
Discrete Comput Geom 20:561–587 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

Motion Planning in Environments with Low Obstacle Density∗

A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{frankst, markov, markdb, jules}@cs.uu.nl

Abstract. We present a simple and efficient paradigm for computing the exact solution
of the motion planning problem in environments with a low obstacle density. Such en-
vironments frequently occur in practical instances of the motion planning problem. The
complexity of the free space for such environments is known to be linear in the number of
obstacles. Our paradigm is a new cell decomposition approach to motion planning and ex-
ploits properties that follow from the low density of the obstacles in the robot’s workspace.
These properties allow us to decompose the workspace, subject to some constraints, rather
than to decompose the higher-dimensional free configuration space directly. A sequence
of uniform steps transforms the workspace decomposition into a free space decomposition
of asymptotically the same size. The approach leads to nearly optimalO(n logn) motion
planning algorithms for free-flying robots with any fixed number of degrees of freedom in
workspaces with low obstacle density.

1. Introduction

An ultimate goal in the field of robotics is the development of robots that accept high-level
descriptions of tasks and execute these tasks without intervention from their environment.
A fundamental task for such an autonomous robot would be to move from its current
free placement to some other specified free placement while avoiding collision with the
obstacles on its way. The problem of finding such a collision-free path is referred to as the
motion planning problem. Even though most of today’s operational robots are not fully
autonomous, most of them have to deal with certain instances of the motion planning
problem during their operation. The methods that are used in practice to tackle these
instances have the notable drawback that they may fail to find an existing path (or spend

∗ This research was supported by the Dutch Organization for Scientific Research (N.W.O.) and by the
ESPRIT III BRA Project 6546 (PROMotion).

562 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

a lot of time and storage to find one). A direction of research in computational geometry,
initiated by a series of papers—known as the piano movers’ series [22]–[25], [28]—by
Schwartz and Sharir in the early ’80s, studies the exact solution of the motion planning
problem. Exact methods for solving the motion planning problem are guaranteed to find
a path if one exists, and report failure if no path exists. The disadvantage of exact methods
is their high worst-case running time. The high worst-case time bounds prevent exact
methods from becoming popular alternatives for the solution of practical instances of the
motion planning problem. We show, however, that certain realistic assumptions on the
robot and its environment allow for a simple general approach to the solution of exact
motion planning problems. The approach leads to several very efficient motion planning
algorithms for such instances.

We focus on the following general version of the basic motion planning problem.

Given a robotB in a workspace W with a collectionE of closed connected stationary
obstacles, and two free placementsZ0 and Z1, find a motion for the robot from
Z0 to Z1 during which it avoids collision with the obstacles, or report that no such
motion exists.

TherobotB is assumed to be a collection of closed rigid bodies of total constant complex-
ity and to haveq degrees of freedom (DOF). The robot moves in aworkspaceW, which
usually equals the Euclidean space of dimension two (R2) or three (R3). The motion of
the robot is constrained by a setE of n pairwise disjoint obstacles. Eachobstacle E∈ E
is a closed connected constant-complexity subset of the workspace W. The obstacles do
not change place or shape.

The motion planning problem is commonly modeled and solved in theconfiguration
space C, which is the space of parametric representations of robot placements. The
dimension ofC equals the number of degrees of freedomq of the robotB. A point
Z ∈ C (representing a robot placement) is referred to as a configuration. Although
there is a subtle difference between a placement and a configuration, we use both terms
interchangeably. Thefree spaceFP is the subspace ofC consisting of points that represent
placements of the robot in which it does not intersect any obstacle inE :

FP=
{

Z ∈ C|B[Z] ∩
(⋃

E∈E
E

)
= ∅

}
,

whereB[Z] stands for the set of workspace points covered byB in configurationZ.
The free space can be regarded as the union of certain cells—the free cells—in the
arrangement1 of constraint hypersurfaces. A constraint hypersurface is the set of place-
ments in which a robot feature, i.e., a basic part of the boundary like a vertex, edge, or
face, touches an obstacle feature of appropriate dimension. The constraint hypersurfaces
are assumed to be algebraic and to have bounded degree. A collision-freepathor motion
for a robotB from an initial placementZ0 to a final placementZ1 is a continuous map:
τ : [0,1] → FP, withτ(0) = Z0 andτ(1) = Z1. Hence, solving the motion planning

1 The arrangement of a set is the subdivision of space into connected pieces of any dimension induced by
that set.

Motion Planning in Environments with Low Obstacle Density 563

problem boils down to finding a continuous curve in FP connectingZ0 andZ1. The effort
that is required to find such a curve clearly depends on the complexity of the free space.

Exact motion planning algorithms process the free space into a query structure that
allows for the efficient solution of one or more path-finding queries. Although there
essentially exist two different approaches to exact motion planning (cell decomposition
and retraction), the time spent in processing the free space and the size of the resulting
query structure clearly depend on the complexity of the free space.Cell decomposition
algorithms (see, e.g., [11], [15], [22]–[25], and [28]) partition the free space into a finite
number of simple connected subcells, such that planning a motion between two place-
ments in a single subcell is straightforward and such that uniform crossing rules can be
defined forB crossing from one cell into another. Each cell defines a vertex in thecon-
nectivity graphCG. Two vertices in CG are connected by an edge if their corresponding
subcells share a common boundary allowing direct crossing of the robot. Given the graph
CG, the motion planning problem is reduced to a graph problem: determine a sequence of
pairwise connected nodes connecting the nodes corresponding to the subcells containing
the initial and final placements ofB. The imposed simplicity of the subcells facilitates
the transformation of the sequence of subcells into an actual collision-free motion for
the robot. The desired simplicity of the subcells in the cell decomposition, however,
also causes the number of subcells to depend on the complexity of the free space. As
a result, the size of the query structure—the connectivity graph CG—and the time to
compute it depend on the complexity of FP.Retraction methods(see, e.g., [7], [13],
[17], [18], and [29]) aim at capturing the structure and connectivity of the free space in
some one-dimensional network of curves in the free space, theroadmap. The curves are
chosen in such a way that a simple collision-free motion connects every pointZ ∈ FP
to some point Im(Z) on the roadmap, and such that all curves in a single connected
component of the free space are connected. Given a roadmap with these properties, the
problem of finding a motion between two free placementsZ0 andZ1 is reduced to the
problem of finding a sequence of roadmap curves connecting the roadmap points Im(Z0)

and Im(Z1). The desired properties of the roadmap, however, also cause the number of
curves to depend on the complexity of the free space. As a result, the size of the query
structure—the roadmap—and the time to compute it depend on the complexity of FP.

The complexity of the free space is determined by the number of multiple contacts of
the robotB. A multiple contact of the robotB is a placement in which it touches more
than one obstacle feature. Besides the collisions of the robot with the obstacles, parts of
the robot can also collide with other robot parts. Although these so-calledself-collisions
are often ignored in our considerations, we return to them later to demonstrate the validity
of the results when self-collisionsare taken into account. Unfortunately, the number of
multiple contacts, and, hence, the complexity of the free space, can be very high. Under
our circumstances where the total number of obstacle features is2(n) and the number of
features of theq-DOF robot is bounded by a constant, the free space complexity can be
Ä(nq). As a generic example, consider the robot arm in Fig. 1. If the square obstacles are
sufficiently small and, within each column, sufficiently close together, then the number
of q-fold contacts is easily seen to beÄ(nq). As a consequence, the complexity of the
free space for the robot arm isÄ(nq). Slightly lower worst-case free space complexities
have been obtained for specific free-flying rigid robots (like convex polyhedra) among
certain classes of obstacles (like polyhedra). These bounds generally remain close to

564 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Fig. 1. A (q-DOF) robot arm consisting ofq links withÄ(nq) q-fold contacts, and, hence, with free space
complexityÄ(nq).

one order of magnitude, i.e., a factorn, below theÄ(nq) bound (see, e.g., [14] and
[27]). Hence, even in such more specific cases, the theoretical worst-case bounds are
high. Fortunately, in many practical situations the complexity of the free space is much
smaller, as artificially constructed workspaces with, e.g., a very large robot and many
small obstacles, are not encountered very often in real life. When extreme shapes and
sizes of the robot and the obstacles do not occur, high free space complexities tend to be
harder to obtain. Consider for example the motion planning environment of Fig. 2 where
the 6-DOF “spider” robot and the obstacles have roughly the same sizes. While being in
contact with a certain obstacle, the robot is unable to touch more than a constant number
of other obstacles. Then the number of multiple contacts cannot exceedO(n). Hence,
the free space for this robot has complexityO(n) and thus remains far below the free
space complexity obtained with the construction of Fig. 1. The impressive gap between
theÄ(nq) construction and theO(n) example immediately raises the question what
specific properties of the robot and the obstacles lead to low free space complexities.
What natural mild assumptions would, for example, lead to the relative low obstacle
density of the above example, in which the robot is unable to touch more than a constant
number of obstacles simultaneously?

Van der Stappen et al. [32] show that the combinatorial complexity of the free space is
linear in the number of obstacles if the robot is not too large compared with the obstacles
and if any workspace region intersects no more than a constant number of obstacles that
are at least as large as the region. We refer to the latter property as thelow obstacle
densityproperty of the workspace. (Actually, in [32] the linear bound is only proven for

Fig. 2. A 6-DOF robot with few multiple contacts, and, hence, with low free space complexity.

Motion Planning in Environments with Low Obstacle Density 565

the more restricted assumption of fatness of the obstacles. It is though trivial to extend
it to sets that satisfy the low obstacle density property.) Circumstances that resemble the
low obstacle density have also been studied by Schwartz and Sharir [26] who refer to it
asbounded local complexityand by Pignon [21] who calls itsparsity.

A question that immediately comes to mind when considering the combinatorial result
of [32] is whether this reduced complexity opens the way to efficient motion planning
algorithms for such realistic environments. The vast majority of motion planning algo-
rithms have no reported sensitivity to the complexity of the free space. A clear exception
is the boundary-vertices retraction algorithm by Sifrony and Sharir [29] for a ladder
moving in a planar workspace with polygonal obstacles. The algorithm runs in time
O(K logn), whereK is the number of pairs of obstacle corners that lie less than the
length of the ladder apart. The low obstacle density causesK to be onlyO(n), whereas
it could be2(n2) in the worst case for arbitrary workspaces with obstacles. Some algo-
rithms have a hidden sensitivity to the complexity of the free space [31]. For example, the
boundary cell decomposition algorithm by Avnaim et al. [3], running in timeO(n3 logn)
for a constant complexity polygonal robot amidst arbitrary polygonal obstacles, can be
shown to run inO(n logn) time in the low obstacle density setting. TheO(n5) algorithm
by Schwartz and Sharir [22] for planning the motion of a ladder or a polygonal robot
amidst polygonal obstacles can be shown to run, unmodified, in timeO(n2) if the obstacle
density is low, whereas a minor modification improves the efficiency to a running time
of O(n logn) (see also [30]). Hence, there exist (planar) motion planning algorithms
that do benefit from low free space complexities, even though several other algorithms
do not. Algorithms for efficient motion planning in three-dimensional workspaces are
scarce: approaches in contact space, like the algorithms mentioned above by Sifrony and
Sharir, and by Avnaim et al., were never shown to generalize to higher dimensions. Gen-
eral approaches to motion planning (e.g., by Schwartz and Sharir [23] with running time
O(n2q+6

) and Canny [7] with running timeO(nq logn)) are computationally expensive,
even under our beneficial circumstances. These rigorous methods do not take advantage
of the structure that is present in the free space in our case.

In this paper we present a new paradigm for motion planning in environments with
low obstacle density. The idea is that we do not compute a decomposition of the free
configuration space but of the workspace. Next, we “lift” this workspace decomposition
into the configuration space. We show that the low obstacle density guarantees that this
lifting can be done without increasing the asymptotic complexity of the decomposition.
The realistic low obstacle density and bounded robot size assumptions also guarantee
the existence of a workspace partition of (optimal)O(n) size, based on the binary space
partition by de Berg [4]. The computation of the partition takesO(n logn) time. As a
result, motion planning problems in low obstacle density environments can be solved in
O(n logn) time. The dependence on the numberq of degrees of freedom of the robot is
restricted to the hidden constants.

We are aware of only few (related) results on exact motion planning methods with
provable efficiency or free space complexity-sensitive behavior for realistic motion plan-
ning problems (with low complexity workspaces or free spaces). The running time of
Sifrony and Sharir’s algorithm [29] depends on the number of pairs of obstacle corners
that lie less than the length of the ladder apart. This number gives some idea of how
cluttered the obstacles in the workspace are and is closely related to the complexity of

566 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

the free space. Schwartz and Sharir [26] consider workspaces with obstacles of so-called
bounded local complexity. A set of obstacles has bounded local complexity if the number
of obstacles intersecting any ball is bounded by some constant depending on the radius
of the ball. Our notion of low obstacle density differs from bounded local complexity
in that it only imposes a constant bound on the number oflarger obstacles intersecting
any region. The authors give directions on how to solve the motion planning problem
among obstacles with bounded local complexity. Pignon [21] processes two-dimensional
workspaces with polygonal obstacles and a polygonal robot (using Minkowski differ-
ences) to detect and solve simple path-finding queries efficiently. Simple queries are
queries that are either easily seen to yield no solution—because there exists no path for
a simple inscribed shape of the robot—or are easily solvable—because there exists a
path for an outer approximation of the robot with fewer degrees of freedom. Alt et al. [2]
introduce the tightness of a motion planning problem for a rectangle among polygonal
obstacles as a measure for its complexity. The tightness of a problem is closely related
to the scaling factor for the rectangular robot to make a solvable problem unsolvable, or
an unsolvable problem solvable. The authors present anapproximatemotion planning
algorithm for the rectangular robot with a tightness-dependent running time.

This paper is organized as follows. Section 2 formalizes the notion of a low object
density space and shows its relation to fatness. It reports some properties of low object
density spaces that, though interesting in their own right, mainly serve as a tool in the
subsequent sections. In Section 3 we exploit the low obstacle density property of the
workspace to obtain a paradigm for planning the motion of a robot that is not too large
compared with the obstacles. The running time of an algorithm based on the paradigm
depends on the time to compute some constrained partition of the workspace. Section 4
tackles the problem of finding a small and efficiently computable partition. Section 5
concludes the paper.

2. Low Obstacle Density and Its Relation to Fatness

In many practical situations, the complexity of the free space tends to remain far below
the theoretical worst-case complexity bounds. Lower complexities particularly occur
when the obstacles in the workspace are not cluttered too much and the robot is not
too large compared with the obstacles. A clear but very restrictive example of such an
environment is a workspace in which the robot can never touch more than one obstacle
at a time. Our aim is to find a weaker and more realistic assumption that still leads to a
low free space complexity and efficient motion planning algorithms.

2.1. Low Obstacle Density

This subsection is devoted to identifying a weak assumption on the workspace and
the obstacles so that efficient motion planning is possible. The results are basically
reformulations of results previously reported in [32], but we repeat them because they
are fundamental to this paper.

As the relative sizes of the robot and the obstacles play a crucial role throughout

Motion Planning in Environments with Low Obstacle Density 567

the paper, we first give convenient measures for the size of an obstacle and a robot.
We find the radius of the minimal enclosing hypersphere of an obstacle or region the
most convenient among the many ways to express the obstacle or region size. For the
sake of brevity, we simply refer to the radius of the minimal enclosing hypersphere of
an obstacle or region as thesizeof that obstacle or region. The radius of the minimal
enclosing hypersphere of the robot, however, may vary due to the possibility that the
robot may consist of several links. We introduce the reachρB of a robotB as a means of
expressing the size ofB. Let O ∈ B be a reference point on the robot, and assume that
the configuration spaceC = W× D, where W is thed-dimensional workspace (where
a pointp ∈W represents a placement ofO) andD is the(q− d)-dimensional space of
the remaining degrees of freedom.

Definition 2.1 (ReachρB of a RobotB). Let ZW be some arbitrary position of the ref-
erence pointO of the robotB. Then the reachρB of the robotB is defined as

ρB = sup
ZD∈D

max
p∈B[(ZW,ZD)]

d(p, ZW),

whered(p, ZW) denotes the Euclidean distance between the pointsp andZW.

In words, the reachρB of a robotB is the maximum distance in the workspace that any
point in the robotB can ever have to the reference point. Notice the natural similarity of
the measures of sizes of the robot and the obstacles: the reach of the robot is its maximum
size, taken over all its possible placements.

The definition in the previous paragraph allows us to impose an explicit bound on the
ratio of the sizes of the robot and the obstacles. This bound is one of the two keys to a
low free space complexity and to efficient motion planning algorithms. Assuming that
the size of each obstacle in the workspace is at leastρ, the restriction we impose is that
the reachρB of the robotB is bounded byb · ρ, for some constantb ≥ 0. Definition 2.2
(see also [34]) defines a class of (work)spaces that, in combination with the bound on
the relative size of the robot and the obstacles, give rise to a linear complexity free space
and allow for efficient motion planning.

Definition 2.2 (Low (Object/Obstacle) Density). LetE be a set of objects inRd. We
say thatRd with E haslow (object) densityif any region of sizeσ intersects at most a
constant number of objects inE of size at leastσ .

In the specific case thatRd is the workspace W of a robot, andE is the set of obstacles
in W, we refer to W as a low obstacle density workspace.

Lemma 2.3 follows easily if we realize that we can cover a region of sizec · σ by
(b2cc + 1)d hyperspheres of radiusσ , each of which intersects no more than a constant
number of objects.

Lemma 2.3. LetRd with a setE of objects satisfy the low object density property. Then
any region of size c· σ , for some constant c≥ 0, intersects at most a constant number
of objects E∈ E of size at leastσ .

568 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Another immediate consequence of the low object density property is that every point
p ∈ Rd lies in at most a constant number of objectsE ∈ E . This fact, in conjunction with
Theorem 2.4and the invariance of the low density property under moderate inflation of
the objects (expressed by Theorem 2.9), is crucial in the considerations of Section 3.

Theorem 2.4. Let Rd with a setE of n constant-complexity objects satisfy the low
object density property. Then the complexity of the arrangementA(∂E) of all object
boundaries∂E is O(n).

Proof. We assume that the objects inE are ordered by increasing size:E1, . . . , En and
ρ1 ≤ · · · ≤ ρn, whereρi is the size ofEi . We count for each object boundary∂Ei the
subspaces of dimensions 0 throughd− 1 that are defined by its intersection with object
boundaries∂Ej with j > i . A boundary∂Ei can only be intersected by a boundary∂Ej

(j > i) if the minimal enclosing hypersphereSi (with radiusρi) of Ei is intersected
by Ej . Definition 2.2 yields that there can only be a constant number of suchEj ’s, so
there is at most a constant number of boundaries∂Ej (j > i) that intersect∂Ei . By the
additional assumption that all objects and thus their boundaries have constant complexity,
there is only a constant number of constant-complexity subspaces of dimension between
0 andd − 1 defined by the intersection of∂Ei and boundaries∂Ej (j > i). Adding the
contributions of alln boundaries amounts to a total ofO(n) subspaces of dimensions 0
to d−1 in the arrangementA(∂E). The linear bounds on the number of these subspaces
imply the same bound ofO(n) on the number ofd-faces inA(∂E), making the total
combinatorial complexity of the arrangementO(n).

Theorem 2.5 states the linear complexity result for the free space for motion planning
problems in low density environments. The reader is referred to [32] for a proof.

Theorem 2.5. LetW with a setE of n constant-complexity obstacles of size at leastρ

be a low obstacle density workspace. The free space for a constant-complexity robotB
with reachρB ≤ b · ρ, for some constant b≥ 0, moving inW has complexity O(n).

In the next subsection we consider an interesting class of motion planning environ-
ments that satisfy the low obstacle density property. An immediate consequence of the
preceding results will be that complexity of the free space is linear in the number of
obstacles.

2.2. Fatness

Fatness has turned out to be an interesting phenomenon in computational geometry.
Several papers present surprising improvements in combinatorial complexity bounds
[2], [8], [12], [16], [32] and efficiency gains for algorithms [1], [4], [10], [19], [20] if
the objects under consideration are fat. Fat objects are “compact” to some extent, rather
than long and thin. Fatness is a realistic assumption, since in many practical instances
of geometric problems the considered objects are fat. The aim of studying fatness is to

Motion Planning in Environments with Low Obstacle Density 569

find new fast and simple algorithms or to demonstrate improved efficiency of existing
algorithms for such practical instances. The achievements of the study of fatness so far
include near-linear bounds on the complexity of the union of certain fat figures (e.g.,
triangles, wedges) in the plane [2], [8], [12], [16], a linear bound on the complexity of
the free space for motion planning amidst fat obstacles [32], and efficient algorithms for
computing depth orders on certain fat objects [1], binary space partitions for sets of fat
objects [4], hidden surface removal for fat horizontal triangles [10], and range searching
and point location among fat objects [19], [20].

Contrary to many other definitions of fatness in literature [1], [2], [8], [10], [12],
[16], the notion introduced in [32], and recaptured below, applies to general objects in
arbitrary dimensiond. The definition involves a parameterk, supplying a qualitative
measure of the fatness of an object: the smaller the value ofk, the fatter the object
must be.

Definition 2.6 (k-Fatness). LetE ⊆ Rd be an object and letk be a positive constant.
The objectE is k-fat if, for all hyperspheresS∈ UE,

k · volume(E ∩ S) ≥ volume(S),

whereUE consists of all hyperspheres centered insideE and not fully containingE.

According to the definition, ak-fat objectE must cover at least(1/k)th of any hyper-
sphere that is centered insideE but does not fully contain it. The definition of fatness
forbids fat objects to be long and thin, or to have long and thin parts.

Obstacle fatness and low obstacle density are closely related. An intuitive explanation
lies in the observation that it is impossible to have a large number of fat obstacles of
a certain minimum size intersecting a small region. A more formal proof follows from
[32]. Here, we confine ourselves to reporting the result.

Theorem 2.7. A spaceRd with nonintersecting k-fat objects is a low object density
space.

2.3. Object Wrappings

This subsection shows that the objects in a scene satisfying the low density property
can be expanded by an amount proportional to the size of the smallest object without
affecting the low density property. Intuitively, the first objects that are to be intersected
by expanding obstacles are neighboring objects. As the density of other objects in the
vicinity of each object is low, a considerable expansion of the objects is, again intuitively,
necessary to create more than a few intersections of object expansions, and, hence, to
increase the density of the scene asymptotically. Below, these informal ideas are made
specific by giving bounds on the (allowable) expansion of the objects such that the
density of the space with the expanded objects remainsO(n). The ε-wrappings that
are introduced provide a convenient means of expressing the expansion of an object.
Sufficiently tight wrappings play a crucial role in providing the justification that the

570 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

paradigm for motion planning in low obstacle density workspaces presented in Section 3
indeed works.

Definition 2.8 (ε-Wrapping). LetE ⊆ Rd and letε ∈ R+. Any object1 satisfying
E ⊆ 1 ⊆ {p ∈ Rd|d(p, E) ≤ ε} is anε-wrapping ofE.

An ε-wrapping of an objectE is an enclosing shape ofE, with the property that the
distance from the wrapping toE never exceedsε.

Theorem 2.9 states the circumstances that preserve the low density property of the
space while the objects are expanded.

Theorem 2.9. LetRd with a setE of objects satisfy the low object density property,
and letρ be a lower bound on the size of any object inE . Let b≥ 0 be a constant and
assume that a(b · ρ)-wrapping1(E) is given for every object E∈ E . ThenRd with the
set{1(E)|E ∈ E} of wrappings satisfies the low object density property.

Proof. Let R ⊆ Rd be a region of sizeσ ; R intersects at most a constant number of
objects fromE of size at leastσ , becauseRd with the objectsE satisfies the low object
density property. LetSbe the hypersphere with a radiusσ +bρ and concentric withR’s
minimal enclosing hypersphere. We count the number of wrappings of size at leastσ

that intersectR. Let1(E) be such a wrapping. We note that if1(E) intersectsR, then
the objectE itself must intersect the interior of the hypersphereS with radiusσ + bρ.
Moreover, we note that the size ofE itself is at leastσ − bρ. Thus, we can bound the
number of wrappings of size at leastσ intersectingRby bounding the number of objects
of size at leastσ − bρ intersectingS. We distinguish two cases. Ifσ ≥ 2bρ, then the
radiusσ + bρ of S satisfies the inequalityσ + bρ ≤ 3(σ − bρ). By Lemma 2.3,S
intersects at most a constant number of objects of size at leastσ − bρ. If σ ≤ 2bρ, then
the radiusσ + bρ of S satsifiesσ + bρ ≤ 3bρ. By Lemma 2.3,S is intersected by at
most a constant number of objects.

Informally, Theorem 2.9 says that the low object density property is preserved if the
objects in a low density space are expanded by an amount that is at most proportional to
the size of the smallest object in the scene. We use Theorem 2.9 mostly in conjunction
with Theorem 2.4; together these theorems imply that the arrangement of expanded
obstacle boundaries has linear complexity, given that each expanded obstacle has constant
complexity.

Besides applications in motion planning, Theorems 2.4 and 2.9 have interesting im-
plications for certain types of arrangements and complexities of union boundaries of
certain geometric figures. The relation between the complexity of an arrangement of
wrapping boundaries and the complexity of the boundary of the union of the wrappings
becomes clear if one realizes that the faces of the union boundary form a subset of the
faces of the arrangement of wrapping boundaries. So, under the circumstances sketched
in Theorem 2.4, the boundary of the union of all wrappings has complexityO(n). The-
orems 2.4 and 2.9 are, for example, applicable to the molecule model in the paper by
Halperin and Overmars [9]. The atoms that constitute a molecule are assumed to satisfy

Motion Planning in Environments with Low Obstacle Density 571

the hard sphere model. The hard sphere model describes atoms by spheres and forbids
any sphere center to get too close to another sphere center. This property allows us to
regard the atoms as wrappings of certain nonintersecting smaller spheres, which are only
a bounded amount smaller than the original atoms and can be shown to satisfy the low
density property. The construction provides an alternative proof for the linear (in the
number of atoms) descriptional complexity of the molecule surface.

3. A Paradigm for Low Density Motion Planning

The ultimate aim of this paper is to determine a general approach to planning the motion
of a not too large, constant-complexity robot moving in a workspace with a low density
of constant-complexity obstacles. It has been noted that the existing planar motion plan-
ning algorithms are not easily extendible toward other—in particular spatial—problems.
Moreover, the existing general approaches to motion planning (like those by Schwartz
and Sharir [23] and Canny [7]) are computationally expensive, even for problems from
the special class that we consider here.

A configuration space contains constraint hypersurfaces of the formfϕ,8, consisting
of placements of the robotB in which a robot featureϕ is in contact with an obstacle
feature8. We denote the fact thatξ is a feature of some object or object setX by
ξ ∈ f X. The arrangement of all constraint hypersurfacesfϕ,8 (ϕ ∈ f B,8 ∈ f E)
divides the higher-dimensional configuration space into free and forbidden cells. Even
in the case of low density motion planning, the complexity of a single free cell can be
Ä(n), which illustrates that some additional processing is necessary to facilitate efficient
motion planning. Naturally, the structure of a higher-dimensional arrangement like the
arrangement of constraint hypersurfaces is difficult to understand, let alone to subdivide
the free arrangement cells into simple subcells or to capture their structure in some
one-dimensional roadmap. At this point, however, the low obstacle density comes to our
help to provide us with a very useful property of aq-dimensional configuration space
C of the formC = W × D, where W is thed-dimensional workspace andD is some
(q − d)-dimensional (rest-)space. (Free-flying rigid robots, for example, fit well in this
framework. For a free-flying rigid robot in W= R3, D is the space defined by the three
rotational degrees of freedom of the robot.) The low obstacle density can be shown to
result in a very interesting property of configuration space, namely that

|{ fϕ,8|ϕ ∈ f B ∧8 ∈ f E ∧ fϕ,8 ∩ (p× D) 6= ∅}| = O(1),

for each pointp ∈W. In words, the(q− d)-dimensional subspacep× D, obtained by
lifting the workspace pointp into configuration space, is intersected by only a constant
number of constraint hypersurfaces. An immediate consequence of this result is that these
algebraic hypersurfaces of bounded degree define a constant-complexity arrangement in
each cross sectionp× D of the configuration spaceC.

At a more abstract level, low obstacle density motion planning problems for free-flying
robots can be regarded as a subclass of the larger class of motion planning problems with
configuration spacesC = B× D that satisfy

|{ fϕ,8|ϕ ∈ f B ∧8 ∈ f E ∧ fϕ,8 ∩ (p× D) 6= ∅}| = O(1),

572 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Fig. 3. A three-dimensional example of a cylindrifiable configuration spaceC with a two-dimensional base
spaceB (and, hence, a one-dimensional rest-spaceD), and a fragment of the base partition inB. The constraints
on the base partition guarantee that the cylinderR× D is intersected by only a constant number of constraint
surfacesfϕ,8.

for each pointp ∈ B. A configuration spaceC that satisfies this constraint will be said
to becylindrifiable. Furthermore, we call the subspaceB of C a base space. Hence,
low obstacle density motion planning problems for free-flying robots have cylindrifiable
configuration spaces in which the workspace constitutes a valid base space. As a result
of the cylindrifiability ofC, it is possible to partition the subspaceB into closed regions
R (or C into cylindersR× D) such that

|{ fϕ,8|ϕ ∈ f B ∧8 ∈ f E ∧ fϕ,8 ∩ (R× D) 6= ∅}| = O(1).

The partition of B that leads to the cylinders is called thebase partition. Figure 3
illustrates the terminology introduced in this paragraph.

We now consider the configuration space cylinderR× D corresponding to a region
R in a base partition inB. By the definition of the base partition, the cylinderR× D is
intersected byO(1) constraint hypersurfaces. These algebraic hypersurfaces of bounded
degree subdivideR × D into a constant number of cells. If we furthermore assume
that the cylinders themselves have constant descriptional complexity (achievable by
establishing that the regionsR have constant complexity), then each of theO(1) free or
forbidden cells inR× D has constant complexity as well. In conclusion, the constraint
hypersurfaces and the cylinder boundaries divide the free space into constant-complexity
subcells, which allow for simple motion planning in their interiors.

The preceding arguments suggest a two-step approach for computing a cell decompo-
sition for a motion planning problem with a cylindrifiable configuration space: first, find
a base partition in some appropriate base spaceB of C, and then transform the partition
into a cell decomposition of the free space FP⊆ C, by computing a decomposition of

Motion Planning in Environments with Low Obstacle Density 573

the free part of every cylinder. We shall see that the resulting decomposition consists of
subcells that allow for simple motion planning within their interiors, and that the rules
for crossing from one cell into another are simple.

In Section 3.1 it is shown how the latter part of the two-step approach outlined
above transforms a base partition into a cell decomposition of comparable size in time
proportional to the size of the base partition. Noting this, the problem of finding a (small)
cell decomposition of the free space FP⊆ C reduces to the problem of finding a (small)
base partition in an appropriate base spaceB ⊆ C. Section 3.2 exploits specific properties
of the constraint hypersurfaces that follow from the shapes and relative positions of the
obstacles to simplify the constraints on the partition of the base spaceB = W for
motion planning problems involving free-flying robots. The new and simpler constraints
combined with the transformation steps result in a tailored paradigm for motion planning
for robots in environments with low obstacle density. In Section 4 this paradigm is shown
to lead to efficient algorithms for motion planning for free-flying robots.

3.1. Transforming a Base Partition into a Cell Decomposition

Assume that we are given a graph(VB, EB), whereVB is a set of constant-complexity
closed regionsR that partition a base spaceB and individually satisfy

|{ fϕ,8|ϕ ∈ f B ∧8 ∈ f E ∧ fϕ,8 ∩ (R× D) 6= ∅}| = O(1),

andEB = {(R, R′) ∈ VB×VB|∂R∩∂R′ 6= ∅} contains the adjacencies ofVB’s regions.
Note that, in this definition, every region is adjacent to itself.

The transformation algorithm given below transforms the graph(VB, EB) into a con-
nectivity graph CG= (VC, EC), consisting of a setVC of constant-complexity subcells
that collectively partition the set of free placements FP, and a setEC = {(A, A′) ∈
VC × VC|∂A∩ ∂A′ 6= ∅} of subcell adjacencies. The sizes of the setsVC andEC are of
the same order of magnitude as the sizes ofVB andEB, respectively:|VC| = O(|VB|)
and |EC| = O(|EB|). Note that the graph(VC, EC) supports simple path-finding be-
tween two placements in subcellsA ∈ VC and A′ ∈ VC: the constant complexity of
the individual subcells guarantees easy path-finding within a subcell, and the constant
complexity of the shared boundary of two adjacent subcells—following from the con-
stant complexity of the involved subcells—caters for simple boundary crossing rules.
The transformation steps are independent of the actual motion planning problem under
consideration.

Algorithm TRANSFORM: (VB, EB) −→ (VC, EC)

VC := ∅;
EC := ∅;
for all R ∈ VB do

1. compute the arrangementA of surfacesfϕ,8 intersectingR× D;
2. useA to compute a decomposition of FP∩ (R× D) into

a constant number of constant-complexity subcellsA;
3. Desc(R) := ∅;

574 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Fig. 4. The relation between the base partition graph(VB, EB) in the subspaceB of C at the top, and the
connectivity graph CG= (VC, EC) in the configuration space at the bottom. Each nodeR ∈ VB defines at
mostO(1) nodesA ∈ VC , collected in a setDesc(R). Two nodesA andA′ in VC can only be connected if the
corresponding nodesR andR′ in VB are connected, so, e.g.,A1 may be connected to nodes inDesc(R′) but
not to nodes inDesc(R).

4. for all subcellsA of FP∩ (R× D) do
4.1. VC := VC ∪ {A};
4.2. Desc(R) := Desc(R) ∪ {A};

for all (R1, R2) ∈ EB do
for all A1 ∈ Desc(R1) ∧ A2 ∈ Desc(R2) do

if ∂A1 ∩ ∂A2 6= ∅ then EC := EC ∪ {(A1, A2)}.

Figure 4 gives a pictorial explanation of the transformation. We review the different
steps of the transformation in more detail to verify their validity and to analyze the
efficiency. Recall that the definition of the setVB and the constant complexity of the
regionsR ∈ VB imply the constant complexity of all subcellsA ∈ VC.

The firstfor -loop computes a decomposition of FP∩ (R× D) into O(1) (constant-
complexity) subcells and gathers these in a setVC. One possible way to perform this
computation in constant time is by applying (in step 2) the rigorous techniques by
Schwartz and Sharir [23] to the constant number of constraint hypersurfaces intersecting
the cylinderR× D. The output is a subdivision of the arrangement cells into constant-
complexity subcells. Restriction of these subcells toR× D and subsequently filtering
out the forbidden ones results in an appropriate cell decomposition of FP∩ (R× D).
Each of the four steps in the loop is easily verified to run in constant time, provided
that the constraint hypersurfacesfϕ,8 intersectingR× D can be determined in constant

Motion Planning in Environments with Low Obstacle Density 575

time. If this requirement is indeed satisfied, the entire loop runs in timeO(|VB|). Upon
termination of the first loop, each constant-cardinality setDesc(R) stores all nodes in
VC that correspond to free subcells inR× D.

Two free subcellsA1 and A2 are adjacent if they share a common boundary (which
allows for collision-free crossing from one subcell into the other). Such subcellsA1 and
A2 can only be adjacent if their containing cylindersR1×D ⊇ A1 andR2×D ⊇ A2 are
adjacent inC and, hence,R1 andR2 are adjacent inB. An adjacency(R1, R2) gives rise
to only a constant number of adjacencies of nodes inA1 ∈ Desc(R1) andA2 ∈ Desc(R2)

due to the constant cardinality ofDesc(R1) andDesc(R2). The common boundary of
A1 and A2 has constant complexity becauseA1 and A2 have constant complexity. The
nestedfor -loop in the secondfor -loop takes constant time by the above considerations,
implying a running time ofO(|EB|) for the latter loop. If we combine the time-bounds
of the two steps in the transformation algorithm, then we find that the running time
depends solely on the size of the base partition in a lower-dimensional subspace of the
configuration space.

Lemma 3.1. The algorithmTRANSFORM transforms the graph(VB, EB) correspond-
ing to a base partition of the base space B into the connectivity graph(VC, EC) of a cell
decomposition of the free spaceFP⊆ C = B× D in time O(|VB| + |EB|).

Once we have computed the connectivity graph(VC, EC), the problem of solving a
motion planning query “find a free path from a placementZ1 = (Z1B, Z1D) to another
placementZ2 = (Z2B, Z2D)” basically reduces to a point location query withZ1B and
Z2B in VB to find R1 3 Z1B and R2 3 Z2B. So, we need a structure for point location
in the base space rather than in the full configuration spaceC. After that it takesO(1)
time to findA1 3 Z1 usingDesc(R1) andA2 3 Z2 usingDesc(R2), followed by a search
in the graph(VC, EC) for a sequence of subcells connectingA1 to A2. The constant
complexities of the subcells and of the common boundaries of pairs of adjacent subcells
facilitate the transformation of the subcell sequence into an actual free path forB.

3.2. A Tailored Paradigm for Free-Flying Robots

We now direct our attention to a subset of the class of motion planning problems with
cylindrifiable configuration spaces, namely the class of problems involving a not too
large constant-complexity robotB with q degrees of freedom moving in a workspace
with constant-complexity obstaclesE ∈ E that satisfies the property of Definition 2.2,
whereq is a constant. The restriction on the size of the robot is expressed by a bound
on its reach:ρB ≤ b · ρ, whereb is some positive constant andρ is a lower bound on
the sizes of then obstacles inE . For the moment, we assume that the robotB does not
self-collide, that is, no part ofB can collide with any other part ofB during motion.
Let O ∈ B be a reference point of the robot. The tailored paradigm presented below
suits robots with configuration spacesC = W × D, so that the position of the robot’s
reference point in the robot’s workspace is part of the specification of its placement. A
placementZ of the robot can thus be written asZ = (ZW, ZD), whereZW ∈ W = Rd

andZD ∈ D. Free-flying robots fit naturally in this framework.

576 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

The robot with its reference point fixed atp can only touch obstacles within a distance
ρB from the pointp. Such obstacles clearly intersect the hypersphere with radiusρB
centered atp. Lemma 2.3 says that the number of obstacles of size at leastρ intersecting
any region with diameter 2ρB ≤ 2b · ρ is bounded by a constant. As all obstacles inE
have size at leastρ, the robotB can touch no more thanO(1) obstacles while its reference
point remains fixed atp. This fact leads to the following lemma, which validates the
choice of W as a base space.

Lemma 3.2. |{ fϕ,8|ϕ ∈ f B∧8 ∈ f E ∧ fϕ,8∩ (p×D) 6= ∅}| = O(1), for all p ∈W.

Proof. The subspacep × D of the configuration space is intersected by constraint
hypersurfacesfϕ,8. A point in fϕ,8 ∩ (p× D) corresponds to a placement of the robot
B in which its reference point is positioned atp and its featureϕ touches an obstacle
feature8. This feature8 must necessarily belong to one of theO(1) obstacles that
can be touched byB while its reference point is fixed atp. Combined with the constant
complexity ofB itself, this implies that there exist only a constant number of pairs(ϕ,8)

for which fϕ,8 intersectsp× D.

We define a partition of the workspace that is subject to constraints that are formulated
exclusively in the workspace. The partition subsequently turns out to be a valid base
partition for a decomposition of the configuration space into cylinders. The notions of
grown obstacles and coverage facilitate the definition of the workspace partition.

Definition 3.3 (Grown ObstacleG(E, ρ)). Let E be an obstacle inRd and letρ ∈ R+.
Theρ-grown obstacleE is defined as

G(E, ρ) = {p ∈ Rd|d(p, E) ≤ ρ}.

Definition 3.4 (CoverageCov(R)). Let R⊆W = Rd.

Cov(R) = {E ∈ E |R∩ G(E, ρB) 6= ∅}.

Hence,Cov(R) is the set of obstaclesE whose corresponding grown obstaclesG(E, ρB)
intersectR.

It is clear that the robot’s reference point must lie inside the grown obstacleG(E, ρB)
in order for a featureϕ of the robotB to be in contact with a feature8 of the obstacleE;
if the reference point lies outsideG(E, ρB) there is no danger forϕ ∈ f B of colliding
with 8 ∈ f E. In other words, a configuration space cylinderR× D can only intersect
a constraint hypersurfacefϕ,8 with 8 ∈ f E if its projection R intersectsG(E, ρB).
A formalization of these observations is given by Lemma 3.5; it supplies some kind of
simple outer approximation of the location of a constraint hypersurface in configuration
space.

Lemma 3.5. fϕ,8 ⊆ G(E, ρB)× D, for all ϕ ∈ f B and8 ∈ f E.

Motion Planning in Environments with Low Obstacle Density 577

A consequence of Lemma 3.5 is that the configuration space cylinderR×D correspond-
ing to a regionR that is intersected byO(1) grown obstacles is itself intersected by at
mostO(1) constraint hypersurfaces. Lemma 3.6 uses the definition of coverage to obtain
a compact statement of the relation between the grown obstacles in the workspace and
the constraint hypersurfaces in the configuration space.

Lemma 3.6. Let R⊆W = Rd be such that|Cov(R)| = O(1). Then

|{ fϕ,8|ϕ ∈ f B ∧8 ∈ f E ∧ fϕ,8 ∩ (R× D) 6= ∅}| = O(1).

Proof. Take a constraint hypersurfacefϕ,8 ∩ (R× D) 6= ∅. Now let E be such that
8 ∈ f E. By Lemma 3.5, fϕ,8 ⊆ G(E, ρB) × D. Hence, necessarily(R × D) ∩
(G(E, ρB)× D) 6= ∅ and thusR∩G(E, ρB) 6= ∅. By the definition ofCov(R) and the
assumption|Cov(R)| = O(1), it follows that there are onlyO(1) obstaclesE such that
R ∩ G(E, ρB) 6= ∅. Due to the constant complexity of these obstacles and the robot,
there is only a constant number of hypersurfacesfϕ,8 with fϕ,8 ∩ (R× D) 6= ∅.

The lemma states that any regionR with |Cov(R)| = O(1) is guaranteed to satisfy the
constraint on the regions of the base partition requiring that the corresponding cylinder
is intersected byO(1) constraint hypersurfaces. As a consequence, a decomposition of
the workspace W into constant-complexity regionsR with |Cov(R)| = O(1) is a valid
base partition of the base spaceB =W. We refer to workspace partitions of this kind as
cc-partitions (constant-size coverage, constant-complexity).

Definition 3.7 (cc-Partition). A cc-partitionV of a workspace W with obstaclesE is a
partition of W into constant-complexity regionsR satisfying|Cov(R)| = O(1).

The constant-size coverage constraint|Cov(R)| = O(1) replaces the constraint
|{ fϕ,8|ϕ ∈ f B ∧ 8 ∈ f E ∧ fϕ,8 ∩ (R× D) 6= ∅}| = O(1); the new constraint is
simpler because it is truly a constraint in the workspace. The result in Lemma 3.6 and
the definition of cc-partitions, however, would be completely useless if a partition of W
into regionsR with |Cov(R)| = O(1) does not exist. Note that the existence of such
a partition solely depends on the absence of pointsp ∈ W that are contained inω(1)
grown obstacles. Fortunately, such points indeed do not exist since the spaceRd with the
grown obstaclesG(E, ρB) is a low obstacle density space. The fact follows immediately
from Theorem 2.9, noting that each grown obstacleG(E, ρB) is aρB-wrapping and, by
ρB ≤ b · ρ, also a(b · ρ)-wrapping of the obstacleE itself. As a result, it is indeed pos-
sible to partition the low obstacle density workspace W into regions with constant-size
coverage.

Lemma 3.8. A low obstacle density workspaceW can be partitioned into regions R
with |Cov(R)| = O(1).

Notice that, by Theorem 2.4, the arrangementA(∂G) of grown obstacle boundaries
∂G(E, ρB) even partitions W= Rd into O(n) regionsR with |Cov(R)| = O(1), as
eachd-cell of the arrangement is a subset of the intersection ofO(1) grown obstacles.

578 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Unfortunately, it is not a cc-partition, because thed-cells may have more than constant
complexity. It can though be refined into one; in the case of a planar workspace, the
partition is easily refined into a cc-partition ofO(n) size by means of a vertical decom-
position [31], [33]. The decomposition procedure discussed in Section 4, however, gives
a cc-partition of linear size for any dimension.

In summary, we have found that a cc-partition of a low obstacle density workspace
always exists. The cc-partition of the workspace corresponds, by Lemma 3.6, to a de-
composition of the configuration space into constant-complexity cylinders that are in-
tersected by no more than a constant number of constraint hypersurfaces. As a result,
the cc-partition is a valid partition of the base space W allowing for application of the
transformation algorithm from Section 3.1.

The compact algorithm LODMOT given below combines the search for a small cc-
partition with its transformation into a cell decomposition of the free space. Besides the
cc-partition regions, gathered in a setVW, the first step is to report the adjacencies of the
cc-partition regions in a setEW, and the functionCov: VW → P(E)mapping each region
R ∈ VW onto the (constant-cardinality) set of obstaclesE ∈ E with G(E, ρB)∩ R 6= ∅.
We denote the time required to compute the triple(VW, EW,Cov) by T(n), where the
argumentn represents the number of obstacles inE .

Algorithm LODMOT

Find a cc-partition graph(VW, EW) and computeCov: VW → P(E);
(VC, EC) := TRANSFORM((VW, EW))

The |VW| precomputed setsCov(R) facilitate the constant-time computation of the
constraint hypersurface arrangementA in step 1 of the firstfor -loop of the transformation
algorithm (TRANSFORM). To verify this statement, we refine that step to

1.1. F := ∅;
1.2. for all ϕ ∈ f B ∧8 ∈ f Cov(R) do

1.2.1. computefϕ,8;
1.2.2. F := F ∪ { fϕ,8};

1.3. compute the arrangementA of all f ∈ F ;

A closer look at the refinement reveals thatA is now the arrangement of all constraint
hypersurfaces in a setF = { fϕ,8|ϕ ∈ f B ∧ 8 ∈ f Cov(R)}, which is in fact a superset
of the set of hypersurfacesfϕ,8 satisfying fϕ,8 ∩ (R× D) 6= ∅. Fortunately, the easily
computable setF contains only a constant number of hypersurfaces, due to the constant
cardinality ofCov(R) and the constant complexity ofB and the individual obstaclesE.
It is clear that the restriction of the arrangementA to the cylinderR× D is equivalent
to the restriction toR× D of the arrangement of hypersurfacesfϕ,8 with fϕ,8 ∩ (R×
D) 6= ∅. The techniques by Schwartz and Sharir from [23] may be useful to compute a
decomposition of the free part FP∩ (R× D) of a cylinderR× D.

The refinement of step 1 of the firstfor -loop verifies the running time ofO(|VW|) for
the firstfor -loop of the transformation. The running time of the entire algorithm LODMOT

becomesO(|VW|+|EW|+T(n)), by Lemma 3.1 and the assumption that the computation
of the cc-partition and functionCovtakesT(n) time. TheO(|VW| + |EW| + T(n)) time
bound emphasizes once again that the efficiency of LODMOT is fully determined by

Motion Planning in Environments with Low Obstacle Density 579

the size of the partition(VW, EW) and the time to compute it along withCov: VW →
P(E). Since the timeT(n) to compute the graph and the function dominates the time
O(|VW|+|EW|) to just report both, we may conclude that theT(n)-factor dominates the
running time of the algorithm LODMOT, which may therefore be said to equalO(T(n)).

Theorem 3.9. Let W with a setE of obstacles of size at leastρ be a low obstacle
density workspace. Let B be a constant-complexity robot with reachρB ≤ b · ρ, for
some constant b≥ 0, moving inW. Furthermore, let C = W× D be the configuration
space ofB. Then the algorithmLODMOT computes the connectivity graph(VC, EC)

with |VC| = O(|VW|) and |EC| = O(|EW|) of a cell decomposition of the free space
FP⊆ C in time O(T(n)), where(VW, EW) is a cc-partition ofW and T(n) is the time
to compute(VW, EW) along with Cov: VW → P(E).

Theorem 3.9 reduces the problem of finding a decomposition of certainq-cells in an
arrangement in theq-dimensional configuration space to the problem of finding some
constrained partition of thed-dimensional workspace (d ≤ q).

The incorporation of self-collisions has no major implications for the approach out-
lined above. The constant number of additional constraint hypersurfaces induced by
the self-collisions of the constant-complexity robot does not increase the asymptotic
complexity of the arrangement inside any cylinderR× D. Therefore, the combinatorial
and algorithmic considerations of this section apply without restrictions. The reader is
referred to [31] for further details.

4. A Linear Size Base Partition

In Section 3.2 we have reduced the low density motion planning problem for a free-flying
robot to the problem of finding a cc-partition of the workspace. A cc-partition subdivides
the robot’s workspace W into constant-complexity regions that intersect no more than a
constant number of grown obstacles. The complexity of this partition, i.e., the number
of regions and region adjacencies, and the time to compute it determine the running time
of the resulting motion planning algorithm, so we must try to find a small and efficiently
computable cc-partition. This section discusses a cc-partition of linear size, which can
be computed in near-linear time.

We obtain a cc-partition of the workspace by applying a simplified version of the first
stage of de Berg’s binary space partition algorithm [4] to the set{G(E, ρB)|E ∈ E} of
grown obstacles. The procedure takes the set of vertices of the axis-parallel bounding
boxes of the grown obstacles as input and outputs a decomposition of the workspace into
a linear number of hypercubic and L-shaped regions without bounding box vertices in
their interiors. It turns out that each of these regions intersects only a constant number
of grown obstacles. Below, we explain the procedure in detail.

Let Sbe a set ofn objects and let6 be the set of vertices of the axis-parallel bounding
boxes of these objects. The set6 contains 2dn vertices. For a regionR, we denote by
6(R) the subset of6 of bounding box vertices contained in the interior ofR. Assume
that all bounding boxes are enclosed by a large axis-parallel hypercube, which contains
all vertices of6. Our variant of the first stage of the binary space partition algorithm

580 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

Fig. 5. A useful and useless 2d-tree split. In the latter case the square is subdivided into an L-shaped region
and a square.

by de Berg [4] recursively subdivides this large hypercube until all resulting regionsR
satisfy6(R) = ∅. Let C be a hypercube with6(C) 6= ∅ and letC1, . . . ,C2d be the
equally sized subhypercubes resulting from a 2d-tree split ofC, i.e., from cuttingC with
thed hyperplanes perpendicular to and bisecting its edges. Note that every subhypercube
Ci shares exactly one corner withC. A 2d-tree split is calleduselessif all vertices of
6(C) lie in a single subhypercubeCi of C, and is calledusefulotherwise. The hypercube
C is subdivided in one of the following ways:

If the 2d-tree split ofC is useful, then perform the 2d-tree split.

If the 2d-tree split ofC is useless, then replace the single sub-hypercubeCi con-
taining all vertices of6(C) by the smallest hypercube that shares a corner withC
and still contains all vertices of6(C). The resulting hypercubeC′ ⊆ C has one
of the vertices of6(C) on its boundary. Although de Berg refines the complement
C\C′ intod boxes in order to obtain a binary space partition, we simply splitC into
the smaller hypercubeC′ and the “L-shaped” complementC\C′, which satisfies
6(C\C′) 6= ∅. We refer to this type of split ofC as an L-split.

Figure 5 gives two-dimensional examples of both types of splits. The recursive splits lead
to a decomposition intoO(n) hypercubic and L-shaped regions that have no vertices
from 6 in their interiors. The computation of the tree corresponding to the recursive
decomposition—along with the sets of objects intersecting each of the regions—takes
O(n logn) time. The nodes of the tree can be rearranged inO(n logn) time into a
second tree of heightO(logn) (see [4] for details). This second tree allows us to do
point location in the decomposition inO(logn) time, provided that it is possible to
determine in constant time for every internal nodev whether a query point lies in one
of the regions associated with the children ofv, or in the complement of the region
associated withv. The condition is true for our decomposition, because its regions are
either hypercubes or L-shapes. We use the point location structure during computation
of the region adjacencies.

De Berg [4] shows that, under the weak condition ofunclutteredness, the number of
objects fromS intersecting each of the boxes of the decomposition is constant. Since
our L-shaped regions are the union of a constant number of such boxes (see above), this
property is valid for our decomposition as well. Definition 4.1 recalls the unclutteredness
condition.

Motion Planning in Environments with Low Obstacle Density 581

Definition 4.1 (Unclutteredness). LetRd be a space with a setSof objects. The setS
satisfies theunclutteredness conditionif there is a constantκ such that any hypercube
whose interior does not contain a vertex of one of the bounding boxes ofS is intersected
by at mostκ objects ofS.

In [5] de Berg et al. study the relations between various realistic assumptions on sets
of geometric objects, including fatness, unclutteredness, and low density. Among their
results is the following relation.

Lemma 4.2[5]. LetRd with a set S of objects satisfy the low object density property.
ThenRd with S satisfies the unclutteredness condition.

We now apply the recursive decomposition scheme to the set{G(E, ρB)|E ∈ E}.
As all grown obstacles are(b · ρ)-wrappings of the original obstacles, and the original
obstacles have size at leastρ, we know by Theorem 2.9 that the workspace with the set
{G(E, ρB)|E ∈ E} of grown obstacles is still a low density space. Thus, if we apply
the decomposition to{G(E, ρB)|E ∈ E}, then Lemma 4.2 assures that we end up with
a partitionVW of the workspace into regionsR that each intersect at most a constant
number of grown obstacles, or, in other words, with|Cov(R)| = O(1). As the boxes
clearly have constant complexity in a fixed dimensiond, we find that the partitionVW

is a cc-partition. The setVW has sizeO(n) and is computable, along with the mapping
Cov: VW → P(E), in O(n logn) time.

It remains to bound the number of pairwise adjacencies of regions ofVW, and to
show how to compute the set of adjacencies efficiently. It turns out to be convenient
(at certain occasions) to cover the L-shaped regions in our decomposition by imaginary
hypercubes. In an L-split, a hypercubeC is subdivided into a small hypercubeC′ and an
L-shaped complementC\C′. Let s ands′ be the side lengths of the hypercubesC and
C′, respectively. We coverC\C′ by 2d − 1 (which is a constant in a fixed dimensiond)
imaginary hypercubes of side lengths− s′. This is achieved as follows: for each of the
2d − 1 corners ofC not occupied byC′, we take the imaginary hypercube of side length
s− s′ that lies entirely insideC and has one of its corners coinciding with that corner
of C. Figure 6 shows the three squares that cover a two-dimensional L-shaped region.
Each L-shaped region can thus be covered by 2d − 1 imaginary hypercubes. TheO(n)
hypercubes from the decomposition and theO(n) imaginary hypercubes jointly cover

Fig. 6. Three imaginary squares—shown slightly smaller than their actual size for reasons of clarity—cover
the L-shaped region.

582 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

the entire workspace. A useful observation is that if two hypercubes are adjacent, then
one of them has a corner in the interior of a facet of the other hypercube, unless both
hypercubes are of equal size and share an entire facet. In this specific case, however, the
center of one these facets, i.e., the point with equal distance to all facet boundaries, lies
in the interior of the other facet (and vice versa). In summary, if we define the set of
characteristic points of a hypercube to consist of its 2d corners and its 2d facet centers,
then for any two adjacent hypercubes, one of them has a characteristic point in the interior
of a facet of the other.

Lemma 4.3. The set EW of pairwise adjacencies of regions in VW has size O(n).

Proof. If we replace each L-shaped region by the 2d − 1 hypercubes, the number of
pairwise adjacencies of the hypercubes in the newly obtained covering of the workspace is
larger than the number of pairwise adjacencies of regions of the original decomposition.
Hence, we can bound the size ofEW by bounding the number of adjacencies in the
covering.

We first show how to charge every pairwise adjacency to a characteristic point on
a hypercube and then bound the number of times a point gets charged by a constant.
Recall that one of two adjacent hypercubes has a characteristic point in the interior of a
facet of the other hypercube. We charge the adjacency to this point. As a region of the
decomposition is covered by at most 2d−1 hypercubes simultaneously, no characterstic
point can lie on the boundary of more than 2d − 1 hypercubes. A characteristic point
can therefore lie on the common boundary of at most a constant number of pairs of
hypercubes. In other words, each of theO(n) characteristic points is involved in no
more than a constant number of hypercube adjacencies. This combined with the fact that
every adjacency can be charged to a characteristic point yields the desired result.

We compute the setEW of adjacencies by a reverse execution of the subdivision
process: starting from the hypercubic and L-shaped regions of the final decomposition,
we repeatedly join the regions resulting from a single split until we obtain the initial
hypercube containing all grown obstacles and their bounding boxes. While joining the
regions resulting from a split, we compute all adjacencies of regions fromVW that are
created by doing so. For each of the 2d facets f of a hypercubeC involved in a joining
step, we take care to have available the setγ (f) of subregions ofC (from VW) that share
a part of their boundary withf .

First, let us see what happens if we join an L-shaped regionL and a hypercubeC.
Recall thatL is a region of the final decompositionVW. The regionL becomes adjacent
to all regions inC that share a facet with thed facets ofC that are “glued” onto facets
of L (see Fig. 7 for a three-dimensional example). In other words, for each such facetf
of C, the regionL becomes adjacent to all regions inγ (f). The time required to report
all different adjacencies ofL is clearly proportional to the number of such adjacencies.
The sets of regions stored with the facets of the hypercubic union ofL andC are easily
computed fromL and the sets stored with the facets ofC.

Second, let us see what happens if we join 2d equally sized hypercubes into one
larger hypercube. The basic task, which has to be performedd2d−1 times, is to glue a
(d − 1)-dimensional facetf of a hypercubeC onto a(d − 1)-dimensional facetf ′ of

Motion Planning in Environments with Low Obstacle Density 583

Fig. 7. The grey facets ofC are glued onto facets ofL: L becomes adjacent to all regions inC that share a
part of their boundary with the grey facets.

another hypercubeC′ (see Fig. 8 for a three-dimensional example). This will cause pairs
of regions fromC andC′, or, more specifically, pairs of regions fromγ (f) andγ (f ′),
to become adjacent. To compute the adjacencies, we replace each L-shaped region in
γ (f) andγ (f ′) by the 2d − 1 imaginary hypercubes that cover it. Letm andm′ be the
sizes of the sets of hypercubes now sharing a facet withf and f ′, respectively, hence
m = |γ (f)| andm′ = |γ (f ′)|. As each adjacency can be charged to a characteristic
point of a hypercube from one of the two sets and no such point gets charged more than
a constant number of times (see the proof of Lemma 4.3), the number of adjacencies is

Fig. 8. The grey facetsf of C and f ′ of C′ are glued onto each other. Pairs of regions fromC andC′, or,
more specifically, pairs of regions sharing a facet withf and f ′, become adjacent.

584 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

O(m+m′). Because every hypercube fromγ (f) is adjacent to at least one hypercube
from γ (f ′), we can even conclude that the number of adjacencies is2(m+m′).

Using the observation that one of two adjacent hypercubes has a characteristic point in
the interior of a facet of the other, we find the following simple strategy for computing all
adjacencies: determine for each characteristic point of a hypercube inγ (f) the hypercube
in γ (f ′) containing it, and vice versa. Note that we can restrict ourselves to querying
with the characteristic points on the joined facetsf and f ′. Keeping in mind that our
ultimate aim is to compute the pairwise adjacencies of regions fromVW we can just
as well replace this strategy by: determine for each characteristic point of a hypercube
in γ (f) the region (inC′) containing it, and vice versa. The point location structure
of the decomposition allows us to find the region containing a query point inO(logn)
time. We observe that all our query points lie on the common boundary of at least two
regions. To overcome this complication, we (symbolically) move the query points from
γ (f) perpendicularly away fromf (andC), thereby moving a query point in the interior
of a facet of an adjacent region into the interior of that region. The queries with the
O(m) characteristic points of the hypercubes inγ (f) can be solved inO(m logn) time.
Likewise, we can solve the reverse problem inO(m′ logn) time. No adjacency will be
reported more than a constant number of times.

The preceding analysis shows that the time required to compute thek adjacencies
created by unitingC andC′ is bounded byO(k logn). Moreover, the computation of
all K adjacencies resulting from joining the 2d equally sized hypercubes into one larger
hypercube takesO(K logn) time. The setsγ (f) for each of the facetsf of the newly
obtained large hypersphere are trivially computable from the appropriate sets stored with
the facets of the 2d subhypercubes. Combining the time bounds for both types of joining
steps and theO(n) bound on the size ofEW given by Lemma 4.3 leads to the following
result.

Lemma 4.4. The set EW of pairwise adjacencies of regions in VW is computable in
O(n logn) time.

We have found linear-size cc-partitions for workspaces of arbitrary dimension. These
partitions are computable inO(n logn) time. Substitution of these computations into the
first step of algorithm LODMOT yields the following result by Theorem 3.9.

Theorem 4.5. The low density motion planning problem for a free-flying robot can be
solved in O(n logn) time.

5. Conclusion

We have studied the motion planning problem for a constant-complexity robotB with
q degrees of freedom in a low obstacle density workspace withn constant-complexity
obstaclesE ⊆ Rd, for some constantsd,q ≥ 0. The reachρB of the robotB is assumed
to be bounded from above byb · ρ, whereb ≥ 0 is a constant andρ is a lower bound on
the size of any obstacleE. The mild assumptions provide a realistic framework for many
practical motion planning problems. The complexity of the free space for problems that

Motion Planning in Environments with Low Obstacle Density 585

satisfy the assumptions was proven to beO(n) [32], whereas the complexity can easily
be as high asÄ(nq) when both assumptions are dropped.

Besides having a low combinatorial complexity, the free space for a motion planning
problem that fits in our framework also has a beneficial structure. The structure allows
for a decomposition of the configuration spaceC =W× D into cylinders, with bases in
the workspace W such that the free space part of every cylinder has constant-complexity.
This reduces the problem of finding a cell decomposition of the free space to the problem
of finding some constrained partition of the lower-dimensional workspace. A uniform
sequence of operations then suffices to transform the workspace partition into a cell
decomposition of the free space of asymptotically equal size. The running time of the
entire paradigm is determined by the time to compute the workspace partition.

We have shown that optimalO(n) size workspace partitions exist in any fixed dimen-
siond. The partitions are computable inO(n logn) time. These results lead toO(n logn)
algorithms for solving the low density motion planning problem. The bounds show that
our approach of decomposing some lower-dimensional subspace of the configuration
space (subject to some constraints) results in efficient solutions to the low density mo-
tion planning problem.

It is interesting to see if the paradigm for motion planning in environments with
low obstacle density applies to other classes of motion planning problems. The gen-
eral idea of subdividing the configuration space into cylinders—with bases in some
lower-dimensional subspace—in which the free space has constant complexity may be
applicable to configuration spaces other thanC = W × D. The results from this paper
are, for example, immediately applicable to a robot moving in a three-dimensional world
while its motion is confined to a plane, e.g., a factory floor [31]. Other possible exten-
sions include motion planning with moving obstacles, multiple robots, and anchored
robot arms.

The dynamic version of the low density motion planning problem has been studied
by Berretty et al. [6]. They consider a setting in which the obstacles in the workspace
move at constant speed along polyline paths. The workspace is assumed to satisfy the
low density property at any time. The authors use the ideas from Section 3.1 to find a
nearly optimalO(n2α(n) log3 n) solution to the problem.

The usual approach to the exact solution of a motion planning problem withcbounded-
size robots with configuration spacesC1, . . . ,Cc of dimensionsq1, . . . ,qc is to regard
these robots as one multibody robot. Planning the motion of the multibody robot takes
place in the composite configuration spaceC = C1×· · ·×Cc. We believe the complexity
of the free part ofC to be close to the realizable lower bound ofÄ(nc) rather than to the
trivial upper bound ofO(nq), with q = q1 + · · · + qc. The idea of a decomposition of
the free space by means of cylinders seems applicable if the workspace W is a lower-
dimensional subspace of each of the spacesCi ; in that case, Wc is a valid base space.
Vleugels [34] has shown how to restrict the search for a free path for two robots in their
composite configuration spaceC to a collection of lower-dimensional subspaces ofC,
such that a path exists in the subspaces whenever one exists inC. The approach leads
to O(n logn) andO(n log2 n) algorithms for two robots in two- and higher-dimensional
workspaces respectively, even though the complexity of the free spaces can beÄ(n2).

For most industrial robot arms, the links close to the hand—the minor axes—are
considerably shorter than the links close to the base—the major axes. Consider aq-link

586 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

robot arm of which them minor axes are not too large compared with the obstacles. Let
C be the configuration space and assume thatC′ is the(q −m)-dimensional subspace
corresponding to the major axes. A pointp ∈ C′ fixes the placements of all major axes.
If m is a constant, then them minor axes can only touch a constant number of obstacles
while the major axes are fixed, due to the low obstacle density. As a result, the lifting
of the pointp ∈ C′ into C will be intersected by only a constant number of constraint
hypersurfaces, makingC a cylindrifiable configuration space andC′ a valid base space.
It is however unclear at the moment how to compute base partitions inC′.

References

1. P.K. Agarwal, M.J. Katz, and M. Sharir, Computing depth orders for fat objects and related problems,
Computational Geometry: Theory and Applications5 (1995), 187–206.

2. H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. N¨aher, S. Schirra, and C. Uhrig, Approximate motion
planning and the complexity of the boundary of the union of simple geometric figures,Algorithmica8
(1992), 391–406.

3. F. Avnaim, J.-D. Boissonnat, and B. Faverjon, A practical exact motion planning algorithm for polygonal
objects amidst polygonal obstacles,Proc. Geometry and Robotics Workshop(J.-D. Boissonnat and J.-P.
Laumond, eds.), Lecture Notes in Computer Science, vol. 391, Springer-Verlag, Berlin (1988), pp. 67–86.

4. M. de Berg, Linear size binary space partitions for fat objects, Technical Report UU-CS-1998-12, Dept.
of Computer Science, Utrecht University (1998).

5. M. de Berg, M. Katz, A.F. van der Stappen, and J. Vleugels, Realistic input models for geometric algorithms,
Proc. 13th Ann. ACM Symp. on Computational Geometry(1997), pp. 294–303.

6. R.-P. Berretty, M. Overmars, and A.F. van der Stappen, Dynamic motion planning in low obstacle density
environments,Proc. Workshop on Algorithms and Data Structures(WADS ’97), Lecture Notes in Computer
Science, vol. 1272, Springer-Verlag, Berlin (1997), pp. 3–16.

7. J.F. Canny,The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA (1988).
8. A. Efrat, G. Rote, and M. Sharir, On the union of fat wedges and separating a collection of segments by a

line, Computational Geometry: Theory and Applications3 (1993), 277–288.
9. D. Halperin and M.H. Overmars, Spheres, molecules, and hidden surface removal,Proc. 10th Ann. ACM

Symp. on Computational Geometry(1994), 113–122.
10. M.J. Katz, M.H. Overmars, and M. Sharir, Efficient hidden surface removal for objects with small union

size,Computational Geometry: Theory and Applications2 (1992), 223–234.
11. Y. Ke and J. O’Rourke, Moving a ladder in three dimensions: upper and lower bounds,Proc. 3rd Ann.

ACM Symp. on Computational Geometry(1987), pp. 136–145.
12. M. van Kreveld, On fat partitioning, fat covering and the union size of polygons,Computational Geometry:

Theory and Applications9 (1998), 197–210.
13. D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-dimensional

space using generalized Voronoi diagrams,Discrete & Computational Geometry2 (1987), 9–31.
14. D. Leven and M. Sharir, On the number of critical free contacts of a convex polygonal object moving in

two-dimensional space,Discrete & Computational Geometry2 (1987), 255–270.
15. D. Leven and M. Sharir, An efficient and simple motion planning algorithm for a ladder amidst polygonal

barriers,Journal of Algorithms8 (1987), 192–215.
16. J. Matouˇsek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl, Fat triangles determine linearly many holes,

SIAM Journal on Computing23 (1994), 154–169.
17. C.Ó’Dúnlaing, M. Sharir, and C.-K. Yap, Retraction: A new approach to motion planning,Proc. 15th Ann.

ACM Symp. on the Theory of Computing(1983), pp. 207–220.
18. C.Ó’Dúnlaing and C.-K. Yap, A retraction method for planning the motion of a disc,Journal of Algorithms

6 (1985), 104–111.
19. M.H. Overmars, Point location in fat subdivisions,Information Processing Letters44 (1992), 261–265.
20. M.H. Overmars and A.F. van der Stappen, Range searching and point location among fat objects,Journal

of Algorithms21 (1996), 629–656.

Motion Planning in Environments with Low Obstacle Density 587

21. P. Pignon, Structuration de l’ espace pour une planification hi´erarchisée des trajectoires de robots mobiles,
Ph.D. Thesis, LAAS-CNRS and Universit´e Paul Sabatier de Toulouse, Rapport LAAS No. 93395 (1993)
(in French).

22. J.T. Schwartz and M. Sharir, On the piano movers’ problem: I. The case of a two-dimensional rigid
polygonal body moving amidst polygonal boundaries,Communications on Pure and Applied Mathematics
36 (1983), 345–398.

23. J.T. Schwartz and M. Sharir, On the piano movers’ problem: II. General techniques for computing topo-
logical properties of real algebraic manifolds,Advances in Applied Mathematics4 (1983), 298–351.

24. J.T. Schwartz and M. Sharir, On the piano movers’ problem: III. Coordinating the motion of several
independent bodies: the special case of circular bodies moving amidst polygonal barriers,International
Journal of Robotics Research2 (1983), 46–75.

25. J.T. Schwartz and M. Sharir, On the piano movers’ problem: V. The case of a rod moving in three-
dimensional space amidst polyhedral obstacles,Communications on Pure and Applied Mathematics37
(1984), 815–848.

26. J.T. Schwartz and M. Sharir, Efficient motion planning algorithms in environments of bounded local
complexity, Report 164, Department of Computer Science, Courant Inst. Math. Sci., New York, NY
(1985).

27. M. Sharir, Efficient algorithms for planning purely translational collision-free motion in two and three
dimensions,Proc. IEEE Internat. Conf. on Robotics and Automation, Raleigh, NC (1987), pp. 1326-1331.

28. M. Sharir and E. Ariel-Sheffi, On the piano movers’ problem: IV. Various decomposable two-dimensional
motion planning problems,Communications on Pure and Applied Mathematics37 (1984), 479–493.

29. S. Sifrony and M. Sharir, A new efficient motion planning algorithm for a rod in two-dimensional polygonal
space,Algorithmica2 (1987), 367–402.

30. A.F. van der Stappen, The complexity of the free space for motion planning amidst fat obstacles,Journal
of Intelligent and Robotic Systems11 (1994), 21–44.

31. A.F. van der Stappen, Motion planning amidst fat obstacles, Ph.D. Thesis, Dept. of Computer Science,
Utrecht University (1994).

32. A.F. van der Stappen, D. Halperin, and M.H. Overmars, The complexity of the free space for a robot
moving amidst fat obstacles,Computational Geometry: Theory and Applications3 (1993), 353–373.

33. A.F. van der Stappen and M.H. Overmars, Motion planning amidst fat obstacles,Proc. 10th Ann. ACM
Symp. on Computational Geometry(1994), pp. 31–40.

34. J. Vleugels, On fatness and fitness—realistic input models for geometric algorithms, Ph.D. Thesis, Dept.
of Computer Science, Utrecht University (1997).

Received October17, 1995,and in revised form July8, 1997,and February23, 1998.

