and its representation used in

the previous planning cycles (e.g., sudden appearance of an

undetected obstacle in front of the vehicle).

For the selection of the best node sequence on line 28, each

node stores two estimates of the cost-to-go: a lower bound

and an upper bound. The Euclidean distance between the

the node location and the target location is set as the lower

bound. The upper bound is ∞ when no feasible trajectory

to the target is found. Otherwise, the summation of the edge

costs from the node to the target along the best node sequence

Algorithm 1 RRT-based planning algorithm

1: repeat

2: Receive current vehicle states and environment

3: Propagate states by computation time limit

4: repeat

5: Take a sample for input to controller

6: Select a node in tree using heuristics

7: Propagate from selected node to the sample until

the vehicle stop

8: Add branch nodes on the path

9: if propagated path is feasible with the drivability

map then

10: Add sample and branch nodes to tree

11: else

12: if all the branch nodes are feasible then

13: Add branch nodes to the tree and mark them

as unsafe

14: end if

15: end if

16: for each newly added node v do

17: Propagate to the target

18: if propagated path is feasible with drivability map

then

19: Add path to tree

20: Set cost of propagated path as upper bound of

cost-to-go at v

21: end if

22: end for

23: until the time limit is reached

24: Choose best safe trajectory in tree, and check feasi-

bility with latest drivability map

25: if best trajectory is infeasible then

26: Remove infeasible portion from tree, goto line 24

27: end if

28: Send the best trajectory to controller

29: until Vehicle reaches the target

gives an upper bound. Details on the edge cost are given in

Subsection III-D.

III. RRT EXTENSIONS

In order to efficiently generate the path in a dynamic and

uncertain environment, several extensions have been made to

the existing RRT approach [10]. The following subsections

provide more details on the design choices embedded in the

RRT algorithm. The line number in the subsection heading

corresponds to that of Algorithm 1.

A. Biased sampling: line 5

The first extension to the RRT algorithm in [10] is that it

uses the physical and logical structure of the environment to

bias the sampling [11]. This biasing significantly increases

the probability of generating feasible trajectories, enabling

the online use of RRT. The samples are taken in 2D, and

they are used to form the input to the steering controller.



The sample (xsample,ysample) is taken randomly but has some

parameters to bias its location/shape, i.e.,
[

xsample

ysample

]

=

[

x0

y0

]

+ r

[

cosθ

sinθ

]

with

{

r = σr|nr|+ r0

θ = σθ nθ +θ0

where nr and nθ are random variables that have Gaussian

distributions, σr and σθ give the 1-σ values of the radial

and circumferential direction, r0 and θ0 are the offsets, and

(x0, y0) is the center of the Gaussian cloud.

The uniqueness of this approach is that by varying the

bias values based on the situational information, the planner

can generate various maneuvers including lane following,

passing, U-turn, and parking. Team MIT used a single

planner for the entire race, which shows the flexibility and

the extensibility of this planning algorithm.

B. Tree Expansion Heuristics: line 6

The algorithm has two connection heuristics, as introduced

in [10]. Before a feasible trajectory to the target is found, the

tree is grown mainly according to an exploration heuristic

that attempts to connect the sample to the nearest node in

the tree. The trajectory from the node to the sample tends

to be short, and therefore is likely to be collision free.

Then, most samples are added to the tree, resulting in rapid

exploration of the environment with a smaller number of

collision checks. This heuristic is widely used in the standard

RRT, but when the vehicle has a minimum turn radius ρ , as

in the car, the Euclidean distance between two points can be

a poor estimate of the achievable path length.

A key difference between our approach and the previous

work is the selection criteria of the nearest node, which uses

the Dubins path length from the node to the sample. The node

in the tree has a 2D position and a heading, and without

loss of generality, it is assumed to be at the origin p0 =
(0, 0, 0) ∈ SE(2). The sample is a 2D point represented by

q = (x, y) ∈ R
2. Since for the choice of p0, the Dubins path

lengths from p0 to the points (x, y) and (x, −y) are equal,

it suffices to consider the case q̃ = (x, |y|) ∈ R×R+. The

minimum length Lρ(q) of a Dubins path from p0 to q can

be obtained analytically [12]. Let ρ denote the minimum

turning radius of the vehicle. By defining D+
ρ = {z ∈ R

2 :

‖z− (0, ρ)‖ < ρ}, the minimum length is given by

Lρ(q) = Lρ(q̃) =

{

f (q̃) for q̃ /∈ D+
ρ ;

g(q̃) otherwise,

where

f (q̃) =
√

d2
c (q̃)−ρ2 +ρ

(

θc(q̃)− cos−1 ρ

dc(q̃)

)

g(q̃) = ρ

(

2π −α(q̃)+ sin−1 x

df(q̃)
+ sin−1 ρ sin(α(q̃))

df(q̃)

)

.

Here, dc(q̃) =
√

x2 +(|y|−ρ)2 is the distance of q̃ from

the point (0, ρ), θc(q̃) = atan2(x,ρ − |y|) is the angle of

q̃ from the point (0, ρ), measured counter-clockwise from

the negative y-axis, df(q̃) =
√

x2 +(|y|+ρ)2 is the distance

of q̃ from the point (0, −ρ), and α(q̃) = cos−1
(

5ρ2−df(q̃)2

4ρ2

)

.

Note that the atan2 function is the 4 quadrant inverse tangent

function with atan2(a,b) = tan−1
(

a
b

)

, and its range must be

set to be [0,2π) to give a valid distance. This analytical

calculation allows us to quickly evaluate all the nodes in the

tree for a promising connection point.

Once a feasible trajectory to the target is found, the tree is

grown primarily using an optimization heuristic that attempts

to smooth out the trajectories. The nodes are now sorted by

h(v)+ Lρ(q), where h(v) represents the cost from the root

to the node v. This attempts to minimize the path cost from

the root to the sample, resulting in a tree of trajectories that

are close to optimal.

The implemented algorithm actually used both expansion

modes at the same time but tended to place more emphasis

on one or the other. The reason being that, even before

having a trajectory that reaches the goal, there are benefits in

performing some path optimization to reduce the waviness

in the paths. Similarly, once a feasible trajectory to the

goal has been found, there are still benefits in exploring

the environment in case there is a better route, or another

obstacle appears. In our implementation, the ratio of explo-

ration vs. optimization heuristics was 70% vs. 30% before a

trajectory to the target is found, and 30% vs. 70% once it is

found.

C. Safety as an Invariant Property: line 7

Ensuring the safety of the vehicle is an important feature of

any planning system, especially because the vehicle operates

in a dynamic and uncertain environment. We define a state to

be safe if the vehicle can remain in that state for an indefinite

period of time, without violating the rules of the road and

avoiding collisions with stationary and moving obstacles –

where the latter are assumed to maintain their current driving

path. A complete stop is used as safe states in this paper.

More general notions of safe states are available [10], [13].

The large circles in Figure 1 show the safe stopping nodes

in the tree. Each forward simulation terminates when the

vehicle comes to a stop. By requiring that all leaves in the

tree are safe states, this approach guarantees that there is

always a feasible way to come to a stop while the car is

moving. Unless there is a safe stopping node at the end of

the path, the vehicle does not start executing it.

D. Risk Evaluation: line 9

The evaluation of whether a trajectory collides with ob-

stacles or violates any rule of the road is done through the

drivability map. This map is implemented using a grid-based

lookup table with a resolution of 20 cm. All the perception

data, including static and moving obstacles, lane boundaries,

and road surface hazard, are rendered in the drivability map.

Figure 2 shows a snapshot. The red region represents the

non-drivable region, due to obstacle, lane, curb cuts, etc.

The black/gray/white region represents it is drivable but with

some penalty. The black means no penalty, and the white

means high penalty, and the penalty value is scaled with the

gray-scale color. The blue region is called “restricted”, where

the vehicle can drive through but is not allowed to stop. One

typical use of the restricted region is with the obstacle on



Fig. 2. Drivability map and its annotation.

the road. The vehicle stops with enough standoff distance to

the obstacle, as shown in Figure 2, but once the oncoming

lane becomes free to drive, the vehicle can go through the

restricted area to pass the obstacle in the lane.

The penalty represents the risk in the environment, such

as proximity to obstacles or lane boundaries, and curb cuts

that are too faint to declare non-drivable. When evaluating

the feasibility of the trajectory using the lookup table, the

penalty stored in the drivability map is also obtained. The

cost of the edge is then defined as the sum of travel time and

the path integral of the penalty. Using this combined metric,

the best trajectories tend to stay away from obstacles and

lane boundaries, while allowing the vehicle to come close to

constraints on a narrow road.

E. Unsafe Node: line 13

Another critical difference from the previous work [10]

is the notion of “unsafe” node. In [10], when the propa-

gated trajectory is not collision-free, the entire trajectory is

discarded. In our approach, when only the final portion of

the propagated trajectory is infeasible, the feasible portion

of the trajectory is added to the tree. This avoids wasting

the computational effort to find a good sample, propagate,

and check for collision, while retaining the possibility to

execute the portion that is found to be feasible. Because this

trajectory does not end in a stopped state, the newly added

nodes are marked as “unsafe”. Then, if a safe trajectory,

which ends in a stopped state, is added to the unsafe node,

the node is marked as safe. When selecting the best trajectory

(line 24) to send to the controller, the unsafe nodes are not

considered. This approach uses unsafe nodes as potential

connection points for samples, increasing the density of the

tree, while ensuring the safety of the vehicle.

F. Lazy Check: line 24

In contrast to most motion planning algorithms, our RRT

algorithm keeps growing the tree while the vehicle execute

its portion. When the perceived environment is updated, the

feasibility of each edge in the tree should be checked with

the latest situational awareness. However, in the dynamically

changing environment, a large tree would require constant

feasibility re-checking for its thousands of edges, which

Fig. 3. Planning around obstacles. The vehicle started in the bottom, and
the goal is in the upper left corner.

reduces the time the algorithm can spend on growing the

tree.

The approach taken to overcome this issue was to re-

evaluate the edge feasibility only when the edge is selected

as the best trajectory sequence and is being sent to the con-

troller. When the best trajectory is infeasible, the infeasible

portion of the tree is deleted and the next best sequence

is selected for re-evaluation. This so-called “lazy check”

enables the algorithm to focus mainly on growing the tree,

while ensuring that the executed trajectory is feasible in

the latest drivability map. The difference from the previous

work [14], [15] is that the lazy check in this paper is

about re-checking of the constraints for previously feasible

edges, whereas the previous work is about delaying the first

collision detection in the static environment.

One limitation with the lazy check is that the penalty

stored in the tree could be based on the obsolete situational

awareness. Then, the best selected trajectory could be very

close to the constraints. As long as it is feasible with the latest

map, the planner sends it to the controller. In the constantly-

changing dynamic environment, however, the computational

efficiency obtained by the lazy check typically outweighs the

potential risk to come close to the constraints.

IV. APPLICATION RESULTS

This section presents four examples from simulation and

data logged during the DUC. The planner runs at ∼10 Hz,

and the average number of samples generated was about

700 samples per second on a dual-core 2.33 GHz Intel Xeon

processor. Note that because we sample the controller input,

a single sample could create a trajectory as long as a few

seconds. The tree had about 1200 nodes on average.

Figure 3 shows navigation in the obstacle field. The orange

line segments represents the input to the controller, generated

by the sampling, and the green line shows the corresponding

predicted trajectory. The following colors were used to



Fig. 4. Planning of a parking maneuver. Talos enters the zone from the
left (top figure) aiming for a given parking point. Talos navigates around
the central obstacle and perceives the parked cars around the target, while
continuously planning a feasible path to the parking spot (bottom figure).

indicate different types of trajectories in the tree: purple

(reaching the target), light brown (safe but not reaching

the target), red (unsafe), and cyan (reverse). Several paths

successfully reach the goal, and other paths explore the space

around and between obstacles. For example, the tree contains

paths, that reach the target by going to the right of obstacles;

however, these paths are not selected because they are not of

minimal cost. Note that unlike many implementations of the

RRT, the generated paths are smooth. This behavior results

from the propagation over the closed-loop system, and the

optimization heuristics used when connecting samples to the

tree.

Figure 4 shows the tree during the parking exercise in a

run at the National Qualifying Event (NQE). Talos found a

trajectory to the parking spot immediately after entering the

parking zone, and the top figure demonstrates the exploration

capabilities of the algorithm. In addition to the several paths

that reach the parking spot, some paths reach the parking

spot with different headings, and some others go around the

partially detected large obstacle in the middle. As the vehicle

proceeds, several obstacles were detected around the parking

spot, as shown in the bottom figure. The tree contains various

forward and reverse trajectories to complete the tight parking

maneuver.

The third result is the U-turn, one of the more elaborate

maneuvers required for the DUC, as shown in Figure 5.

Biased sampling consisting of three Gaussian clouds with

different traveling directions efficiently constructed a U-

turn maneuver. The first cloud contains forward samples,

generated to the left-front of the vehicle to initiate the turn.

The second set consists of reverse samples, generated to

the right-forward of the vehicle, which will be used during

the reverse maneuver after executing the first forward leg

of the turn. The third set is forward samples, generated to

the left-rear of the current vehicle location for use when

completing the turn. The parameter values used for each of

the three sets are: σr = 8, σθ = π/10, r0 = 3, θ0 = 4π/9

(first cloud); σr = 10, σθ = π/10, r0 = 5, θ0 =−π/4 (second

cloud); and σr = 12, σθ = π/10, r0 = 7, θ0 = π (third cloud).

The first Gaussian cloud is centered on the location of the

vehicle before initiating the U-turn maneuver, whereas the

other two clouds are centered on the location of the selected

sample from the preceding cloud. Figure 5a is a snapshot

of sample points generated in 0.1 second. A small cloud of

reverse samples is also generated behind the vehicle in case

it stopped very close to the road blockage, requiring a reverse

maneuver to start the U-turn.

The last result in Figure 6 shows lane following along a

curvy section of a road during the Urban Challenge Event

(UCE). Talos is in the left of the figure heading towards the

right. Note that a curb, shown by a red line near the bottom

of the lane, projects into the offline estimate of the lane

boundaries. This narrows the part of road that is passable,

a challenging situation for the motion planner. In normal

driving conditions, the sampling was biased along the lane,

and the RRT successfully finds smooth trajectories along the

narrow curvy lane.

V. CONCLUSION

This paper presented the design and implementation of

an efficient and reliable motion planning system, based on

RRTs, for Team MIT’s entry to the DUC. The standard

RRT is extended in several ways to be used for a large

robotic vehicle driving in the dynamic and uncertain urban

environment. To improve the computational efficiency, the

input to the closed-loop system is sampled, which also

enables RRT to handle complex/unstable dynamics of the

vehicle. The lazy check enables RRT to focus on the tree

expansion even with the constantly changing situational

awareness. The uncertainty in the environment is captured in

the form of a risk penalty in the tree. The sampling using the

environmental structure also significantly reduced the time

to find trajectories for various maneuvers. The safety of the

vehicle is guaranteed by requiring that the trajectory sent

to the controller end in a stopping state. The advantages of

these features are demonstrated through several simulation

and race results.

The algorithm was not tuned to any specific test cases

posed by DARPA during the NQE or UCE. Furthermore,



(a) (b) (c) (d)

Fig. 5. Planning of a U-turn maneuver. Figures 5b, 5c, and 5d show different evolutions of the tree as the vehicle executes a U-turn. Notice in Figure
5d the trace of the path followed by the vehicle (shown in yellow).

Fig. 6. Planning along a lane that becomes increasingly narrow due to
detected curbs (red line emerging into the lane on the bottom). The motion
planner is still able to find feasible trajectories that follow the road curvature.

there were numerous traffic and intersection scenarios that

had never been tested before, and yet the motion planner

demonstrated that it was capable of handling these situations

successfully. The completion of the UCE using a single

planner clearly demonstrated that this is a general-purpose

motion planner capable of handling uncertain and very

dynamic driving scenarios.
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