

121

MOTION PLANNXNG IN THE PRESENCE of moving obstactes

John r. Beif
Micha Sharir TR-06-85

n in deneneni krs beon creproved

CURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. REGIPIENT'S CATALOG NUMAER
4. TITLE (and Subtitly) MOTION PLANNING IN THE PRESENCE OF MOVING obstacles	3. TYPE OF REPORT a PERIOD COVERED Technical Report
	6. PERTORMING ORG. REPORT NUMEER $T R-06-85$
7. AUTHOH(s) John H. Reif Micha Sharir	8. CONTRACT OR GRANT NUMEER(O) NC0014-80-C-0647
9. PErformilig organization name and adoress Harvard Urijversity こambridge, MA 021.38	10. PROGRAM ELEMENTPROJECT, TASK AREA WORKUNITKUMEEGS
11. EONTROLLING OFFICE NAME AND ADORESS Office of Naval Research 800 North guincy Street Arlington, VA 22217	$\begin{gathered} \text { 12. REPORT OATE } \\ 1985 \end{gathered}$
	13. NUMBEROF FAGES 26
14. MONITORING AGENC NAME A nODgESS(II dilfurens from Controlline Offica) Same as above	15. SECURITY CLASS. (of thia report)
	13m. ${ }^{\text {SECLASSSIFICATION/OOWNGAADING }}$
16. OISTRIEUTION STATEMENT (OA Tht: Report) unilmitea	
17. DISTRIBUTION STATEMENT (al the abetract menered in stack 36, il diferent tran unlimitea	Rqport)

19. KEY WORQS (Conti.ue on reverae alde If neseamary and idenity by block number)
robotics, dynamic movement, movement. planning, osstacle avoidence, PSPACE, collision avoidance, comkinatorial geometry

See reverse side.

DD FORM F FAN 1473 FITION OF 1 HOV 68 IS OBSOLETE

Abstract

- This paper investigates the computational complexity of planning the motion of a body B in 2-D or 3-D space, so as to avoid collision with moving obstacles of known. easily computed, trajectories. Dynamic movement problems are of fundamental importance to robotics, bat their computational complexity has not previously been investigated.

We provide evidence that the 3-D dynamic movement problem is intractable even if B has only a constant number of degrees of freedom of movement. In particular, we prove the problem is PSPACE-hard if B is given a velocity modulus bound on its movements and is $N P$ hard even if B has no velocity moduius bound. where in both cases B has 6 degrees of freedom. To prove uses time to encode confjurations iwhereas previous lower bound proofs in robotics used the system position to encode sonfigurations and so required unbounded number of degrees of freedom).

We also investigate a natural class of aynamic problems which we call asteroid avoidance problems : B. the object we wish to move, is a convex polyhedron which is tree to move by translation with bounded velocity modulus. and the polyhedral obstacles have known translational trajectories but cannot rotate. This problem has many applications to robot, automobile, and aircraft collision avoidance Nour main positive results are polynomial time algorithms for the 2-D asterod voodance problem with bounded number oi ubstaries as well as single expenentiai time and $\pi^{\rho\left(\log ^{n} n\right)}$ space algorithms for the $3-D$ asterold avoldance problem with an unbounded number of obstacles. Our technuques for solving these asterold avoidance problems are novel in the sense that they are completely urrelated.so previous algorithms for planning movement in the case of static obstacles

We also give some additional positive resuits for various other dymarnic movers problems, and in particular give polynomial time algorithms for the case in which B has no velocity bounds and the movements of obstacles are algebraic in space-time.

Motion Planning in the Presence of Moving Obstacles

[^0]
ABSTRACT

This paper investigates the compatational complexity of planning the motion of a body B in 2-D or 3-D space, so as to avoid collision with moving obstacles of knowr, easily computed. trajectories Dynamic movement problems are of fundamental importance to robotics, but their computational complexity has not previously been investigated

We provide evidence that the 3-D dynamic movement problem is intractable even if B has only a constant number of degrees of freedom of movement. In particular, we prove the problem is PSPACE-hard if B is given a velocity modulus bound on its movements and is $N P$ hard even if B has no velocity modulus bound where in both cases E has 6 degrees of freedom. To prove thease results wo nse a unique mathod of simulation of a Turing manhine whicn uses time to encode configurations fhereas prevous lower bound proofs in robotics used the system position to encode configurations and so required unbounded number of degrees oi freedom).

We also investigate a natural class of cynamic problems which we call asteroid avoidance problems B. the object we wish to move. is a convex polyhedron which is free to move by translation with bounded velocity modulus and the polyhedral obstacles have known translational trajectories but cannot rotate. This problem has many applications to robot, autumoble, ard aircraf: collision avoidance Our main positue results are polynomial time algorithms for the 2-D asterold avoidance problem with bounded number of obstacles as well as single expenential tume and $n^{\circ(\log n)}$ space algorithms for the $3-\Gamma$ asterold avoldance problem with an unuunded number of obstacles. Our terhmiques for solving these asteroid avodance problems are novel in the sense that they are completely urrelated to prevous algorithms for planning movement in the case of static obstacles

We also give some additional positive results for various other dynamic movers problems. and in particular give polynomial time algorithms for the case in which B has no velocity bounds and the movements of obstacles are alge braic in space-time

1. INTROLUCTION

1.1 Static Movers Problems

The static movers problevi is to plan a collision-free motion of a body B ir 2-D or 3-D space avoidin: a set of obstacles stationary in space. For example. B may be a sofa which we "ish to move through a room crowded with furmiture, or B may be ar articulted cotot arm which we wish to move in a fixed workspace

Reif. 79] first showed ihat a efneralized 3-D static movers problem is PSPACE-hard where B cerists of n linked polyhedra. Hoperoft, Joseph and Whitesides. 84] and Hopersfl. Sehwarts ano Sharir, 8<] later proved PSPACE. lower bounds for 2-D stat: movers problems. If the number of degrees of free dom of motion is kept consiant then the problem has polynomial-time solutions provided that the gecmetric constraints on the motion can be stated algebratcally SSchwartz and Shanr. B3b] Sore cifictent polynomial time algorithrns for various specific cases of statis movers problems are given in Lozano-Perez anc Wesley, 79 Reif. 79 Echwirtz and Shurir. 83ac. 8 sides 85 . Starir and Ane':Sheffi. B̄, O Cunlang. Sharir and Jap, 83. ODuntan, and Yap, e5]

1.2 Dynamic Movers Problems

In this paper, we consider the problem of planning a collision-free motion of a body B which is free to move within some $2-D$ or $3-D$ space S, containing several obstacles which move in S along known trajectories. Vie require that the obstacle trajectories be easily computable functions of time, and not be at all dependent on any movement of B. Some applications are:
(1) Robotic Collision Avoidance. B might be a robot arm which miust be moved through a workspace such as an assembly line in which various machine parts make predictable movements.
(2) Antomobile Collision Aroidance. B is an antombile with an automatio steering system which must avoid collision with other automobiles with known trajectories on a highway.
(3) Aircraft Collision Avoidance. B is an aircraft wheh we wish to automatic-pilot ihrough an airspace containing a number of aircraft and other obstacles with known flight paths
(4) Spacecraft Nevigation. B might be a spacecraft which we wish to automatically maneuver among a field of moving obstacles, such as asterolds.

Although the dynamic movers problem is fundamental to robotics, we know of no previous work which has considered the computational complexity of such problems

We can formally define a dynamic movers problem as foliows. Lei B be an arbitrary nxed system of moving bodies (each of which can translate and rotate, and some of which may bc hinged), having overall degrees of freedom B is allowed to move within a space S which contains a collection of obstacles moving in an arbitrary (but known) manner. To cope with the time-varying environmient we represert the time as an additional parameter of the configuration of B. Nore precisely, we define the free configuration space $F P$ of B to consist of all pars $[X, t] \in E^{(d+1)}$. where $X \in E^{d}$ represents a configuration of B, and such that if at time t the system B is at configuration X then B does not meet any obstacle ai that time. In this representation of FP a continuous motion of B is represented by a continuous arc $\left[x_{t}, t\right]=f(t)$. which is monctone in t Note that the slope of this arc (ielaiive to the t-axis) represents the "velocity" (1.e the rate of change of the parameters of the motion) of B lf we impose no restrictions on this velocity, any such t-monotone path corresponds to a possible motion of B. Honever, the dynamic version of the problem is usually furthe: complicated by imposing certain constraints on the allowed metions of B One such constrant is that the velocity of B has a bounded modulus the moduius is the Euchdean norm of the velocity vector) Such a constraint of a "unform" hound on velocity of B is particularly approprate if B is a single rigid body frse only to translate most of the versions of the priblem feg the asteroid avoldance problem; studied in this paper will be of this kind

Lsing the above terminology. the problem that we wish to solve is Given an intial free corifiguration ${ }^{\prime} X_{c} .0$ j and a final free configuration $. X_{1}, T$]. plan a contin:ous metion of B (if one exists) between these configurations which will avcid coltision with the obstacles. or else report that no such motion is possible Wote that we also specify the tume T at which wo want to be at the final corfigurations X_{1}, as will be sgen below, a variant of our techniques can be uscd to ottain mamial time movement of B) In other words we wish to find a rionotone patt: in FP between the two configu"ations $\left.X_{0} .0\right]$ and $\left.X_{1} .7\right]$. where the patr. satisfies the velocity modulus bounds constrant if :mposed)

The geal of this paper is to systematically investigate the complexity of various furdamental classes of dynamic moyement planming problems

1.3 Summary of Our Results

In summary, the main results of this paper are:
(1) PSPACE louer bourids of 3-D dynamic movement planning of a single disk with bounded velocity and rotating obstacles.
(2) decision algorithms for $1-D, 2 \cdot D$ or $3-D$ dynamic movement planning of a polyhedron with bounded velocity and purely trarislating obstacles.

We also have additional results for some dynamic movement plannug problems with unbounded veiocity.

1.4 Our Lower Bound Results for Rotating Obstacies.

In the case the obstacles rotate. they may generate non-algebrace trajectories in space-time which appear to make movement planning intractable Our main negative result. giver in Section 2. is a proof that 3-D dynamic movement planning with rotating obstacles is PSPACE-hard, even in the case the object to be moved is a disc with bounded velcoity. (We also have a related. IP-hardness result, described below, in the case B has no velocity bounds)

Remark. All previously known lower bound results for movers problems utiaze the position of B for encoding n bits, and thus require that B have Sin.) degrees of freedom. We use substantially different technıques ior our lower bound results. In particular, we use time to encode the configuration of a Turing machine that we wish to simulate (therefore we call our construction a "the-machune"). In our lower bound construction it suffues that D have only $O(:)$ degrees of freedom (In contrast, static movement planning is polynomia! time decidable in case B has only $O(i)$ degrees of freedom) The key to our PSFA-E-hardness proof is a "delay box" construction. which by use of rotating ristacles generates an exponential number of discoinected crmponents in the free configuration space

1.5 Eficient Algorithms for Asterjid Avoidance Problems

In Section 3 we investigate an interesing class of tractable dynamic movement problems where the obstacles do not rotate. An asteroid avoidanee problem is the dynamio movement problem where eich of the obstacles is a poiyhedron with a fixed (possibly distinct) translational veiocity aid direction. ard B is a convex polyhedron which may make arbitrary translationel movements but with a bounded velocity modulus Neither B nor the obstacles may rotate. (This problem r named after the well known ASTEROID video game where a spacecraft of limited velocity modulus must be maneuvered to avoid swiftly moving asteroids.) The problem is efficiently solved in the :-D case by hine scanring techniques but is quite dificult in the 2-D and 3-D cases

The assumptions of the asterold avoidance problem are applicabie in ran: of the above menticned practical problems. such as robot, automobile, atrpiane and spacecraft collision avoidance problems. where both B and the obstacles are approximated by convex polyhedra

The major positive results of this paper are a polynomial tume algorithrn for tie 2-D asterold avoldance problem with a bounded number of convex obstacles ds well as $2^{n^{0(1)}}$ time and $n^{\left.C(1) D_{n} n\right)}$ space decision algorthms for the $3-D$ aseroid avoidance problem with an unbounded number of obstacles The methods we develop (such as the use of normal movements) to solve asterod aviluance problenis are quite different irom those prevously used to solve static movement problems and seem likely to be fundamental to the efficient soiution of other problems in planming dyname movement.

He also have a simple polynomial time algorithm for the 3-D asterold avoidance problem with an unbounded number of obstacles where B has maximum velocity bound greater than any obstacle. and must only avoid collision.

1.6 Dynamic Movers Problems with no Velocity Bounds on B

In the final Section 4 of this paper, we consider the complexity of dynamic movement planning in the case B, the object to be moved, has no velocity modulus bounds. We first show that the 3-D dynamic movement problemf for a cylinder B with unrestricted velocity is $N P$-hard

We then consider algorithms for dynamic movement planning in the case in which no velocity bounds are imposed on the motion of B. and the geometric constraints on the possible positions of B can be specified by algebraic equalities and inequalities (in the parameters describing the possible degrees of freedom of B and in time). We show that this problem is solvable in polynomial time for any fixed moving system B (which may consist of several independent hinged translating and rotating bodies in $2-D$ or $3-D$).

2. A TIME MACHINE SIMULATION OF PSPACE

We show here that

THEOREM 2.1. Dynamic inovement planning in the case of bounded velocity is PSPACE-hard, even in the case where the body B to be moved is a disc
Proot. i.ei A^{\prime} be a deterministic Turing machine with space bound $S(n)=n^{0(1)}$. We can assume M has tape alphabet $\{0, i j$, stato set $Q=\{0, \ldots, Q \mid-1\}$ with initidi state 0 and accepting state 1. A configuration of M consists of a tuple $C=(u, q, h)$ where $u \in\{0, i\}^{S(n)}$ is the current tape contents, $q \in Q$ is the current staie, and $h \in\{1, \ldots S(n)\}$ is the position of the lape head. Let next $\{C)$ be the configuration immediately succeeding C. Given input string $w \in\{0 .:\}^{n}$ considered to be a binary number. the initial configuration is $C_{0}=\left(u 0^{S(n)-n}, 0,0\right)$. We can assume $\left(0^{S(n)}, \therefore 0\right)$ is the accepting configuration. We can also assume that if M accepts, then it does so in exactly $T=\bar{z}^{c S(n)}$ steps for some constant $c>0$. Thus if accepts iff C_{T} is accepting, where $C_{C}, C_{1}, \ldots, C_{T}$ is the sequence of configurations of if satisfyHj $C_{3}=\operatorname{noxt}\left(C_{i-i}\right)$ for $i=i, \ldots, T$

To simulate the computation of M on input w. we will consirist a $3-D$ instance of the dynamic movers problem where the body B to be moved is a disc of radius 1 , and where we bound the velocity modulus of B bv $v=: 00 Q: S(n)$. The basic idea of our simulation is to use time to encode the current configuration of M.

Let

$$
N=S(n)+\|\log Q \mid+\| \log S(n) \|
$$

We shall encode each configuration $C=(u, q, h)$ as ar v bit binary number

$$
\#(C)=u+q^{S(n)}+h 2^{S(n)+\eta_{c}} Q \mathbf{i} .
$$

so $0 \leq(C)<2^{N}$. A surface configuration of M is a triple $<u_{h} . q . h>$ where $u_{n} \in\{0 . \therefore\}$ is the value of the tape cell currently scanned. q is the current state and h is the head pusition Note that there are only a pulyomial number of surface configurations for each $\exists \in Q . h \in\{\therefore \ldots . S i n j\}$ and $u_{n} \in\{C .\{ \}$ we associate a distinguished position $\left.P \leqslant u_{n} .7 . h\right\rangle$ of B in 3 -dimensior.al space corresponding to surface configuration $\left\langle u_{n} . q, h\right\rangle$ of M

We will fix a distinguished initial pusition $p_{\text {: }}$ of B in 3 -dimensional space B is located at p_{0} at the initial time $t_{0}=u$. The dynamic movers problem will be to move B so that it is at position p_{c} also at time $i_{T}=2^{s(n)}+T 2^{N}$ We will construct a collection of moving obstacles which will force B to move to position p_{0} exactly at each time $t_{1} \geq w$ such that $\left|t_{1}\right|=\# C_{1}+i 2^{v}$, and $t_{1}<\left|t_{2}\right|+\frac{\dot{z}}{v}$ Thus the lower N bits of t_{2} encode the configuration C_{2} arid the higher bits encode the step number. (Note that io encodes the mitial configuration, at step 0 , and t_{T} encodes the final configuration at step T)

To simulate M, we need two kinds of devices, one to test that H is at a particular surface confguration. and the other to simulate one step of if at a specific surface configuration The first kind of device is constructed as follows To test a given bit b_{j}. in position j of t_{1}, we require that B be forced (by a semadsc rotating once every $\frac{2}{v}$ time units) to enter a cylindrical box (which we call a "test box") with (wo exit slots: exit c_{c} and exit ${ }_{1}$. We design the box so that it is swept by a semidisc once every $\frac{1}{v}$ time units, and furthermore $b_{2}=$: Iff exit ${ }_{1}$ is open iff exit ${ }_{0}$ is closed at time $\left|t_{1}\right|+\Delta_{j}$, where Δ_{j} is the time required by B to reach the entry slot of this test box. A semidisc rotating once every 2^{j} time units can be used to oper and close these exits at the appropriate times Thus we can design the test box so that in $\frac{6}{v}$ tirie units, B is forced to move through exito,

Hence (by using a balanced tree of such test boxes plus some additional sweeping semidiscs), we can force B to be mored from p_{c} to arrive in distinguistied position $P_{\left\langle u_{h}, q, h\right\rangle}$ in time at least $\left|r_{2}\right|+$: and less than $\left|t_{2}\right|+:+\frac{2}{2}$ Let $C_{i+1}=\operatorname{next}\left(C_{\mathrm{t}}\right)=\left(u^{\prime}, q^{\prime}, h^{\prime}\right)$ be the configuration of.H immediately follow ing C_{2} Since $\# C_{i+1}-\# C_{i}$ depends only on $\left\langle u_{h}, q, h\right\rangle$, there is a function $g\left(u_{n} . q . h\right)$ such that $\# C_{2+1}=\# C_{i}+g\left(u_{h} \cdot q \cdot h\right)$ and $g\left(u_{h} . q . h\right)<2^{N}$ Hence we will require an additional gadget. to be described below. to force B to move front position $P_{\left\langle u_{h}, ~, ~ h\right\rangle}$ back again to position p_{0} at time t_{t+1} such that

$$
\left\lfloor t_{t+1}\right\rfloor=\# C_{+1}+(i+0) z^{n}=\left\{t_{2}\right\rfloor+g\left(u_{n} \cdot g \cdot n\right)+2^{v} .
$$

and $t_{i+1} \leq\left|t_{i+1}\right|+\frac{2}{v}$. The total time delay for this move must be

Thus our key remaining construction still required is a "delay Δ box" - (where Δ is a number less than $2^{2 N}$) if B enters the delay boxat any lime $t \geq 0$ such that $t<|t|+\frac{2}{v}$, then B must be mide t, ext the delay box at a time at least $\lfloor t\rfloor+\Delta$, and at most $\lfloor t\rfloor+\Delta+\frac{2}{v}$ Note we can assume Δ is greater than a constant. say : 0 . or else the construction is trival (Our construcion is not trivial. however, in the general case where Δ is exponential in N since it is based on an explicit construction of an exponential number of disconnected components in the free config:ration space. using only a small number of moving (essentially rotating) obstactes having polynomially describable velocities)

Our delay box consist = of a fixed torus-shaped obstacle. plus some addrtional moving obstacles (see Figure :). We cas precisely define this torus as the surface generated by the revoiution of an (imagirary) circle of radius 3 around the x axis. so that its center is always at distance $\frac{\Delta v}{2 \pi}$ from the x axis, and so
that the circle is always coplanar with the x-axis. Let θ be the angular position of a point with respect to rotation around the x-axis

The corus will have open entrance and exit slots at $\theta=0$ and $\theta=\pi$. respectively, just sufficiently wide for entrance and e:xit of disc B from the torus. The idea of our delay bcx construction will be to create various disconnected "free spaces" within the torus in which B must be located. These free spaces will be constructed so that they move within the torlis π radians of θ (i.e., make $: / 2$ a revolution) in Δ time unts. Once B enters the torus via the entrance slot, our construction will for $2 \mathrm{e} B$ to be located in exactly one such free space, and revolve with it around the torus until B leaves the interior of the torus at the exit slot after the required delay of Δ time units.

We now show precisely how to create these moving "free spaces". A moving obstacle D moves through the interior of the torus with angular velocity (with respect to θ) of $16+\frac{1}{2 \Delta}$ revolutions per time unit. D consists of three discs D_{0}, D_{1}, D_{2} placed face to iace so that their centers are nearly in contaci and so that they are each coplanar with the x-axis. Discs D_{0}, D_{1}, D_{2} are of radus almost 3. D_{0} has a $1 / 4$ section removed, D_{1} has a $3 / 4$ section removed, and D_{2} has a $1 / 2$ section remilued. D_{1} and D_{2} each rotate around their center, but D_{0} does not. Let ψ_{i} be the angular displacement of D_{i} as it rotates around its center. for $i=1,2$. We set the angular velocity of D_{1} with respect to ψ_{1} to be the same as the angular velocity of D_{1} with respect to θ. We set the angular velocity of D_{2} with respect to ψ_{2} to be 32Δ revolutions per cime unit (see Figure 2)

We assume that when D has angular displacement $\theta=\frac{3 \pi}{2}, D_{1}$:s posithoned so that the remaining sold quarter section of D_{1} completely overlaps the removed quarter section of D_{0}. This creates an immobile "dead space" at $\theta=\frac{3 \pi}{2}$ every roughly $\frac{1}{i 6}$ time units. wheh B cannot cross because its velocity is too small), and will force B (if it is to avoid collision) to exit the torus via the exit slot at $\Theta=\pi$. However, while D has angular displacement Θ. $0 \leq \theta \leq \pi$. the removed $3 / 4$ section of D_{1} completely overlaps the rernzved quarter section of D_{0} which thereiore remains completely unobscured (see Figure 3).

Observe that for $0 \leq \Theta \leq \pi$ a "free space" is created during about $: / 2$ revclution of D_{2} around its center (i e. When the removed quarter section of D_{0} and the removed half-section of D_{2} sufficipntly nuperar to asocmmodata B between them), and B can be located in this free space without contacting an obstacie On the next roughly $1 / 2$ revolution of L_{2} around its center. a "dead space" is created (t.e., when the removed sections of discs $D_{0} . D_{2}$ de not sufficiently overlap), and B cannot be located in this dead space. Since D_{2} rotates around its center at most 2Δ times every time interval in which D rotates through the torus, at most 2Δ such free spaces are reated during one revolution of D around the torus (see Figure 4).

Since D makes an integal number plus $\frac{1}{2 \Delta}$ revolutions of Θ every inme unit. each free space moves $\frac{1}{2 \Delta}$ revolutions of A evry time unit. and thus each free space moves $i / 2$ a revolution of θ in d time units as required in our construction. Moreover we have chosen the size of the torus and $\Delta \geq 0$. so that it is easy to verify that the maximum velocity u of B is sufficient for B to enter the torus, to move along withon a free spare and to finally exit the torus. Finally, we claim that B cannot move between any two distinct free spaces
while in the interior of the torus if this was possible, then B cculd move across a dead space without colliding with D. But D makes a revolution of 3 at least every $\frac{1}{16}$ time units in this time. B fihich has maximum velcoity v) can move at most distance $\frac{v}{: 6}$ which is less than the minimum distance $\frac{1}{4 \Delta} \frac{\Delta v}{2 \pi} 2 \pi=\frac{v}{2}$ between any two free spaces, a contradiction

Finally. to complete cut construction, we observe that it is easy (by use of a binary tree of cyindrical tube obstacles and sweeping semidises) to force B to move from the exit of each such torus to p_{c}. so that the overail delay in reaching p_{0} is Δ. as required. A description of the above construction can easily be computed by an $O(\log n)$ space bounded deterministic Turing Machme.

Remark: This "tıme-machine" construction can be simplified further, to the case involving dynamic movement planning in 2-D space in the presence of a s.ngle moving obstacle which is a single point Givng this obstacle a rather irregular (but still polynomially describable) motion. we can simulate both testing devices and delay dences and any additional obstacles needed to force B to move from and back to the starting position p_{c}. Nevertheless, we prefer the construction given here since it uses more ratural and regular kinds of motion (We are grateful to Jack Schwartz for maling this observation.)

3. EFFTCIENT ALGORITHMS TOR THE ASTEROID AVOIDANCE PROBLEM

Our PSPACE-hardness result of the previous section indicales that it may be inherently difficult to solve dyamic movers problems where the obstacles rotate Therefore we confine our attention to the following case, which we call the asteroid avoidance problem

Assume that B is an arbitrary convex polyhedron in d-space which can move only by translating with maximum velocity modulus u but without rotaiing (so that its motion has oniy d translational degrees oi freedom) We also assume that each of the obstacles is a convex polyhedron which meves (without rotating) at a fixed and known velocity (which may vary from one obstacle to another). Finally, we assume the obstacles never collide with each other The free configuration space F f (including time as an extra degree of freodom. as above) is ($d+i$)-dimensional. While the case $i=:$ is easy to solve. the cases $d=2,3$ of the asteroid avoldance problem are qute challenging. and require some interesting algorithrnic techniques

We have efficient algorithms for various asterold avoldance problems These results utilize some basic facts described in the next two subsections, of which the most important is that normal movement suffice

3.1 Reduction to the Movement of a Point.

Before continuing, we use the foliowing simple device isee (lozano-Perez and Wesley, 79]) to reduce the problem to the case in which B is a single moving point. Let B_{C} denote the set of points occupied by B at time $t=0$ Replace each moving obstacle C by the set $C-B_{C}$ (which consists of pontwise differences of points of C and points of B_{0}). Suppose that we wish to plan an admissible motion of B from the initial position B_{C} to a final position B_{1}, and let X_{1} denote the relative displacement of B_{1} from B_{0}. Then such a motion exists if and only if there exists an admissible motion of a single point from the origin to X_{1} which avoids collision with the moving displaced bodies $C-B_{0}$ (each such body moving with the same velocity as the obstacle body C) Since the displaced bodies are also convex polyhedra we have reduced the problem to
a simular one in which B can be assumed to be a single moving point. Hereafter in this section, we assume this.

3.2 Normal Movements

Ye will require some special notation for various types of movement of B over a given time interval. In all the following types of movement of B, we allow (the point) B to touch an obstacle boundary, but do not allow it to move to the intericr of any obstacle, and require that B not exceed a maximum velocity modulus v.
(1) A static movement is one in which B does not move (i.e., has 0 velocity)
(2) A tirec: movement is a movement of B with a constant velucity vectu: (with modulus $\leq v$). During a direct movement, B may touch an obstacle only at the endpoints of that movement.
(3) A contact movement is a movement of B in which B moves on the buyndary of an obstacle C (i.e.. the boundary of the region of FP induced by the movement oi C). In the $2-D$ asieroid avoidance problem, we also require that any such (maximal) contact movement begin and end at (contact with) vertices of an cbstacle. In the $3-D$ asteroid avoidance problem. we require that each contact movement begin and end only at (contact with) edges or vertices of an obstacle.
(4) A fundamentai movement of B is a rarect movement followed possibly by a contant movement.
(5) A normal movernent of B is a (possibiy empty) sequence of fundamental movements of B where the movements must satisify the following restrictions:
R1: Between any two distinct direct movements, there must be a contact movement. and
R2: No two distinct (maximal) contact moverrents are allowed to vist (the boundary of) the same obstacle.
Note that R : requires that a normal movement does not change its direcLion excepi while in contact with an obstacle K 2 ensures that a normal movement consists of $\leq k+$: fundamental movements, where k is the number of obstacles
LFIMMA 3.1. B has a collision-free movemett $p(t)=\left[X_{i}, t\right]$ from [$\left.X_{c}, 0\right]$ to $\left.{ }^{\circ} X_{T}, T\right]$ iff B has a sequence of fundamental movements from. $\left.{ }_{i} X_{0}, 0\right]$ to ${ }_{i} X_{T}, T$] satisfying R1
Proof. If B has a sequence of fundamental movements from ' $X_{C} 0$] to X_{T}, T]
\therefore where B may possibly touch some of the obstarles. thein since the obstacles are assumed never to collite. and the mitial and final dositions of B are free, it is easily seerı that by a perturbation of the given sequence of movements, one can obtain a colhsiciffee movement from $\left[X_{0}, 0\right]$ to $\left.X_{T}, T\right]$.

For the conversc part, consider the class K of all puths $p(t)=\left[X_{t}, t\right]$ in space-time from $\left[X_{0}, 0\right]$ to $\left[X_{T}, T\right]$, whose slope at any given time is of modulus at most v. and which avoids penetration into the interior of any obstacle By assumption K is not empty let $\pi_{0} \in K$ be the shortest. path in K (where the length oi a path in K is its Eucidean length $1 E^{E^{+\alpha}+1}$).

Observe that if $\pi \in K$ and if $\left\{X_{1}, t_{1}\right],\left\{X_{2}, t_{2}\right\} \in \pi$, then the path π. obtalied by replacing the portion of π between the se two points by the straight segment joining them (in space-time), is such that its slope at any given time is u Since the space-time trajectory of each obscacle is a convex polyhedron, it follows, using standard shortast-päth arguments, that n_{0} must be a polygonal path.
with consis s of an äluernating sezucroe ${ }^{*}$ free strâight segments and polygonal subpaths in which B; a aratat \because... :n obstacle Noreover, the vertices of ic must he along edges of the share-in.: .rajectories of the monng obstacles. sn they correspond to consacts of B vith obstacle vertices Thus π_{c} is a sequence c fundumental move.arits setiafying R1.
Lemma 8.2. B has a collesion-j:ee movement from $\left[X_{0}, 0\right]$ to $\left.X_{T}, T\right]$ iff B has a ro mal movement frani $\quad Y_{0}, \mathrm{O}_{4}$:o [$\mathrm{X}_{\mathrm{T}, \mathrm{T}}$].
Proof. By Lemma 3.1, we can assume B has a movement ${ }^{\prime} X_{t}, t$] defned for $0 \leq t \leq T$. consisting of a sequence of fundamental movements beginning at times $0 \leq t_{1}, t_{2}, \ldots, t_{m_{2}} \leq T$ sathifying $R i$. If restriction R. 2 is volated then there mut be times t_{2}, t_{j} such $\left[X_{t}, t\right]$ is in contact with the same obstacle C d aring times t_{1} and t_{j}. But since C is convax, its trajectory C^{*} in space-time is also convex. It is then easy to construct a single contact path $\left.X_{t}, t\right]$ along C^{*} fnr $t_{2} \leq t \leq t$, such that $X_{i_{1}}{ }^{\prime}=X_{t_{1}}$ and $X_{1_{2}}{ }^{\prime}=X_{i^{\prime}}$, and such that the slope of this !ea:h a+ : my given time is of modulus $\leq v$. Repeating this process as required. we get a no:inal mevement satisfying both R1 and R2.

The other direction follows from Lemma 3. $\mathrm{S}^{\text {. }}$

C. 3 The Asteroid Avoidance Problem with Jne Degree of Freedom of Movement

We will tirst consider the case of a $i-\bar{D}$ asterod aveldance problem where vie assume B is constrained to move along a fixed line (in th. presence of 2-D convex polygonal obstacles which can pass through that line) The problem is not difticult in this case sinne D has only one degree of freedom movemeni Aevertheless, a brief investigation of this case will aid the reader to understand better the techniques which we use for the more difficult cases of $d=2.3$ degrees of freecom.) Let n be the total number of obstacle edges Let $k \quad b \in$ the number of obstacles. By the reduction of Section 3: . We can assume B is a single peint.
THEOREX 3.1. The astergic doodunce problem :an be solyed in time $O(n \operatorname{lng} n)$ If B is constrained to move enily along a 1 -dimensional line L
Froof. The key observation is that the (space-time) configuratior space $F P$ in ins case is a 2 -dimensional space bounded ty polygonal barriers generated by the uniforr motions along L. of the intersections of obstacle edges with L we explicitily construct $F P$ using a scariline technique. We first s:rt in rimo
 first intersect L. Let thes sorted sequence be t_{i}, \ldots, t_{m} (where $m=O\left(r_{2}\right)$) A_{s} we swee; the snan ire across time, we ratantan for each tome the set $F P$, uf all accessible ince conforations at tume t, and also a surted list Q of rhe triersections of obstacle edges with l at tire t Suppose X_{c}. $0 j$ is the initial configuration of B. Initiaiiy $F P_{0}$ consisis of the single p oint $\left.X_{0}, 0\right]$ in space time, and the initial value of Q is easily calculated in time $O(n$ iog n) lnduc. tively, suppose for for some $t_{i} \geq 0$ we have constructed $F P_{t_{i}}$. We represent $F P_{t_{1}}$ as an ordered. finte sequence of disjoint intervals $I_{1}, \ldots, I_{s_{i}}$ of L. whose union is the set of all points X such that there is a collision free movement o! B. whose velocity modulus never exceeds v. from: $\left\{X_{0}, 0\right]$ to $\{X, t$,$\} Lel t_{1+1}$ be the next time foilowing $t_{\text {: }}$ that an obstacle vertex intersects $L \quad F P_{t_{i+1}}$ can easuly be constructed from $F P_{t_{i}}$ by observing that (1) the bourdaries of each of the atervals I_{j} expand with velocity u, and (?) an obstacle deletes any portion of an interval $I_{\text {, }}$ that it intersects on the line L. inoreover, this mersection is itself an interval (since the object is convex) whose endpoints move with constant velocities for t in the interval $\left.t_{i}, t_{i+1}\right\}$

From (2) it follows that the total number of intervals ever inwerted by the algorthm into L is ai most $2 k \leq O(n)$. Each step in the construction of $F P_{t_{1+1}}$ from $E F_{4}$ can thus create a new interval in I. chanse the velonity of an endpoint of such an interval already in L, and optionally also merge pairs of such adjucert intervals into single intervals. But the overall number of such merges carnot exceed the nurnber of irtervals ever inserted into L, i.e. is at most $O(n)$. The total time of the algorithm is therefore $\dot{U}(n \log n)$

3.4 A Polynomial Tune Algorithm for the 2-D Asteroid Avoidance Problem for a Bounded Number of Obstacles

In this subsection, we consider the 2-D asteroid avoldance problem. The configuration space $F P$ in this case is 3 -dimensional Wie carn assume, by the reduction of Section 3.1, that B is a single point. We wish to move B froni ' $\left.X_{0}, 0\right]$ to $\left[X_{T}, T\right]$. The obstacles C_{1}, \ldots, C_{k} are k convex polygons Let n, the size of the problem, be the total number of vertices and edges of the obstacles. Wo will show that if k is a constant, then we can solve the problem in $n^{0(1)}$ time.

Our hasie techmique will be te first consider the problem of computing the time interyds in which single direct ani contact movements can be made, and then use a recursive method to determine the time intervals in which it is posisble to do normal movements.

For technical reasons, we consider the initial and final positions of B to be adcitional immobile "obstacles" $C_{0}=X_{0}, C_{k+1}=X_{T}$. each consisting of a single vertex. Let $V\left(C_{j}\right)$ be the set of vertices of obstacle C_{j} for $j=1 . . . k$ and let $V\left(C_{0}\right)=\left\{X_{0}\right\}$ and $V\left(C_{k+1}\right)=\left\{X_{T}\right\}$. Let $V=\bigcup_{j=0}^{k=1} V\left(C_{2}\right)$ be the set of all vertices. Note that for each $j=0 \ldots, k+!$, all vertices $a \in V\left(C_{j}\right)$ undergo a translational motion with the same fixed velocity vector

We will use I to denote the set of times a certan event will occur. Let II: denote the minimum number of disjoint intervals into which the points of I can be paritioned. Clearly. I can be written using $O(\cdot I)$ inequalities we will store the intervals of I in sorted order using a balanced binary tree of size $O_{\prime}^{\prime} I$) in which we can do insertions and deletions in time $U(\log I:$).

Foreach a a' $\quad \in V\left(\hat{c}_{j}\right)$, let $C M_{a, a} \cdot(I)$ be the set of all times $t^{\prime} \geq 0$ for which vertex a can be reached at time t ' by a contact movement of B on the boundary of C_{j} startinf at vertex a at some time $t \in I$.
 mora ioga $a(1)=|\dot{\prime}|$
\because Proof. There are fixed reals $0 \leq \Delta_{1} \leq \Delta_{2}$ (possible infinte) such that vertex α can be reached from vertex a by a contach movemert withon mamum delay Δ_{1} and maymum delay Δ_{2} These delay parancters $\Delta_{1} A_{2}$ gan be easply computed (by computire the sum of tine dejay bounds required for near-contact movement of carn of the edges oi C_{j} irom a to a) in time $O\left(V_{(}\left(C_{j}\right)\right.$;) Then

$$
C M_{u, u}(i)=\left\{t_{1}, \Delta_{2}+\hat{i} \leq t \leq \Delta_{2}+t, t: I\right\}
$$

For each a.a' c V. lel $D M_{a . a}(1)$ be the set of a!! time: $t \geq 0$ such that ver. tex a can be reached at tame i by a singiedmect nowament of B starting at wrtex b a some tume $t \in I$

To ca chatate Dida.u.(1), we consider the followng suoproblem. Find the sot
 reached from the positioneir) ci a ot inme: by a smel citeret movenont

Fix a time t and let $A^{\prime}(t)$ denote the set of all times t such that the slope of the motion from $\left.{ }^{\prime} a(t), t\right]$ to $a^{\prime}\left(t^{\prime}\right), t$] has modulus $\leq v$. Flainly $A(t)$ is a closed interval $\left[t_{1}, t_{8}\right]$. Consider the triangle Δ whose corners are $\left.\left.u=a ; t\right), t\right]$. $\left.\left.u_{1}={ }^{\prime} a^{\prime}\left(t_{1}\right), t_{1}\right] . w_{2}=a^{\prime}\left(t_{2}\right), t_{2}\right]$. For cach obstacle \mathcal{C}_{j}. Its space-time irajectory $C_{\text {; }}$ intersects Δ at a convex set Δ_{j} The two tangents from w to Δ_{j} cut an interval
 which are not reachable from $a(t), t]$ by a single drect movement, due to the interference of C_{j} Let $I_{j}(t)$ derote the projection of $A_{j}(t)$ onto the t-axis The set $F_{a, 6}$ is then

$$
\left\{\left(t, t^{\cdot}\right): t \notin \bigcup_{j=1}^{t} I_{j}(t)\right\} .
$$

Suppose $F_{a, \alpha}$ has been calculated then

$$
D M_{a, a}=\left\{t^{\prime}: \exists t \in I,\left(t, t^{\prime}\right) \in F_{a, a}\right\}
$$

To calculate the two-dimensional set $F_{a . a}$ we can use a standard technique of sweeping a ine $t=$ const across the (t, t)-plane Sote that for each t and j. each ardpoint of $I_{j}(t)$ is determined by a specific vertex of C_{j}, and that. given such a verter. u the corresponding erdpoint $e_{\psi}(i)$ of $I_{j}(t)$ is an algebraic function in t si constant. degree. Hence the structure of $F_{a \cdot a} \cap\{t=$ const $\}$ can change during the sweeping only at points t where two functions $\varepsilon_{v}(t), e_{v}(i)$ overlap, or wher: one aich function has a vertical tangeni, i.e. at $O\left(n^{2}\right)$ points ic most. This readily implies
lemme 3.4: $F_{\text {a.a }}$ can be calculated in time $O\left(n^{2} \log n\right)$, and stored in $C\left(n^{2}\right)$ space Furthermore, for each $1, D M_{a \cdot a}(I) \leq\left(I,+n^{2}\right) k$, and $D M_{\mathrm{a}} \cdot(I)$, can be calcuioted in time $\left(: I+n^{2}\right)$ k.
Proof: The first part follows by the sweeping technique mentiontd above. The second part follows from the icict that, as a rescit of the swe aping, the t-awis is spht into $O\left(n^{\circ}\right)$ intervals, over each one of which the combinatorial structure of $F_{\text {a.a }}$ "emans constant, anc' consists of at most $k+$! disjoint intervals. Heace, merging these intervals with the intervals of I. we can calculate $D W_{a}(I)$ in a straighiforward mariner within the asserted time bound, ard also sbtain the requre 1 bound on the complexity of that set.
THEOREM 3.2. The asterori ajoiaiance proviem cur te solied in time $O\left(n^{2(k+2)} k\right)$ and $h: n c e$ in time $n^{o(1)}$ in the case of $k=O(i)$ obstacles
Proof. Inutully tet $I_{X_{0}^{(C)}}^{(C)}=\{t, 0 \leq t \leq T\}$ and let $f_{a}^{(C)}=\phi$ for each $\alpha \in v-\left\{X_{0}\right\}$ Induativelv for some $i \geq 0$, suppose for each $a \in v . I_{a}^{(t)}$ is the set of times t that vertex a is reachabl: from $\left.: X_{0}, 4\right]$ by a (collision-frec) movement of B consist.ng $0: \therefore i$ fundamental movernents Thenfor each $a \in \mathcal{V}$.

$$
J_{a}^{(v)}=\bigcup_{a \in V} D H_{a \cdot a} \cdot\left(I_{a}^{(t)}\right)
$$

is the set c : times that vertex a is reachabie from ${ }^{-} X_{0}, 0$] by a movement of B consistin: of $s i$ fundamental movements followed by a direct movement Hence if : $a \in V\left(C_{3}\right)$ then

$$
I_{a^{\prime}}^{(\underline{l}+1)}=\bigcup_{a \cdot c \cdot\left(C_{1}\right)} C \cdot M_{a \cdot a \cdot}\left(J_{a}^{(t)}\right)
$$

is the sui. of turis that vertex a " is reachable from " X_{0}. 0] by a movement of 3 consistime of $\leq i+$: fundamental movements Thus for each a $\in V . I_{a}^{(k+1)}$ is the set of tinces vertex a is reachable by a normal movement of B from [$\left.x_{C} .10\right]$ By lemma 32 such a normal movement sufices So $T \in I_{X_{T}^{(k+1)}}$ if there
exists a collision-free movement of B from X_{C}. 0] to $\left.{ }^{-} X_{T}, T\right]$.
Lemmas 3.3 and $3.4 \mathrm{imply}: I_{a}^{(2)} \leq O\left(n^{2 i+2} k\right)$ and so the $i-t h$ step takes time $O\left(n^{2}\left(n^{2 i+2} k+k \log \left(n^{2 i+5} k\right)\right)\right)$. Therefore, the total time is $O\left(n^{2(k+2)} k\right)$.

3.5. A Decision Algorithm for the 3-D Asteroid Avoidance Problem with an Unbounded Number of Obstacles

We next consider the 3-D asterold avoldance problem. The configuration space $F P$ is in this case \leq-dimensional. By the results of Section 3.1, we can assume we wish to move a point B from X_{c}. 0] to $: X_{T}, T$] avoiding k convex polyhedral obstacles C_{1}, \ldots, C_{k}. in this case the size n of the problem is the total number of edges of the polyhedra. We whil show that the problem is decidable.

Recall that each contact movement is required to begin and end at an obstacie edge or vertex. We will consider cach obstacle edge $e=(u, v)$ to be directed from u to v. If e has length L we will for $0 \leq y \leq:$. let $e(y)$ denote the point on e at distance $y \cdot L$ from vertex u, so $e(0)=u$ and $\rho(i)=v$ Let $E=\left\{e_{1} \ldots, e_{n}\right\}$ be the set of all obstacle eciges. Let $E\left(C_{j}\right) \subseteq E$ be the set of (directed) edges of obstacle C_{j} for $j=1$. . . . k

For technical reasons we agair consider the initial and final positions of \bar{B} to be immobile obstacles $C_{0}=\nu_{0}$ and $C_{k+1}=X_{T}$. We consider $E\left(C_{0}\right)$ to contain a single edge of length 0 at point X_{C} and $E\left(C_{k+1}\right)$ to contain a single edge of length 0 al point X_{T}.

An open formula $F\left(y_{1}, \ldots, y_{r}\right)$ in the theory of real closed fields consists of a logical expression containing conjunctions, disjunctions, and negations of atomic formulas, where each atomic formula is ain equality or inequality involving rational polynomiais in the variables $y_{1} \ldots . y_{r}$. A (partially quantified) formula in this theory is c formula of the form $Q_{1} y_{1} \cdots Q_{Q} y_{a} F\left(y_{1} \cdots y_{r}\right)$ where $a \leq r$. and where each Q_{2} is an existential or a universal quantifier. Such a formula will be called an a!gebraic predicate; its degree is the maxinum degree of any polynomial within the formula, and its size is the number of atomic formulas it contans. We will use the following results:
LFima 3.5 Collins. 75]. A given formuia of the theory of real closed fields of size $r_{\text {. }}$ constant degree, with r variables can be decided in deterministic time $n^{2^{(i(r)}}$
whMMA 3.6 EBen-Or, Kczen, and Pelf, B4]. A given formula of the theory of ron! !lasod folds of sizen ennstant dogreo and r variables ann be decided in $n^{\rho(r)}$ space
$\because \quad$ We will first show that we can describ: by algebralc predicates the time intervals for which fundamental movements can be made, and then use the existential theory of real closed fields to decide the feastomty of movements consisting of finte sequences of these fundamental movements. Below we fix $e_{i} \cdot e_{:} \in E\left(C_{j}\right)$ and $0 \leq y, y^{\prime} \leq$ Let cmifi$\left.y^{\prime} \cdot y^{\prime}, \Delta\right)$ be the predicate which holds just if B has a contact movement along a single face of \mathcal{C}_{j} from $e_{\imath}(y)$ to $\boldsymbol{e}_{i}(y)$ with delay Δ (i.e the motion takes Δ :irne units)
LFHMA 3.7 cm ($i, i^{\prime}, y, y^{\prime}, \Delta^{\prime}$) can be construsted in polynomial time as an algebran. predicate of size $n^{0(1)}$ with constcnt degree and no quantified variables.
Proof. Let $f \operatorname{ace}\left(2, i^{\prime}\right)$ be the predicite that holds iff e_{1} and e_{1}, are both on the same face of an orstacle. Let $\left(u_{x}, w_{y}, u_{z}\right)$ be the velocity vector of obstacle C_{j}. Let $\left(u_{x}, u_{y}, u_{z}\right)$ be distance vector from $e_{i}(y)$ to $e_{i}(y)$. where u_{x}, u_{y}, u_{z} are all linear funcions of y, y will move in contact with C_{j} with velocity vector (v_{x}, v_{y}, v_{z}) with modulus

$$
\sqrt{v_{x}^{2}+v_{x}^{2}+z_{x}^{2}} \leq v
$$

If B moves from $e_{i}(y)$ to $e_{i}\left(y^{\prime}\right)$ with delay Δ then we must have $v_{x} \Delta=u_{z} \Delta+u_{x}, v_{v} \Delta=u_{y} \Delta+u_{y}$, and $v_{z} \Delta=u_{z} \Delta+u_{z}$

Solving for v_{x}, v_{y}, v_{z} and substituting into $v_{x}^{2}+v_{u}^{2}+v_{x}^{2}$, we derive the formuia

$$
\left[\left\{\left(\frac{u_{x} \Delta+u_{x}}{\Delta}\right)^{2}+\left(\frac{u_{y} \Delta+u_{y}\left(i, i^{\prime}, y, y\right.}{\Delta}\right)^{2}+\left(\frac{u_{z} \Delta+u_{x}}{\Delta}\right)^{2}\right] \leq v^{2}\right) \wedge f \text { ace }(i, i)
$$

Let $d m\left(i, i, j, y^{\prime}, t, t\right)$ be the predicate which holds just if B has a (collision-free) direct movement from $e_{i}(y)$ at time t, to $e_{i}(y)$ at ume t. The following is proved using, arguments similar to those used in Lemma 3.4
 algebrair predicate of size and degree $n^{\circ(1)}$ with no quantified variables.
Proof. For a given set of obstacles $\mathcal{C} \subseteq\left\{C_{1}, \ldots, C_{k}\right\}$ let $d m(i, i, y, y, t, t)$ be defined as above, except that we allow possible collisions of B with obstacles in $\left\{C_{1}, \ldots, C_{k}\right\}-\mathcal{C}$. Tien $d m_{p}\left(i, i, y, y^{\prime}, t, t^{\prime}\right)$ ran easily be given as an algebraic predicate of size $n^{(2)}$ bounding the time t to a single (possibly empty) interval. whose bounds vary algebraically with t

Inductively we can write $\operatorname{dm}_{1 c_{1} .} . a_{1}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$ as the conjunction of $\left.d m_{\left\{c_{1},\right.}, c_{-1}\right\}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$ and an algebraic predicate of size $n^{o(1)}$, restricting ' t ' outside a single (possibly empty) interval of time. Thus $\operatorname{dm}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)=d m_{\left\{c_{1}\right.} . \quad . c_{k} \mid\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$ is an algebraic predicate of slze $n^{0(1)}$.

Let $f m\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$ hold iff there $1 s$ a fundamental movement of B from $e_{i}(y)$ at time t to $e_{i}\left(y^{\prime}\right)$ at time \mathfrak{c}^{\prime}. Lemmas 3.7 and 3.8 imply

$$
f m\left(i, i^{\prime}, y, y^{\prime}, t, i^{\prime}\right) \equiv \operatorname{dm}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right) \vee c m\left(i, i^{\prime}, y, y^{\prime}, t^{\prime}-t\right)
$$

$$
\vee \exists i^{\prime \prime}, y^{\prime \prime}, \Delta \quad \operatorname{dm}\left(i, i^{\prime \prime}, y, y^{\prime}, t, t^{\prime}-\Delta\right) \therefore c m\left(i^{\prime}, i^{\prime}, y^{\prime \prime}, y, \Delta\right)
$$

LFMMA 39. fm(ixyytt) nan be constmanted in polymomial time as an algebraic predicate of size $n^{0(1)}$, constant degree and $O(\dot{i})$ quantified wariables.

Let $m\left(i, i, y, y^{\prime}, t, t\right)$ be the predisate that halds iff B has a collision-free movement from $\varepsilon_{i}\left\{(y)\right.$ at time t to $e_{i}\left(y^{\prime}\right)$ at time t. Note that the formula for $m\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$ appears to require $\Omega(n)$ quantified varıarles. We now show
L\&HMA 3.10. $\quad m_{6}(i, i, y, y, t, t)$ can be constructed in polynomial time as an algebraic predicate of size $n^{0(1)}$ with constant degree using $O(\log n)$ guantified variables.
Proof. For each $t=0.1 . \ldots . \log n$, we define $m^{(n)}\left(i, i, y, y^{\prime}, t, t^{\prime}\right)$ to be predicate that hoids iff B has a movernent from $e_{i}(y)$ at time t to e. (y ') at tume t consisting of a sequence of $\leq \mathcal{Z}^{\prime}$ fundamental movements. Clearly. $m^{(0)}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)=f m\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$. He can then define

$$
m^{(i+1)}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right) \equiv \exists i^{\prime \prime}, y^{\prime \prime}, t^{\prime \prime}
$$

$$
m^{n}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime \prime}\right) \wedge m^{n}\left(i^{\prime}, i^{\prime}, y^{\prime \prime}, y^{\prime}, t^{\prime \prime}, t^{\prime}\right)
$$

However, this definition, when applied recursively yields a formula of size $\geq Z^{n}$. A more compact definition 15 gotten by

$$
\begin{gathered}
m^{(l+1)}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right) \equiv \exists i^{\prime \prime}, y^{\prime \prime}, t^{\prime} \forall a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{0} \\
\left\{\left(a_{1}=i \wedge a_{2}=i^{\prime} \wedge a_{3}=y \wedge a_{4}=y^{\prime \prime} \wedge a_{5}=t \wedge a_{6}=t^{\prime}\right) \vee\right. \\
\left.\left\{a_{1}=i^{\prime \prime} \wedge a_{z}=i^{\prime} \wedge a_{5}=y^{\prime \prime} \wedge a_{4}=y^{\prime} \wedge a_{5}=t^{\prime \prime} \wedge a_{8}=t^{\prime}\right)\right] \\
\supset m^{(n)}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{8}\right)
\end{gathered}
$$

The formula $m^{(\log n)}\left(i, t^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$ is of size $n^{(0(1)} \log n \leq n^{o(1)}$ and requires only $O(\log n)$ quantifed variables. By Lemmas 3.1 and 3.2 we have $m^{\prime}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right) \equiv m^{(102 n)}\left(i, i^{\prime}, y, y^{\prime}, t, t^{\prime}\right)$.
THEOREM 3.3. The 3-D asteroid avoidance problem can be solved in time $\mathfrak{Z}^{n O(1)}$. or al'ernatively in space $n^{o(\log n)}$.
Froof. We assume immobile obstacle edges e_{1}, e_{2} such that $e_{1}(0)=X_{0}$ and $e_{2}(0)=X_{T}$. Hence by Lemma 3.10, B has a collision-free movement from [$\left.X_{0}, 0\right]$ to $\left.X_{T}, T\right]$ iff $m(1,2,0,0,0, T)$ holds.

Since $m(i, 2,0,0,0, T)$ has $n^{O(1)}$ size and $O(\log n)$ variables, we can test satisflability of $m(1,2,0,0,0, T)$ by Lemma 3.5 in time $2^{n^{o(1)}}$, or alternatively by Ler ma 36 in space $n^{0 ;(108 n)}$.

3.6 The 3-D Asternid Avoidance Problem with Slow Obstacles

Let $u_{\text {max }}$ be the maximum velocity modulus of any obstacle, and let v denote as above the maxmum velocity modulus of B. The slon asteroid avoidunce protlem is a restricted 3 D astcrold avoldance problem where we require 2 rias $\leq v$, and we wish to plan an admissible mition of B wiluch will avoid collision with any of the moving obstacles within a given interval of time. That is, we do not specify a inal desired position of B but are only interested in the ability of B to avoid collision with slowly moving obitucles.

Let C ' be one of the moving obstacles whose velocity is u Then the space\therefore time volume swept by C is

$$
\left.C^{*} \equiv\{: Y+w t, t\}: Y \in C_{0}, t \geq 0\right\}
$$

where C_{0} is the volume occupied by C at tine $t=0$. Hince C^{*} is also a convex body. Next define the shadow of C to be

$$
\left.s(C) \equiv\{\{X, t]: \forall i u: \leq v \exists r \geqq 0,: X+\tau u, t+\tau] \in C^{*}\right\}
$$

In other words, $s(C)$ consists of points $[X, t]$ such that if we proceed from them at any fixed adrmssible velocity, we will encounter a point on C^{*}. The intuition behind this defintion is that $s(C)$ contans space-tinie positions from which it is impossible to escape the moving C. using any fixed admissible velocity The following lemma shows that we cannot escape from any of these points under any choice of varying (but admissible) velocity:

LFidMA 3.11. For each $Z \in s(C)$, any path starting at Z whose pointuise velocity remains bounded by v will hit a point in C^{*}.
Proot. Suppose the contrary, and let p be such a path which misses C^{*}. Without loss of generality we can assume that p is a polygonal path (so that along each segment of this path the velocity is constant). Consider the first segment of p connecting a point $\left.X_{1}, t_{1}\right]$ in $s(C)$ to a point $\left[X_{2}, t_{2}\right]$ outside $s(C)$. and suppose that the velocity aiong this segment is u. In particular

$$
X_{2}=X_{1}+\left(t_{2}-t_{1}\right) u
$$

Since $\left.{ }_{i} X_{1}, t_{1}\right] \in s(C)$. and since u is an admissible velocity, there e^{\cdot} its a time τ (necessarlly larger than t_{2}) such that

$$
W_{1}=\left[X_{1}+\left(\tau-t_{1}\right) u, \tau\right] \in C^{*}
$$

On the other hand, $\left[X_{2}, t_{2}\right\}$ is not in $s(C)$ so that. by definition. there exists another admissible velocity u_{C} so that the straight path p_{c} going from ${ }_{[} X_{2}, t_{2}$] at velocity u_{0} never meets C^{*}. By the same argument used above, there also exists a time $\tau_{0}>t_{1}$ such that

$$
W_{2}=\left[X_{1}+\left(\tau_{0}-t_{1}\right) u_{0}, \tau_{0}\right] \in C^{*}
$$

But C^{*} is convex, so that the whole segment connecting W_{1} with W_{2} must be contained in C^{*}. This however, is impossible, because this segment intersucts p_{0}, a coniradiction which pioves our claim. a
LEMMA 3.12. Let C_{1} and C_{2} be two distinct moving obstacles unith velocity modulus $\leq v$. Then $s\left(C_{1}\right) \cap s\left(C_{2}\right)=\phi$.
Proof. Suppose the contrary, and let $Z=[X, t]$ be a point in $s\left(C_{1}\right) \cap s\left(C_{2}\right)$ Choose any admissible velocity u, and proceed from Z at velccity u Since Z belongs to both shadow's, it follows that there exist times τ_{1}, τ_{2}, both larger than t, such that $Z_{1}=\left[X+u^{(}\left(\tau_{1}-t\right), \tau_{1}\right] \in C_{1}^{*}$ and $Z_{2}=\left\{X+u\left(\tau_{2}-t\right), \tau_{2}\right] \in C_{2}^{*}$ Without loss of generality assume $\tau_{1}<\tau_{2}$. Then by the proof of Lemma $3:$ we have $Z_{1} \in s\left(C_{2}\right)$. But Z_{1} is a point on the moving C_{1}, which imples that a point on C_{1} will eventually meet C_{2}. which contradicts our assumption that the moving obstacles do not collide.
THEOREM 3.4. If $w_{\text {max }} \leq v$ and the initial position of B is not on any shaiou, $s(C)$ then it is aluays possible for B to avoid collision with the moving obstacles. Furthermore, if the obstacles are k polyheira with a total of n edges. then the required motion of B can be computed in time $(n+k)^{c(1)}=n^{0(1)}$
Proof. Let : $\left.X_{0}, 0\right]$ be the initial confizuration at time $t_{C}=0$.
It sufices for B to remain immobile for $t \geq 0$, as long as $\left.X_{2}, t\right]$ contacts no obstacle shadow. Let $t^{\prime} \geq 0$ be the firs: time (af ever) that $: X_{c, t}$ '] contacts an obstacle shadow $s(C)$. Let u be the velocity vector of C. During times t. $t \leq t \leq \infty$, we give B near-contact motion which remans on the external boundary of $s(C)$ using only translation of velocity $: w$ in the direction of w Since $w_{\text {max }} \leq v$, the velocity modulus of these movements do not cxceed u Thus we have established the existence of a collisicn-free movement $[X, t]$ for $0 \leq t \leq \infty$. Hence B car always avoid collision with any orstacle Since the shadows of 3-D polyhedral obstacles can be easily computed in polynomial time, the required collsion free motion can also be computed in polynomial time

4. DYNAMIC MOVEMENT PROBLEMS WITH UNRESTRICTED VELSCITY

Throughoul the last two sections we have assumed B had a given velocity modulus bound. Here we will allow B to hare unrestricted motion, and in

- particular we will impose no velociiy bounds

This case appears still intractable, as we show that the 3-D dynamic movement problem for the case B is a cylinder with unrestricted motion, is NP. hard. Again this proof requires that B has only $O(1)$ degrees of freedom and we make critical use of the presence of rotating obstacles to encode time

We will next show, in contrast with what has just been stated, that the problem is polynomial time if al! the obstacle motions are algebraic in space-time. that is the movement of B is constrained by algebraic inequalities of bounded degrees (for example B consists of a bounded number of 3-D linked polyhedra). and there is no bound on the velocity modulus of B

4.1 The Case of Unrestricted Motions in the Presence of Rotating Obstacles is $N P$ hard

We will reduce the 3 -satisflability problems to that of planning the motion of a cylindrical body B in 3 -space in the presence of several rotating obstacles. A semidisc is a disc with half its interior removed so that it is bounded by a semicircle and a line segment. Suppose that we are given an instance of 3satisfiability involving n Boolean variables $x_{1}, \ldots x_{n}$. With each variable x_{i} we associate several semidiscs $D_{i . k}$ of radius 1 , each rotating in some plane lying parallel to the $x-y$ plane at some height $h_{7, k}$ with its center at some point $u_{i, k}$. For each $i=1, \ldots, \pi$, all the semidiscs $D_{i, k}$ rotate with the same angular velocity $v_{i}=\frac{\pi}{2^{i-1}}$. Thus the first set of semidiscs complete half a revolution in : time unit, the second set in 2 time units, and so forth. Hence. if U is a sufficiently small disc contained in the interior of the 2-D unit disc near its perimeter, and if the initial positions of the rotating semidiscs are chosen appropriately. then after t whole time units each semidisc $D_{i, k}$ will cover the set $\left(\underline{l}+u_{i k}\right) \times\left\{h_{i, k}\right\}$ if and only if the i-th binary digit of t is 1 . We assume that the cross section of B has an area smaller than that of U

Suppose that the given instance of 3 -satisfiability involves p clauses, where the m-th clause has the form $\boldsymbol{z}_{m_{1}} \vee \boldsymbol{z}_{m_{2}} \vee \boldsymbol{z}_{m_{9}}$. where each z_{f} is either x_{t} or the complement of x_{t}. We represent this clause by three semidiscs $D_{m_{1}, m}, D_{m_{2} m}, D_{m_{3}, m}$, all placed on a plane at some height h_{m} (without touching or intersecting each other), such that their centers all lie on the y axis of this plane, and such that the empty hall of $D_{m_{4}, m}$ is placed initially to the right of the y-axis if $z_{m_{i}}=x_{m_{i}}$; otherwise the semidise is placed initially with its empty
 necting some point C_{m} lying between the ($m-2$)-th plane and the m-th plane \because just introduced to a point C_{m+1} lying above the new plane Each tunnel is circular, and its intersection with the plane is a sufficiently small dise lying within the right half of the corresponding disc D near its highest (in y) point This construction imphes that at time t the body B that we wish to move can quickly go from C_{m} to C_{m+1} iff the assignment of the i-th binary digit of t to the variable x_{i}, for each $\imath=1 \ldots . n$, satisfies the m-th clause. It follows that we can move S from an initial position C_{1} to a final C_{m+1} iff there exists a time t for which the above assignment sat:sfies the given instance of the 3 satisniability problem. (It is easy to add more rotating discs thit would enforce B to traverse the whole system of tunnels in a very shori time that begins at an integral number of time units.) This proves that
THEOREM 4.1. In the fresence of rotating obstacles, dymamic motion planning of a ' rdy B with no velocity modulus bound is NP-hara', even in the case uhere the body B is a rigid cylinder.

Remark: As in the case of the time-machine construction in Section 2, this construction can also he simplified to a two-dimensional dynamic movement planning with a single moving point obstacle, at the cost of using an irregular and more complex motion of that obstacle

4.2 The Case of Unrestricted Algebraic Motions

Let B be an arbitrary fixed system of monng bodies with a total of d degrees of freedom. Let S be a space bounded by an arbitrary collection of moving obstacles Let the (space-time) free configuration space $F P$ of B be defined as in Section : We will assume that the problem is algebraic in the sense that the geometric constraints on the possible free configurations of B (1.e. the constraints defining $F P$) can be expressed as algebralc fover the rationals) equalities and mequalities in the $d+1$ parameters $X, t]$

Remark. Some of the motions used in the preceding lower bound proofs are not algebratc in the above sense. The simplest such riotion is rotation of a two-dimensional body about a fixed center. Indeed, suppose for simplicity that the rotating body is a single point at distance r from the center of rotation (which we assume to be the origin). Then the curve in space-time craced by the rulating point is a helix, parametrized as $, x, y, t)=(r \cos \omega t, r \sin \omega t, t)$, which is certainly not algebraic

To obtain a polynomial-time solution to this problem, we decompose E^{d+1} into a cylindrical algebraic decomposition as proposed by Collins [Collins. 75] for Collins' decomposition in short, $\&$!. 'Cooke and Finney. 67] for a basic description of cell complexes) relative to the set F of polynomials appearing in the definition of $F P$. Roughly speaking, this technique partitions E^{d+1} into finitely many ronnected cells, such that on each of these cells each polynomial of P has a constant sign (zero, positive, or negative). Thus $F P$ is the union of a subset of these cells, and it is a simple matter to identify those cells which are contained in FP (we refer to such cells as free Collins cells) Voreover by using the modified decomposition technique presented in Schwartz and Sharir. B3b]. one can also compute the adjacency relationships between Collins cells (1.e.. find pairs : c_{1}, c_{2}) of Collins ceils such that one of these cells is contaned in the boundary of the other). Thus any continuous path in FP can be mapped to the sequence of free Collins cells through which it passes, and conversely, for any such sequence of free adjacent Collins cells we can construct a continuous patn in $F P$ passing through these cells in order Thus observation has been used in "Schwartz and Sharir. 63b] to reduce the continuous (static) motion planning problem to the discrete problem of searching for an appropriate path in an associated connestivity graph whose nodes are the free Collins cells, and whose edges connect pars oi adjacent such cells

We would like to apply the same ideas to the dynamic problem that we wish to solve, but we face here the additional problem that we are ailowed to consider only t-monotone paths in FP. To overcome this difficulty, we note that the Collins decomposition procedure is recursive, proceeding through one dimension at a time When it comes to decompose the subspace E^{i+1}, it has aiready decomposed $E^{\mathfrak{z}}$ into "base" cells, and the decomposition of $E^{\text {tl }}$ will be such that for each base cell b. of E^{i} there will be constructed several "layered" cells of E^{i+1} all projecting into b. Hence if we apply the Collins decomposition technique in such a way that the time axis t is decomposed in the innermost recursive step. it follows that each final cell c (in E^{d+i}) consists of poinis X, t] whose t either lies between two boundary times $t_{0}(c)<t_{1}(c)$ or is constant Voreover.
\therefore : .s a Coli:ns cel of the first type, then it is easy to show, using induction on the thmension. that for any point $X_{0}, t_{0}(c)$] lying on the "lower" boundary of c. af:c for any point $\left.. x_{1}, t_{1}(c)\right]$ on its "upper" boundary. there exists a continuous monotone path through c connecting these two points. In fact. the preceding property also holds if one or both of these points are interior to c

These observations suggest the following procedure
(:) Appiy the Collins decomposition technique to E^{d+1} relative to the set of polynomals defining $F P$, so that t is the innermost dimension to be processed Also find the adjacency relationship between the Collins cells, using the technqque described in Schwartz and Sharir, 83b]
(2) Construct a connectivity graph $C G$, which is a directed graph defined as follows: The nodes of $C G$ are the free Collins cells. A directed edge , c, c'] connects two free cells c and c provided that (a) c and c are adjacent: (b) either c and c^{\prime} both project onto the same base segment on the t axis. or c projects onto an open t segment $\left(t_{c}(c), t_{1}(c)\right)$ and c^{\prime} projects onto its upper endpoint $t_{1}(c)$, or c^{\prime} projects ontc an open t segment $\left(t_{c}\left(c^{\prime}\right), t_{1}(c)\right)$ and c projects onto its lower endpoint t_{0} (ctag). Intuitively, each edge of $C G$ represents a crossing between two adjacent cells which is either stationary in time (crossing in a direction orthogonal to t), or else progresses forward in time.
(3) rind the cells $c_{c} c_{1}$ containing respestively the initial and final configurations $\left[X_{0}, 0\right]$, $\left.X_{1}, T\right]$. Then search for \therefore directed path in $C G$ from c_{c} to c_{1}. If there exists such a path then there also exists a motion in $F P$ between the two given ionfigurations fand the laiter motion can be effectively constructed from the paition $C G$). oiherwise no suith niulion exists.

To see that the procedure just described is correct, note first that if p is a continuous motion through $F P$ between the initial and final conflgurations (which we assume to cross between Collins cells only finitely many times) then it is easily seen that the sequence of free cells through which p passes constitutes a directed path in $C G$. Conversely, if p^{\prime} is a directer path in $C C$ between ε_{i} and c_{i}, then p^{\prime} can be transformed into a continuous (monotone) motion through $F P$ as follows First choose for each free Collins cell c a representative interior point $\left[X_{c}, t_{c}\right]$, such that the representative points of all the cells that project onto the same base segment on the t axis have the same t value Then transform each edge $[c, c$] of p into a monotone path in $F F$ as follows if $t_{c}=t_{c}$. 'i.e., if the crossing from c to c ' is orthogonal to the time axis). then connect $\left.X_{c}, t_{c}\right\rceil$ to $\left[X_{f} \cdot t_{c}\right]$ by any path which is contained in the union $c \cup c$, and on which t is held constant, the existence of such a path is
\therefore guaranteed by the property of Collins cells noted above if $t_{c}<t_{c}$, then connect $\left.: X_{c}, t_{c}\right]$ to X_{c}, t_{c}] by a monotone path contained in $c \cup c^{\circ}$, akan the existence of such a path is guaranteed by the structure of Collins cells The resulting path p is plainly continuous, is contaned in $F F$ and is weakly monntone in t. . .ote that the crossings of the first type in which t remains constant represents extreme situations where the velocity of B is infirute. However. since p is continuous and $F P$ is open. one can easily modify p slightly so as to make it strictly monotone in time.) This establishes the correctness of our procedure

Since the Collins decomposition is of size polynomial in the number of given polynomials and in their maximal degree falbeit doubly exponential in the number of degrees of freedom d), and can be computed within time of similar polynornial complexity, it follows that

THEOREM 4.2. The dynamic unrestrictei uersion of the movers problem for a fixed moving B can be solved in the general (space-time) algebraic case in time polynomial in the number of obstactes. ine number of parts of B, and their maximal algebraic degree

ACKNOWLEDGEMENTS. We would like to thank Vichael Ben-Or, John Cock, John Hoperoft. and Jack Schwartz for insightful comments or dynamie motion planning. Also thanks to Christoph Freytag and is Rajasekaran for a carcful reading of this manuscript

RFFERENCES

[Ben-Or, Kozen, Relf, 64] Ben-Or, M., Kozen, D, and Relf, J.H
"The Complexity of Elementary Algebra and Geometry". Proc 16th Symp on Theory of Computing. ACW. Washington, D.C. : 984 . pp. $457 \div 6 \div$. Also to appear in J. Computer and Systems Sciences.: 985.)
¿Chistov, Grigor'ev. 85] Chistov. AL and Grigor'ev. D. Yu.
"Complexity of Quantifier [limination in the Theory of Algebralcally Cioscd Fields". Technical Report. Institute of the Academy of Sciences, Leningrad. LSSR, :985
[Collins. 75] Collins, G
"Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decornposition", in. Second GI Conference on Automata Theory and Formial Languages, Lecture Notes in Computer Science, 33. Springer Verlag Berlin 1975, pp. 134-:83
Cooke, Finney, 67] Cooke. G.E. and Finney. R R L "Homology af Cell Complexes". Wathematical Notes. Princeton University Press, Princeton. NJ, :967
iHopernft, Joseph. Whitesides. 8<] Hopcroft, J., Joseph. D , and Whtesides. S. "Vovement Froblems for 2-dimensional Linkages". SlA! J Computing 13(:984) pp. 6:0-629
[Hopcrott, joseph, Whitesides. 85j Hopcroft. J. Joseph. D. and Whitesides S "On the Vovemint of Robot Arm in 2-dimensional Bounded Rejions", SIAth J. Computing 14::985). pp 3:5-333
[Hoperoft, Schwartz. Sharir. 34] Hoperoft, J.E. Schwartz, JT. and Sharir V "On the Complexity of Votion Planning for Vultiple Independent Objects. FSPACE-Hardness of the Warehouseman's Problem'". Int J. Robstics Research 3 (4) (:98 $:$) pp 76-88.
¿Lozano-Perez, Wesley, 79] Lozano-Perez. T and Wesley, VA "An algurithm for Planning Collision-free Paths Among Polyhedral Obstacles". Comm. ACM 22: : S79), pp 560-570.
ODunlaing. Sharir. Yäf. B3] O'Dunlaing. C. Sharır, V. and Yap. C K
"Retraction A New Approach to Votion-planning". Droc. 15th AC'f Symp on Theory of Computing. Boston, MA. :983. pp 207-220
¿O'Dunlaing, Yap, 85] O'Dunlaing. C and Yap. © K
"A Retraction Vethod Ior Planning the Votion of a Disc". J. Algorithrins 6 : : 985) pp.:04-1: :
Relf. 79.85] Reif. J
"Complexity of the Vover's Problem and Generalizations". Proc. 20th IEEE Symp on Foundiations of Computer Science, Puerto Rico. October 1979. pp. 42:-427. (Also to appear in Planning. Geometry. and Complexity of Robot Kotion. J. Hoperofi. J. Schwartz, M. Sharir eds., Ablex Pub Co, Norwood, NJ. :985
-Reif. Storer. 65] Reif, J.H., and Storer, J.A
"Shortest Paths in Euclidean Space with Polyhedral Obstacles". TR-05-85. Alken Computation Lab, Harvard Cniversity, Cambridge, VA, April:985
Schwartz, Sharir, 83a] Schwartz, J.T. and Sharir, M.
"On the 'Piano Movers' Problem. I. The Case of a Two-dimensional rigid Polygonal Body Moving Amidst Polygonal Barriers", Comm Pure Appl Hath. 36 (:983). pp. 345-398
[Schwartz. Sharir. 83b] Schwartz. J.T. and Sharir, M
"On the 'Piano Movers' Problem. II. Genera! Techniques for Computing Topological Properties of Real Algebraic Vanıfolds". Adv Applied Maih. 4 (:983), pp. 298-351.
[Schwartz. Sharır, B̄e] Schwariz, J. it and Sharir, M
"On the 'Piano Movers' Problem. Ill Coordinating the Votion of Several Independent Bodies: The Special Case of Circular Bodies Noving Amidst Polygonal Barriers", Irit. J. Robotios Research 2 (3) (:983), pp. <6-75.
‘Schwartz, Sharır, 84j Schwartz, J.T. and Sharir, V "On the 'Plano Vovers' Problem V The Case of a Rod Voving in 3-D Space Amidst Polyhedral Obstacles". Cornm Pure Appl Math. 37 (:98 4).pp 8:7-8 66

Figure 1. The construction of a torus by the movement of a circle of radius 3 around the x-axis.

Figure 2. The disks D_{0}, D_{1}, D_{2}.

Figure 4. The free spaces generated by the movement of D.

[^0]:

 Resecrci Con:rec: No0014-82-x-0381, and zy Nanonc. Science Fonnde:ion CER. Gran:) (R8320055

