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Abstract

We present a new approach to motion planning under sensing and motion uncertainty by
computing a locally optimal solution to a continuous partially observable Markov decision pro-
cess (POMDP). Our approach represent beliefs (the distributions of the robot’s state estimate)
by Gaussian distributions and is applicable to robot systems with non-linear dynamics and ob-
servation models. The method follows the general POMDP solution framework in which we
approximate the belief dynamics using an extended Kalman filter and represent the value func-
tion by a quadratic function that is valid in the vicinity of a nominal trajectory through belief
space. Using a belief space variant of iterative LQG (iLQG), our approach iterates with second-
order convergence towards a linear control policy over the belief space that is locally optimal
with respect to a user-defined cost function. Unlike previous work, our approach does not as-
sume maximum-likelihood observations, does not assume fixed estimator or control gains, takes
into account obstacles in the environment, and does not require discretization of the state and
action spaces. The running time of the algorithm is polynomial (O[n6]) in the dimension n of
the state space. We demonstrate the potential of our approach in simulation for holonomic and
nonholonomic robots maneuvering through environments with obstacles with noisy and partial
sensing and with non-linear dynamics and observation models.

1 Introduction

As a robot moves through an environment to accomplish a task, uncertainty may arise in (1) the
robot’s motion due to unmodeled or unpredictable external forces, and (2) the robot’s sensing
of its state due to noisy or incomplete sensor measurements. These forms of uncertainty are
common in a variety of practical robotics tasks, including guiding aerial vehicles in turbulent
conditions, maneuvering mobile robots in unfamiliar terrain, and robotically steering flexible
medical needles to clinical targets in soft tissues. Explicitly considering motion and sensing
uncertainty when computing motion plans can improve the quality of computed plans. The
objective of motion planning under uncertainty is to plan motions for a robot such that the
expected cost (as defined by a user-specified cost-function) is minimized. Optimal plans typically
limit the information that is lost due to motion uncertainty and move the robot through regions
of the state space where information on the state is gained. Optimal solutions will maximize,
for instance, the probability of reaching a specified goal location while avoiding collisions with
obstacles.

To fully consider the impact of uncertainty in motion and sensing, a motion planner should
not merely compute a static path through the robot’s configuration space but rather a control
policy that defines the motion to perform given any current state information. A key challenge is
that the robot often cannot directly observe its current state but instead estimates a distribution
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over the set of possible states (i.e., its belief state) based on sensor measurements that are both
noisy and partial (i.e., only a subset of the state vector can be sensed). The problem of computing
a control policy over the space of belief states is formally described as a partially observable
Markov decision process (POMDP), on which a large body of work is available in the literature.
Solutions to POMDPs are known to be extremely complex [19], since the belief space (over which
a control policy is to be computed) is in the most general formulation an infinite-dimensional
space of all possible probability distributions over the finite-dimensional state space. Solutions
based on discrete or discretized state and action spaces are inherently subject to the “curse
of dimensionality,” and have only been successfully applied to very small and low-dimensional
state spaces.

In this paper, we present a method that takes as input a feasible trajectory and improves
it by computing a locally optimal trajectory and a corresponding control policy that together
minimize the expected value of a user-specified cost metric in the presence of motion and sens-
ing uncertainty. To accomplish this, our method computes a locally optimal solution to a
POMDP problem with continuous state and action spaces and non-linear dynamics and obser-
vation models, where we assume a belief can be represented by a Gaussian distribution. This
POMDP formulation is applicable to a wide range of robot motion planning problems. Our
approach uses a belief space variant of iterative linear-quadratic Gaussian (iLQG) to perform
value iteration, where the value function is approximated using a quadratization around a nom-
inal trajectory, and the belief dynamics is approximated using an extended Kalman filter (any
non-linear Gaussian filter can in fact be used). The result is a linear control policy over the
belief space that is valid in the vicinity of the nominal trajectory. By executing the control
policy, a new nominal trajectory is created, around which a new control policy is constructed.
This process continues with second-order convergence towards a locally optimal solution to the
POMDP problem. Unlike general POMDP solvers that have an exponential running time, our
approach does not rely on discretizations and has a running time that is polynomial (O[n6]) in
the dimension n of the state space.

Our approach combines, generalizes, and overcomes the limitations of previous work that
has addressed the same problem of creating applicable approximations to the POMDP problem.
Most previous work on POMDPs assumesmaximum-likelihood observations to enable or simplify
computing a control policy. This assumption has no formal justification, yet seems to produce
reasonable results. Our approach does not assume maximum-likelihood observations, but can
relatively easily be adapted such that it does. We use this to study the impact of the maximum-
likelihood observation assumption on the resulting control policies and discuss the impact on
plans computed using iterative local optimization. Our results indicate that not making this
assumption results, on average, in better control policies (i.e., they have lower expected cost).

Furthermore, our approach does not assume fixed estimator or control gains, and takes into
account obstacles in the environment. We do assume that the dynamics and observation models
and cost functions are sufficiently smooth, and that the belief about the state of the robot is
well described by only its mean and its variance. We show the potential of our approach in
several illustrative scenarios involving robots with non-linear dynamics and observation models
moving through environments containing obstacles and relying on limited and partial sensing.

2 Previous Work

Partially observable Markov decision processes (POMDPs) [24] provide a principled mathemati-
cal framework for planning under uncertainty. They are known to be of extreme complexity [19],
and can only be directly applied to problems with small and low-dimensional state spaces [16].
Recently, several POMDP algorithms have been developed that use approximate value iteration
with point-based updates [1, 17, 20, 18]. These have been shown to scale up to medium-sized
domains. However, they rely on discretizing the state space or the action space, making them
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inevitably subject to the “curse of dimensionality.” The methods of [23, 4, 9, 6] handle con-
tinuous state and action spaces, but maintain a global (discrete) representation of the value
function over the belief space. In contrast, our approach is continuous and approximates the
value function in parametric form only in the regions of the belief space that are relevant to
solving the problem, allowing for a running time polynomial in the dimension of the state.

Another class of works, to which our method is directly related, assumes a linear-quadratic
Gaussian (LQG) framework to find locally optimal feedback policies. In the basic LQG deriva-
tion [2], motion and sensing uncertainty have no impact on the resulting policy. As shown in
[25], the LQG framework can be extended such that it accounts for state and control dependent
motion noise, but still implicitly assumes full observation (or an independent estimator) of the
state. Several approaches have been proposed to include partial and noisy observations such that
the controller will actively choose actions to gain information about the state. Belief roadmaps
[22] and icLQG [10] combine an iterative LQG approach with a roadmap, but this approach
does not result in (locally) optimal solutions. The approaches of [21, 7, 8] are similar to ours
and incorporate the variance into an augmented state and use the LQG framework to find a
locally optimal control policy. The main difference is that these approaches assume maximum-
likelihood observations to make the belief propagation deterministic. LQG-MP [26] removes
this assumption, but only evaluates the probability of success of a given trajectory, rather than
constructing an optimal one. Belief trees [5] overcome this limitation by combining a variant of
LQG-MP with RRT* to find an optimal trajectory through belief space. A great advantage of
this approach is that it finds a globally optimal solution. Vitus and Tomlin [31] propose an al-
ternative solution that involves solving a chance constrained optimal control problem. However,
these approaches do not really solve a POMDP as they assume fixed control gains along each
section of the trajectory independent of the context. The work of [15] takes into account state
and control dependent motion and observation noise by an interleaved iteration of the estima-
tor and the controller, converging to a local optimum. While this approach is asymptotically
faster than ours, it does not allow for obstacles in the environment and results in a controller
that is optimal only under the assumption of fixed estimator gains. Our approach combines
and generalizes these approaches as it does not assume maximum-likelihood observations, does
not assume fixed control or estimator gains, and takes into account the existence of obstacles
in the environment to compute locally optimal policies that minimize the expected value of a
user-defined cost function.

This paper is an extended version of a preliminary paper presented by the authors in [28],
which used stochastic differential dynamic programming (sDDP) rather than iLQG for the value
iteration, but otherwise presents the same global approach. Also, to improve numerical stability
compared to [28], in this paper we use the principal square root of the variance, rather than
the variance itself, in the definition of the belief. Qualitatively, iLQG is asymptotically faster
than sDDP (O[n6] rather than O[n7]) and numerically more stable (regularization of matrices
to maintain positive-semidefiniteness of the value function is not necessary with iLQG). Our
experimental results include a quantitative comparison between the two approaches.

3 Preliminaries and Definitions

We begin by defining POMDPs in their most general formulation (following [24]). Then, we
specifically state the instance of the problem we discuss in this paper.

3.1 General POMDPs

Let X ⊂ R
n be the space of all possible states x of the robot, U ⊂ R

m be the space of all possible
control inputs u of the robot, and Z ∈ R

k be the space of all possible sensor measurements z
the robot may receive. General POMDPs take as input a stochastic dynamics and observation
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model, here given in probabilistic notation:

xt+1 ∼ p[xt+1|xt,ut], zt ∼ p[zt|xt], (1)

where xt ∈ X , ut ∈ U , and zt ∈ Z are the robot’s state, control input, and received measurement
at time step t, respectively.

The belief b[xt] of the robot is defined as the distribution of the state xt given all past control
inputs and sensor measurements:

b[xt] = p[xt|u0, . . . ,ut−1, z1, . . . , zt]. (2)

Given a control input ut and a measurement zt+1, the belief is propagated using Bayesian
filtering:

b[xt+1] = η p[zt+1|xt+1]

∫

p[xt+1|xt,ut] b[xt] dxt, (3)

where η is a normalizer independent of xt+1. Denoting belief b[xt] by bt, and the space of all
possible beliefs by B ⊂ {X → R}, the belief dynamics defined by Eq. (3) can be written as a
function β : B × U × Z → B:

bt+1 = β[bt,ut, zt+1]. (4)

Now, the challenge of the POMDP problem is to find a control policy πt : B → U for all
0 ≤ t < ℓ, where ℓ is the time horizon (i.e. the index of the final time step), such that selecting
the controls ut = πt[bt] minimizes the objective function:

E
z1,...,zℓ

[

cℓ[bℓ] +

ℓ−1
∑

t=0

ct[bt,ut]
]

, (5)

for given immediate cost functions cℓ and ct. The expectation is taken because the measurements
are stochastic.

A general solution approach uses value iteration [24], a backward recursion procedure, to
find the control policy πt for each time step t:

vℓ[bℓ] = cℓ[bℓ] (6)

vt[bt] = min
ut

(ct[bt,ut] + E
zt+1

[

vt+1[β[bt,ut, zt+1]]
]

) (7)

πt[bt] = argmin
ut

(ct[bt,ut] + E
zt+1

[

vt+1[β[bt,ut, zt+1]]
]

), (8)

where vt[bt] : B → R is called the value function at time step t.

3.2 Problem Definition

The complexity of POMDPs stems from the fact that B, the space of all beliefs, is infinite-
dimensional, and that in general the value function cannot be expressed in parametric form.
We address these challenges in our approach by representing beliefs by Gaussian distributions,
approximating the belief dynamics using an extended Kalman filter, and approximating the
value function by a quadratization around a nominal trajectory through the belief space.

Specifically, we assume we are given a (non-linear) stochastic dynamics and observation
model, here given in state-transition notation:

xt+1 = f [xt,ut,mt], mt ∼ N [0, I], (9)

zt = h[xt,nt], nt ∼ N [0, I], (10)
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where mt is the motion noise and nt is the measurement noise, each drawn from an independent
Gaussian distribution with (without loss of generality) zero mean and unit variance. Note
that the motion and sensing uncertainty can be state and control input dependent through
manipulations on mt and nt within the functions f and h, respectively.

The belief, denoted bt = (x̂t,
√
Σt), is assumed to be defined by the mean x̂t and the principal

square root
√
Σt of the variance Σt of a Gaussian distribution N [x̂t,Σt] of the state xt. We

use the square root for numerical robustness of the algorithm we present below. Similar to
the general POMDP case, our objective is to find a control policy ut = πt[bt] that minimizes

the cost function E
[

cℓ[bℓ] +
∑ℓ−1

t=0 ct[bt,ut]
]

. In our case, we assume in addition positive-
(semi)definiteness for the Hessian matrices of the immediate cost functions ct:

∂2cℓ
∂b∂b

[b] ≥ 0,
∂2ct
∂u∂u

[b,u] > 0,

[

∂2ct
∂b∂b

[b,u] ∂2ct
∂b∂u

[b,u]
∂2ct
∂u∂b

[b,u] ∂2ct
∂u∂u

[b,u]

]

≥ 0, (11)

for all b, u and t. Further, we assume that the initial belief b0 = (x̂0,
√
Σ0) is given.

4 Approach

To compute a locally optimal solution to the Gaussian POMDP problem as formulated above,
we follow the general solution approach as sketched in Section 3.1. First, we approximate the
belief dynamics using an extended Kalman filter. Second, we approximate the value function
using a quadratic function that is locally valid in the vicinity of a nominal trajectory though the
belief space. We then use a belief-space variant of iterative LQG to perform the value iteration,
which results in a linear control policy over the belief space that is locally optimal around the
nominal trajectory. We then iteratively generate new nominal trajectories by executing the
control policy, and repeat the process until convergence to a locally optimal solution to the
POMDP problem. We discuss each of these steps in this section, and analyze the running time
of our algorithm.

4.1 Bayesian Filter and Belief Dynamics

Given a current belief bt = (x̂t,
√
Σt), a control input ut, and a measurement zt+1, the belief

evolves using a Bayesian filter. We approximate the Bayesian filter by an extended Kalman
filter (EKF), which is applicable to Gaussian beliefs (we note that any other non-linear Gaussian
filter, such as the unscented Kalman filter [12], can be used as well). The EKF is widely used
for state estimation of non-linear systems [32], and uses the first-order approximation that for
any vector-valued function f [x] of a stochastic variable x we have:

E[f [x]] ≈ f [E[x]], Var[f [x]] ≈ ∂f

∂x
[E[x]] ·Var[x] · ∂f

∂x
[E[x]]T . (12)

Given x̂t and
√
Σt that define the current belief, the EKF update equations are then given by:

x̂t+1 = f [x̂t,ut,0] +Kt(zt+1 − h[f [x̂t,ut,0],0]), (13)
√

Σt+1 =
√

Γt −KtHtΓt, (14)

where

Γt = At

√

Σt(At

√

Σt)
T +MtM

T
t , At =

∂f

∂x
[x̂t,ut,0], Mt =

∂f

∂m
[x̂t,ut,0], (15)

Kt = ΓtH
T
t (HtΓtH

T
t +NtN

T
t )−1, Ht =

∂h

∂x
[f [x̂t,ut,0],0], Nt =

∂h

∂n
[f [x̂t,ut,0],0]. (16)
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Note that all of these matrices are functions of bt and ut. Equations (13) and (14) define the
(non-linear) belief dynamics. The second term of Eq. (13), called the innovation term, depends
on the measurement zt+1. Since the measurement is unknown in advance, the belief dynamics
are stochastic. Using Eq. (10) and the assumptions of Eq. (12), the innovation term is distributed
according to N [0,KtHtΓt].

We define the belief bt =
[

x̂t

vec[
√

Σt]

]

as a true vector, containing the mean x̂t and the columns

of
√
Σt. Obviously, in our implementation we exploit the symmetry of

√
Σt to eliminate the

redundancy. Then, the stochastic belief dynamics are given by:

bt+1 = g[bt,ut] +W [bt,ut]wt, wt ∼ N [0, In], (17)

where n is the dimension dim[x] of the state, and:

g[bt,ut] =

[

f [x̂t,ut,0]
vec[

√
Γt −KtHtΓt]

]

, W [bt,ut] =

[√
KtHtΓt

0

]

. (18)

4.2 Value Iteration

We perform value iteration backward in time to find a locally optimal control policy. When using
value iteration (dynamic programming) over discrete states one usually stores the value of each
possible state. In the case of a continuous state this is not possible. Instead, we assume that we
have an initial (nominal) trajectory given. For each time step t we calculate an approximation
of the value function around the state the robot is in at time step t when following the nominal
trajectory. As the value function at time step t depends on the value function at time step
t + 1, this is done in a backward iterative process starting at the final time step ℓ. Using
the approximated value function, we can also calculate an optimal policy for each time step.
Using this optimal policy we generate a new nominal trajectory by starting at the initial state
and applying this optimal policy forward in time. The process in then repeated using the new
nominal trajectory, and ultimately converges to a locally optimal solution.

We use a belief-space variant of iterative LQG [25] to perform the value iteration. We
approximate the value function vt[b] as a quadratic function that is approximately valid around
a given nominal trajectory in belief space. Let the nominal trajectory be given as a series of
beliefs and control inputs (b̄0, ū0, . . . , b̄ℓ−1, ūℓ−1, b̄ℓ) such that b̄t+1 = g[b̄t, ūt] for t ∈ 0 . . . ℓ−1
(we will discuss initialization and iterative convergence of the nominal trajectory to a locally
optimal trajectory in the next subsection). The value function is then approximated as:

vt[b] ≈
1

2
(b− b̄t)

TSt(b− b̄t) + (b− b̄t)
T st + st, (19)

with St ≥ 0.
For the final time step t = ℓ, the value function vℓ (see Eq. (6)) is approximated by setting

Sℓ =
∂2cℓ
∂b∂b

[b̄ℓ], sℓ =
∂cℓ
∂b

[b̄ℓ], sℓ = cℓ[b̄ℓ], (20)

which amounts to a second-order Taylor expansion of cℓ around the point b̄ℓ. The value functions
and the control policies for the time steps ℓ > t ≥ 0 are computed by backward recursion.

6



We proceed by combining Eqs. (7), (17), and (19):

vt[b] = min
u

(

ct[b,u] + E
[

vt+1[g[b,u] +W [b,u]wt]
]

)

= min
u

(

ct[b,u] + E
[1

2
(g[b,u] +W [b,u]wt − b̄t+1)

TSt+1(g[b,u] +W [b,u]wt − b̄t+1) +

(g[b,u] +W [b,u]wt − b̄t+1)
T st+1 + st+1

]

)

= min
u

(

ct[b,u] +
1

2
(g[b,u]− b̄t+1)

TSt+1(g[b,u]− b̄t+1) + (g[b,u]− b̄t+1)
T st+1 +

st+1 +
1

2
tr
[

W [b,u]TSt+1W [b,u]
]

)

(21)

= min
u

(

ct[b,u] +
1

2
(g[b,u]− b̄t+1)

TSt+1(g[b,u]− b̄t+1) + (g[b,u]− b̄t+1)
T st+1 +

st+1 +
1

2

n
∑

i=1

W(i)[b,u]
TSt+1W(i)[b,u]

)

, (22)

where W(i)[b,u] refers to the i’th column of matrix W [b,u] (note that W [b,u] has n columns,
where n is the dimension of the state). The trace-term in Eq. (21) follows from the fact that
E[xTQx] = E[x]TQE[x] + tr[QVar[x]] for any stochastic variable x, and that tr[QXXT ] =
tr[XTQX]. It is this term that ensures that the stochastic nature of the belief dynamics
is accounted for in the value iteration. Eq. (22) follows from the fact that tr[XTQX] =
∑

i X(i)
TQX(i).

To approximate the optimal value of u as a function of b we linearize the belief dynamics
and each of the columns of W [b,u] about the belief b̄t and control input ūt of the nominal
trajectory. Given that b̄t+1 = g[b̄t, ūt], we get:

g[b,u]− b̄t+1 ≈ Ft(b− b̄t) +Gt(u− ūt), (23)

W(i)[b,u] ≈ eit + F i
t (b− b̄t) +Gi

t(u− ūt), (24)

where

Ft =
∂g

∂b
[b̄t, ūt], Gt =

∂g

∂u
[b̄t, ūt], (25)

eit = W(i)[b̄t, ūt], F i
t =

∂W(i)

∂b
[b̄t, ūt], Gi

t =
∂W(i)

∂u
[b̄t, ūt]. (26)

The immediate cost function ct[b,u] is quadratized about b̄t and ūt:

ct[b,u] ≈
1

2

[

b− b̄t

u− ūt

]T [

Qt PT
t

Pt Rt

] [

b− b̄t

u− ūt

]

+

[

b− b̄t

u− ūt

]T [

qt

rt

]

+ pt, (27)

where

Qt =
∂2ct
∂b∂b

[b̄t, ūt], Rt =
∂2ct
∂u∂u

[b̄t, ūt], Pt =
∂2ct
∂u∂b

[b̄t, ūt],

qT
t =

∂ct
∂b

[b̄t, ūt], rTt =
∂ct
∂u

[b̄t, ūt], pt = ct[b̄, ū]. (28)
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Filling in Eqs. (23), (24), and (27) into Eq. (22), we get:

vt[b] ≈ min
u

(1

2

[

b− b̄t

u− ūt

]T [

Qt PT
t

Pt Rt

] [

b− b̄t

u− ūt

]

+

[

b− b̄t

u− ūt

]T [

qt

rt

]

+ pt +

1

2
(Ft(b− b̄t) +Gt(u− ūt))

TSt+1(Ft(b− b̄t) +Gt(u− ūt)) +

(Ft(b− b̄t) +Gt(u− ūt))
T st+1 + st+1 +

1

2

n
∑

i=1

(eit + F i
t (b− b̄t) +Gi

t(u− ūt))
TSt+1(e

i
t + F i

t (b− b̄t) +Gi
t(u− ūt))

)

= min
u

(1

2

[

b− b̄t

u− ūt

]T [

Ct ET
t

Et Dt

] [

b− b̄t

u− ūt

]

+

[

b− b̄t

u− ūt

]T [

ct
dt

]

+ et
)

, (29)

where

Ct = Qt + FT
t St+1Ft +

n
∑

i=1

F i
t

T
St+1F

i
t , ct = qt + FT

t st+1 +
n
∑

i=1

F i
t

T
St+1e

i
t, (30)

Dt = Rt +GT
t St+1Gt +

n
∑

i=1

Gi
t

T
St+1G

i
t, dt = rt +GT

t st+1 +
n
∑

i=1

Gi
t

T
St+1e

i
t, (31)

Et = Pt +GT
t St+1Ft +

n
∑

i=1

Gi
t

T
St+1F

i
t , et = pt + st+1 +

1

2

n
∑

i=1

eit
T
St+1e

i
t. (32)

Equation (29) is then solved by expanding the terms, taking the derivative with respect to u
and equating to 0 (for u to be actually a minimum, Dt must be positive-definite. Given the
assumptions of Eq. (11), this is necessarily the case). We then get the solution:

u− ūt = −D−1
t Et(b− b̄t)−D−1

t dt. (33)

Hence, the control policy for time step t is linear and given by:

ut = πt[bt] = Lt(bt − b̄t) + lt + ūt, Lt = −D−1
t Et, lt = −D−1

t dt. (34)

Filling Eq. (33) back into Eq. (29) gives the value function vt[b] as a function of only b in
the form of Eq. (19). Expanding and collecting terms gives:

St = Ct − ET
t D

−1
t Et, st = ct − ET

t D
−1
t dt, st = et −

1

2
dT
t D

−1
t dt. (35)

This recursion then continues by computing a control policy for time step t− 1.

4.3 Iteration to a Locally Optimal Control Policy

The above value iteration gives a control policy that is valid in the vicinity of the given nominal
trajectory. To let the control policy converge to a local optimum, we iteratively update the
nominal trajectory using the most recent control policy [11]. Given the initial belief b0 =

(x̂0,
√
Σ0), and an (arbitrary) initial nominal trajectory (b̄

(0)
0 , ū

(0)
0 , . . . , b̄

(0)
ℓ−1, ū

(0)
ℓ−1, b̄

(0)
ℓ ) (such

that b̄
(0)
0 = b0 and b̄

(0)
t+1 = g[b̄

(0)
t , ū

(0)
t ] for t ∈ 0 . . . ℓ − 1), which can be obtained using RRT

motion planning [13], for instance, we proceed as follows.
Using the value iteration procedure as described above given the nominal trajectory of the

i’th iteration, we find the control policy, i.e. the matrices L
(i)
t and vectors l

(i)
t for the i’th

iteration. We then compute the nominal trajectory (b̄
(i+1)
t , ū

(i+1)
t ) of the i + 1’th iteration
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(starting with i = 0) by forward integrating the control policy in the deterministic (zero-noise)
belief dynamics:

b̄
(i+1)
0 = b0, ū

(i+1)
t = L

(i)
t (b̄

(i+1)
t − b̄

(i)
t ) + l

(i)
t + ū

(i)
t , b̄

(i+1)
t+1 = g[b̄

(i+1)
t , ū

(i+1)
t ], (36)

We then recompute the control policy, and reiterate. This lets the control policy converge to a
locally optimal trajectory with a second-order convergence rate [14].

4.4 Ensuring Convergence

To ensure that the above algorithm in fact converges to a locally optimal control policy, the
algorithm must be augmented with line search. As with Newton’s method for finding roots
of a function, second order convergence of the above algorithm is only achieved if the current
nominal trajectory is already close to the locally optimal trajectory. If the current nominal
trajectory is “far away” from the local optimum, the approach may overshoot local-minima,
which significantly slows down convergence, or even results in divergence. To address this issue,
we subtly change the algorithm following [33]. We limit the increment to the control policy by
adding a parameter ε to Eq. (33): (u − ūt) = Lt(b − b̄t) + εlt. Initially, ε = 1, but each time
that the control policy creates a trajectory with higher expected cost than the previous nominal
trajectory, the trajectory is rejected, ε is divided in half, and a new trajectory is created. When
a new trajectory is accepted, ε is reset to 1. This change is equivalent to using backtracking
line search to limit the step size in Newton’s method and guarantees convergence to a locally
optimal control policy [33].

An issue that remains is how to compute the expected cost of a given nominal trajectory.
In deterministic iLQG, one simply evaluate its cost using the given immediate cost functions
ct[b,u]. In our case however, the dynamics are stochastic, so one has to compute the expected

cost. We do this as follows. Let L
(i)
t and εl

(i)
t define the control policy in the i’th iteration. A

candidate nominal trajectory for iteration i+1 is now generated by applying this control policy
with respect to the nominal trajectory of iteration i, according to Eq. (36). We have:

ū
(i+1)
t − ū

(i)
t = L

(i)
t (b̄

(i+1)
t − b̄

(i)
t ) + εl

(i)
t . (37)

The control policy of iteration i itself is defined as

u− ū
(i)
t = L

(i)
t (b− b̄

(i)
t ) + εl

(i)
t ,

⇒ (u− ū
(i+1)
t ) + (ū

(i+1)
t − ū

(i)
t ) = L

(i)
t ((b− b̄

(i+1)
t ) + (b̄

(i+1)
t − b̄

(i)
t )) + εl

(i)
t ,

⇒ (u− ū
(i+1)
t ) + L

(i)
t (b̄

(i+1)
t − b̄

(i)
t ) + εl

(i)
t = L

(i)
t ((b− b̄

(i+1)
t ) + (b̄

(i+1)
t − b̄

(i)
t )) + εl

(i)
t ,

⇒ u− ū
(i+1)
t = L

(i)
t (b− b̄

(i+1)
t ). (38)

Hence, Eq. (38) gives the control policy of iteration i relative to a candidate trajectory of
iteration i+ 1.

We now compute the expected cost of the candidate nominal trajectory (b̄
(i+1)
t , ū

(i+1)
t ) as

follows. Quadratizing the immediate cost functions and linearizing the belief dynamics about
the candidate trajectory of iteration i + 1 according to Eqs. (23) to (28), in combination with
the control policy of Eq. (38), allows us to to recursively update the value function along the
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candidate trajectory as:

St = Qt + LT
t RtLt + LT

t Pt + PT
t Lt + (Ft +GtLt)

TSt+1(Ft +GtLt) +
n
∑

j=1

(F j
t +Gj

tLt)
TSt+1(F

j
t +Gj

tLt), (39)

st = qt + LT
t rt + (Ft +GtLt)

T st+1 +

n
∑

j=1

(F j
t +Gj

tLt)
TSt+1e

j
t , (40)

st = pt + st+1 +
1

2

n
∑

j=1

ejt
T
St+1e

j
t , (41)

where Lt = L
(i)
t . The value s0 now gives the expected cost of the candidate nominal trajectory

with respect to the control policy of the current nominal trajectory (note that the st’s are
inconsequential for the expected cost, and need not be computed). If this expected cost is lower
than the expected cost of the current nominal trajectory, the candidate nominal trajectory is
accepted, ε is reset to 1, and the iteration continues. Otherwise, ε is divided in half, and the
search for a new nominal trajectory continues. Since the vectors lt point in the direction of the
gradient of the expected cost, a positive ε that generates a new trajectory with lower expected
cost will always be found.

When the magnitude of the lt’s vanish (or drop below a preset small value), the iteration
stops and the current nominal trajectory and its control policy is a locally optimal solution.

4.5 Running Time Analysis

Let us analyze the running time of our algorithm. The dimension of the state is n, and we
assume for the sake of analysis that the dimension of the control inputs and the measurements
are O[n]. As the belief contains the (square root of the) covariance matrix of the state, the
dimension of a belief is O[n2].

The bottleneck of the running time lies in the computation of the matrix Ct in Eq. (30).
Evaluating the product FT

t St+1Ft in Eq. (30) of matrices of O[n2] × O[n2] dimension takes
O[n6] time. Also, computing the matrix Qt of Eq. (28), which contains O[n4] entries, using
numerical differentiation (central differences) can be done in O[n6] time assuming that ct[b,u]

can be evaluated in O[n2] time. Further, the product F i
t

T
St+1F

i
t is evaluated n times, but

each can be evaluated in O[n5] time, since each F i
t only contains non-zero entries in the upper

n×O[n2] block of the matrix (see the definition of W [b,u] in Eq. (18)). Note that linearizing the
belief dynamics, i.e. computing the matrices Ft, Gt, F

i
t and Gi

t using numerical differentiation
(central differences) can be done in O[n5] time, as it involves evaluating the belief dynamics
(which takes O[n3] time for the EKF (and also for the UKF)) O[n2] times. Hence, this does not
form a bottleneck of the computation.

A complete cycle of value iteration takes ℓ steps (ℓ being the index of the final time step),
bringing the complexity to O[ℓn6]. The number of such cycles needed to obtain convergence
cannot be expressed in terms of n or ℓ, but as noted before, our algorithm converges with a
second-order rate to a local optimum.

5 Environments with Obstacles

We presented our approach above for general immediate cost functions cℓ[b] and ct[b,u] (with
the assumptions of Eq. (11)). In typical LQG-style cost functions, the existence of obstacles in
the environment is not incorporated, while we may want to minimize the probability of colliding
with them. We incorporate obstacles into the cost functions as follows.
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Figure 1: Plots of the function f [σ] = − log γ[n/2, σ2/2] for n = {1, 2, 3}.

Let O ⊂ X be the region of the state space that is occupied by obstacles. Given a belief
bt = (x̂t,

√
Σt), the probability of colliding with an obstacle is given by the integral over O

of the probability-density function of N [x̂t,Σt]. As described in [26], this probability can be
approximated by using a collision-checker to compute the number σ[bt] of standard-deviations
one may deviate from the mean before an obstacle is hit (it takes one geometric distance com-
putation to compute this number, and does not involve Monte Carlo sampling). A lower-bound
on the probability of not colliding is then given by γ[n/2, σ[bt]

2/2], where γ is the regularized
gamma function, and n the dimension of the state. A lower-bound on the total probability
of not colliding along a trajectory is subsequently computed as

∏ℓ−1
t=0 γ[n/2, σ[bt]

2/2], and this
number should be maximized. To fit this objective within the minimizing and additive nature
of the POMDP objective function, we note that maximizing a product is equivalent to mini-
mizing the sum of the negative logarithms of the factors. Hence, we add to ct[b,u] the term
f [σ[b]] = − log γ[n/2, σ[b]2/2] to account for the probability of colliding with obstacles (note

that f [σ[b]] > 0 and ∂2f
∂σ∂σ

> 0; see Fig. 1), potentially multiplied by a scaling factor to allow
trading-off with respect to other costs (such as the magnitude of the control input).

While the above approach works well, it should be noted that in order to compute the
Hessian of ct[b,u] at b̄t (i.e. computing the matrix Qt as is done in Eq. (28)), a total of O[n4]
collision-checks with respect to the obstacles need to be performed, since the obstacle term
f [σ[b]] is part of ct[b,u]. As this can be prohibitively costly, we can instead approximate the
Hessian of f [σ[b]] using linearizations, which involves only O[n2] collision checks. To this end,
let us approximate f [σ] by a second-order Taylor expansion about σ[b̄t]:

f [σ[b]] ≈ 1

2
a(σ[b]− σ[b̄t])

2 + b(σ[b]− σ[b̄t]) + f [σ[b̄t]], (42)

where a = ∂2f
∂σ∂σ

[σ[b̄t]] and b = ∂f
∂σ

[σ[b̄t]] (note that this requires only one collision-check). Now,
we approximate (σ[b]− σ[b̄t]) using a first-order Taylor expansion about b̄t:

σ[b]− σ[b̄t] ≈ (b− b̄t)
Ta (43)

where aT = ∂σ
∂b

[b̄t] (note that this requires O[n2] collision-checks). By substituting Eq. (43) in
Eq. (42), we get

f [σ[b]] ≈ 1

2
(b− b̄t)

T (aaaT )(b− b̄t) + (b− b̄t)
T (ba) + f [σ[b̄t]]. (44)

Hence, aaaT is an approximate Hessian of the obstacle term f [σ[b]] of ct[b,u] that requires
only O[n2] collision-checks to compute. In addition, since a > 0, this Hessian is guaranteed to
be positive-semidefinite, as mandated by Eq. (11).
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6 Results

We evaluate our approach in simulation applied to robot motion planning scenarios involving
stochastic dynamics, measurement models with state and control-dependent noise, and spatially-
varying sensing capabilities. We consider three scenarios: (i) a 2-D point robot with linear
dynamics, (ii) a non-holonomic, car-like robot with second-order dynamics, and (iii) an aircraft-
like robot navigating in a 3-D environment.

Our method takes as input a collision-free trajectory to the goal. A näıve trajectory com-
puted using an uncertainty-unaware planner might stray very close to the obstacles in the envi-
ronment and accumulate considerable uncertainty during execution. We show that our method
improves the input trajectory to compute a locally optimal trajectory and a corresponding
control policy that safely guides the robot to the goal, even in the presence of large motion
uncertainty and measurement noise.

In each of the following experiments, we use the following definitions of cℓ[bℓ] and ct[bt,ut]
in the cost function to be minimized (Eq. (5)):

cℓ[bℓ] = x̂T
ℓ Qℓx̂ℓ + tr[

√

ΣℓQℓ

√

Σℓ], (45)

ct[bt,ut] = uT
t Rtut + tr[

√

ΣℓQt

√

Σt] + f [σ[bt]], (46)

for given Qt ≥ 0 and Rt > 0. The term x̂T
ℓ Qℓx̂ℓ + tr[

√
ΣℓQℓ

√
Σℓ] = E[xT

ℓ Qℓxℓ] encodes
the final cost of arriving at the goal, uT

t Rtut penalizes the control effort along the trajectory,
tr[

√
ΣtQt

√
Σt] penalizes the uncertainty, and f [σ[bt]] encodes the obstacle cost term (if applica-

ble). Using the approximation of Eq. (44) for f [σ[bt]], the above cost functions are in accordance
with the assumptions of Eq. (11), and their Hessians can be constructed in O[n4] time, so it
does not present a bottleneck for the running time.

All the performance results presented in this section are based on a C++ implementation
running on a 3.33 Ghz IntelR© i7TM PC. For each scenario, we evaluate the performance of our
approach and the quality of the computed control policy. We also separately consider environ-
ments with and without obstacles to demonstrate that our approach can handle both types of
environments. We compare and analyze the performance and convergence characteristics of the
approach presented in this paper to our preliminary approach based on stochastic differential dy-
namic programming (sDDP) [28]. We also analyze the effect of assuming maximum-likelihood
observations [21, 7, 8] on the computed locally optimal trajectory and corresponding control
policy.

6.1 2-D Point Robot

We consider the case of a point robot moving in a 2-D environment with the following linear
dynamics model with control-dependent motion noise:

xt+1 = f [xt,ut,mt] = xt + τut +M [ut] ·mt, (47)

where the state xt = (x, y) ∈ R
2 is the robot’s position, the control input ut ∈ R

2 is the robot’s
velocity, τ is the duration of a time step, and the matrix M [ut] scales the motion noise mt

proportional to the control input ut.
The robot localizes itself using noisy measurements from sensors in the environment, the

reliability of which varies as a function of the robot’s position x. The robot is able to obtain
reliable measurements in the bright region of the environment, but the measurements become
noisier as the robot moves in to the dark regions. This gives the following linear observation
model with spatially-varying noise:

zt = h[xt,nt] = xt +N [xt] · nt, (48)
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(a) Initial trajectory. (b) Locally optimal solution.

Figure 2: Point robot moving in a 2-D light-dark domain without obstacles (adapted from
Platt et al. [21]). (a) The method is initialized with a näıve straight line trajectory to the
goal. (b) The nominal trajectory and associated beliefs of the solution (shown in black), and the
trajectory obtained by applying the computed feedback policy to a robot with an initial belief that
is considerably different than the initial belief used for computing the control policy (shown in
red).

where the measurement vector zt ∈ R
2 consists of noisy measurements of the robot’s position

and the matrix N [xt] scales the measurement noise based on a function of the robot’s position.
We use state and control cost matrices of Qt = I, Rt = I, and the final cost matrix,

Qℓ = 10ℓI in our experiments, where ℓ is the number of sections in the initial trajectory. The
method converges when the difference between the expected costs between successive iterations
falls below a user-specified epsilon threshold.

6.1.1 Light-Dark Domain (No Obstacles)

We consider the light-dark domain scenario suggested by Platt et al. [21]. The measurement
noise (modeled by the matrix N [xt]) varies as a quadratic function of the robot’s horizontal
coordinate x (as shown in Fig. 2). We initialize our method with a näıve straight line trajectory
from the initial position to the goal (Fig. 2(a)).

Fig. 2(b) shows the nominal trajectory and the associated beliefs of the solution computed
using our approach. The locally optimal nominal trajectory leads the robot to the horizontal
coordinate where the measurement noise is minimum, in order to better localize itself, before
proceeding to the goal. For this example, the initial nominal trajectory has an expected cost
of 49.7, and the trajectory converges to a (local) optimum with an expected cost of 9.61 in 42
iterations, requiring a total computation time of 0.094 seconds. To evaluate the quality of the
computed control policy, we also computed the actual expected costs across 10000 simulation
runs that use the computed feedback policy to compensate for artificial motion and measurement
noise. The actual expected cost for the computed control policy was 9.46 units.

To demonstrate the effectiveness of the control policy computed by our method, we apply
the computed feedback policy to a robot with a belief that is considerably different than the
belief with which our method is initialized. The resulting trajectory is indicated in red in Fig.
2(b). The computed policy initially leads the robot towards the light region, it quickly rectifies
the trajectory after a better estimate of the belief is obtained in the light region. The basin of
attraction of the control policy is wide enough to avoid the need for replanning.

6.1.2 Light-Dark Domain (With Obstacles)

We consider the light-dark domain scenario with obstacles as suggested in Bry and Roy [5]. In
this scenario, the measurement noise (modeled by the matrix N [xt]) varies as a sigmoid function
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(a) Initial trajectory. (b) Locally optimal solution. (c) Execution traces.

Figure 3: Point robot moving in a 2-D light-dark domain with obstacles. (a) An initial collision-
free trajectory is computed using an RRT planner. (b) Nominal trajectory and the associated
beliefs of solution computed using our approach. The robot moves away from the goal to better
localize itself before reaching the goal with significantly reduced uncertainty. (c) Execution traces
of the robot’s true state drawn from different initial beliefs while following the computed control
policy.

of the robot’s horizontal coordinate x (as shown in Fig. 3). We initialize our method with a
collision-free initial trajectory computed using an RRT planner [13] (Fig. 3(a)).

Fig. 3(b) shows the nominal trajectory and the associated beliefs of the solution computed
using our approach. The nominal trajectory leads the robot to the region of the environment
with reliable sensing for better localization, before moving the robot through the narrow passage
to arrive at the goal. For this example, the initial trajectory has an expected cost of 144.9 and
the trajectory converges to a local optimum with expected cost of 14.08 in 66 iterations, which
requires a total computation time of 3.657 seconds. To evaluate the quality of the computed
control policy, we also computed the actual expected costs across 10000 simulation runs that
use the computed feedback policy to compensate for artificial motion and measurement noise.
The actual expected cost was 13.8 units.

To demonstrate the effectiveness of the control policy computed by our method, we apply
the computed feedback policy to a robot with a belief that is considerably different than the
belief with which our method is initialized. Fig. 3(c) shows traces of the true state of the robot
x across 5 simulations where the initial state of the robot x0 is sampled from a different initial
belief to evaluate the robustness of the control policy. Even if the initial belief is considerably
different from the initial belief used to compute the solution, the control policy is able to safely
guide the robot to the goal. We also evaluated our method quantitatively by computing the
percentage of executions in which the robot was able to avoid obstacles across 1000 simulation
executions for 10 random initial beliefs. In our experiments, in 93% (standard deviation: 3%) of
the executions, the robot was able to safely traverse the narrow passage without colliding with
obstacles.

Our solution also agrees with the solution found by Bry and Roy [5] for this experiment.
Our method directly optimizes the trajectory rather than relying on an optimal sampling-based
planner in belief space, resulting in an order of magnitude faster computation times. Our
method also does not assume fixed control gains along each along each section of the nominal
trajectory. However, the method of Bry and Roy is able to find a globally-optimal solution
(given the fixed control gains), whereas our method computes a locally optimal solution given
an initial trajectory.

6.2 Non-Holonomic Car-Like Robot

We consider the case of a non-holonomic car-like robot navigating in a 2-D environment with
noisy and partial sensing of the robot’s state. The state x = (x, y, θ, v) ∈ R

4 of the robot
consists of its position (x, y), its orientation θ and speed v. The control input vector u = (a, φ)
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(a) Initial trajectory. (b) Locally optimal solution.

Figure 4: Car-like robot moving in a 2-D light-dark domain without obstacles (adapted from
Platt et al. [21]). (a) The method is initialized with a näıve trajectory to the goal using a RRT
planner. (b) The nominal trajectory and associated beliefs of the solution computed using our
approach (shown in black), and the trajectory obtained by applying the computed feedback policy
to a robot with a belief that is considerably different than the belief used for method initialization
(red).

consists of an acceleration a and the steering wheel angle φ. This gives the following non-linear
dynamics model:

xt+1 = f [xt,ut,mt] =









xt + τvt cos θt
yt + τvt sin θt

θt + τvt tan[φ]/d
vt + τa









+M [ut] ·mt, (49)

where τ is the duration of a time step, d is the length of the car-like robot, and M [ut] scales
the motion noise mt proportional to the control input ut.

6.2.1 Light-Dark Domain (No Obstacles)

We again consider the light-dark domain scenario suggested by Platt et al. [21]. In this scenario,
the robot’s ability to sense its state is both partial (the robot is only capable of sensing its
position but not its velocity or orientation) and noisy. The measurement noise (modeled by the
matrix N [xt]) varies as a quadratic function of the robot’s horizontal coordinate x (as shown in
Fig. 4). This gives the following observation model with spatially-varying noise:

zt = h[xt,nt] =
[

xt

yt

]

+N [xt] · nt, (50)

where the measurement vector zt ∈ R
2 consists of noisy measurements of the robot’s position,

and the matrix N [xt] scales the measurement noise based on a function of the robot’s horizontal
coordinate x.

We initialize our method with a näıve trajectory to the goal computed using a RRT planner
[13] (Fig. 4(a)). We use state and control cost matrices of Qt = I, Rt = I, and the final cost
matrix, Qℓ = 10ℓI in our experiments, where ℓ is the number of sections in the initial trajectory.

Fig. 4(b) shows the nominal trajectory and the associated beliefs of the solution computed
using our approach. The locally optimal nominal trajectory leads the robot to the horizontal
coordinate where the measurement noise is minimum, in order to better localize itself, before
proceeding to the goal. For this example, the initial trajectory has an expected cost of 25.76
and the trajectory converges to a local-optimum with an expected cost of 7.6 in 81 iterations,
which requires a total computation time of 2.07 seconds.

We also apply the computed feedback policy to a robot with a belief that is considerably
different that the belief with which our method is initialized. The resulting trajectory is shown
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(a) Initial trajectory. (b) Locally optimal solution. (c) Solution for Qt = 10Iℓ.

(d) Initial trajectory. (e) Locally optimal solution.

Figure 5: A car-like robot moving in a 2-D light-dark domain with obstacles. The robot obtains
measurements from two beacons (marked by blue squares) and an on-board speedometer. (a)
An initial collision-free trajectory is computed using an RRT planner. (b) Nominal trajectory
and the associated beliefs of solution computed using our approach. The robot localizes itself by
moving closer to the beacon(s) before reaching the goal. The final nominal trajectory also follow
the medial axis between the narrow passage to minimize the possibility of colliding with obstacles.
(c) Nominal trajectory computed by varying the cost matrices (Qt = 10I). The robot tries to
reduce the uncertainty in its state by visiting both the beacons. (d) A different initial trajectory
results in a different locally optimal solution. (e) Our method is able to improve trajectories
within a single homotopy class.

in red in Fig. 4(b). Since the belief is considerably different from the assumed belief used
for method initialization, the control policy leads the robot to mimic the computed nominal
trajectory, but once the robot has localized itself in the light region of the environment, the
control policy reliably leads the robot to the goal.

6.2.2 Domain With Spatially Varying Sensing (With Obstacles)

We also consider a scenario in which the car-like robot estimates its location using signal mea-
surements from two beacons b1 and b2 placed in the environment at locations (x̌1, y̌1) and (x̌2, y̌2)
respectively. The strength of the signal decays quadratically with the distance to the beacon.
The robot also measures its current speed using an on-board speedometer. The measurement
uncertainty is scaled by a constant matrix N . This gives us the following non-linear observation
model:

zt = h[xt,nt] =





1/((xt − x̌1)
2 + (yt − y̌1)

2 + 1)
1/((xt − x̌2)

2 + (yt − y̌2)
2 + 1)

vt



+Nnt, (51)

where the vector zt ∈ R
3 consists of two readings of signal strengths from the beacons and a speed

measurement from the speedometer. Fig. 5(a) visually illustrates the quadratic decay in the
beacon signal strengths in the environment. The robot is able to obtain reliable measurements
in the bright regions of the environment, but the measurements become relatively noisier as the
robot moves in to the dark regions due to the decreased signal-to-noise ratio.
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(a) Initial trajectory. (b) Locally optimal so-
lution.

(c) Different trajectory. (d) Locally optimal so-
lution.

Figure 6: An aircraft-like robot with omni-directional acceleration moving in a 3-D environ-
ment with obstacles with partial and noisy sensing. The motion uncertainty is considerably
lower at higher altitudes (indicated by the yellow region). (a) An initial collision-free trajectory
is computed using an RRT planner. (b) Nominal trajectory and the associated beliefs of solution
computed using our approach. The nominal trajectory is locally optimized such that the robot
spends a large proportion of the trajectory at higher altitudes to reduce uncertainty, before reach-
ing the goal. (c) A different trajectory initialization results in local improvement within its initial
homotopy class, resulting in a locally optimal nominal trajectory (d).

We initialize our method with a collision-free trajectory to the goal computed using a RRT
planner [13] (Fig. 5(a)). We use state and control cost matrices of Qt = I, Rt = I, and the final
cost matrix, Qℓ = 10ℓI in our experiments.

Fig. 5(b) shows the nominal trajectory and the associated beliefs of the solution computed
using our approach. The nominal trajectory leads the robot to the region of the environment with
reliable sensing for better localization, before moving the robot through the narrow passage to
arrive at the goal. In contrast to the initial trajectory (Fig. 5(a)), the locally optimal trajectory
also moves away from the obstacles and takes a safer path to the goal. For this example, the
initial trajectory has an expected cost of 101.65 and the trajectory converges to a local-optimum
with an expected cost of 20.57 in 19 iterations, which requires a total computation time of 9.57
seconds.

The cost matrices Qt and Rt determine the relative weighting between minimizing uncer-
tainty in the robot state and minimizing control effort in the objective function. Fig. 5(c) shows
the nominal trajectory of the solution computed by changing the cost matrix Qt = 10I. Notice
that the trajectory visits both the beacons for better localization and minimizing uncertainty, at
the expense of additional control effort. Figs. 5(d) and 5(e) shows the nominal trajectory when
a different initial trajectory is provided as input. The presence of obstacles in the environment
forces our method to locally optimize trajectories within a single homotopy class.

6.3 3-D Aircraft

We consider the case of an aircraft-like robot with partial and noisy sensing maneuvering in
a 3-D environment with obstacles. We consider a simplified model of an aircraft that has
omni-directional acceleration. This model can be used to approximate the kinematic con-
straints on the aircraft as long as the aircraft is moving with non-zero speed [27]. The state
x = (x, y, z, vx, vy, vz) ∈ R

6 of the robot consists of its position p = (x, y, z) and its velocity
v = (vx, vy, vz). The control input vector u = (ax, ay, az) comprises of the omni-directional
acceleration applied to the robot. This gives the following dynamics model:

xt+1 = f [xt,ut,mt] =

[

pt + τvt +
1
2τ

2ut

vt + τut

]

+M [pt] ·mt, (52)
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where τ is the duration of a time step, and M [pt] scales the motion noise mt proportional
to the robot’s position pt. We set motion uncertainty to be much lower at higher altitudes,
approximately modeling the effect of atmospheric and weather conditions on the robot motion.
The uncertainty steadily increases as the altitude of the robot decreases (Fig. 6).

We also assume the following stochastic observation model based on partial and noisy sensing:

zt = h[xt,nt] = pt +N · nt, (53)

where the measurement vector zt ∈ R
2 consists of noisy measurements of the robot’s position,

and the measurement noise is scaled by a constant matrix N .
We initialize our method with a collision-free trajectory to the goal computed using a RRT

planner [13] (Fig. 6(a)). Fig. 6(b) shows the nominal trajectory and the associated beliefs
of the solutions computed using our approach. The robot spends a considerable proportion of
the nominal trajectory at higher altitudes in order to reduce the uncertainty, before arriving at
the goal. In contrast to the initial trajectory (Fig. 6(a)), the locally optimal trajectory is also
smoother in terms of the applied control inputs and stays away from the obstacles to take a safer
path to the goal. For this example, the initial trajectory has an expected cost of 4539.3 and the
trajectory converges to a local optimum with a considerably lower expected cost of 705.96 in 47
iterations, which requires a total computation time of 41.8 seconds.

Figs. 6(c) and 6(d) show the nominal trajectory when a different initial trajectory is provided
as input. The presence of obstacles in the environment forces our method to locally optimize
trajectories within a single homotopy class. Our method is still able to locally force the robot to
ascend to a higher altitude to reduce the uncertainty, before descending below and going around
the obstacle to arrive at the goal.

6.4 Comparison between iLQG and sDDP

We quantitatively compared our approach with value iteration based on iLQG with our pre-
liminary approach with value iteration based on stochastic differential dynamic programming
(sDDP) [28]. In Table 1, we compare the number of iterations required for convergence and
the optimal expected cost for each of the considered scenarios for both methods. Qualitatively,
the iLQG-based method is asymptotically faster than the sDDP-based method (O[n6] rather
than O[n7]) and numerically more stable even when the sDDP method is implemented with the
square root of the variance in the belief (sDDP requires regularization of matrices to maintain
positive-semidefiniteness of the value function).

As expected, each iteration of the iLQG method (O[n6]) takes less time than an equivalent
sDDP iteration (O[n7]). The differences are more pronounced as the dimensionality of the belief
space increases, as is evident in the aircraft scenario. On the other hand, sDDP converges in
fewer iterations then iLQG. This is because sDDP uses direct computation of the Hessians of
the value function, while iLQG computes the Hessians based on a linearization of the belief
dynamics (which truncates some second-order terms compared to sDDP).

In all experiments, iLQG and sDDP yield almost identical solutions, whose difference is
visually hardly appreciable, and the optimal expected cost that both iLQG and sDDP converge
to are almost identical. To evaluate the difference in the two methods, we also compute the
actual expected costs across 10000 simulation runs that use the computed feedback policy to
compensate for artificially simulated motion uncertainty and measurement noise. The differences
in the actual expected costs are minimal, which alludes to the fact that the control policies
computed by the two methods are similar. This is what one would expect; the slight differences
that do appear are a result of numerical variations between the methods, and in a few cases this
causes the approaches to converge to different local optima.

Overall, our experiments indicate that iLQG is preferable over sDDP because it scales bet-
ter to higher dimensional problems and is numerically more stable since the iLQG method
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Scenario Initial Method Num. Time Time per Optimal Actual
exp cost iter (s) iter (s) exp cost exp cost

Point
49.69

iLQG 42 0.09 0.002 9.61 9.46
(no obs) sDDP 13 0.125 0.009 9.72 9.52

Point
144.9

iLQG 66 3.66 0.055 14.08 13.8
(obs) sDDP 51 3.14 0.062 14.08 13.98

Car
25.76

iLQG 81 2.07 0.025 7.67 7.39
(no obs) sDDP 55 10.79 0.196 7.27 7.03

Car
101.65

iLQG 19 9.57 0.5 20.57 20.3
(obs) sDDP 16 12.1 0.76 20.71 20.38

aircraft 4539.3
iLQG 47 41.8 0.89 705.96 703.45
sDDP 35 136.59 3.9 705.84 703.72

Table 1: Comparison of iLQG and sDDP.

does not require regularization to ensure that the Hessians are positive semi-definite [28]. The
inherent complexity of the method is still too high for robots with complex dynamics and
high-dimensional state spaces, and algorithmic improvements in the method and efficient im-
plementations thereof present interesting research directions.

6.5 Effect Of Assuming Maximum-Likelihood Observations

We analyze the effect of assuming maximum-likelihood observations made in prior work [21, 7, 8]
on the computed locally optimal trajectory and corresponding control policy. We reproduce this
assumption in our method by ignoring all the terms in the value iteration that pertain to the
matrix W [b,u], which determines the stochastic nature of the belief dynamics given by Eq.
(17). More specifically, we can reproduce the assumption by removing the terms containing the
sum-quantifiers in Eqs. (30), (31), and (32). This has the net result of considering deterministic
belief dynamics as is the case when maximum-likelihood observations are assumed.

We consider an illustrative example that considers a point robot moving in a 2-D domain
with obstacles, as shown in Fig. 7(a). We consider the same stochastic dynamics model for the
robot as in Sec. 6.1. We also consider the light-dark domain scenario suggested by Platt et
al. [21] where the measurement noise varies as a quadratic function of the robot’s horizontal
coordinate x (as shown in Fig. 7(a)). We use state and control cost matrices of Qt = I, Rt = 3I,
and the final cost matrix, Qℓ = 10I in our experiments.

We computed 100 random trajectories using an RRT planner [13] and used the trajectories
to initialize our method with and without assuming maximum-likelihood observations. In the
case of maximum-likelihood observations, the mean initial cost is 107.2 units with a standard
deviation of 35 units. The mean final cost at convergence is 17.7 units with a standard deviation
of 1.5 units. It is important to note that the final cost is based on deterministic belief dynamics
and is exactly known. We also computed the final expected cost of the computed control policy
using value iteration assuming stochastic belief dynamics, as outlined in Sec. 4.2. The mean
expected cost of the policy at convergence is 23.1 units with a standard deviation of 2 units.
This indicates that there is a mismatch in the final cost assuming deterministic belief dynamics
and the actual expected cost of the computed policies when executed under motion and sensing
uncertainty.

We also ran our method on the same 100 trajectories without assuming maximum-likelihood
observations. The mean initial cost is 35, 371 units with a standard deviation of 41, 522 units,
while the mean expected cost at convergence is 21.3 units with a standard deviation of 1.9
units. For this scenario, our method which does not assume maximum-likelihood observations
yielded an average expected cost 8.5% better than the method making the maximum-likelihood
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(a) Initial trajectory. (b) With maximum-likelihood
assumption.

(c) Without maximum-
likelihood assumption.

Figure 7: An illustrative example that considers a point robot moving in a 2-D domain with
obstacles. (a) An initial collision-free trajectory is computed using an RRT planner. (b) Nominal
trajectory and the associated beliefs of solution computed using our method under the assumption
of maximum-likelihood observations. The optimization results in a nominal trajectory that does
not lead the robot all the way to the horizontal coordinate where the measurement noise is min-
imum. (c) Solution computed without making the maximum-likelihood observation assumption.
The optimization is able to find a different locally optimal trajectory and policy that allows the
robot to localize itself with certainty before arriving at the goal region with reduced uncertainty.

assumption.
To demonstrate the effectiveness of the control policy computed with and without assuming

maximum-likelihood observations, we evaluated each control policy quantitatively by comput-
ing the percentage of executions in which the robot was able to avoid obstacles across 10000
simulation executions assuming artificial motion and measurement noise. In our experiments,
the control policies computed assuming maximum-likelihood observations result in an average of
324 collisions (standard deviation: 87) while the control policies computed by our method result
in an average of 252 collisions (standard deviation: 72). This demonstrates that not assuming
maximum-likelihood observations reduces the number of collisions by approximately 25% for
the considered scenario.

We visualize the difference in the two cases in Figs. 7(b) and 7(c) using an illustrative ex-
ample from the 100 random scenarios considered in our experiments. As shown in Fig. 7(b),
the nominal trajectory for the case in which we assume maximum-likelihood observations does
not lead the robot all the way to the horizontal coordinate where the measurement noise is
minimum. This results in a higher expected cost of 24.4 units at convergence and higher un-
certainty in the state of the robot as the robot traverses the narrow passage. In contrast, the
solution computed without making the maximum-likelihood observation assumption is able to
find a different locally optimal trajectory and policy that allows the robot to localize itself with
greater certainty before arriving at the goal region with reduced uncertainty (see Fig. 7(c)).
The expected cost at convergence in this case is 16.9 units. We note that a lower expected cost
is not guaranteed: among the 100 random initial trajectories there are also cases in which the
solution computed with the maximum likelihood assumption has a better expected cost than
the solution computed without the assumption. As in the scenario of the figure, this is very
likely the result of both methods converging to a different local optimum.

Overall, our results indicate that not making the maximum-likelihood assumption gives,
on average, better control policies. However, depending on the application, the impact of the
assumption may be relatively limited. This raises the question of whether the assumption can
be formally justified and its negative impact bounded. In the case of our method, making the
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assumption does not improve the (asymptotic) running time of the algorithm, implying the
maximum likelihood assumption should not be used. But in other contexts, e.g. in the case
of non-Gaussian beliefs, the assumption may greatly simplify the computations or even enable
finding a solution that would otherwise be intractable. Finding a formal justification for the
assumption, even if only for the Gaussian case, would greatly benefit research on continuous
POMDPs and motion planning under uncertainty.

7 Conclusion and Future Work

We presented a general approach to motion planning under uncertainty by computing locally
optimal solutions to continuous POMDP problems in environments with obstacles. Our ap-
proach generalizes earlier work on Gaussian-based POMDPs by removing several key limiting
assumptions, and overcomes the main drawback of approaches based on discretizations of the
state space by having a running time that is polynomial (O[n6]) rather than exponential in the
dimension of the state.

Our approach has several limitations. First, we represent beliefs using Gaussian distributions.
This may not be an acceptable approximation in some applications, for instance ones where
multi-modal beliefs are expected to appear. However, the class of problems where Gaussian
distributions are applicable is large, as is proven by the widespread use of the extended and
unscented Kalman filters for state estimation, for instance in mobile robotics. Our approach
should be applicable in any such application. Second, we require the dynamics, observation, and
cost functions to be smooth, since our method relies on gradients to iterate towards a locally
optimal solution. Our approach would therefore not work directly in some experimental domains
shown in previous work where there are abrupt boundaries between sensing regimes (e.g. inside
or outside the field of view of a camera).

Subjects of ongoing and future work include improving the running time of the algorithm.
While O[n6] is polynomial, it may still be too high for robots with complex dynamics and high-
dimensional state spaces or for real-time application. Recent preliminary work by the authors
[29] suggests that the running time can be brought down to O[n4] when approximating the value
function by a function that is quadratic in the mean, but linear in the variance. This seems to
come at the expense of convergence rate however, and the resulting control policy operates on
only the mean and not the entire belief. Further, we are exploring the use of different optimiza-
tion methods on belief spaces, such as direct collocation and sequential quadratic programming
methods [3, 30]. We also want to apply our method to real-world domains involving complex
dynamics such as autonomous quadrotor flight, medical needle steering, or manipulation of
deformable tissue.
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