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Abstract. We present a simple and efficient paradigm for computing the exact solution
of the motion planning problem in environments with a low obstacle density. Such en-
vironments frequently occur in practical instances of the motion planning problem. The
complexity of the free space for such environments is known to be linear in the number of
obstacles. Our paradigm is a new cell decomposition approach to motion planning and ex-
ploits properties that follow from the low density of the obstacles in the robot’s workspace.
These properties allow us to decompose the workspace, subject to some constraints, rather
than to decompose the higher-dimensional free configuration space directly. A sequence
of uniform steps transforms the workspace decomposition into a free space decomposition
of asymptotically the same size. The approach leads to nearly opdifmlbg n) motion
planning algorithms for free-flying robots with any fixed number of degrees of freedom in
workspaces with low obstacle density.

1. Introduction

An ultimate goal inthe field of robotics is the development of robots that accept high-level
descriptions of tasks and execute these tasks without intervention from their environment.
A fundamental task for such an autonomous robot would be to move from its current
free placement to some other specified free placement while avoiding collision with the
obstacles on its way. The problem of finding such a collision-free path is referred to as the
motion planning problem. Even though most of today’s operational robots are not fully
autonomous, most of them have to deal with certain instances of the motion planning
problem during their operation. The methods that are used in practice to tackle these
instances have the notable drawback that they may fail to find an existing path (or spend
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a lot of time and storage to find one). A direction of research in computational geometry,
initiated by a series of papers—known as the piano movers’ series [22]—-[25], [28]—by
Schwartz and Sharir in the early '80s, studies the exact solution of the motion planning
problem. Exact methods for solving the motion planning problem are guaranteed to find
a path if one exists, and report failure if no path exists. The disadvantage of exact methods
is their high worst-case running time. The high worst-case time bounds prevent exact
methods from becoming popular alternatives for the solution of practical instances of the
motion planning problem. We show, however, that certain realistic assumptions on the
robot and its environment allow for a simple general approach to the solution of exact
motion planning problems. The approach leads to several very efficient motion planning
algorithms for such instances.
We focus on the following general version of the basic motion planning problem.

Givenarobogzin aworkspace W with a collectiahof closed connected stationary
obstacles, and two free placemeisand Z;, find a motion for the robot from

Z, to Z; during which it avoids collision with the obstacles, or report that no such
motion exists.

Therobot 5 is assumed to be a collection of closed rigid bodies of total constant complex-
ity and to havey degrees of freedom (DOF). The robot moves imakspaceN, which
usually equals the Euclidean space of dimension f#4) ¢r three R®). The motion of
the robot is constrained by a s&bf n pairwise disjoint obstacles. Eachstacle Ec £
is a closed connected constant-complexity subset of the workspace W. The obstacles do
not change place or shape.

The motion planning problem is commonly modeled and solved icdinéiguration
space G which is the space of parametric representations of robot placements. The
dimension ofC equals the number of degrees of freedqrof the robot5. A point
Z e C (representing a robot placement) is referred to as a configuration. Although
there is a subtle difference between a placement and a configuration, we use both terms
interchangeably. Thieee spac&P is the subspace 6fconsisting of points that represent
placements of the robot in which it does not intersect any obstaéle in

FP= :z e C|B[Z]n (U E) =w},

Ee&

where B[ Z] stands for the set of workspace points coveredsbiy configurationZ.

The free space can be regarded as the union of certain cells—the free cells—in the
arrangementof constraint hypersurfaces. A constraint hypersurface is the set of place-
ments in which a robot feature, i.e., a basic part of the boundary like a vertex, edge, or
face, touches an obstacle feature of appropriate dimension. The constraint hypersurfaces
are assumed to be algebraic and to have bounded degree. A collisiqgratinee motion

for a robotB from an initial placemenk, to a final placemenZ; is a continuous map:

7: [0,1] — FP, witht(0) = Zp andt(1) = Z;. Hence, solving the motion planning

1 The arrangement of a set is the subdivision of space into connected pieces of any dimension induced by
that set.
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problem boils down to finding a continuous curve in FP connediandZ;. The effort
that is required to find such a curve clearly depends on the complexity of the free space.
Exact motion planning algorithms process the free space into a query structure that
allows for the efficient solution of one or more path-finding queries. Although there
essentially exist two different approaches to exact motion planning (cell decomposition
and retraction), the time spent in processing the free space and the size of the resulting
query structure clearly depend on the complexity of the free sjgzaledecomposition
algorithms (see, e.qg., [11], [15], [22]-[25], and [28]) patrtition the free space into a finite
number of simple connected subcells, such that planning a motion between two place-
ments in a single subcell is straightforward and such that uniform crossing rules can be
defined forBB crossing from one cell into another. Each cell defines a vertex indhe
nectivity graphCG. Two vertices in CG are connected by an edge if their corresponding
subcells share a common boundary allowing direct crossing of the robot. Given the graph
CG, the motion planning problem is reduced to a graph problem: determine a sequence of
pairwise connected nodes connecting the nodes corresponding to the subcells containing
the initial and final placements &f. The imposed simplicity of the subcells facilitates
the transformation of the sequence of subcells into an actual collision-free motion for
the robot. The desired simplicity of the subcells in the cell decomposition, however,
also causes the number of subcells to depend on the complexity of the free space. As
a result, the size of the query structure—the connectivity graph CG—and the time to
compute it depend on the complexity of FRetraction methodésee, e.g., [7], [13],
[17], [18], and [29]) aim at capturing the structure and connectivity of the free space in
some one-dimensional network of curves in the free spacep#tenap The curves are
chosen in such a way that a simple collision-free motion connects every painEP
to some point IngiZ) on the roadmap, and such that all curves in a single connected
component of the free space are connected. Given a roadmap with these properties, the
problem of finding a motion between two free placemetg®nd Z; is reduced to the
problem of finding a sequence of roadmap curves connecting the roadmap pg@izigs Im
and Im(Z,). The desired properties of the roadmap, however, also cause the number of
curves to depend on the complexity of the free space. As a result, the size of the query
structure—the roadmap—and the time to compute it depend on the complexity of FP.
The complexity of the free space is determined by the number of multiple contacts of
the robotB. A multiple contact of the robaB is a placement in which it touches more
than one obstacle feature. Besides the collisions of the robot with the obstacles, parts of
the robot can also collide with other robot parts. Although these so-calédollisions
are oftenignored in our considerations, we return to them later to demonstrate the validity
of the results when self-collisiorage taken into account. Unfortunately, the number of
multiple contacts, and, hence, the complexity of the free space, can be very high. Under
our circumstances where the total number of obstacle featusgsisand the number of
features of theg-DOF robot is bounded by a constant, the free space complexity can be
Q(n%). As a generic example, consider the robot armin Fig. 1. If the square obstacles are
sufficiently small and, within each column, sufficiently close together, then the number
of g-fold contacts is easily seen to BEnY). As a consequence, the complexity of the
free space for the robot armgs(n®). Slightly lower worst-case free space complexities
have been obtained for specific free-flying rigid robots (like convex polyhedra) among
certain classes of obstacles (like polyhedra). These bounds generally remain close to
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Fig. 1. A (g-DOF) robot arm consisting af links with ©2(n9) g-fold contacts, and, hence, with free space
complexity2(n9).

one order of magnitude, i.e., a factor below the2(n?) bound (see, e.g., [14] and
[27]). Hence, even in such more specific cases, the theoretical worst-case bounds are
high. Fortunately, in many practical situations the complexity of the free space is much
smaller, as artificially constructed workspaces with, e.g., a very large robot and many
small obstacles, are not encountered very often in real life. When extreme shapes and
sizes of the robot and the obstacles do not occur, high free space complexities tend to be
harder to obtain. Consider for example the motion planning environment of Fig. 2 where
the 6-DOF “spider” robot and the obstacles have roughly the same sizes. While being in
contact with a certain obstacle, the robot is unable to touch more than a constant number
of other obstacles. Then the number of multiple contacts cannot ex2@ed Hence,

the free space for this robot has complex@?yn) and thus remains far below the free
space complexity obtained with the construction of Fig. 1. The impressive gap between
the ©(n9) construction and th®©(n) example immediately raises the question what
specific properties of the robot and the obstacles lead to low free space complexities.
What natural mild assumptions would, for example, lead to the relative low obstacle
density of the above example, in which the robot is unable to touch more than a constant
number of obstacles simultaneously?

Van der Stappen et al. [32] show that the combinatorial complexity of the free space is
linear in the number of obstacles if the robot is not too large compared with the obstacles
and if any workspace region intersects no more than a constant number of obstacles that
are at least as large as the region. We refer to the latter property &mathodbstacle
densityproperty of the workspace. (Actually, in [32] the linear bound is only proven for

Fig. 2. A 6-DOF robot with few multiple contacts, and, hence, with low free space complexity.
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the more restricted assumption of fatness of the obstacles. It is though trivial to extend
it to sets that satisfy the low obstacle density property.) Circumstances that resemble the
low obstacle density have also been studied by Schwartz and Sharir [26] who refer to it
asbounded local complexignd by Pignon [21] who calls gparsity

A guestion thatimmediately comes to mind when considering the combinatorial result
of [32] is whether this reduced complexity opens the way to efficient motion planning
algorithms for such realistic environments. The vast majority of motion planning algo-
rithms have no reported sensitivity to the complexity of the free space. A clear exception
is the boundary-vertices retraction algorithm by Sifrony and Sharir [29] for a ladder
moving in a planar workspace with polygonal obstacles. The algorithm runs in time
O(K logn), whereK is the number of pairs of obstacle corners that lie less than the
length of the ladder apart. The low obstacle density cas&sbe onlyO(n), whereas
it could be® (n?) in the worst case for arbitrary workspaces with obstacles. Some algo-
rithms have a hidden sensitivity to the complexity of the free space [31]. For example, the
boundary cell decomposition algorithm by Avnaim et al. [3], running in te® log n)
for a constant complexity polygonal robot amidst arbitrary polygonal obstacles, can be
shown to run irD(nlogn) time in the low obstacle density setting. T@&n®) algorithm
by Schwartz and Sharir [22] for planning the motion of a ladder or a polygonal robot
amidst polygonal obstacles can be shown to run, unmodified, in@imé) if the obstacle
density is low, whereas a minor modification improves the efficiency to a running time
of O(nlogn) (see also [30]). Hence, there exist (planar) motion planning algorithms
that do benefit from low free space complexities, even though several other algorithms
do not. Algorithms for efficient motion planning in three-dimensional workspaces are
scarce: approaches in contact space, like the algorithms mentioned above by Sifrony and
Sharir, and by Avnaim et al., were never shown to generalize to higher dimensions. Gen-
eral approaches to motion planning (e.g., by Schwartz and Sharir [23] with running time
0(n?") and Canny [7] with running tim© (n% log n)) are computationally expensive,
even under our beneficial circumstances. These rigorous methods do not take advantage
of the structure that is present in the free space in our case.

In this paper we present a new paradigm for motion planning in environments with
low obstacle density. The idea is that we do not compute a decomposition of the free
configuration space but of the workspace. Next, we “lift” this workspace decomposition
into the configuration space. We show that the low obstacle density guarantees that this
lifting can be done without increasing the asymptotic complexity of the decomposition.
The realistic low obstacle density and bounded robot size assumptions also guarantee
the existence of a workspace patrtition of (optinfaln) size, based on the binary space
partition by de Berg [4]. The computation of the partition tak&@ logn) time. As a
result, motion planning problems in low obstacle density environments can be solved in
O(nlogn) time. The dependence on the numbef degrees of freedom of the robot is
restricted to the hidden constants.

We are aware of only few (related) results on exact motion planning methods with
provable efficiency or free space complexity-sensitive behavior for realistic motion plan-
ning problems (with low complexity workspaces or free spaces). The running time of
Sifrony and Sharir’s algorithm [29] depends on the number of pairs of obstacle corners
that lie less than the length of the ladder apart. This number gives some idea of how
cluttered the obstacles in the workspace are and is closely related to the complexity of
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the free space. Schwartz and Sharir [26] consider workspaces with obstacles of so-called
bounded local complexity set of obstacles has bounded local complexity if the number

of obstacles intersecting any ball is bounded by some constant depending on the radius
of the ball. Our notion of low obstacle density differs from bounded local complexity

in that it only imposes a constant bound on the numbéargker obstacles intersecting

any region. The authors give directions on how to solve the motion planning problem
among obstacles with bounded local complexity. Pignon [21] processes two-dimensional
workspaces with polygonal obstacles and a polygonal robot (using Minkowski differ-
ences) to detect and solve simple path-finding queries efficiently. Simple queries are
gueries that are either easily seen to yield no solution—because there exists no path for
a simple inscribed shape of the robot—or are easily solvable—because there exists a
path for an outer approximation of the robot with fewer degrees of freedom. Alt et al. [2]
introduce the tightness of a motion planning problem for a rectangle among polygonal
obstacles as a measure for its complexity. The tightness of a problem is closely related
to the scaling factor for the rectangular robot to make a solvable problem unsolvable, or
an unsolvable problem solvable. The authors presemparoximatemotion planning
algorithm for the rectangular robot with a tightness-dependent running time.

This paper is organized as follows. Section 2 formalizes the notion of a low object
density space and shows its relation to fatness. It reports some properties of low object
density spaces that, though interesting in their own right, mainly serve as a tool in the
subsequent sections. In Section 3 we exploit the low obstacle density property of the
workspace to obtain a paradigm for planning the motion of a robot that is not too large
compared with the obstacles. The running time of an algorithm based on the paradigm
depends on the time to compute some constrained partition of the workspace. Section 4
tackles the problem of finding a small and efficiently computable partition. Section 5
concludes the paper.

2. Low Obstacle Density and Its Relation to Fatness

In many practical situations, the complexity of the free space tends to remain far below
the theoretical worst-case complexity bounds. Lower complexities particularly occur
when the obstacles in the workspace are not cluttered too much and the robot is not
too large compared with the obstacles. A clear but very restrictive example of such an
environment is a workspace in which the robot can never touch more than one obstacle
at a time. Our aim is to find a weaker and more realistic assumption that still leads to a
low free space complexity and efficient motion planning algorithms.

2.1. Low Obstacle Density

This subsection is devoted to identifying a weak assumption on the workspace and
the obstacles so that efficient motion planning is possible. The results are basically
reformulations of results previously reported in [32], but we repeat them because they
are fundamental to this paper.

As the relative sizes of the robot and the obstacles play a crucial role throughout
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the paper, we first give convenient measures for the size of an obstacle and a robot.
We find the radius of the minimal enclosing hypersphere of an obstacle or region the
most convenient among the many ways to express the obstacle or region size. For the
sake of brevity, we simply refer to the radius of the minimal enclosing hypersphere of
an obstacle or region as tils&zeof that obstacle or region. The radius of the minimal
enclosing hypersphere of the robot, however, may vary due to the possibility that the
robot may consist of several links. We introduce the reacbf a robot5 as a means of
expressing the size @. Let O € B be a reference point on the robot, and assume that
the configuration spade = W x D, where W is thal-dimensional workspace (where

a pointp € W represents a placement©@f andD is the(q — d)-dimensional space of

the remaining degrees of freedom.

Definition 2.1 (Reachog of a Robot3). LetZy be some arbitrary position of the ref-
erence poinD of the robot3. Then the reaclhy of the robots5 is defined as

= su max  d(p, Zw),
PB ZDepDPEB[(ZWaZD)] (P. Zw)

whered(p, Zw) denotes the Euclidean distance between the piatsd Zyy.

In words, the reacles of a robot3 is the maximum distance in the workspace that any
point in the robot3 can ever have to the reference point. Notice the natural similarity of
the measures of sizes of the robot and the obstacles: the reach of the robot is its maximum
size, taken over all its possible placements.

The definition in the previous paragraph allows us to impose an explicit bound on the
ratio of the sizes of the robot and the obstacles. This bound is one of the two keys to a
low free space complexity and to efficient motion planning algorithms. Assuming that
the size of each obstacle in the workspace is at leatste restriction we impose is that
the reachpp of the robotB is bounded by - p, for some constarit > 0. Definition 2.2
(see also [34]) defines a class of (work)spaces that, in combination with the bound on
the relative size of the robot and the obstacles, give rise to a linear complexity free space
and allow for efficient motion planning.

Definition 2.2 (Low (ObjecyObstacle) Density). Lef be a set of objects iR?. We
say thatRY with £ haslow (objec) densityif any region of sizer intersects at most a
constant number of objects éof size at least.

In the specific case th&¢ is the workspace W of a robot, adlis the set of obstacles
in W, we refer to W as a low obstacle density workspace.

Lemma 2.3 follows easily if we realize that we can cover a region of Gize by
(L2c] + 1)® hyperspheres of radius, each of which intersects no more than a constant
number of objects.

Lemma 2.3. LetRY with a set€ of objects satisfy the low object density propeFtyen
any region of size €o, for some constant & 0, intersects at most a constant number
of objects Ee £ of size at least .
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Another immediate consequence of the low object density property is that every point
p € RY lies in at most a constant number of objetg £. This fact, in conjunction with
Theorem 2.4ndthe invariance of the low density property under moderate inflation of
the objects (expressed by Theorem 2.9), is crucial in the considerations of Section 3.

Theorem 2.4. Let RY with a set of n constant-complexity objects satisfy the low
object density propertyThen the complexity of the arrangemefito&) of all object
boundarie E is O(n).

Proof. We assume that the objectsfrare ordered by increasing siZg;, .. ., E, and

o1 < --- < pn, Wherep; is the size ofE;. We count for each object boundai; the
subspaces of dimensions 0 throudyk 1 that are defined by its intersection with object
boundaries Ej with j > i. A boundaryo E; can only be intersected by a boundasy,

(j > i) if the minimal enclosing hypersphef® (with radiusp;) of E; is intersected

by E;. Definition 2.2 yields that there can only be a constant number of Byehso

there is at most a constant number of boundatigs(j > i) that intersecd E;. By the
additional assumption that all objects and thus their boundaries have constant complexity,
there is only a constant number of constant-complexity subspaces of dimension between
0 andd — 1 defined by the intersection 6&; and boundarie8E; (j > i). Adding the
contributions of alh boundaries amounts to a total @f(n) subspaces of dimensions 0

tod — 1in the arrangememd(3€). The linear bounds on the number of these subspaces
imply the same bound oD (n) on the number ofi-faces inA(3€), making the total
combinatorial complexity of the arrangemetn). O

Theorem 2.5 states the linear complexity result for the free space for motion planning
problems in low density environments. The reader is referred to [32] for a proof.

Theorem 2.5. LetW with a setf of n constant-complexity obstacles of size at Igast
be a low obstacle density workspadde free space for a constant-complexity roBot
with reachps < b - p, for some constant b 0, moving inW has complexity @).

In the next subsection we consider an interesting class of motion planning environ-
ments that satisfy the low obstacle density property. An immediate consequence of the
preceding results will be that complexity of the free space is linear in the number of
obstacles.

2.2. Fatness

Fatness has turned out to be an interesting phenomenon in computational geometry.
Several papers present surprising improvements in combinatorial complexity bounds
[2], [8], [12], [16], [32] and efficiency gains for algorithms [1], [4], [10], [19], [20] if

the objects under consideration are fat. Fat objects are “compact” to some extent, rather
than long and thin. Fatness is a realistic assumption, since in many practical instances
of geometric problems the considered objects are fat. The aim of studying fatness is to
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find new fast and simple algorithms or to demonstrate improved efficiency of existing
algorithms for such practical instances. The achievements of the study of fatness so far
include near-linear bounds on the complexity of the union of certain fat figures (e.qg.,
triangles, wedges) in the plane [2], [8], [12], [16], a linear bound on the complexity of
the free space for motion planning amidst fat obstacles [32], and efficient algorithms for
computing depth orders on certain fat objects [1], binary space partitions for sets of fat
objects [4], hidden surface removal for fat horizontal triangles [10], and range searching
and point location among fat objects [19], [20].

Contrary to many other definitions of fatness in literature [1], [2], [8], [10], [12],
[16], the notion introduced in [32], and recaptured below, applies to general objects in
arbitrary dimensiord. The definition involves a parametky supplying a qualitative
measure of the fatness of an object: the smaller the valle thfe fatter the object
must be.

Definition 2.6 (k-Fatness). LeE < RY be an object and lét be a positive constant.
The objectE is k-fat if, for all hypersphere$§ € Ug,

k-volumé€E N S) > volume&S),

whereUg consists of all hyperspheres centered indtdand not fully containinge.

According to the definition, &-fat objectE must cover at leastl/k)th of any hyper-
sphere that is centered insiiebut does not fully contain it. The definition of fatness
forbids fat objects to be long and thin, or to have long and thin parts.

Obstacle fatness and low obstacle density are closely related. An intuitive explanation
lies in the observation that it is impossible to have a large number of fat obstacles of
a certain minimum size intersecting a small region. A more formal proof follows from
[32]. Here, we confine ourselves to reporting the result.

Theorem 2.7. A spaceR? with nonintersecting k-fat objects is a low object density
space

2.3. Object Wrappings

This subsection shows that the objects in a scene satisfying the low density property
can be expanded by an amount proportional to the size of the smallest object without
affecting the low density property. Intuitively, the first objects that are to be intersected
by expanding obstacles are neighboring objects. As the density of other objects in the
vicinity of each object is low, a considerable expansion of the objects is, again intuitively,
necessary to create more than a few intersections of object expansions, and, hence, to
increase the density of the scene asymptotically. Below, these informal ideas are made
specific by giving bounds on the (allowable) expansion of the objects such that the
density of the space with the expanded objects rem@iry). The e-wrappings that

are introduced provide a convenient means of expressing the expansion of an object.
Sufficiently tight wrappings play a crucial role in providing the justification that the
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paradigm for motion planning in low obstacle density workspaces presented in Section 3
indeed works.

Definition 2.8 (¢-Wrapping). LetE € RY and lete € R*. Any objectA satisfying
E C AC{peRYd(p, E) < ¢} is ans-wrapping ofE.

An e-wrapping of an objeck is an enclosing shape &, with the property that the
distance from the wrapping @ never exceeds.

Theorem 2.9 states the circumstances that preserve the low density property of the
space while the objects are expanded.

Theorem 2.9. LetRY with a set€ of objects satisfy the low object density property
and letp be a lower bound on the size of any objecfirLet b > 0 be a constant and
assume that & - p)-wrappingA(E) is given for every object E £. ThenR? with the
set{A(E)|E e &} of wrappings satisfies the low object density property

Proof. Let R C RY be a region of size; R intersects at most a constant number of
objects from€ of size at leastr, becaus@®® with the objectsS satisfies the low object
density property. LeS be the hypersphere with a radiaist- bp and concentric witlR’s
minimal enclosing hypersphere. We count the number of wrappings of size atleast
that intersecR. Let A(E) be such a wrapping. We note thatAf E) intersectsR, then
the objectE itself must intersect the interior of the hypersph&maith radiuse + bp.
Moreover, we note that the size &fitself is at least- — bp. Thus, we can bound the
number of wrappings of size at leasintersectingR by bounding the number of objects
of size at least — bp intersectingS. We distinguish two cases. & > 2bp, then the
radiuso + bp of S satisfies the inequality + bp < 3(c — bp). By Lemma 2.3,S
intersects at most a constant number of objects of size atdeadip. If o < 2bp, then
the radiuss + bp of Ssatsifiess + bp < 3bp. By Lemma 2.3 Sis intersected by at
most a constant number of objects. O

Informally, Theorem 2.9 says that the low object density property is preserved if the
objects in a low density space are expanded by an amount that is at most proportional to
the size of the smallest object in the scene. We use Theorem 2.9 mostly in conjunction
with Theorem 2.4; together these theorems imply that the arrangement of expanded
obstacle boundaries has linear complexity, given that each expanded obstacle has constant
complexity.

Besides applications in motion planning, Theorems 2.4 and 2.9 have interesting im-
plications for certain types of arrangements and complexities of union boundaries of
certain geometric figures. The relation between the complexity of an arrangement of
wrapping boundaries and the complexity of the boundary of the union of the wrappings
becomes clear if one realizes that the faces of the union boundary form a subset of the
faces of the arrangement of wrapping boundaries. So, under the circumstances sketched
in Theorem 2.4, the boundary of the union of all wrappings has compléxity. The-
orems 2.4 and 2.9 are, for example, applicable to the molecule model in the paper by
Halperin and Overmars [9]. The atoms that constitute a molecule are assumed to satisfy
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the hard sphere model. The hard sphere model describes atoms by spheres and forbids
any sphere center to get too close to another sphere center. This property allows us to
regard the atoms as wrappings of certain nonintersecting smaller spheres, which are only
a bounded amount smaller than the original atoms and can be shown to satisfy the low
density property. The construction provides an alternative proof for the linear (in the
number of atoms) descriptional complexity of the molecule surface.

3. A Paradigm for Low Density Motion Planning

The ultimate aim of this paper is to determine a general approach to planning the motion
of a not too large, constant-complexity robot moving in a workspace with a low density
of constant-complexity obstacles. It has been noted that the existing planar motion plan-
ning algorithms are not easily extendible toward other—in particular spatial—problems.
Moreover, the existing general approaches to motion planning (like those by Schwartz
and Sharir [23] and Canny [7]) are computationally expensive, even for problems from
the special class that we consider here.

A configuration space contains constraint hypersurfaces of the fggnconsisting
of placements of the rob@ in which a robot feature is in contact with an obstacle
feature®. We denote the fact thdt is a feature of some object or object sétby
& e; X. The arrangement of all constraint hypersurfadgs (¢ €t B, ® e &)
divides the higher-dimensional configuration space into free and forbidden cells. Even
in the case of low density motion planning, the complexity of a single free cell can be
Q(n), which illustrates that some additional processing is necessary to facilitate efficient
motion planning. Naturally, the structure of a higher-dimensional arrangement like the
arrangement of constraint hypersurfaces is difficult to understand, let alone to subdivide
the free arrangement cells into simple subcells or to capture their structure in some
one-dimensional roadmap. At this point, however, the low obstacle density comes to our
help to provide us with a very useful property ofjadimensional configuration space
C of the formC = W x D, where W is thed-dimensional workspace arid is some
(q — d)-dimensional (rest-)space. (Free-flying rigid robots, for example, fit well in this
framework. For a free-flying rigid robot in \At R3, D is the space defined by the three
rotational degrees of freedom of the robot.) The low obstacle density can be shown to
result in a very interesting property of configuration space, namely that

{fo0lp €s BAD €1 EN fy0N(Ppx D) #0} =0(),

for each pointp € W. In words, the(q — d)-dimensional subspage x D, obtained by
lifting the workspace poinp into configuration space, is intersected by only a constant
number of constraint hypersurfaces. Animmediate consequence of this result is that these
algebraic hypersurfaces of bounded degree define a constant-complexity arrangement in
each cross sectiop x D of the configuration spade.

Atamore abstractlevel, low obstacle density motion planning problems for free-flying
robots can be regarded as a subclass of the larger class of motion planning problems with
configuration spaceS = B x D that satisfy

{fpolp €t BAD et EA fp0N(Ppx D) #0} =01,
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RxD

Fig. 3. A three-dimensional example of a cylindrifiable configuration sggaeéth a two-dimensional base
spaceB (and, hence, a one-dimensional rest-sgagand a fragment of the base partitiorBnThe constraints

on the base partition guarantee that the cylindet D is intersected by only a constant number of constraint
surfacesf, ¢.

for each pointp € B. A configuration spac€ that satisfies this constraint will be said

to becylindrifiable Furthermore, we call the subspaBeof C a base spaceHence,

low obstacle density motion planning problems for free-flying robots have cylindrifiable
configuration spaces in which the workspace constitutes a valid base space. As a result
of the cylindrifiability of C, it is possible to partition the subspaBento closed regions

R (or C into cylindersR x D) such that

|{f¢’¢.|§0 € BAD s EN flﬂqq’ N(Rx D) #0} = o).

The partition of B that leads to the cylinders is called thase partition Figure 3
illustrates the terminology introduced in this paragraph.

We now consider the configuration space cylinBex D corresponding to a region
R in a base partition iB. By the definition of the base partition, the cylindgrx D is
intersected byD (1) constraint hypersurfaces. These algebraic hypersurfaces of bounded
degree subdivid®R x D into a constant number of cells. If we furthermore assume
that the cylinders themselves have constant descriptional complexity (achievable by
establishing that the regiof&have constant complexity), then each of D€l) free or
forbidden cells inR x D has constant complexity as well. In conclusion, the constraint
hypersurfaces and the cylinder boundaries divide the free space into constant-complexity
subcells, which allow for simple motion planning in their interiors.

The preceding arguments suggest a two-step approach for computing a cell decompo-
sition for a motion planning problem with a cylindrifiable configuration space: first, find
a base partition in some appropriate base sjgactC, and then transform the partition
into a cell decomposition of the free space ERC, by computing a decomposition of
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the free part of every cylinder. We shall see that the resulting decomposition consists of
subcells that allow for simple motion planning within their interiors, and that the rules
for crossing from one cell into another are simple.

In Section 3.1 it is shown how the latter part of the two-step approach outlined
above transforms a base partition into a cell decomposition of comparable size in time
proportional to the size of the base partition. Noting this, the problem of finding a (small)
cell decomposition of the free space EFC reduces to the problem of finding a (small)
base partition in an appropriate base sgace C. Section 3.2 exploits specific properties
of the constraint hypersurfaces that follow from the shapes and relative positions of the
obstacles to simplify the constraints on the partition of the base spaee W for
motion planning problems involving free-flying robots. The new and simpler constraints
combined with the transformation steps result in a tailored paradigm for motion planning
for robots in environments with low obstacle density. In Section 4 this paradigm is shown
to lead to efficient algorithms for motion planning for free-flying robots.

3.1. Transforming a Base Partition into a Cell Decomposition

Assume that we are given a graf¥is, Eg), whereVg is a set of constant-complexity
closed region® that partition a base spa@and individually satisfy

{foalp et BA® et EA fyoN(Rx D) #3d} =01,

andEg = {(R, R) € Vg x Vg|dRN AR’ # @} contains the adjacencies\d§’s regions.
Note that, in this definition, every region is adjacent to itself.

The transformation algorithm given below transforms the giafh Eg) into a con-
nectivity graph CG= (V¢, Ec), consisting of a sé¥c of constant-complexity subcells
that collectively partition the set of free placements FP, and &get {(A, A) €
Ve x Vc|dAN dA # ¢} of subcell adjacencies. The sizes of the SgtandEc are of
the same order of magnitude as the size¥ghnd Eg, respectively]Ve| = O(|Vg|)
and|Ec| = O(|Eg|). Note that the grapliVc, Ec) supports simple path-finding be-
tween two placements in subcells € Vc and A’ € Vc: the constant complexity of
the individual subcells guarantees easy path-finding within a subcell, and the constant
complexity of the shared boundary of two adjacent subcells—following from the con-
stant complexity of the involved subcells—caters for simple boundary crossing rules.
The transformation steps are independent of the actual motion planning problem under
consideration.

Algorithm TRANSFORM (Vg, Eg) —> (V¢, Ec)

Ve = 0;
Ec .= 0;
forall R e Vg do
1. compute the arrangemedtof surfacesf, ¢ intersectingR x D;
2. useA to compute a decomposition of FP(R x D) into
a constant number of constant-complexity subcalls
3. DescR) = 0;
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CG =(V,Ec)

Desc(R'")
Desc(R)
Desc(R'")

Desc(R')

Fig. 4. The relation between the base partition graph, Eg) in the subspac® of C at the top, and the
connectivity graph CG= (Vc, Ec) in the configuration space at the bottom. Each nBde Vg defines at
mostO(1) nodesA € V¢, collected in a seébesd R). Two nodesA and A’ in V¢ can only be connected if the
corresponding nodeR andR’ in Vg are connected, so, e.gd3 may be connected to nodeshrescR’) but
not to nodes iDes¢R).

4, for all subcellsA of FPN (R x D) do
4.1. Ve :=Vc U{A}
4.2. DesdR) := DescR) U {A};
forall (R, Ry) € Eg do
for all A; € Des@dR;) A A; € DesdRy) do
if 0A1N0A; #Wthen Ec := Ec U {(A1, Ao}

Figure 4 gives a pictorial explanation of the transformation. We review the different
steps of the transformation in more detail to verify their validity and to analyze the
efficiency. Recall that the definition of the sé§ and the constant complexity of the
regionsR € Vg imply the constant complexity of all subcellse V.

The firstfor-loop computes a decomposition of FRR x D) into O(1) (constant-
complexity) subcells and gathers these in a\4etOne possible way to perform this
computation in constant time is by applying (in step 2) the rigorous techniques by
Schwartz and Sharir [23] to the constant number of constraint hypersurfaces intersecting
the cylinderR x D. The output is a subdivision of the arrangement cells into constant-
complexity subcells. Restriction of these subcellftex D and subsequently filtering
out the forbidden ones results in an appropriate cell decomposition of Px D).

Each of the four steps in the loop is easily verified to run in constant time, provided
that the constraint hypersurfacgse intersectingR x D can be determined in constant
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time. If this requirement is indeed satisfied, the entire loop runs in @&g|). Upon
termination of the first loop, each constant-cardinality3esd R) stores all nodes in
V¢ that correspond to free subcellskx D.

Two free subcellsA; and A, are adjacent if they share a common boundary (which
allows for collision-free crossing from one subcell into the other). Such subsglsd
A, can only be adjacent if their containing cylindétsx D 2> A; andR, x D D Ay are
adjacentirC and, henceR; andR; are adjacent ifB. An adjacency(R;, Ry) gives rise
to only a constant number of adjacencies of nodeie DesqR;) andA; € DescRy)
due to the constant cardinality 8fesdR;) andDesdR;). The common boundary of
A; and A; has constant complexity becau&g and A, have constant complexity. The
nestedor-loop in the seconébr-loop takes constant time by the above considerations,
implying a running time ofO(|Eg|) for the latter loop. If we combine the time-bounds
of the two steps in the transformation algorithm, then we find that the running time
depends solely on the size of the base partition in a lower-dimensional subspace of the
configuration space.

Lemma 3.1. The algorithmTRANSFORMtransforms the grapliVg, Eg) correspond-
ing to a base partition of the base space B into the connectivity gféiphEc) of a cell
decomposition of the free spaE® C C = B x D intime O(|Vg| + |Eg)).

Once we have computed the connectivity gra@h, Ec), the problem of solving a
motion planning query “find a free path from a placemgpnt= (Z1g, Z1p) to another
placementZ, = (Z,g, Z>p)” basically reduces to a point location query withg and
Zgin Vg tofind Ry > Z15 andR; > Zyg. So, we need a structure for point location
in the base space rather than in the full configuration s@acdfter that it takesO(1)
time tofindA; > Z; usingDesqR;) andA; > Z;, usingDesdRy), followed by a search
in the graph(Vc, Ec) for a sequence of subcells connectiAg to A,. The constant
complexities of the subcells and of the common boundaries of pairs of adjacent subcells
facilitate the transformation of the subcell sequence into an actual free pdth for

3.2. A Tailored Paradigm for Free-Flying Robots

We now direct our attention to a subset of the class of motion planning problems with
cylindrifiable configuration spaces, namely the class of problems involving a not too
large constant-complexity robdt with q degrees of freedom moving in a workspace
with constant-complexity obstaclés € £ that satisfies the property of Definition 2.2,
whereq is a constant. The restriction on the size of the robot is expressed by a bound
on its reachps < b - p, whereb is some positive constant apdis a lower bound on

the sizes of tha obstacles irf. For the moment, we assume that the roBatoes not
self-collide, that is, no part oB can collide with any other part df during motion.

Let O € B be a reference point of the robot. The tailored paradigm presented below
suits robots with configuration spac€s= W x D, so that the position of the robot’s
reference point in the robot’s workspace is part of the specification of its placement. A
placemeniZ of the robot can thus be written &= (Zw, Zp), whereZy € W = RY
andZp € D. Free-flying robots fit naturally in this framework.
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The robot with its reference point fixed ptan only touch obstacles within a distance
o from the pointp. Such obstacles clearly intersect the hypersphere with ragjus
centered ap. Lemma 2.3 says that the number of obstacles of size atdeasdrsecting
any region with diameter@ < 2b - p is bounded by a constant. As all obstacleg’in
have size at leagt, the robot3 can touch no more tha@ (1) obstacles while its reference
point remains fixed ap. This fact leads to the following lemma, which validates the
choice of W as a base space.

Lemma3.2. [{f,olp €t BA® et EA Ty eN(Px D) # 0} =0(),forallpeW.

Proof. The subspace x D of the configuration space is intersected by constraint
hypersurfaced, . A pointin f, ¢ N (p x D) corresponds to a placement of the robot
B in which its reference point is positioned jptand its feature touches an obstacle
feature®. This feature® must necessarily belong to one of tiE1) obstacles that
can be touched bg while its reference point is fixed @. Combined with the constant
complexity of 3 itself, this implies that there exist only a constant number of jaire)

for which f, ¢ intersectsp x D. O

We define a partition of the workspace that is subject to constraints that are formulated
exclusively in the workspace. The partition subsequently turns out to be a valid base
partition for a decomposition of the configuration space into cylinders. The notions of
grown obstacles and coverage facilitate the definition of the workspace patrtition.

Definition 3.3 (Grown Obstaclés(E, p)). LetE be an obstacle iR and letp € R*.
The p-grown obstacléE is defined as

G(E, p) = {p € RYd(p, E) < p}.

Definition 3.4 (CoverageCoR)). LetR € W = R¢Y.

CoMR) = {E € £|RN G(E, pgp) # ¥).

Hence Cou(R) is the set of obstaclds whose corresponding grown obstadR&E, o)
intersectR.

Itis clear that the robot’s reference point must lie inside the grown obsEa&e o)
in order for a feature of the robot55 to be in contact with a featur® of the obstaclés;
if the reference point lies outside(E, pp) there is no danger fay ; B of colliding
with & €¢ E. In other words, a configuration space cylindeix D can only intersect
a constraint hypersurfacg, o with ® <; E if its projection R intersectsG(E, pg).
A formalization of these observations is given by Lemma 3.5; it supplies some kind of
simple outer approximation of the location of a constraint hypersurface in configuration
space.

Lemma3.5. f, o S G(E, pg) x D,forall ¢ ef Band® ¢ E.
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A consequence of Lemma 3.5 is that the configuration space cyligdd correspond-

ing to a regionR that is intersected b (1) grown obstacles is itself intersected by at
mostO (1) constraint hypersurfaces. Lemma 3.6 uses the definition of coverage to obtain
a compact statement of the relation between the grown obstacles in the workspace and
the constraint hypersurfaces in the configuration space.

Lemma 3.6. Let RC W = RY be such thafCouR)| = O(1). Then

{foole €t BAD et EA T, N(RX D) # 0} = 0O(D).

Proof. Take a constraint hypersurfadg ¢ N (R x D) # @. Now let E be such that

® e; E. By Lemma 3.5,f, o € G(E, pg) x D. Hence, necessarilyR x D) N
(G(E, pg) x D) # @ and thusRN G(E, pg) # ¥. By the definition ofCouR) and the
assumptionCouR)| = O(1), it follows that there are onl{D (1) obstaclesE such that

RN G(E, pg) # @. Due to the constant complexity of these obstacles and the robot,
there is only a constant number of hypersurfatgs with f, s N (R x D) # ¢. O

The lemma states that any regi®with |CoMR)| = O(1) is guaranteed to satisfy the
constraint on the regions of the base partition requiring that the corresponding cylinder
is intersected byD (1) constraint hypersurfaces. As a consequence, a decomposition of
the workspace W into constant-complexity regidtsith |CouR)| = O(1) is a valid

base partition of the base spaBe= W. We refer to workspace partitions of this kind as
cc-partitions (onstant-size coveragepmstant-complexity).

Definition 3.7 (cc-Partition). A cc-partitio’/ of a workspace W with obstaclésis a
partition of W into constant-complexity regiomssatisfying| Cou R)| = O(1).

The constant-size coverage constraj@ovMR)| = O(1) replaces the constraint
Hfpolg €t BAD e €A fy0 N(Rx D) # @}] = O(1); the new constraint is
simpler because it is truly a constraint in the workspace. The result in Lemma 3.6 and
the definition of cc-partitions, however, would be completely useless if a partition of W
into regionsR with |CoMR)| = O(1) does not exist. Note that the existence of such

a partition solely depends on the absence of pgints W that are contained i (1)
grown obstacles. Fortunately, such points indeed do not exist since thekspaita the
grown obstacle& (E, pp) is a low obstacle density space. The fact follows immediately
from Theorem 2.9, noting that each grown obst#&{&, pp) is aps-wrapping and, by

o < b-p,alsoalb- p)-wrapping of the obstaclE itself. As a result, it is indeed pos-
sible to partition the low obstacle density workspace W into regions with constant-size
coverage.

Lemma 3.8. A low obstacle density workspaté can be partitioned into regions R
with |[CouR)| = O(1).

Notice that, by Theorem 2.4, the arrangemghib G) of grown obstacle boundaries
dG(E, pp) even partitions W= RY into O(n) regionsR with |CouR)| = O(1), as
eachd-cell of the arrangement is a subset of the intersectio® @) grown obstacles.
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Unfortunately, it is not a cc-partition, because theells may have more than constant
complexity. It can though be refined into one; in the case of a planar workspace, the
partition is easily refined into a cc-partition 6f(n) size by means of a vertical decom-
position [31], [33]. The decomposition procedure discussed in Section 4, however, gives
a cc-partition of linear size for any dimension.

In summary, we have found that a cc-partition of a low obstacle density workspace
always exists. The cc-partition of the workspace corresponds, by Lemma 3.6, to a de-
composition of the configuration space into constant-complexity cylinders that are in-
tersected by no more than a constant number of constraint hypersurfaces. As a result,
the cc-partition is a valid partition of the base space W allowing for application of the
transformation algorithm from Section 3.1.

The compact algorithm LODMT given below combines the search for a small cc-
partition with its transformation into a cell decomposition of the free space. Besides the
cc-partition regions, gathered in a 8§, the first step is to report the adjacencies of the
cc-partition regions in a s&y, and the functiolCov. Viy — P(€) mapping each region
R € W onto the (constant-cardinality) set of obstadtes £ with G(E, pg) N R # @.

We denote the time required to compute the triplg,, Ew, Cov) by T (n), where the
argumenn represents the number of obstacle€in

Algorithm LODMoT

Find a cc-partition grapkViy, Ew) and computé&ov. Viy — P(E);
(Mc, Ec) := TRANSFORM (M, Ew))

The |V /| precomputed setSou R) facilitate the constant-time computation of the
constraint hypersurface arrangemdrin step 1 of the firsfor -loop of the transformation
algorithm (TRANSFORM). To verify this statement, we refine that step to

1.1. F :=9;
1.2. forall ¢ €f BA ® €; CoMR) do
1.2.1. computefy o;
1.22. F:=FU{f, e}
1.3. compute the arrangementof all f € F;

A closer look at the refinement reveals tbais now the arrangement of all constraint
hypersurfaces in a s€t = {f, o9 ¢ B A ® e¢ CouR)}, which is in fact a superset
of the set of hypersurface o satisfying f, o N (R x D) # @. Fortunately, the easily
computable seff contains only a constant number of hypersurfaces, due to the constant
cardinality of CovR) and the constant complexity é&fand the individual obstacles.
It is clear that the restriction of the arrangemghto the cylinderR x D is equivalent
to the restriction tdR x D of the arrangement of hypersurfacgse with f, o N (R x
D) # @. The techniques by Schwartz and Sharir from [23] may be useful to compute a
decomposition of the free part FIP(R x D) of a cylinderR x D.

The refinement of step 1 of the fifsir-loop verifies the running time dd (|Vyy|) for
the firstfor -loop of the transformation. The running time of the entire algorithm LQDM
become®© (|Vi|+|Ew|+T (n)), by Lemma 3.1 and the assumption that the computation
of the cc-partition and functioBovtakesT (n) time. TheO (|| + |Ew| + T (n)) time
bound emphasizes once again that the efficiency of L@DM fully determined by
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the size of the partitioiViy, Ew) and the time to compute it along witbov. W,y —
P(E). Since the timeT (n) to compute the graph and the function dominates the time
O(|Vw| + |Ew]) to just report both, we may conclude that the)-factor dominates the
running time of the algorithm LODMT, which may therefore be said to eq@{T (n)).

Theorem 3.9. Let W with a setf of obstacles of size at leagtbe a low obstacle
density workspacd et B be a constant-complexity robot with reaphh < b - p, for
some constant b 0, moving inW. Furthermorg let C = W x D be the configuration
space of53. Then the algorithmrLODMOT computes the connectivity graghc, Ec)
with [Vc| = O(|Vw|) and |Ec| = O(|Ew|) of a cell decomposition of the free space
FP C C intime (T (n)), where(Mw, Ew) is a cc-partition ofW and T(n) is the time
to computgVyy, Ew) along with Cov iy — P(E).

Theorem 3.9 reduces the problem of finding a decomposition of cartaglls in an
arrangement in thg-dimensional configuration space to the problem of finding some
constrained partition of the-dimensional workspacel (< q).

The incorporation of self-collisions has no major implications for the approach out-
lined above. The constant number of additional constraint hypersurfaces induced by
the self-collisions of the constant-complexity robot does not increase the asymptotic
complexity of the arrangement inside any cylindkx D. Therefore, the combinatorial
and algorithmic considerations of this section apply without restrictions. The reader is
referred to [31] for further details.

4. A Linear Size Base Patrtition

In Section 3.2 we have reduced the low density motion planning problem for a free-flying
robot to the problem of finding a cc-partition of the workspace. A cc-partition subdivides
the robot’s workspace W into constant-complexity regions that intersect no more than a
constant number of grown obstacles. The complexity of this partition, i.e., the number
of regions and region adjacencies, and the time to compute it determine the running time
of the resulting motion planning algorithm, so we must try to find a small and efficiently
computable cc-partition. This section discusses a cc-patrtition of linear size, which can
be computed in near-linear time.

We obtain a cc-partition of the workspace by applying a simplified version of the first
stage of de Berg’s binary space partition algorithm [4] to thg G&E, pg)|E € £} of
grown obstacles. The procedure takes the set of vertices of the axis-parallel bounding
boxes of the grown obstacles as input and outputs a decomposition of the workspace into
a linear number of hypercubic and L-shaped regions without bounding box vertices in
their interiors. It turns out that each of these regions intersects only a constant number
of grown obstacles. Below, we explain the procedure in detalil.

Let Sbe a set of objects and IeE be the set of vertices of the axis-parallel bounding
boxes of these objects. The $etcontains 2n vertices. For a regiofiR, we denote by
2 (R) the subset ok of bounding box vertices contained in the interiorRfAssume
that all bounding boxes are enclosed by a large axis-parallel hypercube, which contains
all vertices ofx. Our variant of the first stage of the binary space partition algorithm
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Fig. 5. A useful and useless'2ree split. In the latter case the square is subdivided into an L-shaped region
and a square.

by de Berg [4] recursively subdivides this large hypercube until all resulting redtons
satisfy 2 (R) = #. Let C be a hypercube witlE (C) # ¢ and letCq, ..., Cx be the
equally sized subhypercubes resulting fronidre split ofC, i.e., from cuttingC with

thed hyperplanes perpendicular to and bisecting its edges. Note that every subhypercube
C; shares exactly one corner wih A 2%-tree split is callecuselessf all vertices of

2 (C) liein a single subhyperculig of C, and is calledisefulotherwise. The hypercube

C is subdivided in one of the following ways:

If the 2%-tree split ofC is useful, then perform the'2ree split.

If the 2-tree split ofC is useless, then replace the single sub-hyper€itmon-
taining all vertices o2 (C) by the smallest hypercube that shares a corner@ith
and still contains all vertices d£ (C). The resulting hypercub&€’ < C has one

of the vertices ot (C) on its boundary. Although de Berg refines the complement
C\C'’intod boxes in order to obtain a binary space partition, we simply €qlito

the smaller hypercub&€’ and the “L-shaped” complemeft\C’, which satisfies

3 (C\C') #£ @. We refer to this type of split of as an L-split.

Figure 5 gives two-dimensional examples of both types of splits. The recursive splits lead
to a decomposition int® (n) hypercubic and L-shaped regions that have no vertices
from X in their interiors. The computation of the tree corresponding to the recursive
decomposition—along with the sets of objects intersecting each of the regions—takes
O(nlogn) time. The nodes of the tree can be rearrange®inlogn) time into a
second tree of heighD(logn) (see [4] for details). This second tree allows us to do
point location in the decomposition i@ (logn) time, provided that it is possible to
determine in constant time for every internal naderhether a query point lies in one

of the regions associated with the childrenwfor in the complement of the region
associated withv. The condition is true for our decomposition, because its regions are
either hypercubes or L-shapes. We use the point location structure during computation
of the region adjacencies.

De Berg [4] shows that, under the weak conditiorun€lutterednesshe number of
objects fromS intersecting each of the boxes of the decomposition is constant. Since
our L-shaped regions are the union of a constant number of such boxes (see above), this
property is valid for our decomposition as well. Definition 4.1 recalls the unclutteredness
condition.
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Definition 4.1 (Unclutteredness). L&k be a space with a s&of objects. The seb
satisfies thainclutteredness conditiafthere is a constant such that any hypercube
whose interior does not contain a vertex of one of the bounding boxésadfitersected
by at mostc objects ofS.

In [5] de Berg et al. study the relations between various realistic assumptions on sets
of geometric objects, including fatness, unclutteredness, and low density. Among their
results is the following relation.

Lemma 4.2[5]. LetRY with a set S of objects satisfy the low object density property
ThenRY with S satisfies the unclutteredness condition

We now apply the recursive decomposition scheme to théG€E, pp)|E € £}.

As all grown obstacles ar@ - p)-wrappings of the original obstacles, and the original
obstacles have size at leastwe know by Theorem 2.9 that the workspace with the set
{G(E, pr)|E € &} of grown obstacles is still a low density space. Thus, if we apply
the decomposition t§G(E, pg)|E € £}, then Lemma 4.2 assures that we end up with
a partition\yy of the workspace into regionR that each intersect at most a constant
number of grown obstacles, or, in other words, wiloMR)| = O(1). As the boxes
clearly have constant complexity in a fixed dimensiyrwe find that the partitioVyy

is a cc-partition. The sétyy has sizeO(n) and is computable, along with the mapping
Cov. VW — P(€), in O(nlogn) time.

It remains to bound the number of pairwise adjacencies of regiongyofand to
show how to compute the set of adjacencies efficiently. It turns out to be convenient
(at certain occasions) to cover the L-shaped regions in our decomposition by imaginary
hypercubes. In an L-split, a hypercuBas subdivided into a small hypercuf and an
L-shaped complemer@\C'. Let s ands’ be the side lengths of the hyperculigsnd
C’, respectively. We coveZ\C' by 24 — 1 (which is a constant in a fixed dimensidh
imaginary hypercubes of side length- s'. This is achieved as follows: for each of the
29 — 1 corners ofC not occupied byC’, we take the imaginary hypercube of side length
s — g that lies entirely insid€ and has one of its corners coinciding with that corner
of C. Figure 6 shows the three squares that cover a two-dimensional L-shaped region.
Each L-shaped region can thus be covered®by 24 imaginary hypercubes. TH@(n)
hypercubes from the decomposition and @) imaginary hypercubes jointly cover

s’

Fig. 6. Three imaginary squares—shown slightly smaller than their actual size for reasons of clarity—cover
the L-shaped region.
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the entire workspace. A useful observation is that if two hypercubes are adjacent, then
one of them has a corner in the interior of a facet of the other hypercube, unless both
hypercubes are of equal size and share an entire facet. In this specific case, however, the
center of one these facets, i.e., the point with equal distance to all facet boundaries, lies
in the interior of the other facet (and vice versa). In summary, if we define the set of
characteristic points of a hypercube to consist of t€@ners and its@facet centers,

then for any two adjacent hypercubes, one of them has a characteristic pointin the interior
of a facet of the other.

Lemma 4.3. The set iy of pairwise adjacencies of regions imp\has size @n).

Proof. If we replace each L-shaped region by tife-21 hypercubes, the number of
pairwise adjacencies of the hypercubesin the newly obtained covering of the workspace is
larger than the number of pairwise adjacencies of regions of the original decomposition.
Hence, we can bound the size Bfy by bounding the number of adjacencies in the
covering.

We first show how to charge every pairwise adjacency to a characteristic point on
a hypercube and then bound the number of times a point gets charged by a constant.
Recall that one of two adjacent hypercubes has a characteristic point in the interior of a
facet of the other hypercube. We charge the adjacency to this point. As a region of the
decomposition is covered by at mo&t-21 hypercubes simultaneously, no characterstic
point can lie on the boundary of more thah-2 1 hypercubes. A characteristic point
can therefore lie on the common boundary of at most a constant number of pairs of
hypercubes. In other words, each of t©&n) characteristic points is involved in no
more than a constant number of hypercube adjacencies. This combined with the fact that
every adjacency can be charged to a characteristic point yields the desired redilt.

We compute the seEy of adjacencies by a reverse execution of the subdivision
process: starting from the hypercubic and L-shaped regions of the final decomposition,
we repeatedly join the regions resulting from a single split until we obtain the initial
hypercube containing all grown obstacles and their bounding boxes. While joining the
regions resulting from a split, we compute all adjacencies of regions Ygrthat are
created by doing so. For each of theéfacetsf of a hypercube involved in a joining
step, we take care to have available thegdt) of subregions o€ (from W) that share
a part of their boundary with .

First, let us see what happens if we join an L-shaped regji@amd a hypercub€.
Recall thatL is a region of the final decompositidfy. The regionL becomes adjacent
to all regions inC that share a facet with tretfacets ofC that are “glued” onto facets
of L (see Fig. 7 for a three-dimensional example). In other words, for each sucH facet
of C, the regionL becomes adjacent to all regionsyiaf). The time required to report
all different adjacencies df is clearly proportional to the number of such adjacencies.
The sets of regions stored with the facets of the hypercubic unitreofdC are easily
computed fronlL and the sets stored with the facet<of

Second, let us see what happens if we jofnegually sized hypercubes into one
larger hypercube. The basic task, which has to be perfod@éd' times, is to glue a
(d — 1)-dimensional facef of a hypercubeC onto a(d — 1)-dimensional facef’ of
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L

Fig. 7. The grey facets of are glued onto facets @f: L becomes adjacent to all regionsGrthat share a
part of their boundary with the grey facets.

another hypercub@’ (see Fig. 8 for a three-dimensional example). This will cause pairs

of regions fromC andC’, or, more specifically, pairs of regions frop( f) andy ('),

to become adjacent. To compute the adjacencies, we replace each L-shaped region in
y(f) andy(f’) by the 2 — 1 imaginary hypercubes that cover it. llatandm’ be the

sizes of the sets of hypercubes now sharing a facet wiétmd f’, respectively, hence

m = |y(f)| andm’ = |y(f’)|. As each adjacency can be charged to a characteristic
point of a hypercube from one of the two sets and no such point gets charged more than
a constant number of times (see the proof of Lemma 4.3), the number of adjacencies is

Fig. 8. The grey facets of C and f’ of C’ are glued onto each other. Pairs of regions f@randC’, or,
more specifically, pairs of regions sharing a facet wiitand f’, become adjacent.
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O(m+ m'). Because every hypercube frond f ) is adjacent to at least one hypercube
from y ('), we can even conclude that the number of adjacenci@gns+ n).

Using the observation that one of two adjacent hypercubes has a characteristic pointin
the interior of a facet of the other, we find the following simple strategy for computing all
adjacencies: determine for each characteristic point of a hyperculgé jihe hypercube
in y(f’) containing it, and vice versa. Note that we can restrict ourselves to querying
with the characteristic points on the joined facétand f’. Keeping in mind that our
ultimate aim is to compute the pairwise adjacencies of regions Wgnwe can just
as well replace this strategy by: determine for each characteristic point of a hypercube
in y(f) the region (inC’) containing it, and vice versa. The point location structure
of the decomposition allows us to find the region containing a query poidtiogn)
time. We observe that all our query points lie on the common boundary of at least two
regions. To overcome this complication, we (symbolically) move the query points from
y (f) perpendicularly away fronfi (andC), thereby moving a query pointin the interior
of a facet of an adjacent region into the interior of that region. The queries with the
O(m) characteristic points of the hypercubegifif ) can be solved i©(mlogn) time.
Likewise, we can solve the reverse problenam’ logn) time. No adjacency will be
reported more than a constant number of times.

The preceding analysis shows that the time required to compute dlkgacencies
created by unitingc andC’ is bounded byO(klogn). Moreover, the computation of
all K adjacencies resulting from joining thé @qually sized hypercubes into one larger
hypercube take® (K logn) time. The sety (f) for each of the facet$ of the newly
obtained large hypersphere are trivially computable from the appropriate sets stored with
the facets of the®subhypercubes. Combining the time bounds for both types of joining
steps and th@(n) bound on the size dty given by Lemma 4.3 leads to the following
result.

Lemma 4.4. The set ky of pairwise adjacencies of regions iny\Ms computable in
O(nlogn) time

We have found linear-size cc-partitions for workspaces of arbitrary dimension. These
partitions are computable @ (nlogn) time. Substitution of these computations into the
first step of algorithm LODMT yields the following result by Theorem 3.9.

Theorem 4.5. The low density motion planning problem for a free-flying robot can be
solved in nlogn) time

5. Conclusion

We have studied the motion planning problem for a constant-complexity ®kadth

g degrees of freedom in a low obstacle density workspace mébnstant-complexity
obstacle€ € RY, for some constant, q > 0. The reachy of the robotB is assumed

to be bounded from above ly p, whereb > 0 is a constant and is a lower bound on

the size of any obstacle. The mild assumptions provide a realistic framework for many
practical motion planning problems. The complexity of the free space for problems that
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satisfy the assumptions was proven to®@) [32], whereas the complexity can easily
be as high a2 (n%) when both assumptions are dropped.

Besides having a low combinatorial complexity, the free space for a motion planning
problem that fits in our framework also has a beneficial structure. The structure allows
for a decomposition of the configuration sp&te- W x D into cylinders, with bases in
the workspace W such that the free space part of every cylinder has constant-complexity.
This reduces the problem of finding a cell decomposition of the free space to the problem
of finding some constrained partition of the lower-dimensional workspace. A uniform
sequence of operations then suffices to transform the workspace partition into a cell
decomposition of the free space of asymptotically equal size. The running time of the
entire paradigm is determined by the time to compute the workspace partition.

We have shown that optim&(n) size workspace partitions exist in any fixed dimen-
siond. The partitions are computable@(n logn) time. These results lead @(n log n)
algorithms for solving the low density motion planning problem. The bounds show that
our approach of decomposing some lower-dimensional subspace of the configuration
space (subject to some constraints) results in efficient solutions to the low density mo-
tion planning problem.

It is interesting to see if the paradigm for motion planning in environments with
low obstacle density applies to other classes of motion planning problems. The gen-
eral idea of subdividing the configuration space into cylinders—with bases in some
lower-dimensional subspace—in which the free space has constant complexity may be
applicable to configuration spaces other tkaa- W x D. The results from this paper
are, for example, immediately applicable to a robot moving in a three-dimensional world
while its motion is confined to a plane, e.g., a factory floor [31]. Other possible exten-
sions include motion planning with moving obstacles, multiple robots, and anchored
robot arms.

The dynamic version of the low density motion planning problem has been studied
by Berretty et al. [6]. They consider a setting in which the obstacles in the workspace
move at constant speed along polyline paths. The workspace is assumed to satisfy the
low density property at any time. The authors use the ideas from Section 3.1 to find a
nearly optimalO(n«(n) log® n) solution to the problem.

The usual approach to the exact solution of a motion planning problens tadthnded-
size robots with configuration spac€s, . . ., C; of dimensiongy, .. ., qc is to regard
these robots as one multibody robot. Planning the motion of the multibody robot takes
place in the composite configuration spéte- C; x - - - x C;. We believe the complexity
of the free part o to be close to the realizable lower boundnfn®) rather than to the
trivial upper bound ofO(n%), with q = g + - - - 4+ gc. The idea of a decomposition of
the free space by means of cylinders seems applicable if the workspace W is a lower-
dimensional subspace of each of the spdgesn that case, Wis a valid base space.
Vleugels [34] has shown how to restrict the search for a free path for two robots in their
composite configuration spa€zto a collection of lower-dimensional subspace<of
such that a path exists in the subspaces whenever one extsltme approach leads
to O(nlogn) andO(n Iog2 n) algorithms for two robots in two- and higher-dimensional
workspaces respectively, even though the complexity of the free spaces @andbe

For most industrial robot arms, the links close to the hand—the minor axes—are
considerably shorter than the links close to the base—the major axes. Corgitiiek a



586 A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels

robot arm of which then minor axes are not too large compared with the obstacles. Let
C be the configuration space and assume @ias the (g — m)-dimensional subspace
corresponding to the major axes. A pomt C’ fixes the placements of all major axes.

If mis a constant, then tha minor axes can only touch a constant number of obstacles
while the major axes are fixed, due to the low obstacle density. As a result, the lifting
of the pointp € C’ into C will be intersected by only a constant number of constraint
hypersurfaces, making a cylindrifiable configuration space a@d a valid base space.

It is however unclear at the moment how to compute base partitio@s in
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