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This paper describes the motion planning and control subsystems of Team MIT’s entry in the 2007 DARPA

Grand Challenge. The novelty is in the use of closed-loop prediction in the framework of Rapidly-exploring

Random Tree (RRT). Unlike the standard RRT, an input to the controller is sampled, followed by the forward

simulation using the vehicle model and the controller to compute the predicted trajectory. This enables the

planner to generate smooth trajectories much more efficiently, while the randomization allows the planner

to explore cluttered environment. The controller consists of a Proportional-Integral speed controller and a

nonlinear pure-pursuit steering controller, which are used both in execution and in the simulation-based pre-

diction. The main advantages of the forward simulation are that it can easily incorporate any nonlinear control

law and nonlinear vehicle dynamics, and the resulting trajectory is dynamically feasible. By using a stabilizing

controller, it can handle vehicles with unstable dynamics. Several results obtained using MIT’s race vehicle

demonstrate these features of the approach.

I. Introduction

The 2007 DARPA Grand Challenge (DGC) was the third in a series of competitions organized by the Defense

Advanced Research Projects Agency (DARPA) to accelerate research and development of autonomous vehicles for

military applications. The goal was to drive a 60 mile mission in an urban environment within six hours, and Team

MIT is one of the six teams that completed the race. Driving autonomously in an urban environment requires a much

more sophisticated planning system than that for desert driving. For example, the planner must be able to handle

cluttered environments, such as winding roads, partially blocked roads, and parking zones. Traffic vehicles make the

environment change over time in an unpredictable way. Finally, traffic and rules of the road impose constraints on the

vehicle’s trajectories that depend not only on the instantaneous state of the vehicles, but also on their history.

Because the perceived world view changes as the vehicle traverses the environment, the plan must be made on-

line. Although numerous algorithms have been studied in the past for robot motion planning problems,1, 2 real-time

motion planning for vehicles with complex dynamics and constraints has still been a challenge. For example, grid-

based searches such as A∗, D∗, or E∗3, 4 can efficiently search for a global plan, but it is difficult to account for the

nonlinear dynamics of the vehicle or tight maneuvers. Various techniques have been proposed and implemented for

desert driving in DGC 2005, including manipulation of the center line of the corridor,5 randomized approach,6 and

optimization-based planner.7

This paper presents a simulation-based closed-loop approach, in which the planner generates trajectories using a

model of the vehicle and a low-level controller.8 The controller typically runs at a rate that is much higher than that of

the planner, stabilizing the system and dealing with small signals. By planning on this stable closed-loop system con-

sisting of the controller and the vehicle (in contrast to a potentially unstable open-loop system), the planner can focus
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Figure 1. Planning and control system architecture.

on maneuvers of a longer time scale and efficiently generate trajectories, which is critical in real-time motion plan-

ning. In our architecture, the low-level controller follows a simple reference command while stabilizing the vehicle,

and the path planner generates an input to the closed-loop system. By running forward simulation, the output of the

closed-loop system is obtained, which is checked against external constraints such as obstacle avoidance for feasibility.

The main advantage of the forward simulation is that the resulting trajectory is dynamically feasible by construction.

Furthermore, it can easily incorporate nonlinear dynamics, nonlinear controllers, or input saturation. This closed-

loop simulation is embedded in the Rapidly-exploring Random Trees (RRT)9 framework, which can generate smooth

trajectories much more efficiently than the standard RRT.

The paper starts with an overview of the system architecture. Section III describes the structure of the low-level

controller. Section IV presents the planner that performs closed-loop propagation. Finally, Section V shows results of

the planning approach applied to the race vehicle of Team MIT, which competed in DARPA Urban Challenge 2007.

II. Overview of the Approach

A. Problem Statement

The vehicle has nonlinear dynamics ẋ = f(x, u), where x is the states and u is the control inputs of the vehicle.

Several constraints are imposed on the vehicle such as control saturation, actuator lag, and speed bounds. These are

represented by x ∈ X and u ∈ U . A set of environmental constraints on the states, such as staying in lane boundaries

and avoiding obstacles and movers, are represented by x(t) ∈ Xfree(t). This paper considers a motion planning

problem that, given the current states x(t0) ∈ X ∩ Xfree(t0), generates a trajectory x(t), t ∈ [t0, tf ] and associated

control input history u(t), t ∈ [t0, tf ] for a vehicle visiting a target region Xgoal ⊆ X while satisfying constraints

x(t) ∈ X ∩ Xfree(t), u(t) ∈ U for all t ∈ [t0, tf ]. An implicit assumption is that there exists a tf ∈ (t0,∞) such that

Xgoal ⊆ X ∩ Xfree(tf ), and the sets X ∩ Xfree(t) and U are non-empty for t ∈ [t0, tf ].
The operating environment is dynamic and uncertain, so the plan must be generated online. Furthermore, to

quickly react to the sudden change in the situational awareness, the planning interval must be as short as 0.1 second.

This paper used a car as the vehicle, but the approach discussed is easily applied to vehicles with any type of dynamics.

B. Execution Modules

Figure 1 shows the system architecture of the closed-loop planning approach. The planner receives a short-term target

Xgoal from a high-level route planner. The planner runs at 10 Hz, and every 0.1 second, the path and the associated
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Figure 2. Closed-loop prediction. The red arrow shows the input to the controller. The green arrow shows the output of the closed-loop

simulation.

speed command are sent to the controller. The controller computes the command u in terms of gas/brake and steer

to track the planned path, and send them to the vehicle hardware at 25 Hz. The perceived environment is stored in

the form of a drivability map, which the planner uses to evaluate the feasibility of the path. The update rate of the

drivability map is the same as the running rate of the planner. The vehicle states x is coming into the system at around

100 Hz.

C. Closed-loop Prediction

The basic approach is that the planner generates a reference input r to the stable closed-loop system, which consists

of the controller and the vehicle. By running forward simulation using the controller and the vehicle model, the output

x of the closed-loop prediction is obtained, as shown in Figure 2. The feasibility of this output is checked against

environmental constraints such as obstacle avoidance. The planner’s role here is to generate a “large” signal in the

form of the controller’s input, and it is the controller’s task to track the commanded path in a “small” signal sense.

Compared to the standard approach that samples the input u to the vehicle,2, 8 this closed-loop approach has several

advantages. Firstly, by wrapping the vehicle with a stabilizing controller, this approach works with vehicles exhibiting

unstable dynamics such as cars and helicopters. Secondly, the use of a stabilizing controller reduces the prediction

mismatch typically caused by modeling errors of the vehicle. Thirdly, the forward simulation can easily incorporate

nonlinear vehicle models and/or controllers, and the resulting trajectory is dynamically feasible by construction. Fi-

nally, a single input to the closed-loop system can create a long trajectory (on the order of a few seconds) while the

stabilizing controller smoothly changes the input to the vehicle. This significantly improves the efficiency of random-

ized approaches such as RRT, because it is difficult to generate a good sequence of vehicle inputs if the input to the

vehicle is drawn randomly, particularly for open-loop unstable systems.

III. Controller

The controller generates gas/brake and steer commands u that are used to move the vehicle along some desired

trajectorya. It comprises two core modules: the pure-pursuit steer controller and the Proportional-Integral (PI) speed

controller. These two core modules are used for both trajectory prediction in the planner and final execution by the

controller.

For simplicity, a piece-wise linear reference path is used as a controller input r, which is generated by connecting

random samples. Tightly tracking such continuous but non-smooth reference trajectory would require relatively high

bandwidth controllers. However, when viewed at the system level, the closed-loop simulation approach does not have

a strict requirement for good tracking with respect to the reference trajectory. It is more important for the actual

trajectory to match the prediction well. Hence, low bandwidth controllers can be used that may not tightly track

the reference trajectory but are less sensitive to delays, noise, and modeling errors. Note, however, that because the

performance is evaluated based on the resulting trajectory x, if the resultant trajectory x deviates significantly from

the reference trajectory r, it would be difficult to generate a controller input r that achieves good overall objectives.

Thus, there is a trade-off between the ease of controller design/implementation and ease of reference generation.

aThe time independent path will be simply called “path” while the time parameterized path will be called “trajectory”.

3



A. Steering Controller

The steering controller is based on the so-called pure-pursuit controller. Pure-pursuit control has been widely used in

ground robots10 and more recently in unmanned air vehicles11 for path-following. It is adopted due to its simplicity,

as an intuitive control law that has a clear geometric meaning.

For the application of interest, namely the DARPA Urban Challenge, the operating speed is restricted to under

30 mph. By appropriately restricting the class of allowable maneuvers at the system level, the steer control problem

can be treated as purely kinematic. For control design purposes only, dynamic effects such as sideslip are ignored.

Treating the problem as purely kinematic simplifies it significantly and made pure-pursuit directly applicable. Note

that the vehicle model used in the prediction includes sideslip.

1. Control Law

The kinematic bicycle model is described by

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v

L
tan δ

(1)

where, x and y refer to the rear axle position, θ is the vehicle heading with respect to the x-axis (positive counter-

clockwise), v is the forward speed, δ is the steer angle (positive counter-clockwise), and L is the vehicle wheelbase.

This model describes a slip-free nonholonomic vehicle moving in the plane at a speed of v. With the slip-free assump-

tion, Figure 3(a) shows the definition of the variables that define the pure-pursuit control law when driving forwards,

and Figure 3(b) shows the variables when driving in reverse. Here, R is the radius of curvature, and “ref path” is the

(a) Forward Drive (b) Reverse Drive

Figure 3. Definition of pure-pursuit variables. Two shaded rectangles represent the rear tire and the steerable front tire in the bicycle

model. The steering angle in this figure, δ̂, corresponds to negative δ in Eq. (1).

piecewise linear reference path given by the planner. In Figure 3(a), lfw is the distance of the forward anchor point from

the rear axle, Lfw is the forward drive look-ahead distance, and η is the heading of the look-ahead point (constrained to

lie on the reference path) from the forward anchor point with respect to the vehicle heading. Similarly, in Figure 3(b),

lrv is the rearward distance of the reverse anchor point from the rear axle, Lrv is the reverse drive look-ahead distance,

and η̃ is the heading of the look-ahead point from the reverse anchor point with respect to the vehicle heading offset

by π rad. All angles and lengths shown in Figure 3 are positive by definition.
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Figure 4. Straight reference path along x-axis

It can be shown that the instantaneous steer angle required to put the corresponding anchor points on a collision

course with the corresponding look-ahead points are given by

δ = − tan−1

(

L sin η
Lfw
2

+ lfw cos η

)

: forward drive

δ = − tan−1

(

L sin η̃
Lrv
2

+ lrv cos η̃

)

: reverse drive

This is the modified pure-pursuit control law adopted. Note that by setting lfw = 0 and lrv = 0, the anchor points

coincide with the rear axle, recovering the conventional pure-pursuit controller.10 The subsection below shows that

having lfw > 0 and lrv > 0 will offer a larger relative stability compared to having lfw = 0 and lrv = 0.

2. Linear Stability Analysis

The above steer control law did not account for the finite response times of the actuators. It has been previously shown

that finite actuation imposes a stability constraint on the system.12 This subsection uses the Routh-Hurwitz criterion

and generalizes part of the results in Ref. [12] for the modified pure-pursuit control law.

The steering actuator for our system has a constant maximum slew rate, |δ̇| ≤ δ̇max. This constraint can be

approximated by modeling the actuator dynamics as a first order system

δ̇ =
1

τ
(−δ + δc) (2)

where δc is the steer command, and τ is the actuator time constant. τ is chosen so that the steer angle reaches 90% of

the commanded steer in the time that it would have taken to deflect from zero steer to full right/left steer. For forward

drive, the steer control law is then written as

δc = − tan−1

(

L sin η
Lfw
2

+ lfw cos η

)

. (3)

Consider the case where the reference path is a straight line coincident with the x-axis, as shown in Figure 4. From

the geometry, the following relation holds

η = θ + sin−1

(

y + lfw sin θ

Lfw

)

. (4)

For v > 0, the equilibrium of the kinematic model Eq. (1) augmented with the approximate actuator dynamics Eq. (2)

is characterized by ẏ = 0, θ̇ = 0, and δ̇ = 0. From Eqs. (1)–(4), this implies θ = 0, δ = 0, δc = 0, η = 0, and

y = 0 at equilibrium. Define the state z = [y θ δ]
T
. Linearizing the closed-loop system Eqs. (1)–(4) for z about
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this equilibrium, we have the closed-loop linear dynamics as

ż = Az, where A =











0 v 0

0 0 v
L

− L

τLfw

„

Lfw
2

+lfw

« −
L(Lfw+lfw)

τLfw

„

Lfw
2

+lfw

« − 1

τ











. (5)

The characteristic equation of the above matrix, i.e., det (sI − A) = 0, can be written as

s3 +
1

τ
s2 +

v (Lfw + lfw)

τLfw

(

Lfw
2

+ lfw

)s +
v2

τLfw

(

Lfw
2

+ lfw

) = 0.

Applying the Routh-Hurwitz criterion, the system Eq. (5) will be stable if

1

τ
> 0, (6)

v (Lfw + lfw − vτ)

τLfw

(

Lfw
2

+ lfw

) > 0, (7)

v2

τLfw

(

Lfw
2

+ lfw

) > 0. (8)

Eqs. (6) and (8) are automatically satisfied since τ > 0, Lfw > 0, and lfw > 0. Because v > 0 for forward drive,

Eq. (7) gives the following stability criterion

Lfw > vτ − lfw. (9)

This shows that the look-ahead distance Lfw must increase with v to maintain stability. Also, for the same Lfw(v),
having lfw > 0 will generally offer a larger relative stability compared to having lfw = 0 b. The meaning of Eq. (9)

in the small signal case is that the look-ahead point must always lie ahead of the rear axle by a scalar multiple of the

speed. The more sluggish the actuator, the further the look-ahead point must be located. Note that by repeating the

above procedure for reverse drive, an analogous criterion

Lrv > −vτ − lrv

is obtained, where v < 0 for reverse drive.

3. Choice of Look-Ahead Distance

Because of the random and non-smooth nature of the reference paths, the system frequently has to operate in regions

that violate the small signal assumption. Furthermore, for reasons that will be highlighted later, the look-ahead distance

is scheduled with the commanded speed vcmd instead of the vehicle speed. As such, the look-ahead distance profile

has to be chosen with some conservatism compared to Eq. (9). On the other hand, having an unnecessarily large

look-ahead distance will reduce the ability to track the reference path. The rate limit of the vehicle was measured to

be δ̇max = 0.406 rad/s, giving τ = 0.717 sec. Through extensive simulations and field tests, the following numbers

were selected

Lfw(vcmd) = Lrv(vcmd) =















3 if vcmd < 1.34 m/s ,

2.24 vcmd if 1.34 m/s ≤ vcmd < 5.36 m/s,

12 otherwise.

Note that Lfw(vcmd) and Lfw(vcmd) has units in meters. This is depicted in Figure 5 with the linear stability bound

Eq. (9), across the speed range of interest. From here on, both Lfw and Lrv are referred to as L1 in this paper.

bIt can be shown that the maximum relative stability is bounded above by 1

3τ
, independent of lfw and lrv. The relative stability cannot be

improved indefinitely by simply increasing lfw and lrv.
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Figure 5. Look-ahead Distance as a function of the speed command

B. Speed Controller

The objective of having simple controllers led to the consideration of Proportional-Integral-Derivative (PID) type

controllers for speed tracking. However, our assessment is that the PID controller offers no significant advantage over

the PI controller because the vehicle has some inherent speed damping and the acceleration signal required for PID

control is noisy. Hence, the PI controller of the following form is adopted

u = Kp (vcmd − v) + Ki

∫ t

0

(vcmd − v) dτ (10)

where u is the nondimensional speed control signal, Kp and Ki are the proportional and integral gains respectively,

and vcmd is the commanded speed.

1. Vehicle Speed Model

For simplicity, the same controller is used for acceleration (applying gas) and deceleration (applying brake). The

following Linear Parameter Varying speed model is used for control design purposes.

V (s)

U(s)
=

Kn(v)

τvs + 1

Kn(v) = 0.1013v2 + 0.5788v + 49.1208

(11)

where V (s) and U(s) are the Laplace transforms of v(t) and u(t) respectively, τv (= 12 s) is the speed dynamics time

constant, and Kn(v) is the speed dependent gain of the speed dynamics. The coefficients in Eq. (11) were found using

system identification techniques.

2. Parameter Space Approach

For the design of the PI controller, the parameter space approach13 is used. The basic idea is to translate design

specifications into desirable regions in the controller parameter space, which in our case, is the space of the pair

(Kp, Ki). The region in the parameter space that satisfies all design specifications defines a set of controllers achieving

those specifications. Instead of giving exact controller parameters, this method provides a visual understanding of the

effect of parameter changes to a set of criteria. Such methods have been used successfully to design controllers for

road and air vehicles.13 It is then a simple matter to choose one point in that region for implementation.

First, define a D-Stable region that corresponds to desired closed-loop pole locations in the complex plane, as

shown in Figure 6. This D-Stable region is then mapped to the parameter space. Since the D-Stable region lies

completely in the open left half complex plane, the corresponding region in the parameter space defines stabilizing
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Figure 6. D-Stable region in the complex plane

controllers. The boundary ∂1 ensures a minimum relative stability, ∂2 ensures minimum damping, while ∂3 ensures

that the closed-loop bandwidth is not unrealistically large.

To perform this mapping, we note that the characteristic polynomial p(s) of the closed-loop system, defined by

Eq. (11) and the transfer function of Eq. (10), is given by

p(s) = τvs2 + (1 + KnKp) s + KnKi.

By making the substitution s = −σ1 + jω for ∂1, solving for Kp and Ki from p(s) = 0, and sweeping ω over (0,∞),
the complex root boundary is obtained as

∂1c =

{

(Kp, Ki) | Kp =
2σ1τv − 1

Kn

, Ki >
τvσ2

1

Kn

}

.

By making the substitution s = −σ1 for ∂1, the real root boundary is obtained as

∂1r =
{

(Kp, Ki) | KnKi − (1 + KnKp) σ1 + τvσ2
1 = 0

}

.

A simple check will show that the region in the parameter space defined by

Rp (∂1) =

{

(Kp, Ki) | Kp ≥
2σ1τv − 1

Kn

, Ki ≥
(1 + KnKp) σ1 − τvσ2

1

Kn

}

is the desired region whose points correspond to closed-loop system poles lying on the left of ∂1 in the complex plane.

Similarly, with appropriate substitutions, we can map ∂2 and ∂3 into the parameter space to obtain Rp (∂2) and

Rp (∂3) as

Rp (∂2) =

{

(Kp, Ki) | Kp ≥ −
1

Kn

,
(1 + KnKp)

2

4τvKn cos2 θ
≥ Ki ≥ 0

}

Rp (∂3) =

{

(Kp, Ki) | Kp ≤
2σ2τv − 1

Kn

, Ki ≥
(1 + KnKp)σ2 − τvσ2

2

Kn

}

.

The region in the parameter space that maps from the D-Stable region is then given by Rp (∂1) ∩ Rp (∂2) ∩ Rp (∂3).
Next, we consider the system delayed by T seconds

V (s)

U(s)
=

Kn(v)

τvs + 1
e−Ts, (12)

8



and map the constant phase margin boundary for this system to the parameter space. It can be shown14 that for a

desired phase margin of mφ, and given T , the corresponding boundary is

∂mφ,T = {(Kp, Ki) | Kp = f (mφ, T, ω) , Ki = g (mφ, T, ω) , ω ∈ (0,∞)} ,

where

f (mφ, T, ω) =
τvω sin (mφ + Tω) − cos (mφ + Tω)

Kn

g (mφ, T, ω) =
τvω2 cos (mφ + Tω) + ω sin (mφ + Tω)

Kn

.

The parameter space approach does not directly address the system’s disturbance rejection, tracking performance,

or noise attenuation properties. On the other hand, well established H∞ robust control methods handles these directly

by minimizing the weighted sensitivity and complementary sensitivity functions.15 The relation between these two

approaches have been established in the literature,16 allowing ideas in H∞ methods to be applied in the parameter

space setting. The method in Ref. [16] is used to enforce the robust performance constraint. Accordingly, we find the

region in the parameter space satisfying

‖|WSS| + |WT T |‖ < 1. (13)

In Eq. (13), S and T are the sensitivity and complementary sensitivity functions respectively, and WS and WT are

the corresponding frequency dependent weights. The guidelines for choosing WS and WT
16 are: i) good tracking

performance to reference inputs of frequencies up to ωS requires |S(jω)| ≪ 1 for 0 ≤ ω ≤ ωS ; ii) rejection

of sensor noise of frequencies in [ωT ,∞) requires |T (jω)| ≪ 1 for ωT ≤ ω; iii) stability against multiplicative

unstructured uncertainty, modeled by W∆(s)∆(s) with ‖∆(s)‖ ≤ 1, requires ‖W∆(s)T (s)‖ < 1. Note that iii)

is a consequence of the robust stability theorem17 which states that the feedback control system with multiplicative

unstructured uncertainty W∆(s)∆(s) is stable for all ∆ such that ‖∆(s)‖ ≤ 1 if and only if ‖W∆(s)T (s)‖ < 1. Since

S(s)+T (s) = 1, the weights must be chosen such that each function is minimized in the appropriate frequency range

of interest, to achieve a small sensitivity S in the low-frequency regime and small complementary sensitivity T in the

high-frequency regime. The method to find the boundaries in the parameter space satisfying Eq. (13) is detailed in

Ref. [16], and is omitted for brevity.

3. Design Specifications and Feasible Region

From field tests, it was found that the vehicle cannot accelerate more than 3 m/s2. Requiring the acceleration to a

5 mph step command to be at least 0.5 m/s2, and not more than 3 m/s2, produces σ1 = 0.224 and σ2 = 1.34. For a

maximum overshoot of not more than 3%, we have θ = 41.9 deg, as defined in Figure 6. From field tests, the system

exhibits a communications delay of between 10 and 20 ms, reaching up to 150 ms for sporadic short periods of time.

Hence, T in Eq. (12) is set to be 0.15 sec. The minimum desired phase margin is set at mφ = 60 deg. The robust

performance criterion is specified by the weighting functions WS and WT which are chosen to be

WS(s) =
s + hSωS

hSs + hSωSlS

WT (s) =
hT s + hT ωT lT

s + hT ωT

.

With lS = 0.5, hS = 2, ωS = 1, the tracking error is ensured to be less than half the reference for frequencies less

than 1 rad/s, allowing it to be up to twice the reference for higher frequencies. Note that this choice of WS does not

correspond to a high tracking performance specification because our main objective is to have the resultant trajectory

track the prediction well, rather than the reference, as previously discussed. Moreover, the specification of tracking

performance is limited by the constraint to have a non-empty feasible region in the parameter space, dictated in part

by fundamental limitations in engine performance. With lT = 0.1, hT = 2, and ωT = 100, robust stability against
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system gain variations up to 200% in high frequencies, and good sensor noise attenuation above 100 rad/s are ensured.

With these specifications, the feasible region in the parameter space for v = 0, 10, 20, 30 mph is shown in Figure 7,

together with our design choice of Kp = 0.2, Ki = 0.04. The final design point lies within the feasible region near

the real root boundaries of ∂1. Considering all the design specifications, it is clear that our choice is a low bandwidth

controller with good noise attenuation and small steady-state error properties.

IV. Planner

A. RRT Planner

As a planner, the standard RRT is extended to incorporate the closed-loop prediction discussed in Section II-C.

Each node in the closed-loop RRT stores the states of the vehicle x and the corresponding controller input r. The

algorithm flow is shown in Algorithm 1 and is similar to the standard RRT, where randomly generated samples are

added to the tree based on obstacle feasibility. The key difference is that the sample generated on line 5 of Algorithm 1

is an (x, y) point but is not taken in the state space or the configuration space. Instead, it is in the controller input

space.

As discussed in Section III-A, the input to the steering controller is a series of straight lines called a reference path.

The planner generates this reference path by connecting a sample to the controller input at a node in the tree. Figure 8

shows a sample and potential reference paths.

For each sample, a node is selected from the tree using some heuristics on line 6. Then, a straight line from the

controller input of the selected node to the sample is drawn. Using this straight line as an input, the forward state

propagation on line 8 starts from the vehicle states at the selected node. The propagation stops when the controller

finishes executing the input. The propagated trajectory is then checked with obstacle avoidance constraints on line 9,

and if it is feasible, the sample is added to the tree. Otherwise, a different node in the tree is selected, and the process

is repeated. Note that each node in the tree maintains two basic information, one for the input to the controller, and

the other for the predicted trajectory of the vehicle, which is the output of the forward simulation. Figure 8 shows the

tree of controller inputs with orange straight lines, and that of the predicted trajectories with curvy green lines.

Once the sample is either added to the tree or discarded, the next sample is taken, and the process repeats until the

10



Algorithm 1 RRT algorithm

1: repeat

2: Measure the current vehicle states and environment.

3: Propagate the states by the computation time limit.

4: repeat

5: Generate a sample for the input to the controller

6: Sort the nodes in the tree using heuristics

7: for each sorted node do

8: Form the controller input by drawing a line from the node to the sample, then propagate

9: if the propagated portion is collision free then

10: Add the sample to the tree. break

11: end if

12: end for

13: until the time limit is reached

14: Choose the best path and repropagate from the current states

15: if the repropagated trajectory is infeasible then

16: Remove the infeasible portion from the tree and go to line 14

17: end if

18: Send the best path to the controller

19: until the vehicle reaches the target

time limit is reached. At the end of each planning iteration on line 14, the best path is selected, and the corresponding

controller input, which is a sequence of (x, y) points, is sent to the execution controller.

B. Accounting for the Prediction Error

When the controller does not accurately track the reference path due to modeling errors or disturbances, the planner

could change the reference path so that the vehicle achieves the original desired path. However, it introduces an

additional feedback loop, potentially destabilizing the overall system. When both the planner and the controller try to

correct for the same error, they could be overcompensating or negating the effects of the other.

In our approach, the planner generates a “large” signal in the form of the reference path, but it does not do any

adjustment. It is controller’s responsibility to track the path in a “small” signal sense. Thus, the propagation on

line 8 starts from the predicted vehicle states at the node. One challenge here is that the collision is checked with the

predicted trajectory, which can be as long as several seconds. In order to ensure that the actual vehicle is free from

collisions, it is critical to keep the prediction error small. This section presents several techniques to reduce prediction

errors.

1. Use of vcmd for L1 scheduling

Eq. (9) shows that the look-ahead distance L1 has to increase with vehicle speed to maintain stability. However,

scheduling the steering gain L1 based on the speed v means that any prediction error in the speed directly translates

into a discrepancy in the steer command between prediction and execution, introducing a lateral prediction error. This

is problematic because achieving a small speed prediction error is very challenging especially during the transient in

the low-speed regime, where the engine dynamics and gear shifting of the automatic transmission exhibits complicated

nonlinearities. Another disadvantage of scaling L1 using v is that the noise in the speed estimate introduces jitters in

the steering command.

The solution to this problem is to use the speed command vcmd to schedule the L1 distance. The speed command is

designed by the planner during the propagation, as discussed later in Section D, so the planner and the controller have

the same vcmd with no ambiguity. Then, the same L1 steering gain is used in the prediction and the execution, making

the steering prediction decoupled from the speed prediction.
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Figure 8. The extension of RRT, which maintains a pair of trees.

2. Space-dependent speed command

When the speed command is defined as a function of time, the prediction error in the speed could affect the steering

performance, even if the look-ahead distance L1 is scaled based on vcmd. Suppose the vehicle accelerates from rest with

a ramp command. If the actual vehicle accelerates more slowly than predicted, the time-based vcmd would increase

faster than the prediction with respect to the travel distance. This means that L1 increases more in the execution before

the vehicle moves much, and given a vehicle location, the controller places a look-ahead point farther down on the

reference path compared to prediction.

To overcome this issue, the speed command is tied to the position of the vehicle with respect to the predicted path.

Then, the steering command depends only on where the vehicle is, and is insensitive to the prediction error of the

speed.

3. Repropagation

Due to the inherent modeling error or the disturbance, the state prediction always has non-zero errors. One approach

to account for the prediction error is to discard the tree and rebuild it from scratch, because the current vehicle states

are no longer on the predicted path stored in the tree. However, this would frequently discard the tree and is very

inefficient. Because the tree is constructed after a series of computation, such as random samples landing on a good

location, nonlinear state propagation, and feasibility check with the drivability map, the tree should be retained as

much as possible especially in real-time applications.

The proposed approach is to reuse the controller input stored in the tree and repropagate from the latest states, as

shown in Figure 9. The main advantage is that it retains the information stored in the tree no matter how large/small the

prediction error is. Using a stable low-level controller, the difference between the original prediction and repropagation

will converge to zero in the limit.

When applying the repropagation to the RRT framework, one can repropagate over the entire tree from the latest

states. Although keeping the controller input, this approach is essentially discarding all the state trajectories that

are previously computed, and can be computationally expensive. A more efficient approach is to repropagate from

the latest states only along the best sequence of nodes at the end of computation time limit, as shown in line 14 of

Algorithm 1. If the repropagated trajectory is collision free, the corresponding controller input is sent to the controller.

Otherwise, the infeasible part of the tree is deleted from the tree, and the next best path is selected. This approach

12
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Figure 9. Repropagation from the current states.

requires very few re-evaluation while ensuring the feasibility of the plan that is sent to the controller even if the vehicle

is not accurately following the original prediction.

C. Safety

The approach has several safety mechanisms.

1. Stopping Nodes

To ensure that the car can always come to a safe stop, all the leaf nodes have zero speed. This means that when the car

finish executing the plan, it stops in Xfree. To achieve this, the termination criteria for each forward simulation is that

the vehicle comes to a complete stop, i.e.,

v = 0

vcmd ≤ 0.

The design of vcmd is detailed later in Section D.

2. Maximum Lateral Acceleration

During the forward simulation, if the lateral acceleration exceeds a prespecified limit, the propagation is stopped and

returns infeasibility. Then, the same path shape is tried with a lower speed limit, and if the lateral acceleration still

exceeds the limit, the sample is discarded.

There are two thresholds - one used for growing the tree, and the other used during the repropagation. To minimize

the chance of exceeding the limit during the repropagation, a tighter threshold is used for the tree growth compared to

the repropagation.

3. Controller Override

While the planner has safety mechanisms in place, the controller also provide an independent layer of safety checks

and override the motion plan when the safety conditions are triggered. The controller will override the motion plan

when: i) predicted lateral acceleration exceeds rollover safety limit, ii) measured lateral acceleration exceeds rollover

13
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Figure 10. Speed command profile. The red line shows the initial ramp, the green line shows the coasting, and the blue line shows the ramp

down. Note that in order to ensure enough coasting time for a smooth behavior, the speed command does not necessarily reach the speed

limit vmax.

safety limit, iii) state estimate not updated for up to some time limit, iv) measured roll angle exceeds safety limit,

v) measured pitch angle exceeds safety limit, or vi) engine RPM exceeds safety limit. If the state estimate is not

updated, this represents a critical system error and the controller will command maximum brake and center steer. For

all other conditions, the controller will attempt to follow the reference path while applying moderate braking until the

vehicle stops. The reason for moderate braking is so that it doesn’t exacerbate the situation.

4. Emergency Braking

When the environment is dynamic and the constraints change significantly, all the trajectories stored in the tree could

become infeasible. When no feasible trajectory is found while the vehicle is moving, the planner issues an emergency

braking command. One simple approach is to remember the last steering command and slow down the vehicle with

that steering command. However, this could easily drive the vehicle off the road when emergency braking is issued at

the transition between curvy and straight road segments.

In our approach, the emergency plan consists of the last feasible steering profile over the previous plan and the

emergency braking speed profile. To construct this plan, the predicted path is first obtained from the last feasible plan,

which is stored by the planner. This gives the steering profile with respect to the vehicle location, and the emergency

brake profile is then applied. The reference path is calculated by solving for η in Eq. (3), given δcmd, vcmd, and hence

L1(vcmd). This makes the vehicle follow the last feasible path while slowing down at the maximum deceleration.

D. Speed Design

Given a sample and a node to connect the sample to, a reference path is defined. The speed command profile is then

designed so that the car comes to a stop at the end, ensuring the safety of the car. This “end” is defined as the location

where the anchor point is minimum L1 away from the end of the reference path.

To simplify the speed design, the speed command in every propagation has three segments: initial ramp up/down,

coasting, and ramp down, as shown in Figure 10. A constant acceleration aaccel is used for the ramp up, and a constant

deceleration adecel is used for the ramp down.

The first step is to compute an estimate of the travel distance D. When the reference path is defined by an ordered

list of 2D points, represented by prefi ∈ R
2, i = 0, . . . , n, and the look-ahead point pL1

∈ R
2 is on the ith segment,

this estimate D is given by

D = L1 + ‖pL1
− prefi‖ +

n−1
∑

j=i

‖prefj − prefj+1
‖ − L1min
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Figure 11. Overshooting distance as a function of speed.

where the first term is the distance from the anchor point to the look-ahead point on the reference path, the second and

the third terms combined represent the distance from the look-ahead point to the end of the reference path, and the last

term is the distance from the anchor point to the end of the reference path when the car stops exactly with L1 point at

the end of the reference path.

The second step is to compute the coasting speed vcoast. The coasting speed is a function of the initial speed v0, the

speed limit vmax, distance to go D, and the ramp acceleration aaccel, adecel. To achieve a smooth behavior, the coasting

time has a minimum duration tmin. If coasting at the maximum speed vmax ensures enough coasting time, i.e.,

vmax
2 − v0

2

2a0

+ vmaxtmin + f(vmax) < D

where the function f(v) gives a braking distance from a speed v, and a0 is the initial ramp acceleration or deceleration,

then, vmax is used as the coasting speed. Otherwise, the coasting speed is set such that there is tmin second of coasting,

i.e.,

vcoast
2 − v0

2

2aaccel

+ vcoasttmin + f(vcoast) = D.

The low-bandwidth speed controller does not precisely follow the ramp command. The tracking error during the

ramp down leads to an overshoot in the stopping location. In order to account for this tracking error, the speed designer

computes offline the overshooting distance as a function of the coasting speed. Figure 11 shows the overshooting

distance as a function of the coasting speed. The plot is obtained by running three simulations for each speed with

different coasting lengths. The variance comes from the quantization error with the discrete time simulation that runs

at 25 Hz. Because it fits with a quadratic curve, the function f(v) has three parameters that characterize the quadratic

curve.

f(v) =
v2

2adecel

+ α2v
2 + α1v + α0
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V. Results

A. Vehicle Model

The following nonlinear bicycle model is used in the prediction.

ẋ = v cos θ (14a)

ẏ = v sin θ (14b)

θ̇ =
v

L
tan δ · Gss (14c)

δ̇ =
1

Td

(δc − δ) (14d)

v̇ = a (14e)

ȧ =
1

Ta

(ac − a) (14f)

amin ≤ a ≤ amax (14g)

‖δ‖ ≤ δmax (14h)

‖δ̇‖ ≤ δ̇max (14i)

The position x and y are defined at the center of the rear axle, v and a represents the speed and acceleration also at the

rear axle, θ is the car heading, δ is the steering angle, and L is the wheelbase. The inputs to this system are the steering

angle command δc and the longitudinal acceleration command ac. These inputs go through a first-order lag with time

constants Td and Ta for the steering and the acceleration respectively. The maximum steering angle is given by δmax.

Because of the actuator, the steering rate is also limited, and the maximum slew rate is given by δ̇max. The vehicle has

a maximum deceleration amin and maximum acceleration amax.

The term Gss captures the effect of the side slip

Gss =
1

1 + (v/vCH)2

and is a static gain of the yaw rate θ̇, i.e. the resulting yaw rate when the derivative of the side-slip angle and the

derivative of yaw rate are both zero.13 The parameter vCH is called characteristic velocity13, 18 and can be determined

experimentally. This side slip model has several advantages: it does not increase the model order, so it does not slow

down the propagation: the model behaves the same as the kinematic model in the low speeds; and it requires only one

tunable parameter. Moreover, this model does not differ much from the nonlinear single track model13 for the urban

driving conditions where extreme maneuvers are avoided and up to 35 mph speeds are considered.

B. Vehicle Hardware

Figure 12 shows the race vehicle developed by Team MIT for DARPA Urban Challenge. This robotic car is named

Talos and all the results shown in this paper are obtained by running Talos. Although Talos has a blade cluster

consisting of 40 cores (2.33 GHz Intel Xenon processor), the planner uses two cores and the controller uses one core.

From the initial testing, the following values for the vehicle parameters were obtained.

L = 2.885 [m]

δmax = 0.5435 [rad]

δ̇max = 0.3294 [rad/s]

Td = 0.05 [sec]

vCH = 20.0 [m/s]

Ta = 0.3 [sec]

amin = −6.0 [m/s2]

amax = 1.8 [m/s2]
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Figure 12. Talos: Team MIT’s race vehicle at the DARPA Urban Challenge

The parameters used to design the speed command are

aaccel = 1.0 [m/s2]

adecel = 2.5 [m/s2].

With the nominal deceleration of 2.5 m/s2, the overshooting coefficients obtained from these parameters are as follow.

α0 = −0.5347, α1 = 1.2344, α2 = −0.0252

C. Prediction Results

Figure 13 shows the comparison of two trajectories, one obtained by the prediction and the other obtained by running

Talos. The orange line shows the input to the controller, the green line shows the predicted path, and the yellow line

shows the actual path that Talos took. The maximum error was e10 = 0.114 m for the 10 mph run, and e15 = 0.240 m

for the 15 mph run. Note that the input to the vehicle changes at 25 Hz, but the input to the closed-loop system has

only a few straight line segments. This demonstrates the efficiency of the RRT with closed-loop prediction.

Figure 14 shows the effect of the side slip. In this experiment, the speed was set to 30 mph. The left figure is

without accounting for the side slip (i.e., Gss = 1), and the right figure is with the side slip model. Even though the

tuned set of parameters gives good prediction results in the low speed, without accounting for the side slip, the lateral

prediction error can be as large as 1 m. Our simple side slip model decreased the lateral error by more than half, as

seen with the white arrow in Figure 14.

D. DARPA Urban Challenge Race

This section shows several results obtained during the semi-final event that took place from October 26th to 31st and

the final event that took place on November 3rd. The total traveling distance during the final race was 57.58 miles,

and Talos completed all missions in 5 hours 35 minutes, which was under the 6 hour time limit. This section shows

the algorithmic features demonstrated during the race.
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(a) Right turn at 10 mph (b) Right turn at 15 mph

Figure 13. Comparison of the predicted and the actual path at 10 and 15 mph

10m

Input to controller

Predicted path

Actual path

Figure 14. Comparison of the predicted and the actual path at 30 mph. Left: prediction without a side slip model. Right: prediction with

the side slip model..
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Figure 15. High speed curvy section
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Figure 16. Prediction error during this segment
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Figure 17. Repropagation after the evasive maneuver. The pink line with the white arrow shows the trajectory repropagated from the

latest states using the controller input stored in the tree.

1. High speed behavior on a curvy road

Figure 15 shows a snapshot of the environment and the plan during the race. The red region represents the non-drivable

part of the road, the green lines on the right side of the vehicle show the detected curb cuts, the green circles are the

GPS points given by DARPA, and the purple lines represent the propagated trajectories in the tree. Note that even

though the controller inputs are randomly generated to build the tree, the resulting trajectories naturally follow the

curvy road. This section is about 0.5 mile long, and the speed limit specified by DARPA was 25 mph. Talos reached

the maximum speed 25 mph on the straight segment of this road.

Figure 16 shows the speed profile and the lateral prediction error for this segment. The prediction versus execution

error has the mean, maximum, and standard deviation of 0.11 m, 0.42 m, and 0.093 m respectively. Note from the

plot that the prediction error has a constant offset of about 11 cm, making the maximum error much larger than the

standard deviation. This is due to the fact that a) the steering wheel was not perfectly centered; and b) the pure-pursuit

algorithm does not have any integral action to remove the steady state error.

Note that when the prediction error happens to become large, the planner/controller does not explicitly minimize

it. This is because the vehicle keeps executing the same plan as long as the repropagated trajectory is feasible. In such

a case, the prediction error could grow momentarily. For example, during a turn with a maximum steering angle, a

small difference between the predicted initial heading and the actual heading can lead to a relatively large error as the

vehicle turns. Even with a large mismatch, however, the repropagation always ensures the safety of the future path

from vehicle’s actual states.

2. Repropagation

Most of the time during the race, the trajectory repropagated from the latest states and the trajectory stored in the

tree are close. However, there are some instances when the repropagation resulted in a different trajectory. Figure 17

shows the snapshot right after Talos took an evasive maneuver to avoid a moving car by steering left and applying

strong brake. Talos slowed down more than the prediction, so the trajectory repropagated from the latest states (shown

with an arrow in the figure) is a little off from the trajectory stored in the tree. However, as long as the repropagation
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if feasible, Talos keeps executing the same controller input. This approach is much more efficient than discarding the

tree when the prediction error exceeds an artificial limit and rebuilding the tree from scratch.

3. Hard brake with the gate

Figure 18 shows an emergency braking behavior seen during the race. The wind unexpectedly closed the gate near

the stop line. This gate is made of relatively thin metal pipes and was detected by the perception system after the car

started decelerating to stop at a stop line. When obstacles or vehicles block the road, Talos is designed to stop 10 m

behind them to allow for some room for passing them later. The newly detected gate required Talos to stop about 10 m

short of the stop line, requiring much stronger deceleration. The planner started commanding an emergency braking,

which was 4.0 m/s2 deceleration. The green line in the upper left shows the speed command, and the purple line above

the green line shows the speed profile. The low-bandwidth controller has some tracking error, as expected, but the car

stopped safely with enough clearance to the gate.

VI. Conclusion

This paper presented a motion planning algorithm that plans over the closed-loop dynamics. The approach is an

extension of RRT that randomly generates an input to the controller rather than to the vehicle. By running forward

simulation, dynamically feasible paths are generated, to be checked with environmental constraints such as obstacle

avoidance. The paper also gave detailed description of the planner-controller interface and techniques to reduce

prediction errors. Several results on the race vehicle of the DARPA Urban Challenge 2007 show various safe behaviors

that are generated online.
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