
Motion Planning under Uncertainty for Robotic Tasks with Long

Time Horizons

Hanna Kurniawati

Singapore–MIT Alliance for Research Technology

Singapore 117543, Singapore

hannakur@smart.mit.edu

Yanzhu Du

Department of Computer Science, Stanford University

Stanford, CA 94305, USA

yanzhudu@stanford.edu

David Hsu

Department of Computer Science, National University of Singapore

Singapore 117590, Singapore

dyhsu@comp.nus.edu.sg

Wee Sun Lee

Department of Computer Science, National University of Singapore

Singapore 117590, Singapore

leews@comp.nus.edu.sg

Abstract

Motion planning with imperfect state information is a crucial capability for autonomous robots
to operate reliably in uncertain and dynamic environments. Partially observable Markov decision
processes (POMDPs) provide a principled general framework for planning under uncertainty. Using
probabilistic sampling, point-based POMDP solvers have drastically improved the speed of POMDP
planning, enabling us to handle moderately complex robotic tasks. However, robot motion planning
tasks with long time horizons remains a severe obstacle for even the fastest point-based POMDP solvers
today. This paper proposes Milestone Guided Sampling (MiGS), a new point-based POMDP solver,
which exploits state space information to reduce effective planning horizons. MiGS samples a set of
points, called milestones, from a robot’s state space and constructs a simplified representation of the
state space from the sampled milestones. It then uses this representation of the state space to guide
sampling in the belief space and tries to capture the essential features of the belief space with a small
number of sampled points. Preliminary results are very promising. We tested MiGS in simulation on
several difficult POMDPs that model distinct robotic tasks with long time horizons in both 2-D and
3-D environments. These POMDPs are impossible to solve with the fastest point-based solvers today,
but MiGS solved them in a few minutes.

1 Introduction

Motion planning with imperfect state information
is a crucial capability for autonomous robots to
operate reliably in uncertain and dynamic environ-
ments. With imperfect state information, a robot
cannot decide the best actions on the basis of a
single known state; instead, the best action de-

pend on the set of all possible states consistent
with the available information, resulting in much
higher computational complexity for planning the
best actions. Partially observable Markov decision
processes (POMDPs) [9, 21] provide a principled
general framework for such planning tasks. In a
POMDP, we represent a set of possible states as
a belief, which is a probability distribution over a

1

robot’s state space. We systematically reason over
the belief space B, the space of all beliefs, by taking
into account uncertainty in robot control, sensor
measurements, and environment changes, in order
to choose the best actions and achieve robust per-
formance. By incorporating uncertainty into plan-
ning, the POMDP approach has led to improved
performance in a number of robotic tasks, includ-
ing localization, coastal navigation, grasping, and
target tracking [5, 8, 14, 18].

Despite its solid mathematical foundation,
POMDP planning faces two major computational
challenges. The first one is the “curse of dimen-
sionality”: a complex robotic task generates a
high-dimensional belief space. If a robotic task
is modeled with a discrete state space, its be-
lief space has dimensionality equal to the num-
ber of states. Thus, a task with 1,000 states
has a 1,000-dimensional belief space! In recent
years, point-based POMDP solvers [11, 14, 22, 23]
have made dramatic progress in overcoming this
challenge by sampling the belief space and com-
puting approximate solutions. Today, the fastest
point-based POMDP solvers, such as HSVI2 [22]
and SARSOP [11], can handle moderately com-
plex robotic tasks modeled as POMDPs with up
to 100,000 states in reasonable time. The success
of point-based solvers can be largely attributed to
probabilistic sampling, which allows us to use a
small number of sampled points as an approximate
representation of a high-dimensional belief space.
The approximate representation substantially re-
duces computational complexity. The same reason
underlies the success of probabilistic sampling in
other related problems and approaches, e.g., prob-
abilistic roadmap (PRM) algorithms [2] for geo-
metric motion planning (without uncertainty).

The second major challenge is the “curse of his-
tory”. In a motion planning task, a robot often
needs to take many actions to reach the goal, re-
sulting in a long planning horizon. The complex-
ity of planning often grows exponentially with the
horizon. Together, a long planning horizon and a
high-dimensional belief space compound the diffi-
culty of planning under uncertainty. For this rea-
son, even the best point-based POMDP solvers to-
day have significant difficulty with robotic tasks
requiring long horizons (see Section 6 for exam-
ples).

To overcome this second challenge and scale up
POMDP solvers for realistic robot motion plan-

ning tasks, we have developed a new point-based
POMDP solver called Milestone Guided Sampling
(MiGS). It is known from earlier work on related
problems that the most important component of a
sampling-based planning algorithm is its sampling
strategy [6]. MiGS reduces the planning horizon
by constructing a more effective sampling strategy.
It samples a set of points, called milestones, from
a robot’s state space and constructs a roadmap
graph. Each node of the roadmap corresponds
to a sampled milestone, and each edge is labeled
with a sequence of actions that brings the robot
from one milestone to another. MiGS then uses
the roadmap to guide sampling in the belief space.
Using the roadmap as a simplified representation
of the state space, MiGS avoids exploring many of
the similar belief space paths and thus improves
computational efficiency.

MiGS’ approach to belief space sampling is re-
lated to earlier POMDP solvers that use macro-
actions [15, 24]. However, the earlier works define
macro-actions as policies. They manually decom-
pose the POMDP into several smaller POMDPs,
solve the smaller POMDPs, and then use the re-
sulting policies as macro-actions to solve the orig-
inal POMDP. Instead of constraining the result-
ing policy in terms of such pre-defined macro-
actions, MiGS automatically generates long action
sequences, which can be regarded as open-loop
policies, and use them to guide sampling in the
belief space. Only a small number of action se-
quences are initially allowed, restricting the resolu-
tion of sampling. The number of action sequences
is increased as required, allowing the sampling res-
olution to scale up gradually with the complexity
of the problem.

We tested MiGS in simulation on several difficult
POMDPs that model distinct robotic tasks with
long time horizons. These POMDPs are impossi-
ble to solve with the fastest point-based POMDP
solvers today, but MiGS solved them in a few min-
utes.

2 Background

2.1 Motion Planning under Uncertainty

Despite its importance and more than three
decades of active research [12, 25], motion planning
under uncertainty remains a challenge in robotics.
Several recent successful algorithms are based on

2

the probabilistic sampling approach. Stochas-
tic Motion Roadmap [1] combines PRM with the
Markov decision process (MDP) framework to han-
dle uncertainty in robot control, but it does not
take into account uncertainty in sensing. Belief
Roadmap [17] handles uncertainty in both robot
control and sensing, but one major limitation is the
assumption that the uncertainties can be modeled
as Gaussian distributions. Unimodal distributions
such as the Gaussian are inadequate when robots
operate in complex geometric environments. Using
a mixture of Gausssians can partially address this
weakness, but at a significant computational cost.

POMDPs are a principled general framework
that can overcome the above limitations. By tack-
ling the difficulty of long planning horizons, MiGS
brings POMDPs a step closer to being practical for
complex robotics tasks.

2.2 POMDPs

A POMDP models an agent taking a sequence
of actions under uncertainty to maximize its
reward. Formally, it is specified as a tuple
(S,A, O, T , Z, R, γ), where S is a set of states de-
scribing the agent and the environment, A is the
set of actions that the agent may take, and O is
the set of observations that the agent may receive.
The remaining elements of the tuple are explained
below.

In each time step, the agent lies in a state s ∈ S,
takes an action a ∈ A, and moves from a start
state s to an end state s′. Due to the uncertainty
in action, the end state s′ is modeled as a condi-
tional probability function T (s, a, s′) = p(s′|s, a),
which gives the probability that the agent lies in
s′, after taking action a in state s. The agent
then receives an observation that provides infor-
mation on its new state s′. Due to the uncertainty
in observation, the observation result o ∈ O is
again modeled as a conditional probability func-
tion Z(s′, a, o) = p(o|s′, a).

To elicit desirable agent behavior, we define a
suitable reward function R(s, a). In each step, the
agent receives a real-valued reward R(s, a), if it
takes action a in state s. The goal of the agent is
to maximize its expected total reward by choosing
a suitable sequence of actions. When the sequence
of actions has infinite length, we typically specify
a discount factor γ ∈ (0, 1) so that the total re-
ward is finite and the problem is well defined. In
this case, the expected total reward is given by

E [
∑∞

t=0 γtR(st, at)], where st and at denote the
agent’s state and action at time t.

POMDP planning means computing an optimal
policy that maximizes the agent’s expected total
reward. In the more familiar case where the agent’s
state is fully observable, a policy prescribes an ac-
tion, given the agent’s current state. However, a
POMDP agent’s state is partially observable and
not known exactly. So we rely on the concept of a
belief. A POMDP policy π : B → A is a mapping
from B to A, which prescribes an action a, given
the agent’s belief b.

A policy π induces a value function Vπ(b). The
value function V π(b) = E [

∑∞
t=0 γtR(st, at)|b, π]

specifies the expected total reward of executing
policy π: the agent has initial belief b, and its ac-
tion at at time t is chosen according to π. It is
known that V ∗, the value function associated with
an optimal policy π∗, can be approximated arbi-
trarily closely by a convex, piecewise-linear func-
tion,

V (b) = max
α∈Γ

(α · b) = max
α∈Γ

(

∑

s∈S

α(s)b(s)
)

(1)

where Γ is a finite set of vectors called α-vectors
and b is a belief. Each α-vector is associated with
an action a. The policy can be executed by select-
ing the action corresponding to the best α-vector
at the current belief. So a policy can be repre-
sented as a set Γ of α-vectors. For each α ∈ Γ, α(s)
is the expected total reward that the agent receives
when it starts in s, takes the action a associated
with α, and acts according to the policy defined
by Γ afterwards. Policy computation, which, in
this case, involves the construction of Γ, is usually
performed offline.

Given a policy, represented as a set Γ of α-
vectors, the control of the agent’s actions, also
called policy execution, is performed online in real
time. It consists of two steps executed repeatedly.
The first step is action selection. If the agent’s cur-
rent belief is b, it finds the action a that maximizes
V (b) by evaluating (1). The second step is belief
update. After the agent takes an action a and re-
ceives an observation o, its new belief b′ is given by

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑

s

T (s, a, s′)b(s)

(2)
where η is a normalization constant.

More information on POMDPs is available in
[9, 25].

3

2.3 Related POMDP Solvers

Large state spaces and long time horizons, typi-
cal of many robot motion planning tasks, are two
main obstacles that hinder the use of POMDPs in
practice. Many approaches have been proposed to
alleviate these difficulties.

Point-based POMDP solvers are currently one
of the most successful approaches. Point-based
solvers reduce the complexity of planning in the
belief space by representing B as a set of sam-
pled beliefs. Interestingly, probabilistic sampling,
a key idea of point-based solvers, is also what
makes PRM planning successful in geometric mo-
tion planning. For computational efficiency, most
of the recent point-based solvers [11, 14, 20, 22, 23]
sample only from a subset R ⊆ B reachable from
a given initial belief. They differ in how they sam-
ple R. PBVI [14] and Perseus [23] spread sam-
pled points over R to cover it well. HSVI2 [22]
maintains upper and lower bounds on the opti-
mal value function and samples R to close the gap
between the upper and lower bounds. FSVI [20]
uses only the upper bound to guide sampling.
SARSOP [11] biases sampling towards optimally
reachable spaces, the subset of beliefs reachable
under optimal policies. Point-based solvers have
made impressive progress in computing approx-
imate solutions for POMDPs with large state
spaces, and they have been successfully applied
to a variety of non-trivial robotic tasks, includ-
ing localization [16, 18], coastal navigation [16, 18],
grasping [5], target tracking [14, 8], and explo-
ration [11, 22]. Despite the progress, even the best
point-based POMDP solvers today have significant
difficulty with robotic tasks that require long plan-
ning horizons.

MiGS follows the approach of point-based
POMDP solvers, but aims at overcoming the diffi-
culty of long planning horizons. It uses sequences
of actions, rather than single primitive actions, to
explore the belief space and thus significantly re-
duces effective planning horizons.

3 Milestone Guided Sampling

A key idea of point-based POMDP solvers is to
sample a set of points from B and use it as an ap-
proximate representation of B. Let R ⊆ B be the
set of points reachable from a given initial belief
point b0 ∈ B under arbitrary sequences of actions

a
1

a
2

o
1

o
2

b
0

Figure 1: The belief tree rooted at b0.

and observations. Most of the recent point-based
POMDP algorithms sample from R instead of B
for computational efficiency. The sampled points
form a belief tree TR (Figure 1). Each node of TR

represents a sampled point b ∈ B. The root of
TR is the initial belief point b0. To sample a new
point b′, we pick a node b from TR as well as an ac-
tion a ∈ A and an observation o ∈ O according to
suitable probability distributions or heuristics. We
then compute b′ = τ(b, a, o) using (2) and insert b′

into TR as a child of b. If a POMDP requires an
effective planning horizon of h actions and obser-
vations, TR may contain Θ

(

(|A||O|)h
)

nodes in the
worst case, where |A| is the number of actions and
|O| is the number of observations for the POMDP.
Thus any point-based solvers trying to construct
TR exhaustively must have running time exponen-
tial in h and suffer from the “curse of history”.

To overcome this difficulty, let us consider the
space from which we must sample. Suppose that
the effective planning horizon is h. We must sam-
ple from a subset of R that contains Rh, the set
of belief points reachable from b0 with at most h
actions and observations. Our difficulty is that the
size of Rh grows exponentially with h. The basic
idea of MiGS is to sampleRh hierarchically at mul-
tiple resolutions and avoid exhaustively sampling
Rh unless necessary.

To do so, MiGS builds a roadmap graph M
in a robot’s state space S. The nodes of M
are states sampled from S and are called mile-
stones. An edge e between two milestones s and
s′ of M is annotated with a sequence of actions
(a1, a2, . . . , aℓ) that bring the robot from s to s′.
The edge e is also annotated with a sequence of
states (s0, s1, . . . , sℓ) that the robot traverses un-
der the actions (a1, a2, . . . , aℓ), with s0 = s and
sℓ = s′. A path in M encodes a long action se-
quence obtained by concatenating the action se-

4

quences associated with the edges along the path.
By traversing M suitably, we can generate a rich
collection of action sequences for sampling B. At
a node b of TR, we can simply apply a sequence of
actions associated with an edge of M , instead of a
single action, and derive a child node b′.

The resulting belief tree TR then becomes much
smaller. Suppose, for example, that M has maxi-
mum degree d and the minimum length of an ac-
tion sequence contained in each edge of M is ℓ.
Then, for a POMDP with time horizon h, the num-
ber of nodes in TR is O

(

(d |O|ℓ)h/ℓ
)

= O(dh/ℓ|O|h)
in the worst case. This indicates that the action se-
quences encoded in M help in reducing the effect
of long planning horizons due to actions. Since
the size of TR grows exponentially with h, the im-
provement is significant. MiGS uses an additional
technique for reducing the long-horizon effect due
to observations, but it is secondary and will be de-
scribed later.

Now it should be clear that MiGS is potentially
faster, as the belief tree TR is smaller. However, a
more fundamental question remains. The roadmap
M is a simplified representation of the state space
S. In general, M contains only a subset of sampled
states and not all states in S. Do the belief points
sampled with the help of M cover the reachable
belief space well and is it likely to lead to a good
approximation to the optimal value function and
the optimal policy? The answer is yes, if we sample
S adequately in a sense which we now explain.

Our main intuition is that the underlying state
space S of a robotic system is typically continuous.
The POMDP state space S is a discretization of
S. States that are close together in S should have
similar properties. Formally, denote by Γ∗ a set
of α-vectors representing the optimal value func-
tion. Given a constant ǫ > 0, we partition the state
space S into a collection Kǫ of disjoint subsets so
that for any α ∈ Γ∗ and any two states s and s′ in
the same subset K ∈ Kǫ, we have |α(s)−α(s′)| ≤ ǫ.
Intuitively, the partitioning condition means that
any two states in the same subset K are similar
in terms of their significance in the optimal value
function. The constant ǫ controls the resolution of
partitioning. We sometimes omit the subscript in
Kǫ to simplify the notation. The partitioning K
induces a distance metric on the belief space B:

Definition 1 Let K be an ǫ-partitioning of the
state space S. The distance between any two be-

liefs b and b′ in B with respect to K is

dK(b, b′) =
∑

K∈K

∣

∣

∣

∑

s∈K

b(s)−
∑

s∈K

b′(s)
∣

∣

∣
. (3)

This new metric is weaker than the usual L1 metric
and is upper-bounded by the L1 metric. It mea-
sures the difference in probability mass for subsets
of states rather than individual states. This is de-
sirable, because the states within a single subset
K ∈ K are similar under our assumption and there
is no need to distinguish them. Now we can derive
a Lipschitz condition on the optimal value function
V ∗(b) under dK.

Theorem 1 Let K be an ǫ-partitioning of the state
space S, and let B be the corresponding belief space
over S. For any b, b′ ∈ B , if dK(b, b′) ≤ δ, then
|V ∗(b) − V ∗(b′)| ≤ Rmax

1−γ δ + 2ǫ, where Rmax =
maxs∈S,a∈A |R(s, a)|.

The proof is given in the appendix. Theorem 1
provides a sampling criterion for approximating V ∗

well. Suppose that we sample a set B of beliefs that
covers B in the sense that for any b ∈ B, there is
a point b′ in B with dK(b, b′) ≤ δ. Then Theo-
rem 1 implies that we can approximate V ∗(b) for
any b ∈ B by V ∗(b′) for some b′ ∈ B with a small
error that depends on δ. What is even more inter-
esting is that the distance function dK(b, b′) relaxes
the covering requirement by averaging out varia-
tions of b(s) and b′(s) within the same partition
K ∈ K, at the cost of introducing an additional
error ǫ in the value function approximation. This
suggests that it is probably sufficient to have only
one representative state—a milestone—from each
partition K ∈ K. These milestones can be used to
construct an approximate partitioning, as done by
MiGS during roadmap construction.

Of course, MiGS does not know the partition-
ing K in advance. One simple way of ensuring one
milestone in each partition K ∈ K is to sample
a large number of milestones from S uniformly at
random. If each K ∈ K is sufficiently large in size,
then we can guarantee that uniform sampling gen-
erates at least one milestone from each K ∈ K
with high probability. To improve efficiency, ob-
serve that under an optimal policy, the robot likely
goes through states that provide high rewards or
good observations. So we bias the sampling to-
wards such states. See Section 4 for details.

We now give a sketch of the overall algorithm.
Suppose that we are given as input a POMDP

5

model (S,A, O, T , Z, R, γ). In addition, we are
given a set of goal states Sg ⊆ S, which is common
for robotic tasks. Each goal state g ∈ Sg is self-
absorbing with T (g, a, g) = 1 for all a ∈ A, which
indicates that once a robot reaches a goal state,
the task ends. The robot receives zero reward in a
goal state and incurs a negative cost for actions in
all other states. Formally, if g ∈ Sg, R(s, a) = 0 for
all a ∈ A; otherwise, R(s, a) ≤ 0. Such a reward
function motivates the robot to reach the goal as
efficiently as possible.

MiGS iterates over two stages. In the first stage,
we sample a set of new milestones from S and
use it to construct and refine a roadmap M . In
the second stage, we use M to guide sampling in
B. Following the approach of point-based POMDP
planning, we perform value iteration [19] on a set
Γ of α-vectors, which represents a piecewise-linear
lower-bound approximation to the optimal value
function V ∗. Exploiting the fact that V ∗ must sat-
isfy the Bellman equation, value iteration starts
with an initial approximation to V ∗ and performs
backup operations on the approximation by iter-
ating on the Bellman equation until the iteration
converges.

What is different in value iteration for point-
based POMDP planning is that backup operations
are performed only at a set of sampled points from
B rather than the entire B. We sample this set
from B by constructing a belief tree TR rooted at
an initial belief point b0. To add a new node to TR,
we first choose an existing node b in TR from less
densely sampled regions of B, as this likely leads to
sampled points that cover B well. We then choose
a suitable edge e from the roadmap M and use
the associated action sequence (a1, a2, . . . , aℓ) and
state sequence (s0, s1, s2, . . . , sℓ) to generate a new
node.

Specifically, we first sample an observa-
tion sequence (o1, o2, . . . , oℓ) consistent with the
state sequence (s0, s1, . . . , sℓ) in the sense that
Z(si, ai, oi) = p(oi|si, ai) > 0, for 1 ≤ i ≤ ℓ. The
consistency requirement limits the number of pos-
sible observations. The main motivation for sam-
pling observation sequences is similar to that of us-
ing action sequences contained in M . Often, many
observation sequences provide similar information.
Sampling observation sequences avoids exploring
many similar belief space paths and helps to re-
duce the long-horizon effect due to observations.

After obtaining the observation sequence,

we then apply the action-observation sequence
(a1, o1, a2, o2, . . . , aℓ, oℓ) to b and generate a se-
quence of new beliefs (b1, b2, . . . , bℓ), where

b1 = τ(b, a1, o1) (4)

bi = τ(bi−1, ai−1, oi−1) for 2 ≤ i ≤ ℓ. (5)

Finally, bℓ is inserted to TR as a new child node of b,
while (b1, b2, . . . , bℓ−1) is associated with the edge
from b to bℓ for backup operations. After creating
the node bℓ, we perform backup operations for ev-
ery belief associated with the nodes and edges of
TR along the path from bℓ to the root b0. A backup
operation at a node b improves the approximation
of V ∗(b) by looking ahead one step. We perform
the standard α-vector backup (Algorithm 1). Each
backup operation creates a new α-vector, which is
added to Γ to improve the approximation of V ∗.

After a round of backup operations, we check
the improvement in value function approximation
at the root node b0. If the value no longer changes
after several rounds of backup, it likely indicates
that all the information in the current roadmap has
been exploited and a more refined one is necessary.
We then repeat the two stages of MiGS to refine M
and improve the value function approximation by
sampling additional new beliefs. The details for
roadmap construction and belief space sampling
are described in Sections 4 and 5, respectively.

4 Roadmap Construction

To construct a roadmap M , MiGS samples a set
of points from the state space S. They become
the milestones, i.e., the nodes of M . The set Q of
milestones induces a partitioning KQ of S into dis-
joint subsets. The adjacency relationship between
the partitions KQ provides the edge connectivity
of M . The partitioning KQ is an approximation of
Kǫ, which is unknown in advance. To improve the
approximation, MiGS incrementally refines KQ by
adding more and more milestones to Q.

4.1 Sampling Milestones

Ultimately we would like to sample a set Q of
milestones so that each partition in Kǫ contains
a milestone. For efficiency, we bias the sampling
towards states that provides higher rewards or in-
formative observations. Specifically, we sample a
point s from S with probability

p(s) ∝ eλh(s),

6

Algorithm 1 Perform α-vector backup at a belief b.

BACKUP(b, Γ)

1: For all a ∈ A, o ∈ O, αa,o ← argmaxα∈Γ(α · τ(b, a, o)).
2: For all a ∈ A, s ∈ S, αa(s)← R(s, a) + γ

∑

o,s′ T (s, a, s′)Z(s′, a, o)αa,o(s
′).

3: α′ ← argmaxa∈A(αa · b)
4: Insert α′ into Γ.

where λ is a pre-specified positive constant that
controls the smoothness of the sampling distribu-
tion and h(s) indicates the importance of a state
s. We define the heuristic importance function as

h(s) = (αh(s) + Rmax)bh(s),

where Rmax = maxs∈S,a∈A |R(s, a)|. If we ignore
the Rmax term for the moment, h(s) becomes sim-
ply a product αh(s)bh(s). This is motivated by
the form of the optimal value function V ∗(b) =
maxα∈Γ∗

∑

s∈S α(s)b(s), which indicates that un-
der an optimal policy, the robot likely goes through
states with large α(s)b(s) values. The term αh(s)
in h(s) tries to capture those states with high ex-
pected total reward. Suppose that the robot starts
in s and receives the immediate reward R(s, a) for
taking action a in s. We assume that all actions
occur with equal probability and that the robot re-
ceives the maximum reward, which is 0 by our as-
sumption, for all future actions. This gives an op-
timistic estimate of the expected total reward that
the robot can actually achieve, starting from s:

αh(s) =
∑

a∈A

p(a|s)R(s, a) =
1

|A|

∑

a∈A

R(s, a).

Since R(s, a) ≤ 0 by our assumption, we need to
insert the additional term Rmax in h(s) so that
αh(s)+Rmax ≥ 0 for all s ∈ S and a large positive
value of h(s) indicates an important state. The sec-
ond component bh(s) tries to capture those states
with informative observations. We identify such
states by considering the probability p(s|a, o). A
large p(s|a, o) value implies that if the robot arrives
in s by taking action a and receives observation o,
then it recognizes the state s with high probability.
We assume again that all actions occur with equal
probability, but that given an action a, the obser-
vations occur according to the observation function
Z(s, a, o). We then define bh(s) as the weighted av-

erage of p(s|a, o) over all actions and observations:

bh(s) =
∑

a∈A

p(a|s)
∑

o∈O

Z(s, a, o)p(s|a, o)

=
1

|A|

∑

a∈A

∑

o∈O

Z(s, a, o)p(s|a, o).

To calculate p(s|a, o), we apply the Bayes
rule. Assuming that the prior probabilities
for all states to occur given a are equal,
we get p(s|a, o) = p(o|s, a)/

∑

s∈S p(o|s, a) =
Z(s, a, o)/

(

|S|
∑

s∈S Z(s, a, o)
)

.

We choose to define the heuristic importance
function h(s) using local information only. Other
more sophisticated definitions are possible, but we
would like to keep h(s) as simple as possible.

4.2 State Space Partitioning

The milestone set Q induces a partitioning KQ of
S. Each milestone q ∈ Q spans a partition K ∈ KQ

such that each state in K is “closer” to q than any
other milestones in Q. This is similar to a Voronoi
diagram for a point set under the Euclidean dis-
tance. However, Euclidean distance is unsuitable
here. The proximity measure should reflect how
the states differ in terms of their importance in
the optimal value function.

MiGS captures the proximity between states in
a state graph. A state graph P is a weighted, di-
rected multi-graph. The nodes of P are all the
states in S. There is an edge (s, s′, a) between
two nodes s and s′ and labeled with a, whenever
T (s, a, s′) > 0. The edge weight w(s, s′, a) tries
to capture the difference in expected total reward
between s and s′. If the robot is in s, it can go
towards the goal directly, or it can take action a
to reach s′ and then go towards the goal from s′.
In the latter case, after taking action a, the robot
may end in a state s′′ 6= s′, due to uncertainty in
robot control. So we must take into account the
difference in expected total reward between s′ and

7

s′′. We define w(s, s′, a) by calculating

αw(s)− αw(s′)

= R(s, a) + γ
∑

s′′∈S\{s′}

T (s, a, s′′)

×
∑

o∈O

Z(s′′, a, o)(αw(s′′)− αw(s′)), (6)

where αw(s) approximates the robot’s expected to-
tal reward from a state s ∈ S. The first term
R(s, a) in (6) is the immediate reward of taking
action a in s. The second term accounts for the
outcomes after taking the action. We can write
one such equation for each unknown αw(s) and
solve the resulting linear system of equations us-
ing standard numerical methods. However, this
could be computationally expensive, if the state
space S is large. We thus make a further approxi-
mation. Since s′′ is reachable from s with a single
action, we expect αw(s) and αw(s′′) to have simi-
lar values if the reward function R(s, a) is smooth.
Now replacing αw(s′′) with αw(s) in the right hand
side of (6) and after some simple algebra, we get
αw(s)−αw(s′) = R(s, a)/(1− γ + γT (s, a, s′)). Fi-
nally, since R(s, a) ≤ 0 by our assumption, we de-
fine

w(s, s′, a) =
−R(s, a)

1− γ + γT (s, a, s′)

so that all edges weights are non-negative, and say
that a path is short if it has low weight.

The state graph P defines a proximity measure
dP , where dP (s, s′) is the minimum weight over all
paths from s to s′. Although dP is not necessar-
ily symmetric, it can still be used to partition S.
Specifically, the partition K ∈ KQ for a milestone
q ∈ Q is a subset of states such that each state in K
has dP (s, q) ≤ dP (s, q′) for all q′ ∈ Q. Such a par-
titioning KQ is in fact an inward Voronoi diagram
of Q over the state space S [3].

4.3 Connecting Milestones

To complete the construction of roadmap M , we
need to insert edges between milestones and label
them with action and state sequences. For this, we
use the adjacency relationship between the parti-
tions in KQ. Let q and q′ be two milestones in
Q. Let K and K ′ be the corresponding partitions
in KQ for q and q′, respectively. The states in
K∪K ′ induce a subgraph PKK′ of P . We insert an
edge (q, q′) from q to q′ into M if there is a path
from q to q′ in P KK′ . One may allow self-loops

in the roadmap M if the POMDP model contains
pure information-gathering actions, which change
a robot’s belief, but not its state. We then find
a shortest path from q to q′ in PKK′ and use the
edges along this path to label (q, q′) with action
and state sequences accordingly. The edge (q, q′)
is also assigned a weight, which is the weight of the
shortest path.

4.4 Roadmap Refinement

To refine a roadmap M , we sample an additional
set Q′ of milestones. We then add Q′ to M and
construct a new roadmap over Q∪Q′ incrementally,
where Q denotes the milestones in M .

In a discrete POMDP, S is finite. So we can
add in all states in S as milestones. The resulting
roadmap M would still be insufficient for generat-
ing all possible sequences of actions, as M does not
contain all the actions between a pair of states. As
a final refinement, we can use the state graph P as
a roadmap. This in principle makes planning com-
plete, but is probably not necessary or desirable in
practice.

5 Belief space sampling

MiGS samples from B by incrementally construct-
ing a belief tree TR rooted at an initial belief point
b0 (see Section 3). Adding a new node to TR con-
sists of two steps. In the first step, we choose an
existing node b from TR. In the second step, we
use the roadmap M as a guide to choose an action
and an observation sequence, apply the action and
the observation sequence to b, and generate a new
node b′ as a child of b.

We want to spread the newly sampled points
evenly over B in order to improve the coverage of B.
A similar strategy is employed by PBVI [14], one of
the early point-based POMDP solvers. However,
we cover B under the distance dK, which provides
a more relaxed covering requirement and makes it
easier to cover B. According to Theorem 1, this is
sufficient for obtaining a good approximation of the
optimal value function. We implement this idea by
assigning a weight wc(b) to each node b in TR. The
weight wc(b) is the number of beliefs in TR within
a small pre-specified distance of b according to dK.
It gives an estimate of how densely the small region
near b is sampled. We then choose an existing node
b from TR with probability proportional to 1/wc(b),

8

in order to improve coverage in the less densely
sampled regions.

To generate a new node b′, we use M as a guide
to choose an action sequence and an observation
sequence first. The roadmap M contains many
paths. Each path represents a long action sequence
obtained by concatenating the action sequences as-
sociated with the edges along the path. If these ac-
tion sequences are optimal, we can simulate these
actions and generate a set of beliefs on the op-
timally reachable space R∗ ⊆ B, which contains
the subset of beliefs reachable from b0 under an
optimal policy. It is known that given a suffi-
ciently large set of beliefs forming a cover of R∗,
we can compute the corresponding optimal policy
efficiently [7]. Of course, we do not know which
roadmap paths represent action sequences that are
optimal. So we try many different paths, but bias
towards those which likely result from an optimal
policy. To do so, we order the outgoing edges at
each node s in M by increasing edge weights and
try the action sequences associated with the edges
in this order. This helps us to explore different
paths and avoid getting stuck in a local region.
The details of generating a new node b′ are slightly
different, depending on whether the node b chosen
in the first step is b0. If b = b0, conceptually we are
starting a new path in M . So we sample a state
s according to the belief b. We find the node s in
M and choose the next outgoing edge (s, s′) that
has not been tried yet. If all edge have been tried,
we restart from the edge with the lowest weight.
The state sequence associated with (s, s′) (see Sec-
tion 3) is used to extract a valid observation se-
quence. We then apply the action sequence asso-
ciated with (s, s′) and the observation sequence to
b and generate a new belief b′, using (4) and (5).
The resulting new belief b′ is inserted into TR as
a child node of b and labeled with s′ so that the
roadmap path can be continued from s′ later on. If
the node b chosen in the first step is not b0, then b
must have an associated state s. We find the node
s in M , and the remaining steps are the same as
those for the case b = b0.

6 Experiments

We tested MiGS on four robotic tasks that re-
quire long planning horizons. Below, we first de-
scribe these tasks and examine the robot’s behav-
ior under policies computed by MiGS (Section 6.1).

Next, we compare MiGS with other point-based
POMDP solvers and alternative approaches to mo-
tion planning under uncertainty (Section 6.2). Fi-
nally, we look at the robustness of MiGS policies
(Section 6.3).

6.1 Tasks and Computed Policies

2-D Navigation. A mobile robot navigates in
a laboratory with obstacles and danger zones that
must be avoided (Figure 2a). It starts in one of
the two entrances to the lab, but does not know
exactly which one. It must reach one of the goal
positions. We represent the robot’s position on a
uniform grid of size 60×70. In each step, the robot
moves from the current grid cell to one of the eight
adjacent ones. Due to imperfect control, the robot
reaches its intended cell only 90% of the time. For
the rest of the time, the robot either remains in
the current cell or drifts to the left or the right
of the intended cell. The robot can localize itself
only in regions with landmarks. Despite imperfect
control and localization, the robot must reach the
goal as quickly as possible while avoiding obstacles
and danger zones.

A simulation run under a policy computed by
MiGS is shown in Figure 2a. The robot starts at
the upper entrance. It first moves all the way down
to localize itself. It then moves back up and turns
right into a corridor towards one of the goals. Since
the robot does not know its starting position, it
must move down to localize itself first, despite the
additional distance traveled. Otherwise, it may get
stranded in a danger zone.

Interestingly, although jagged paths are undesir-
able in general, some parts of the jagged path in
Figure 2a are in fact deliberate and improve the
robustness of the robot’s motion in the presence
of uncertainty. For example, Figure 2b shows the
robot makes a zigzag motion first down-left and
then down-right. Before the zigzag motion, there
is some probability that the robot may enter the
wrong room. So it moves down-left to shift this
probability mass out. Now the probability mass is
concentrated at the lower entrance. To avoid get-
ting stuck there, the robot then moves down-right
to shift the probability mass towards the center of
the corridor.

As another example (Figure 2c), the robot’s mo-
tion as it turns right into the corridor is similar in
nature to that of wiggling a peg and inserting it
into a hole. By moving up and down at the mouth

9

(a)

(b) (c)

Figure 2: 2-D Navigation. (a) The robot’s path in a simulation run. (b) The robot makes jagged
motion to reduce the probability of entering the wrong room. The arrows point to the probability mass
of interest. (c) The robot “wiggles” its way into the corridor. “S” marks the robot’s possible initial
positions. “G” marks the goal positions. “D” marks danger zones that must be avoided. Shaded discs
mark landmark regions for robot localization. The blue line indicates the robot’s path in a simulation
run. The shaded blue region marks the robot’s belief on its own position. Darker colors indicate higher
probabilities.

10

(a) (b)

Figure 3: Sampled milestones. (a) The initial roadmap. (b) The final roadmap. Each “×” marks a
milestone.

Figure 4: 3-D navigation. See the caption of Fig-
ure 2 for the meanings of labels.

of the corridor, the robot tries to position itself
near the center of the corridor and pushes all the
probability mass into it.

Figure 3 shows the sampled milestones in the
roadmaps constructed by MiGS. In the initial
roadmap, the milestones fall in some of the land-
mark regions and one goal region, as they provide
either good observations or high rewards. In the
final roadmap, the milestones cover all the land-
mark regions and goal regions. Some danger zones
also contain milestones, because the knowledge of
being in a danger zone provides information on the
robot’s position.

3-D Navigation. An unmanned aerial vehicle
(UAV) navigates in an indoor environment (Fig-
ure 4), where GPS signal is not available. The
environment is populated with obstacles and dan-
ger zones. The robot’s state is represented as
(x, y, z, θp, θy), where (x, y, z) is the robot’s posi-
tion, θp is the pitch angle, and θy is the yaw angle.
The 3-D environment is discretized into a grid with
18 × 14 horizontal positions and 5 height levels.
The pitch angle is discretized into 3 values, and
the yaw angle, 8 values. The robot starts at the
entrance to the environment, but does not know
its initial state exactly. In each step, the robot can
either rotate in place or move forward to one of the
adjacent cells according to its heading. Rotation
motion is quite accurate. However, when the robot
moves forward, the robot reaches its intended state
only 90% of the time; the rest of the time, it may
remain in the same state or drift to the left or right
of the intended state. The robot can localize itself
near the landmarks.

The main difficulty in this task is similar to that
of 2-D Navigation, but the state space is much
larger because of the 3-D environment. A typical
policy computed by MiGS takes the UAV through
the rightmost route, which is longer but safer, be-
cause no danger zones are present and there are
several landmarks along the way to aid localiza-
tion.

Target Finding. A robot wants to find a mov-
ing target as quickly as possible in an environment

11

(a)

(b) (c) (d)

Figure 5: Target finding. (a) The environment. Courtesy of the Radish data set. (b) The belief on
the target’s position, before the robot clears the bottom target region. (c) The belief, after the robot
clears the bottom target region. (d) The belief, after the robot clears the top-left target region. The
pink lines mark the boundaries of target regions. The shaded red regions mark the robot’s belief on
the target’s position. Darker colors indicate higher probabilities. The red hollow triangle marks the
target’s actual position. See the caption of Figure 2 for the meanings of other labels.

containing obstacles and danger zones (Figure 5).
The environment is represented as a uniform grid
of size 29 × 49. The state space is parametrized
by two variables (xr, xt), where xr is the robot’s
position and xt is the target’s position. The target
may lie in one of three regions. It can move freely
within a region, but can not jump to a different
region. The target’s behavior is unknown to the
robot. The robot knows its starting position only
roughly. In each step, the robot can move to one
of its eight adjacent cells. However, due to imper-
fect control, the robot fails to reach the intended
cell 15% of the time. The robot can localize itself
near a landmark. Due to sensor limitations, the
robot can detect the target only when they are in
the same grid cell.

The strategy generated by MiGS balances the
effort of searching the target in a particular target
region with the cost of moving between different
target regions. The robot first searches the bottom
target region, which is close to its starting position.

It dispenses significant effort there until the prob-
ability of finding the target in this region becomes
very small (Figure 5b). The robot then moves to-
wards the upper target regions along the long, but
safer path to the right, in order to avoid acciden-
tally entering the danger zones. Once there, the
robot first searches the upper left target region,
because the prior probability of finding the target
there is higher than that in the upper right target
region (Figure 5b). However, the robot does not
search the upper left target region as hard as the
bottom target region. When it leaves the upper left
region, there is still some probability that the tar-
get may be there (Figure 5c). The cost of moving
between the upper left and right target regions are
low. It is advantageous to search the upper right
target region and then return to the upper left tar-
get region when necessary. Luckily, the robot finds
the target in the upper right region.

Cooperative Navigation. Autonomous under-
water vehicle (AUV) navigation in deep sea explo-

12

(a)

(b) (c) (d)

Figure 6: Cooperative Navigation. (a) The 3-D view (top), the top view (bottom left), and the bottom
view (bottom right) of the environment. (b) The ASC’s path in a simulation run. (c) Although the
ASC is already at the southernmost position, it still moves southeast in order to reduce the chance
that the AUV gets blocked by obstacles. The arrow points to the obstacle that potentially blocks the
AUV. (d) The ASC moves straight east, when the chance of having the AUV blocked by obstacles is
sufficiently small. The blue line indicates the ASC’s path. The shaded red region indicates the ASC’s
belief on the AUV’s position. Darker colors indicate higher probabilities. The dashed circle marks the
boundary of the acoustic modem’s effective range with respect to the current ASC’s position. See the
caption of Figure 2 for the meanings of other labels.

ration missions is a major challenge, because it is
difficult to control the motion of AUVs accurately
and AUVs often rely on dead-reckoning to estimate
their positions. One interesting approach is to use
autonomous surface crafts (ASCs) to guide AUV
navigation [4]. Here, we model a simplified ver-
sion of this cooperative navigation task. We want
to find a motion strategy for an ASC to guide an
AUV navigating from a start position to a goal po-
sition, even though the ASC does not know AUV’s
position exactly (Figure 6a).

The underwater environment where the AUV

operates contains obstacles and danger zones. The
surface environment where the ASC operates also
contains obstacles. The obstacles layout and ge-
ometry in the underwater environment may differ
from those in the surface environment. Both the
surface and the underwater environment are rep-
resented as uniform grids of size 24× 11.

The initial positions of the ASC and the AUV
are not known exactly. In each step, the ASC
moves to one of its eight adjacent cells. We assume
that the ASC’s control is sufficiently accurate and
the error is negligible. In contrast, the AUV’s con-

13

trol is quite noisy. In each step, it also moves to
one of its eight adjacent cells, but reaches its in-
tended cell only 60% of the time. For the rest of
the time, it remains in its current cell or drifts to
the left or the right of the intended cell.

To help the AUV navigates, the ASC is equipped
with a GPS and an acoustic modem. The ASC
transmits the GPS information and its own move-
ment information continuously through the acous-
tic modem. When the AUV lies within a reliable
transmission range of the ASC’s acoustic modem,
we assume that the AUV receives the GPS and
movement information with perfect accuracy.

The AUV moves according to the following rules.
When the AUV’s estimated position is far from
the boundary of the acoustic modem’s range limit,
the AUV replicates the ASC’s action. When the
AUV’s estimated position is close to the acoustic
modem’s range limit, the AUV moves toward the
ASC to ensure reliable signal reception. When the
AUV lies beyond the reliable transmission range
of the acoustic modem, we assume conservatively
that the AUV receives no transmission and is lost.
The AUV then moves in any direction with equal
probability.

To help the ASC locates the AUV, the AUV
uses an acoustic modem to transmit its own po-
sition. However, for efficiency, the AUV transmits
only when it is able to localize itself well. The
AUV localizes using GPS information from the
ASC and from a few fixed transmission stations
installed in the environment. Each fixed trans-
mission station transmits its position continuously
through an acoustic modem. Due to the acoustic
modem’s range limit, the AUV can only localize
when it is sufficiently close to the ASC and the
fixed transmission stations.

The policy generated by MiGS moves the ASC
in such a way to help the AUV reaches the goal
safely with high probability. To ensure the AUV’s
safety, the ASC deliberately takes a longer route
(Figure 6b). The ASC also tries to ensure that the
AUV is well within the reliable transmission range
of the acoustic modem, based on its knowledge of
the estimated AUV’s position and AUV’s behavior.
For example, Figure 6c shows that the ASC keeps
moving in the southeast direction, though it knows
perfectly well from the GPS readings that it is al-
ready at the southernmost position. It would ap-
pear that moving east and making progress along
the path towards the goal should be more effec-

tive. Closer examination of the ASC’s belief on
the AUV’s position reveals why the ASC does not
do so. If the ASC moves east, the AUV will repli-
cate the action, but with substantial probability, it
will get blocked by the obstacle and remain in the
same position (Figure 6c). Now if the ASC contin-
ues moving east, the AUV will eventually fall out of
the acoustic modem’s transmission range and get
lost. As a result, the ASC moves in the southeast
direction for a number of steps. It moves east only
after the probability of having the AUV blocked
by the obstacle is sufficient small (Figure 6d).

6.2 Performance Comparison

We now compare MiGS quantitatively with other
well-known approaches for motion planning and
planning under uncertainty.

6.2.1 Experimental Setup

We ran three other planning algorithms:
PRM [10], QMDP [25], and HSVI2 [22]. PRM
is one of the most successful algorithms for
motion planning without uncertainty. Results
on PRM gives an indication of the importance
of uncertainty planning in the tasks described in
Section 6.1. We did not run PRM on the Target
Finding task, because the classic PRM algorithm
applies only to problems with static goals, while
the target position, which serves as the goal in this
task, moves. QMDP is a simple and yet practical
approximate POMDP solver that is well known
in robotics. Finally, HSVI2 is one of the fastest
point-based POMDP solvers available.

All the algorithms were implemented in C++.
For HSVI2, we used ZMDP v1.1.6., the latest soft-
ware package released by HSVI2’s original author.
All the experiments were performed on a computer
server with a 2.66GHz Intel processor, 2GB mem-
ory, and the Linux operating system.

For each task, we estimated the success rate
of policies computed by MiGS. The success rate
is the percentage of simulation runs in which the
robot accomplishes a given task successfully within
a specified time limit. Since MiGS is a randomized
algorithm, we ran MiGS 30 times and performed
100 simulation runs for each resulting policy. The
average success rate was then reported.

The performance of PRM was assessed in a sim-
ilar way. For each task, we ran PRM 30 times. In
each run, we first sampled a start state according

14

to the initial belief b0 and sampled a goal state
uniformly at random from the set of possible goal
states. We then ran PRM to generate a path from
the start to the goal state. Finally, we treated the
generated path as an open loop policy and per-
formed 100 simulation runs under the policy to es-
timate its average success rate.

QMDP and HSVI2 are both deterministic. We
ran the algorithm until it either converged or
reached a two hour limit. We then performed 3,000
simulation runs to estimate the success rate of the
resulting policy.

6.2.2 Results

Table 1: The success rates of policies computed by
various algorithms.

PRM QMDP HSVI2 MiGS

2-D Navigation 0.0 0.0 0.0 93.0

3-D Navigation 14.4 0.1 24.0 97.4

Target Finding — 11.7 12.2 95.0

Coop Navigation 0.0 0.0 0.0 99.0

Figure 7: The success rate of MiGS policies with
increasing running times.

The results for the four test tasks show that
MiGS significantly outperforms the other algo-
rithms under comparison (Table 1 and Figure 7).
PRM performs badly, as it ignores uncertainty
completely. Its failure indicates that handling un-
certainty is a key issue in these tasks. QMDP es-
sentially performs one-step lookahead search in the
belief space. This is insufficient for tasks that re-
quire long planning horizons. While HSVI2 per-

forms multi-step lookahead, it relies heavily on its
heuristic to guide the search in the belief space.
The heuristic is constructed from an MDP solu-
tion, which assumes that the system state is fully
observable in the current and all future time steps.
As the planning horizon increases, this assumption
starts to fail, and the heuristic becomes less effec-
tive in guiding the belief space search. In contrast,
using the action sequences in the roadmap, MiGS
looks ahead much further in a hierarchical fashion.

It is interesting to note that in 3D-Navigation,
even though PRM ignores uncertainty, it performs
better than QMDP, out of “luck”. If the UAV
moves from the starting state directly towards the
goal, it very likely passes through a danger zone,
resulting in a failure. However, it may reach the
goal successfully occasionally. PRM ignores all
these and computes such a direct route, which
leads to an average success rate of 14%. QMDP
performs limited lookahead and recognizes the risk
of this route. However, its one-step lookahead is
not long enough to generate an alternative pol-
icy that brings the UAV to the goal consistently.
Thus, the UAV ends up getting stuck in the start
state, resulting in complete failure in terms of suc-
cess rate. By performing longer lookahead, HSVI2
performs better than QMDP, and MiGS performs
much better than both.

In Target Finding, both QMDP and HSVI2
produce policies that find the target successfully,
whenever it is the lower target region. The lower
target region is close to the robot’s start position,
and the planning horizon required to generate such
a policy is relatively short. However, to generate
policies capable of finding the target in the two
upper target regions, we need a much longer plan-
ning horizon. As a result, the policies produced by
QMDP and HSVI2 after 2 hours of computation
only succeed around 12% of the time (Table 1),
when the target is located in the lower target re-
gion. In contrast, the policies produced by MiGS
achieve 95% success rate after 10 minutes of com-
putation (Figure 7).

6.3 Robustness of MiGS Policies

For many real-world robotic tasks, it is not easy to
build accurate models of robot control and sens-
ing. For instance, the motion of an AUV depends
heavily on the water current, whose effect is diffi-
cult to model accurately [13]. Thus it is desirable
to have POMDP policies that are robust against

15

Figure 8: 2-D navigation in a simple geometric en-
vironment. The blue and red lines mark the robot’s
paths in simulation runs under π90,90 from the two
different initial positions, respectively. See the cap-
tion of Figure 2 for the meanings of labels.

such modeling errors.

We performed preliminary tests on the robust-
ness of policies computed by MiGS. We used a 2D-
navigation task (Figure 8) similar to the one de-
scribed in Section 6.1, but in a simpler geometric
environment. The environment is represented as
a uniform grid of size 20 × 42. In each step, the
robot may move to one of eight adjacent cells and
reaches the intended cell t% of the time. The robot
can localize itself near landmarks, but it correctly
identifies the landmark only z% of the time.

We applied MiGS to the POMDP model with
t = 90 and z = 90. In other words, the model
assumes quite accurate robot motion control and
landmark identification. We simulated the result-
ing policy π90,90, while systematically varying the
values of t and z during the simulation, in order
to examine the robustness of π90,90, when t 6= 90
or z 6= 90. For comparison, we used MiGS to com-
pute polices πt,z for POMDP models with correct
values of t and z.

With decreasing t value, the uncertainty in robot
control increases. It becomes more difficult for the
robot to reach the goal reliably. A comparison of
success rates for π90,90 and πt,z suggests that small
errors in the robot motion model do not have a
significant effect here (Figure 9a). However, in
relative terms, the performance of π90,90 gradually
degrades as the model errors increase. When the
model errors are large, the reachable belief space
under the model with t = 90 and z = 90 could be
substantially different from that under the correct
model. Thus, during the simulation, the robot may
encounter a belief not close to any one considered
during the planning. It then has to resort to a de-

(a)

(b)

Figure 9: The effect of model errors on the per-
formance of MiGS policies. (a) The success rate
with increasing error in the robot motion model.
(b) The success rate with increasing error in the
sensing model.

fault action, which often causes poor performance.
Figure 9b shows that π90,90 is more tolerant of er-
rors in the sensing model than those in the robot
motion model. The reason is that the successful
strategy commands the robot to move counter-
clockwise along the hallway and approach the goal
from the right, thus avoiding the danger zones. Lo-
calization using the landmarks makes this strategy
more efficient to execute, but does not seem to play
a critical role. Thus sensing model errors do not
affect the success rate significantly. In summary,
these results suggest that MiGS policies are robust
against small model errors, though more tests are
needed to confirm this.

7 Conclusion

This paper proposes Milestone Guided Sampling
(MiGS), a new point-based POMDP solver for
robot motion planning tasks that require long time
horizons. MiGS samples a set of milestones from a

16

robot’s state space and constructs a roadmap as a
simplified representation of the state space. Each
edge of the roadmap represents an action sequence
that brings the robot from one milestone to an-
other. MiGS uses these action sequences in the
roadmap, rather than single primitive actions, to
sample the belief space, thus significantly reducing
effective planning horizons while still capturing the
important features of the belief space. We success-
fully tested MiGS in simulation on several difficult
POMDPs modeling distinct robotic tasks in both
2-D and 3-D environments.

Two main obstacles have hindered the applica-
tion of POMDPs to realistic robotic tasks: large
state spaces and long time horizons. The recently
introduced point-based algorithms have shown im-
pressive progress in solving POMDPs with large
state spaces. However, their performance degrades
significantly when the planning task has a long
time horizon. By alleviating the difficulty of long
horizons, we hope that our work brings POMDPs
one step closer to becoming a practical tool for
robot motion planning in uncertain and dynamic
environments.

Acknowledgments. We thank Sylvie Ong and
Shao Wei Png for reading the first draft of this pa-
per and helping with scripting a POMDP model.
We also thank the anonymous reviewers whose
many suggestions helped to improve the presenta-
tion of the paper. This work is supported in part
by AcRF grant R-252-000-327-112 from the Singa-
pore Ministry of Education. H. Kurniawati thanks
N. M. Patrikalakis for his support.

References

[1] R. Alterovitz, T. Simeon, and K. Goldberg.
The stochastic motion roadmap: A sampling
framework for planning with Markov motion
uncertainty. In Proc. Robotics: Science and
Systems, 2007.

[2] H. Choset, K.M. Lynch, S. Hutchinson,
G. Kantor, W. Burgard, L.E. Kavraki, and
S. Thrun. Principles of Robot Motion: The-
ory, Algorithms, and Implementations. The
MIT Press, 2005.

[3] M. Erwig. The graph Voronoi diagram with
applications. Networks, 36(3):156–163, 2000.

[4] M.F. Fallon, G. Papadopoulos, and J.J.
Leonard. Cooperative AUV navigation using
a single surface craft. In Proc. Field & Service
Robotics, 2009.

[5] K. Hsiao, L.P. Kaelbling, and T. Lozano-
Perez. Grasping POMDPs. In Proc. IEEE
Int. Conf. on Robotics & Automation, pages
4685–4692, 2007.

[6] D. Hsu, J.C. Latombe, and H. Kurniawati. On
the probabilistic foundations of probabilistic
roadmap planning. Int. J. Robotics Research,
25(7):627–643, 2006.

[7] D. Hsu, W.S. Lee, and N. Rong. What makes
some POMDP problems easy to approximate?
In Advances in Neural Information Processing
Systems (NIPS), 2007.

[8] D. Hsu, W.S. Lee, and N. Rong. A point-
based POMDP planner for target tracking. In
Proc. IEEE Int. Conf. on Robotics & Automa-
tion, pages 2644–2650, 2008.

[9] L. Kaelbling, M. Littman, and A. Cassan-
dra. Planning and acting in partially ob-
servable stochastic domains. Artificial Intelli-
gence, 101:99–134, 1998.

[10] L.E. Kavraki, P. Švestka, J.-C. Latombe, and
M.H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configura-
tion space. IEEE Trans. on Robotics & Au-
tomation, 12(4):566–580, 1996.

[11] H. Kurniawati, D. Hsu, and W.S. Lee. SAR-
SOP: Efficient point-based POMDP planning
by approximating optimally reachable belief
spaces. In Proc. Robotics: Science and Sys-
tems, 2008.

[12] J.-C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, 1991.

[13] B.H. Ooi, H. Zheng, H. Kurniawati, W. Cho,
M.H. Dao, J. Wei, P. Zemskyy, P. Tkalich,
P. Malanotte-Rizzoli, and N.M. Patrikalakis.
Multi-vehicle oceanographic feature explo-
ration. In Proc. Int. Offshore & Polar En-
gineering Conf., 2009.

[14] J. Pineau, G. Gordon, and S. Thrun. Point-
based value iteration: An anytime algorithm
for POMDPs. In Int. Jnt. Conf. on Artificial
Intelligence, pages 1025–1032, August 2003.

17

[15] J. Pineau, G. Gordon, and S. Thrun. Policy-
contingent abstraction for robust robot con-
trol. In Proc. Uncertainty in Artificial Intel-
ligence, pages 477–484, 2003.

[16] J. Pineau, M. Montemerlo, M. Pollack,
N. Roy, and S. Thrun. Towards robotic as-
sistants in nursing homes: Challenges and
results. Robotics and Autonomous Systems,
42(3–4):271–281, 2003.

[17] S. Prentice and N. Roy. The belief roadmap:
Efficient planning in linear POMDPs by fac-
toring the covariance. In Proc. Int. Symp. on
Robotics Research, 2007.

[18] N. Roy, G. Gordon, and S. Thrun. Finding
approximate POMDP solutions through be-
lief compression. J. Artificial Intelligence Re-
search, 23:1–40, 2005.

[19] S. Russell and P. Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall,
2002.

[20] G. Shani, R.I. Brafman, and S.E. Shimony.
Forward search value iteration for POMDPs.
In Int. Jnt. Conf. on Artificial Intelligence,
pages 2619–2624, 2007.

[21] R.D. Smallwood and E.J. Sondik. The op-
timal control of partially observable Markov
processes over a finite horizon. Operations Re-
search, 21:1071–1088, 1973.

[22] T. Smith and R. Simmons. Point-based
POMDP algorithms: Improved analysis and
implementation. In Proc. Uncertainty in Ar-
tificial Intelligence, July 2005.

[23] M.T.J. Spaan and N. Vlassis. Perseus:
Randomized point-based value iteration for
POMDPs. J. Artificial Intelligence Research,
24:195–220, 2005.

[24] G. Theocharous and L. P. Kaelbling. Ap-
proximate planning in POMDPs with macro-
actions. In Advances in Neural Information
Processing Systems (NIPS), 2003.

[25] S. Thrun, W. Burgard, and D. Fox. Proba-
bilistic Robotics. The MIT Press, 2005.

A Proof of Theorem 1

Proof. The optimal value function V ∗ can be
approximated arbitrarily closely by a piecewise-
linear convex function and represented as V ∗(b) =
maxα∈Γ(α · b) for a suitable set Γ of α-vectors. Let
α and α′ be the maximizing α-vectors at b and
b′, respectively. Without loss of generality, assume
V ∗(b) ≥ V ∗(b′). Thus V ∗(b) − V ∗(b′) ≥ 0. Since
α′ is a maximizer at b′, we have α′ · b′ ≥ α · b′ and
V ∗(b)−V ∗(b′) = α·b−α′·b′ ≤ α·b−α·b′ ≤ α·(b−b′).
It then follows that

|V ∗(b)− V ∗(b′)| ≤ |α · (b− b′)|. (7)

Next, we calculate the inner product on the right-
hand side of (7) over the partitioned state space:

|V ∗(b)− V ∗(b′)| ≤
∣

∣

∣

∑

s∈S

α(s)(b(s)− b′(s))
∣

∣

∣

≤
∣

∣

∣

∑

K∈K

∑

s∈K

α(s)(b(s)− b′(s))
∣

∣

∣

For any state sK in the subset K ∈ K. We have

|V ∗(b)− V ∗(b′)|

≤
∣

∣

∣

∑

K∈K

∑

s∈K

(α(s)− α(sK) + α(sK))(b(s)− b′(s))
∣

∣

∣

≤
∣

∣

∣

∑

K∈K

∑

s∈K

(α(s)− α(sK))(b(s)− b′(s))
∣

∣

∣

+
∣

∣

∣

∑

K∈K

∑

s∈K

α(sK)(b(s)− b′(s))
∣

∣

∣
. (8)

Let e1 and e2 denote the two terms in (8), respec-
tively. We now bound e1 and e2 separately. By the
definition of ǫ-partitioning, |α(s) − α(sK)| ≤ ǫ for
all s and sK in K ∈ K. Thus,

e1 ≤
∑

K∈K

∑

s∈K

ǫ|b(s)− b′(s)|

= ǫ
∑

s∈S

|b(s)− b′(s)| ≤ 2ǫ, (9)

where the last inequality holds because the L1

distance between any two beliefs is no greater
than 2. Let us now consider e2. Since the ab-
solute values of α-vector coefficients are no more
than Rmax/(1− γ), it follows that

e2 ≤
∑

K∈K

∣

∣

∣
α(sK)

∣

∣

∣

∣

∣

∣

∑

s∈K

(b(s)− b′(s))
∣

∣

∣

≤
∑

K∈K

Rmax

1− γ

∣

∣

∣

∑

s∈K

b(s)− b′(s)
∣

∣

∣
. (10)

18

Using the condition dK(b, b′) ≤ δ, we get e2 ≤
Rmax

1−γ δ. Combining this with (8) and (9) gives the
desired result. ✷

19

