
UC Berkeley
UC Berkeley Previously Published Works

Title
Motion planning with sequential convex optimization and convex collision checking

Permalink
https://escholarship.org/uc/item/6km506db

Journal
International Journal of Robotics Research, 33(9)

ISSN
0278-3649

Authors
Schulman, J
Duan, Y
Ho, J
et al.

Publication Date
2014-08-11

DOI
10.1177/0278364914528132

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6km506db
https://escholarship.org/uc/item/6km506db#author
https://escholarship.org
http://www.cdlib.org/

 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/early/2014/06/04/0278364914528132
The online version of this article can be found at:

DOI: 10.1177/0278364914528132

 published online 11 June 2014The International Journal of Robotics Research

and Pieter Abbeel
John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg

Motion planning with sequential convex optimization and convex collision checking

Published by:

 http://www.sagepublications.com

On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for

 http://ijr.sagepub.com/cgi/alertsEmail Alerts:

 http://ijr.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://ijr.sagepub.com/content/early/2014/06/04/0278364914528132.refs.htmlCitations:

 What is This?

- Jun 11, 2014OnlineFirst Version of Record >>

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/early/2014/06/04/0278364914528132
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/early/2014/06/04/0278364914528132.refs.html
http://ijr.sagepub.com/content/early/2014/06/04/0278364914528132.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://ijr.sagepub.com/
http://ijr.sagepub.com/

Article

Motion planning with sequential convex
optimization and convex collision
checking

The International Journal of

Robotics Research

1–20

© The Author(s) 2014

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0278364914528132

ijr.sagepub.com

John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,
Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg and Pieter Abbeel

Abstract

We present a new optimization-based approach for robotic motion planning among obstacles. Like CHOMP (Covariant

Hamiltonian Optimization for Motion Planning), our algorithm can be used to find collision-free trajectories from naïve,

straight-line initializations that might be in collision. At the core of our approach are (a) a sequential convex optimization

procedure, which penalizes collisions with a hinge loss and increases the penalty coefficients in an outer loop as necessary,

and (b) an efficient formulation of the no-collisions constraint that directly considers continuous-time safety Our algorithm

is implemented in a software package called TrajOpt.

We report results from a series of experiments comparing TrajOpt with CHOMP and randomized planners from OMPL,

with regard to planning time and path quality. We consider motion planning for 7 DOF robot arms, 18 DOF full-body

robots, statically stable walking motion for the 34 DOF Atlas humanoid robot, and physical experiments with the 18

DOF PR2. We also apply TrajOpt to plan curvature-constrained steerable needle trajectories in the SE(3) configuration

space and multiple non-intersecting curved channels within 3D-printed implants for intracavitary brachytherapy. Details,

videos, and source code are freely available at: http://rll.berkeley.edu/trajopt/ijrr.

Keywords

Motion planning, sequential convex optimization, convex collision checking, trajectory optimization

1. Introduction

The increasing complexity of robots and the environ-

ments that they operate in has spurred the need for high-

dimensional motion planning. Consider, for instance, a PR2

personal robot operating in a cluttered household environ-

ment or an Atlas humanoid robot performing navigation

and manipulation tasks in an unstructured environment.

Efficient motion planning is important to enable these high

DOF robots to perform tasks, subject to motion constraints

while avoiding collisions with obstacles in the environment.

Processing time is especially important where re-planning

is necessary.

Sampling-based motion planners (Kavraki et al., 1996;

LaValle, 2006) are very effective and offer probabilistic

completeness guarantees. However, these planners often

require a post-processing step to smooth and shorten the

computed trajectories. Furthermore, considerable compu-

tational effort is expended in sampling and connecting

samples in portions of the configuration space that might

not be relevant to the task. Optimal planners such as

RRT* (Karaman and Frazzoli, 2011) and discretization-

based approaches (Likhachev et al., 2003; Likhachev and

Stentz, 2008) are very promising but are currently compu-

tationally inefficient for solving high-dimensional motion

planning problems.

Trajectory optimization is fundamental in optimal con-

trol where the objective is to solve for a trajectory encoded

as a sequence of states and controls that optimizes a given

objective subject to constraints (Betts, 2010). Optimization

plays two important roles in robot motion planning. First,

it can be used to smooth and shorten trajectories computed

by other planning methods such as sampling-based plan-

ners. Second, it can be used to compute locally optimal,

collision-free trajectories from scratch starting from naïve

(straight-line) trajectory initializations that might collide

with obstacles.

Even though trajectory optimization has been success-

fully used for optimal control in a number of domains,

Department of Electrical Engineering and Computer Sciences, University

of California at Berkeley, USA

Corresponding author:

Sachin Patil, University of Calfornia at Berkeley, Sutardja Dai Hall, 2594

Hearst Ave, CA 94709, USA.

Email: sachinpatil@berkeley.edu

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

2 The International Journal of Robotics Research

it has traditionally not been used for robot motion plan-

ning because the presence of obstacles in the environment

and other constraints requires solving a non-convex, con-

strained optimization problem. However, CHOMP (Covari-

ant Hamiltonian Optimization for Motion Planning) (Ratliff

et al., 2009; Zucker et al., 2012) revived interest in tra-

jectory optimization methods by demonstrating the effec-

tiveness on several robotic platforms including the HERB

mobile manipulation platform, the LittleDog quadruped,

and the PR2 robot. CHOMP has the following key fea-

tures: (a) formulation of trajectory costs that are invariant

to the time parameterization of the trajectory, (b) using pre-

computed signed distance fields for collision checking, and

(c) using pre-conditioned gradient descent for numerical

optimization.

Our approach uses optimization in the same spirit as

CHOMP, with the following key differences: (a) the numeri-

cal optimization method used, and (b) the method of check-

ing for collisions and penalizing them. We use sequential

convex optimization, which involves solving a series of

convex optimization problems that approximate the cost

and constraints of the original problem. The ability to

add new constraints and costs to the optimization prob-

lem allows our approach to tackle a larger range of motion

planning problems, including planning for underactuated,

non-holonomic systems. For collisions, we use signed dis-

tances using convex–convex collision detection, and safety

of a trajectory between time steps, i.e. continuous-time

safety, is taken into account by considering the swept-out

volume of the robot between time steps. This formulation

has little computational overhead in collision checking and

allows us to use a sparsely sampled trajectory. Our method

for handling collisions yields a polyhedral approximation

of the free part of configuration space, which is directly

incorporated into the convex optimization problem that is

solved at each optimization iteration. This precludes the

need for pre-computation of signed distance fields and is

computationally efficient in practice.

We performed a quantitative comparison between Tra-

jOpt and several implementations of motion planning algo-

rithms, including sampling based planners from OMPL

(Sucan et al., 2012), as well as a recent implementation

of CHOMP (Zucker et al., 2012). Overall, our experimen-

tal results indicate that TrajOpt was computationally faster

than the alternatives on the considered benchmark (around

100–200 ms on arm-planning problems and solves full body

18 DOF planning problems for the PR2 robot in under a

second on an Intel i7 3.5 GHz CPU), and solved a larger

fraction of the problems given a specified time limit. We

also applied TrajOpt to high-DOF motion problems, includ-

ing physical experiments with the PR2 robot where we

simultaneously need to plan for two arms along with the

base and torso (Figure 1(b)), and for planning foot place-

ments with 28 DOF (+ 6 DOF pose) of the Atlas humanoid

robot as it maintains static stability and avoids collisions

(Figure 1(d)).

Fig. 1. TrajOpt applied to several motion planning scenarios: (a)

planning an arm trajectory for the PR2 in simulation, (b) PR2

opening a door with a full-body motion, (c) industrial robot pick-

ing boxes, subject to an orientation constraint on the end effector,

(d) humanoid robot model (DRC/Atlas) ducking underneath an

obstacle while obeying static stability constraints, (e) multiple

bevel-tip flexible needles inserted through the perineum to reach

targets deep within the prostate following high-quality constant

curvature trajectories, and (f) optimized layout for bounded cur-

vature channels within 3D-printed vaginal implants for delivering

radiation to OB/GYN tumors.

In this work, in addition to providing a revised and

extended version of our work (Schulman et al., 2013), we

(a) describe an extension to the algorithm described in

the RSS paper to plan trajectories in SE(3), and (b) pro-

vide a discussion on cases where trajectory optimization

fails to find a feasible solution. Regarding (a), we consider

the problem of planning curvature-constrained trajectories

in 3D environments. This involves trajectory optimization

over manifolds such as the SE(3) Lie group, instead of just

vector spaces of the form R
n. We accomplish this by itera-

tively optimizing over increments to the trajectory, defined

in terms of the corresponding Lie algebra—se(3) in our

case (Saccon et al., 2013). We applied this extension of

TrajOpt to two real-world clinical applications. First, we

considered the problem of planning collision-free, constant

curvature trajectories that avoid obstacles in the environ-

ment and optimize clinically relevant metrics for flexi-

ble, bevel-tip medical needles (Webster et al., 2006; Reed

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 3

et al., 2011) (Figure 1(e)). Our second application consid-

ers the problem of planning multiple, mutually collision-

free, curvature-constrained channels within 3-D printed

implants (Garg et al., 2013) for intracavitary brachytherapy

(HDR-BT).

2. Related work

Trajectory optimization with application to robotics has

been extensively studied. Khatib proposed the use of poten-

tial fields for avoiding obstacles, including dynamic obsta-

cles (Khatib, 1986). Warren used a global potential field

to push the robot away from configuration space obsta-

cles, starting with a trajectory that was in collision (Warren,

1989). Quinlan and Khatib locally approximated the free

part of configuration space as a union of spheres around

the current trajectory as part of a local optimization that

tries to shorten the trajectory (Quinlan and Khatib, 1993).

Brock and Khatib improved on this idea, enabling trajec-

tory optimization for a robot in 3D, by using the Jaco-

bian to map distances from task space into configuration

space (Brock and Khatib, 2002). These approaches locally

approximate the free space using a union of spheres, which

is a overly conservative approximation and may not find fea-

sible trajectories even if they exist. Lamiraux et al. used

an iterative scheme to find collision free paths for non-

holonomic robots, using a potential field based on the

obstacles (Lamiraux et al., 2004).

While the motivation for the presented work is very sim-

ilar to the motivation behind CHOMP (Ratliff et al., 2009;

Dragan et al., 2011; Zucker et al., 2012), which is most

similar in terms of prior art, our algorithm differs funda-

mentally in the following two ways: (a) we use a differ-

ent approach for collision detection, and (b) we use a dif-

ferent numerical optimization scheme. We note that there

are variants of CHOMP that use gradient-free, stochas-

tic optimization, including STOMP (Stochastic Trajectory

Optimization for Motion Planning) (Kalakrishnan et al.,

2011) and ITOMP (Incremental Trajectory Optimization)

for real-time replanning in dynamic environments (Park

et al., 2012).

Other recent work in robotics uses sequential quadratic

programming for trajectory optimization and incorporates

collision avoidance as constraints, in a similar way to this

work. Lampariello et al. (2011) incorporate signed dis-

tances between polytopes as inequality constraints in an

optimal control problem. Werner et al. (2012) use sequential

quadratic programming to optimize walking trajectories,

also incorporating obstacle avoidance as hard constraints,

along with stability constraints. However, these methods

have not considered continuous-time collision checking

or dealt with infeasible trajectory initializations that start

deeply in collision. Finally, there recently has been con-

siderable progress in trajectory optimization for dynam-

ical systems (Erez and Todorov, 2012; Mordatch et al.,

2012; Tassa et al., 2012; Lengagne et al., 2013; Posa and

Tedrake, 2013). These approaches have obtained promising

results but rely on a simplified, though conservative, rep-

resentation of the robot geometry (e.g. union of spheres)

to obtain solutions to planning problems. Fast algorithms

have been developed that use sequential quadratic program-

ming to compute solutions for trajectory optimization by

relying on problem-specific code generation (Houska et al.,

2011). However, these methods do not address the issue of

avoiding collisions with obstacles in the environment.

Many techniques have been proposed in the literature

to generate smooth trajectories from solutions obtained

using sampling-based motion planners, as they can some-

times generate non-smooth trajectories that may contain

unnecessary turns (LaValle, 2006). Shortcut-based methods

(Kallmann et al., 2003; Hauser and Ng-Thow-Hing, 2010;

Pan et al., 2012) replace non-smooth portions of a trajec-

tory shorter linear or curved segments (e.g. parabolic arcs,

Bézier curves). These methods tend to be fast and simple,

and can produce high quality paths in many cases. However,

they may not provide enough flexibility in terms of gener-

ating collision-free smooth trajectories in the presence of

obstacles. Trajectory optimization approaches such as ours

and CHOMP can be used for trajectory smoothing in such

cases.

3. Background: Sequential convex

optimization

Robotic motion planning problems can be formulated as

non-convex optimization problems, i.e. minimize an objec-

tive subject to inequality and equality constraints:

minimize f (x) (1a)

subject to (1b)

gi(x) ≤ 0, i = 1, 2, . . . , nineq (1c)

hi(x) = 0, i = 1, 2, . . . , neq (1d)

where f , gi, hi, are scalar functions.

In kinematic motion planning problems, the optimiza-

tion is done over a T × K-dimensional vector, where T is

the number of time-steps and K is the number of degrees

of freedom. We denote the optimization variables as x1:T ,

where xt describes the configuration at the tth timestep.

To encourage minimum-length paths, we use the sum of

squared displacements,

f (x1:T) =

T−1
∑

t=1

‖xt+1 − xt‖
2 (2)

Besides obstacle avoidance, common inequality constraints

in motion planning problems include joint limits and

joint angular speed limits. Common equality constraints

include the end-effector pose (i.e. reach a target pose at

the end of the trajectory) and orientation constraints (keep

a held object upright). For underactuated, non-holonomic

motion planning problems, additional equality constraints

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

4 The International Journal of Robotics Research

Algorithm 1 ℓ1 penalty method for sequential convex

optimization.

Parameters:

µ0: initial penalty coefficient

s0: initial trust region size

c: step acceptance parameter

τ+, τ−: trust region expansion and shrinkage factors

k: penalty scaling factor

ftol, xtol: convergence thresholds for merit and x

ctol: constraint satisfaction threshold

Variables:

x: current solution vector

µ: penalty coefficient

s: trust region size

1: for PenaltyIteration = 1, 2, . . . do

2: for ConvexifyIteration = 1, 2, . . . do

3: f̃ , g̃, h̃ = ConvexifyProblem(f , g, h)

4: for TrustRegionIteration = 1, 2, . . . do

5: x ← arg min
x

f̃ (x) +µ

nineq
∑

i=1

|g̃i(x) |+ + µ

neq
∑

i=1

|h̃i(x) |

subject to trust region and linear constraints

6: if TrueImprove / ModelImprove > c then

7: s ← τ+ ∗ s ⊲ Expand trust region

8: break

9: else

10: s ← τ− ∗ s ⊲ Shrink trust region

11: if s < xtol then

12: goto 15

13: if converged according to tolerances xtol or ftol

then

14: break

15: if constraints satisfied to tolerance ctol then

16: break

17: else

18: µ ← k ∗ µ

are added to ensure that the kinematics are consistent. We

will discuss some of these constraints in Section 7.

Sequential convex optimization solves a non-convex

optimization problem by repeatedly constructing a convex

subproblem—an approximation to the problem around the

current iterate x. The subproblem is used to generate a step

�x that makes progress on the original problem. Two key

ingredients of a sequential convex optimization algorithm

are: (a) a method for constraining the step to be small, so the

solution vector remains within the region where the approx-

imations are valid; (b) a strategy for turning the infeasible

constraints into penalties, which eventually drives all of the

constraint violations to zero. For (a), we use a trust region

modeled as a box constraint around the current iterate. For

(b) we use ℓ1 penalties: each inequality constraint gi(x) ≤ 0

becomes the penalty |gi(x) |+, where |x|+ = max (x, 0);

each equality constraint hi(x) = 0 becomes the absolute

value penalty |hi(x) |. In both cases, the penalty is multi-

plied by some coefficient µ, which is sequentially increased,

usually by multiplying by a constant scaling factor at each

step, during the optimization to drive constraint violations

to zero. Note that ℓ1 penalties are non-differentiable but

convex, and convex optimization algorithms can efficiently

minimize them. Our implementation uses a variant of the

classic ℓ1 penalty method (Nocedal and Wright, 1999),

described in Algorithm 1.

The use of ℓ1 penalties is called an exact penalty method,

because if we multiply the penalty by a large coefficient

(tending to infinity but the value is smaller in practice), then

the minimizer of the penalized problem is exactly equal to

the minimizer of the constrained problem. This is in con-

trast to the typical ℓ2 penalty method that penalizes squared

error, i.e. gi(x) ≤ 0 →(|gi(x) |+)2 and hi(x) = 0 →

hi(x)2. ℓ1 penalty methods give rise to numerically stable

algorithms that drive the constraint violations to zero.

Note that the objective we are optimizing contains non-

smooth terms like |a · x + b| and |a · x + b|+. However,

the subproblems solved by our algorithm are quadratic

programs—a quadratic objective subject to affine con-

straints. We accommodate these non-smooth terms while

keeping the objective quadratic by adding auxilliary slack

variables (Nocedal and Wright, 1999). To add |a · x + b|+,

we add slack variable t and impose constraints

0 ≤ t

a · x + b ≤ t (3)

Note that at the optimal solution, t = |a · x + b|+. Similarly,

to add the term |a · x + b|, we add s + t to the objective and

impose constraints

0 ≤ s, 0 ≤ t

s − t = a · x + b (4)

At the optimal solution, s = |a · x + b|+, t = |− a · x − b|+,

so s + t = |a · x + b|.

In the outer loop (PenaltyIteration, line 1) we increase the

penalty coefficient µ by a constant scaling factor (k = 10

in all our experiments) until all the constraints are satis-

fied, terminating when the coefficient exceeds some thresh-

old. The next loop (ConvexifyIteration, line 2) is where we

repeatedly construct a convex approximation to the prob-

lem and then optimize it. In particular, we approximate

the objective and inequality constraint functions by con-

vex functions that are compatible with a quadratic program

(QP) solver, and we approximate the nonlinear equality

constraint functions by affine functions. The nonlinear con-

straints are incorporated into the problem as penalties, while

the linear constraints are directly imposed in the convex

subproblems. The next loop (TrustRegionIteration, line 4)

is like a line search; if the true improvement (TrueImprove)

to the non-convex merit functions (objective plus constraint

penalty) is a sufficiently large fraction of the improvement

to our convex approximations (ModelImprove), then the

step is accepted.

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 5

4. No-collisions constraint

This section describes how the no-collisions constraint can

be efficiently formulated for a discretely sampled trajectory

that ensures that a given robot configuration x is not in col-

lision. We can use this constraint to encourage the robot to

be collision-free at each time step. We later show how this

can be extended to encourage continuous-time safety, i.e.

the robot stays collision-free between time steps.

4.1. Discrete-time no-collisions constraint

Let A, B, O be labels for rigid objects, each of which is a

link of the robot or an obstacle. The set of points occu-

pied by these objects are denoted by calligraphic letters

A,B,O ⊂ R
3. We sometimes use a superscript to indi-

cate the coordinate system of a point or a set of points.

Aw ⊂ R
3 denotes the set of points in world coordinates

occupied by A, whereas AA denotes the set of points in a

coordinate system local to object A. The poses of the objects

A, B are denoted as Fw
A , Fw

B , where Fw
A is a rigid transfor-

mation that maps from the local coordinate system to the

global coordinate system.

Our method for penalizing collisions is based on the

notion of minimum translation distance, common in col-

lision detection (Ericson, 2004). The distance between two

sets A,B ⊂ R
3, which is nonzero for non-intersecting sets,

is defined as

dist(A,B) = inf{‖T‖
∣

∣ (T + A) ∩ B
= ∅} (5)

Informally, it’s the length of the smallest translation T that

puts the shapes in contact. The penetration depth, which

is nonzero for overlapping shapes, is defined analogously

as the minimum translation that takes two shapes out of

contact:

penetration(A,B) = inf{‖T‖
∣

∣ (T + A) ∩ B = ∅} (6)

The signed distance is defined as follows:

sd(A,B) = dist(A,B) − penetration(A,B) (7)

Note that these concepts can also be defined using the

notion of a configuration space obstacle and the Minkowski

difference between the shapes—see e.g. Ericson (2004).

The convex–convex signed distance computation can be

performed efficiently. The distance between two shapes can

be calculated by the Gilbert–Johnson–Keerthi (GJK) algo-

rithm (Gilbert et al., 1988), while the penetration depth is

calculated by a different algorithm, the Expanding Poly-

tope algorithm (EPA) (Van den Bergen, 2001). One useful

feature of these two algorithms, which makes them so gen-

erally applicable, is that they represent an object A by its

support mapping, i.e. a function that maps vector v to the

point in A that is furthest in direction v:

sA(v) = arg max
p∈A

v · p (8)

safe check

sd

Fig. 2. Hinge penalty for collisions.

This representation makes it possible to describe convex

shapes implicitly without considering explicit polyhedral

representations of their surfaces. We will exploit this fact

to efficiently check for collisions against swept-out volumes

of the robot between time steps.

Two objects are non-colliding if the signed distance is

positive. We will typically want to ensure that the robot has

a safety margin dsafe. Thus, we want to enforce the following

constraints at each timestep

sd(Ai,Oj) ≥ dsafe ∀i ∈ {1, 2, . . . , Nlinks},

∀j ∈ {1, 2, . . . , Nobstacles}

(obstacle collisions)

sd(Ai,Aj) ≥ dsafe ∀i, j ∈ {1, 2, . . . , Nlinks} (9)

(self collisions)

where {Ai} is the collection of links of the robot, and {Oj}

is the set of obstacles. These constraints can be relaxed to

the following ℓ1 penalty

Nlinks
∑

i=1

Nobs
∑

j=1

|dsafe − sd(Ai,Oj) |+

+

Nlinks
∑

i=1

Nlinks
∑

j=1

|dsafe − sd(Ai,Bj) |+ (10)

A single term of this penalty function |dsafe − sd(Ai,Oj) |+

is illustrated in Figure 2.

Note that in practice, we do not consider all pairs of

objects for the collision penalty (Equation (10)) since the

penalty corresponding to most pairs of faraway objects is

zero. For computational efficiency, we query a collision

checker for all pairs of nearby objects in the world with dis-

tance smaller than a user-defined distance dcheck between

them where dcheck > dsafe, and formulate the collision

penalty based on these pairs.

We can form a linear approximation to the signed dis-

tance using the robot Jacobian and the notion of closest

points. Let AA,BB ⊂ R
3 denote the space occupied by A

and B in local coordinates, and let pA ∈ AA and pB ∈ BB

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

6 The International Journal of Robotics Research

sd sd

Fig. 3. Minimal translational distance and closest points.

denote the local positions of contact points. Fw
A and Fw

B

denote the objects’ poses.

To define closest points and our derivative approxima-

tion, first note that the signed distance function is given by

the following formula, which applies to both the overlap-

ping and non-overlapping cases:

sd({A, Fw
A }, {B, Fw

B }) = max
‖n̂‖=1

min
pA∈A,
pB∈B

n̂ · (Fw
A pA − Fw

B pB)

(11)

The closest points pA, pB and normal n̂ are defined as

a triple for which the signed distance is optimum, as

described in Equation (11). Equivalently, the contact normal

n̂ is the direction of the minimal translation T (as defined in

Equations (5) and (6)), and pA and pB are a pair of points

(expressed in local coordinates) that are touching when we

translate A by T (Figure 3).

Let’s assume that the pose of A is parameterized by the

configuration vector x (e.g. the robot’s joint angles), and

B is stationary. (This calculation can be straightforwardly

extended to the case where both objects vary with x, which

is necessary for dealing with self-collisions.) Then we can

linearize the signed distance by assuming that the local

positions pA, pB are fixed, and that the normal n is also fixed,

in Equation (11).

We first linearize the signed distance with respect to the

positions of the closest points:

sdAB(x) ≈ n̂ · (Fw
A (x) pA − Fw

B pB) (12)

By calculating the Jacobian of pA with respect to x, we can

linearize this signed distance expression at x0:

∇x sdAB(x)

∣

∣

∣

∣

x0

≈ n̂TJpA
(x0)

sdAB(x) ≈ sdAB(x0) +n̂TJpA
(x0) (x − x0)

(13)

The above expression allows us to form a local approxima-

tion of one collision cost term with respect to the robot’s

degrees of freedom. This approximation is used for every

Fig. 4. Illustration of the non-differentiability of the signed dis-

tance function. Here, a square is rotated about its center by angle θ .

The true function is shown by a solid line, and the linearization is

shown by a dotted line. It is correct to first-order in non-degenerate

situations, however, in degenerate situations where the signed dis-

tance is non-differentiable, it gives an erroneous gradient estimate.

Empirically, the optimization works well despite this issue.

pair of nearby objects returned by the collision checker.

After we linearize the signed distance, this cost can be

incorporated into a quadratic program (or linear program)

using Equation (3).

Note that Equation (13), which assumes that the normal

n̂ and the closest points are fixed, is correct to first order in

non-degenerate situations involving polyhedra. However, in

degenerate cases involving face–face contacts, the signed

distance is non-differentiable as a function of the poses

of the objects, and the above formula deviates from cor-

rectness. Empirically, the optimization does not seem to

get stuck at the points of non-differentiability. Figure 4

illustrates this phenomenon for two squares. An interesting

avenue for future work would be to develop approximations

to the the signed distance penalty that provide a better local

approximation.

4.2. Continuous-time trajectory safety

The preceding discussion formulates the no-collisions con-

straint for a discretely sampled trajectory. However, when

such a trajectory is converted to a continuous-time tra-

jectory for execution, e.g. by linear interpolation or cubic

splines, the resulting continuous-time trajectory might have

collisions between time steps (see Figure 5).

We can modify the collision penalty from Section 4.1

to give a cost that enforces the continuous-time safety

of the trajectory (though it makes a geometric approx-

imation). It is only twice as computationally expensive

than the discrete-time collision cost of the previous sec-

tion since it involves twice as many narrow-phase collision

queries.

Consider a moving object A and a static object B, for

0 ≤ t ≤ 1. The motion is free of collision if the swept-out

volume ∪tA(t) does not intersect B. First suppose that A

undergoes only translation, not rotation. (We will consider

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 7

Fig. 5. Illustration of swept volume for use in our continuous

collision cost.

rotations below.) Then the swept-out volume is the convex

hull of the initial and final volumes (Van den Bergen, 2001)

⋃

t∈[0,1]

A(t) = convhull(A(t) ,A(t + 1)) (14)

Thus we can use the same sort of collision cost we

described in Section 4.1, but now we calculate the signed

distance between the swept-out volume of A and the

obstacle B:

sd(convhull(A(t) ,A(t + 1)) ,B) (15)

We perform the necessary signed distance computa-

tion without having to calculate the convex hull of shapes

A(t) , A(t + 1), since (as noted in Section 4.1) the signed

distance cost can be calculated using the support mappings.

In particular, the support mapping is given by

sconvhull(C,D)(v) =

{

sC(v) if sC(v) · v > sD(v) · v

sD(v) otherwise
(16)

Calculating the gradient of the swept-volume collision

cost is slightly more involved than discrete case described

in Equations (12) and (13). Let’s consider the case where

object A is moving and object B is stationary, as in Figure 5.

Let’s suppose that A and B are polyhedral. Then the closest

point pswept ∈ convhull(A(t) , A(t + 1)) lies in one of the

faces of this polytope. convhull(A(t) , A(t + 1)) has three

types of faces: (a) all the vertices are from A(t), (b) all of

the vertices are from A(t + 1), and (c) otherwise. Cases

(a) and (b) occur when the deepest contact in the interval

[t, t + 1] occurs at one of the endpoints, and the gradient

is given by the discrete-time formula. In case (c), we have

to estimate how the closest point varies as a function of the

poses of A at times t and t + 1.

We use an approximation for case (c) that is computa-

tionally efficient and empirically gives accurate gradient

estimates. It is correct to first order in non-degenerate 2D

cases, but it is not guaranteed to be accurate in 3D. Let

pswept, pB, denote the closest points and normals between

convhull(A(t) , A(t + 1)), and B, respectively, and let n̂ be

the normal pointing from B into A.

1. Find supporting vertices p0 ∈ A(t) and p1 ∈ A(t +1)

by taking the support map of these sets along the

normal −n̂.

Fig. 6. Illustration of the difference between swept out shape and

convex hull. The figure shows a triangle undergoing translation

and uniform rotation. The swept-out area is enclosed by dotted

lines, and the convex hull is shown by a thick gray line.

2. Our approximation assumes that the contact point pswept

is a fixed convex combination of p0 and p1. In some

cases, p0, pswept, and p1 are collinear. To handle the

other cases, we set

α =

∥

∥p1 − pswept

∥

∥

∥

∥p1 − pswept

∥

∥ +
∥

∥p0 − pswept

∥

∥

(17)

where we make the approximation

pswept(x) ≈ αp0 + (1 − α) p1 (18)

3. Calculate the Jacobians of those points

Jp0
(xt

0) =
d

dxt
p0, Jp1

(xt+1
0) =

d

dxt+1
p1 (19)

4. Similarly to Equation (13), linearize the signed distance

around the trajectory variables at timesteps t and t + 1

sdAB(xt, xt+1) ≈ sdAB(xt
0, xt+1

0) +αn̂TJp0
(xt

0) (xt − xt
0)

+ (1 − α) n̂TJp1
(xt+1

0) (xt+1 − xt+1
0)

(20)

The preceding discussion assumed that the shapes

undergo translation only. However, the robot’s links also

undergo rotation, so the convex hull will underestimate

the swept-out volume. This phenomenon is illustrated in

Figure 6. We can calculate a simple upper-bound to the

swept-out volume, based on the amount of rotation. Con-

sider a shape A undergoing translation T and rotation angle

φ around axis k̂ in local coordinates. Let A(t) and A(t + 1)

be the occupied space at the initial and final times, respec-

tively. One can show that if we expand the convex hull

convhull(A(t) , A(t + 1)) by darc = rφ2/8, where r is the

maximum distance from a point on A to the local rotation

axis, then the swept-out volume is contained inside.

In summary, we can ensure continuous time safety by

ensuring that for each time interval [t, t + 1]

sd(convhull(A(t) ,A(t + 1)) ,O) > dsafe + darc (21)

One could relax this constraint into a penalty as described

in Section 4.1, by approximating φ(xt, xt+1). In practice, we

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

8 The International Journal of Robotics Research

ignored the correction darc, since it was well under 1 cm in

all of the problems we considered.

The no-collisions penalty for the continuous-time tra-

jectory safety is only twice as expensive as the discrete

no-collisions penalty since we have to calculate the sup-

port mapping of a convex shape with twice as many ver-

tices. As a result, the narrow-phase collision detection takes

about twice as long. The upshot is that the continuous col-

lision cost solves problems with thin obstacles where the

discrete-time cost fails to get the trajectory out of collision.

An added benefit is that we can ensure continuous-time

safety while parametrizing the trajectory with a small num-

ber of time steps, reducing the computational cost of the

optimization.

5. Motion planning benchmark

Our evaluation is based on four test scenes included with

the MoveIt! distribution—bookshelves, countertop, indus-

trial, and tunnel scenes; and a living room scene imported

from Google Sketchup. The set of planning problems was

created as follows. For each scene we set up the robot

in a number of diverse configurations. Each pair of con-

figurations yields a planning problem. Our tests include

198 arm planning problems and 96 full-body problems

(Figure 7). We ran all the experiments on a machine

with an Intel i7 3.5 GHz CPU, and used Gurobi as the

underlying Quadratic Program solver (Gurobi, 2012). The

complete source code necessary to reproduce this set of

experiments or evaluate a new planner is available at

https://github.com/joschu/planning_benchmark.

We compared TrajOpt to open-source implementations

of bi-directional RRT (Kuffner and LaValle, 2000) and

a variant of KPIECE (Sucan and Kavraki, 2009) from

OMPL/MoveIt! (Chitta et al., 2012; Cohen et al., 2012), that

is part of the ROS motion planning libraries. All algorithms

were run using default parameters and post-processed by

the default smoother and shortcutting algorithm used by

MoveIt!. We also compared TrajOpt to a recent implemen-

tation of CHOMP (Zucker et al., 2012) on the arm plan-

ning problems. We did not use CHOMP for the full-body

planning problems because they were not supported in the

available implementation.

Initialization: We tested both our algorithm and

CHOMP under two conditions: single initialization and

multiple initializations. For the single initialization, we

used a straight line initialization in configuration space

by linearly interpolating between start and goal configu-

rations. For multiple initializations, we used the following

methodology.

Arm planning problems: Prior to performing

experiments, we manually selected four waypoints

W1, W2, W3, W4 in joint space. These waypoints were fixed

for all scenes and problems. Let S and G denote the start

and goal states for a planning problem. Then we used the

four initializations SW1G, SW2G, SW3G, SW4G, which

linearly interpolate between S and Wi for the first T/2

time-steps, and then linearly interpolate between Wi and G

for the next T/2 timesteps.

Full-body planning problems: We randomly sampled

the environment for base positions (x, y, θ) with the arms

tucked. After finding a collision-free configuration W of

this sort, we initialized with the trajectory SWG as described

above. We generated up to 5 initializations this way.

Note that even though we initialize with tucked arms,

the optimization typically untucks the arms to improve

the cost.

Implementation details: Our current implementation of

the continuous-time collision cost does not consider self-

collisions, but we penalized self-collisions at discrete times

as described in Section 4.1. For collision checking, we

took the convex hull of the geometry of each link of the

robot, where each link is made of one or more meshes.

The termination conditions we used for the optimization

were (a) a maximum of 40 iterations, (b) a minimum merit

function improvement ratio of 10−4, (c) a minimum trust

region size 10−4, and (d) a constant penalty scaling factor

k = 10. We used the Bullet collision checker (Coumanns,

2012) for convex–convex collision queries. We used T =

11 timesteps for the arm and T = 41 timesteps for the

full-body trajectories. The sampling-based planners were

limited to 30 s on full-body planning problems.

Results: The results for arm planning are shown in

Table 1 and for full-body planning are shown in Table 2.

We evaluated TrajOpt and compared it with other planners

in terms of (a) average computation time for all successful

planning runs computed over all problems, and (b) average

normalized trajectory length over all problems that is com-

puted as the average of the trajectory lengths normalized

by dividing by the shortest trajectory length for that prob-

lem across all planners (value of 1 for a planner indicates

that the shortest trajectory was found by the planner for

all problem instances). TrajOpt solves a higher percentage

of problems on this benchmark, is computationally more

efficient, and computes shorter trajectories on average. Tra-

jOpt with multiple initializations outperformed the other

approaches in both sets of problems. Multiple trajectory ini-

tializations are important to guide the optimization out of

local minima and improves the success rate for both Tra-

jOpt and CHOMP. Section 9 presents a discussion of why

multiple trajectory initializations are important.

The bottom three rows of Table 1 indicate the reasons

for failure of the different algorithms on the arm plan-

ning problems; the numbers indicate the fraction of prob-

lems with each failure case. The sampling-based planners

(OMPL-RRTConnect and OMPL-LBKPIECE) failed when

the search algorithm found a path but the subsequent path

verification step found that it was in collision. This type of

failure is possible because the search algorithm uses a fast

collision checking method that is not perfectly accurate. In

the CHOMP failures, the optimizer returned a path that was

in collision or had joint limit violations. In the TrajOpt fail-

ures, the optimizer was not able to find a collision-free path

after all of the initializations.

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 9

Fig. 7. Scenes in our benchmark tests. (Left and center) Two of the scenes used for the arm planning benchmark. (Right) A third scene,

showing the path found by our planner on an 18-DOF full-body planning problem.

Table 1. Results on 198 arm planning problems for a PR2, involving 7 degrees of freedom.

OMPL-RRTConnect OMPL-LBKPIECE CHOMP CHOMP-Multi TrajOpt TrajOpt-Multi

Success fraction 0.838 0.833 0.677 0.833 0.843 0.990

Avg. time (s) 0.566 1.33 3.16 6.24 0.206 0.307

Avg. norm length 1.55 1.63 1.32 1.33 1.15 1.14

Failure: collision 0.162 0.167 0.278 0.116 0.157 0.010

Failure: joint limit 0 0 0.040 0.045 0 0

Failure: other 0 0 0.005 0.005 0 0

Table 2. Results on 96 full-body planning problems for a PR2, involving 18 degrees of freedom (two arms, torso, and base).

OMPL-RRTConnect OMPL-LBKPIECE TrajOpt TrajOpt-multi

Success fraction 0.41 0.51 0.73 0.88

Avg. time (s) 20.3 18.7 2.2 6.1

Avg. norm length 1.54 1.51 1.06 1.05

6. Physical experiments

6.1. Environment preprocessing

One of the main challenges in porting motion planning from

simulation to reality is creating a useful representation of

the environment’s geometry. Depending on the scenario, the

geometry data might be live data from a Kinect or laser

range finder, or it might be a mesh produced by an offline

mapping procedure. We used our algorithm with two dif-

ferent representations of environment geometry: (a) convex

decomposition and (b) meshes.

Convex decomposition: Convex decomposition seeks

to represent a general 3D volume approximately as a

union of convex bodies (Lien and Amato, 2007). Hierarchi-

cal Approximate Convex Decomposition (HACD) (Mamou

and Ghorbel, 2009) is a leading method for solving this

problem, and it is similar to agglomerative clustering algo-

rithms. It starts out with each triangle of a surface mesh as

its own cluster, and it repeatedly merges pairs of clusters,

where the choice of which clusters to merge is based on

an objective function. The algorithm is terminated once a

sufficiently small number of clusters is obtained. We used

Khaled Mammou’s implementation of HACD, which, in

our experience, robustly produced good decompositions,

even on the open meshes we generated from single depth

images. Example code for generating meshes and convex

decompositions from Kinect data, and then planning using

our software package TrajOpt, is provided in a tutorial at

http://rll.berkeley.edu/trajopt.

Meshes: Our algorithm also can be used directly with

mesh data. The mesh is viewed as a soup of triangles (which

are convex shapes), and we penalize collision between each

triangle and the robot’s links. For best performance, the

mesh should first be simplified to contain as few triangles

as possible while faithfully representing the geometry, e.g.

see Cignoni et al. (1998).

6.2. Experiments

We performed several physical experiments involving a

mobile robot (PR2) to explore two aspects of TrajOpt:

(a) applying it to the “dirty” geometry data that we get

from depth sensors such as the Kinect, and (b) validating

if the full-body trajectories can be executed in practice.

Our end-to-end system handled three full-body planning

problems:

1. Grasp a piece of trash on a table and place it in a garbage

bin under a table (one arm + base).

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

10 The International Journal of Robotics Research

Fig. 9. Several stages of a box picking procedure, in which boxes are taken from the stack and moved to the side. The box, and hence

the end effector of the robot arm, is subject to pose constraints.

Fig. 8. The Atlas humanoid robot in simulation walking across

the room while avoiding the door frame and other obstacles in the

environment, and pushing a button. Each footstep was planned for

separately using TrajOpt while maintaining static stability. Five

time steps of the trajectory are shown.

2. Open a door, by following the appropriate pose trajec-

tory to open the handle and push (two arms + torso +

base).

3. Drive through an obstacle course, where the PR2 must

adjust its torso height and arm position to fit through

overhanging obstacles (two arms + torso + base).

The point clouds we used were obtained by mapping out the

environment using SLAM and then preprocessing the map

to obtain a convex decomposition. Videos of these experi-

ments are available at http://rll.berkeley.edu/trajopt/ijrr.

7. Example applications with different

constraints

7.1. Humanoid walking: Static stability

We used TrajOpt to planning a statically stable walking

motion for the Atlas humanoid robot model. The degrees

of freedom include all 28 joints and the 6 DOF pose, where

we used the axis-angle (exp map) representation for the ori-

entation. The walking motion is divided into four phases (a)

left foot planted, (b) both feet planted, (c) right foot planted,

and (d) both feet planted. We impose the constraint that the

center of mass constantly lies above the convex hull of the

planted foot or feet, corresponding to

the zero-moment point stability criterion (Vukobratović and

Borovac, 2004). The convex support polygon is now rep-

resented as an intersection of k half-planes, yielding k

inequality constraints:

aixcm(θ) + biycm(θ) + ci ≤ 0, i ∈ {1, 2, . . . , k} (22)

where the ground-projection of the center of mass

(xcm, ycm) is a nonlinear function of the robot configuration.

Using this approach, we use TrajOpt to plan a sequence

of steps across a room, as shown in Figure 8. Each step is

planned separately using the phases described above. The

optimization is initialized with a stationary trajectory that

remains at the initial configuration for T timesteps, where

T = 10. The robot is able to satisfy these stability and foot-

step placement constraints while ducking under an obstacle

and performing the desired task of pushing a button.

7.2. Pose constraints

TrajOpt can readily incorporate kinematic constraints, e.g.

the constraint that a redundant robot’s end effector is at a

certain pose at the end of the trajectory. A pose constraint

can be formulated as follows. Let Ftarg =

[

Rtarg ptarg

0T
3 1

]

∈

SE(3) denote the target pose of the gripper, and let Fcur(x)

be the current pose. Then F−1
targFcur(x) gives the pose error,

measured in the frame of the target pose. This pose error

can be represented as the 6D error vector:

h(x) = log(F−1
targFcur(x)) = (tx, ty, tz, rx, ry, rz) (23)

where (tx, ty, tz) is the translation part, and (rx, ry, rz) is the

axis-angle representation of the rotation part obtained using

the log operator. We refer the reader to the appendix for

additional details on the log operator.

One can also impose partial orientation constraints. For

example, consider the constraint that the robot is hold-

ing a box that must remain upright. The orientation con-

straint is an equality constraint, namely that an error vector

(vw
x , vw

y) (x) vanishes. Here, v is a vector that is fixed in the

box frame and should point upwards in the world frame.

Figure 9 shows our algorithm planning a series of

motions that pick boxes from a stack. Our algorithm typ-

ically plans each motion in 30–50 ms.

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 11

8. Needle steering and channel layout

planning

The need to plan curvature-constrained trajectories in 3D

environments arises in a wide variety of domains. For

instance, a new class of highly flexible, bevel-tip needles

are being developed that enable the needle to move along

constant curvature trajectories within tissue when a forward

pushing force is applied and the direction of motion can

be changed by reorienting the bevel tip through twisting of

the needle at its base (Webster et al., 2006). They facili-

tate access to previously inaccessible clinical targets while

avoiding obstacles such as sensitive anatomical tissues (e.g.

vital organs and vessels) and impenetrable structures (e.g.

bones), as shown in Figure 1(e). Another important appli-

cation is the design of multiple bounded curvature chan-

nels in intracavitary 3D printed implants through which a

radioactive source is guided for delivering radiation doses

for high dose rate brachytherapy (HDR-BT) (Figure 1(f))

(Garg et al., 2013). The need for designing such channels

also arises in applications such as turbine blade design for

delivering coolant through the blades to cool them during

operation (Han et al., 2013), and planning bounded curva-

ture trajectories for unmanned aerial vehicles (UAVs) (Yang

and Sukkarieh, 2010).

Computing collision-free, curvature-constrained trajec-

tories in 3D environments with obstacles is challenging

because it requires planning in the SE(3) configuration

space consisting of the 6D pose (position and orientation).

We formulate this as a constrained, non-convex trajectory

optimization problem defined over manifolds such as the

SE(3) Lie group instead of vector spaces of the form R
n.

We accomplish this by iteratively optimizing over incre-

ments to the trajectory, defined in terms of the correspond-

ing Lie algebra (se(3) in our case) (Saccon et al., 2013).

Second, we consider the problem of planning multiple tra-

jectories that are mutually collision-free, which arises in

planning trajectories for multiple needles for medical pro-

cedures (Xu et al., 2009), multiple channels in intracavitary

implants (Garg et al., 2013), or simultaneously planning for

multiple UAVs (Shanmugavel et al., 2007).

Although the following formulation is specific to needle

steering and channel planning, it can be easily generalized

to other curvature-constrained planning problems.

8.1. Related work

Planning a curvature-constrained shortest path in a 2D

plane between two configurations for a Dubins car robot has

been extensively studied (Dubins, 1957; Reeds and Shepp,

1990). Webster et al. (2006) experimentally showed that

bevel-tipped steerable needles follow paths of constant cur-

vature when inserted into tissue. Planning constant curva-

ture trajectories for such needles in a plane has also been

explored (Alterovitz et al., 2007; Bernardes et al., 2013).

Computing collision-free, curvature-constrained trajec-

tories in 3D environments requires planning in the 6D con-

figuration space consisting of both position and orientation.

Existing optimal motion planning approaches that rely on

discretizing the configuration space (Pivtoraiko, 2012) or

sampling-based planners like RRT* (Karaman and Fraz-

zoli, 2011) require solving a two-point boundary value

problem (BVP) for connecting two states in SE(3), closed-

form solutions for which are not known (Belta and Kumar,

2002). Duindam et al. (2010) proposed a fast, optimal plan-

ner based on inverse kinematics, but this approach does

not consider obstacle avoidance. Xu et al. (2008, 2009)

used rapidly exploring random trees (RRT) (LaValle, 2006)

which offers a probabilistically complete, but computation-

ally intensive, algorithm to search for collision-free tra-

jectories. Duindam et al. (2008) formulated planning for

steerable needles as a non-convex optimization problem,

which computes collision-free solutions in a few seconds

but collision avoidance is treated as a cost and not as a hard

constraint. Patil and Alterovitz (2010); Patil et al. (2014)

proposed a RRT planner which plans bounded curvature

trajectories for a needle by relying on duty-cycled spinning

of the needle during insertion (Minhas et al., 2007; Majew-

icz et al., 2014). However, this can cause excessive tissue

damage (Engh et al., 2010). This approach was also used

for designing bounded curvature channels within implants

(Garg et al., 2013) but the issue of optimality of channel

layout was not addressed. In recent years, extensions to

planning curvature-constrained trajectories in 3D have been

proposed for unmanned aerial vehicles (UAVs) in environ-

ments without obstacles (Shanmugavel et al., 2007), and

with obstacles (Hwangbo et al., 2007; Yang and Sukkarieh,

2010). These methods do not consider the problem of

planning constant curvature trajectories in 3D.

Prior work on trajectory optimization on Lie groups has

proposed Newton-like optimization methods (Absil et al.,

2009), direct (collocation) methods for trajectory optimiza-

tion for continuous time optimal control problems (Sac-

con et al., 2013), and primitive-based motion planning

(Frazzoli et al., 2005). However, these approaches do not

address the issue of avoiding collisions with obstacles in

the environment.

8.2. Problem definition and formulation

We assume that a trajectory is discretized into time intervals

T = {0, 1, . . . , T}. At each time step t ∈ T , a trajectory

waypoint is parameterized by a pose Xt =

[

Rt pt

0T
3

1

]

∈ SE(3),

where pt ∈ R
3 is the position and Rt ∈ SO(3) is the rotation

matrix that encodes the orientation of the waypoint frame

relative to a world coordinate frame (Figure 10).

The planning objective can then be stated as:

Input: Set of obstacles O, an entry zone Pentry, a tar-

get zone Ptarget, the maximum curvature κmax, and the

discretization parameter T .

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

12 The International Journal of Robotics Research

Fig. 10. A discretized curvature-constrained trajectory is param-

eterized as {X0, . . . , Xt, . . . , XT }, where Xt ∈ SE(3) is the pose of

the waypoint frame relative to a world coordinate frame at each

time step t.

Output: Given an entry zone Pentry and a target zone

Ptarget, determine a locally optimal, collision-free, and

curvature-constrained trajectory {Xt : t ∈ T } with X0 ∈

Pentry and XT ∈ Ptarget, or report that no feasible trajectory

can be found.

We first describe the curvature-constrained kinematic

model used in this work and then formulate the plan-

ning objective as a constrained, non-convex optimization

problem.

Curvature-constrained kinematic model: In this work,

we assume that the trajectory is composed of a sequence of

(T − 1) circular arcs, each connecting a pose Xt to the sub-

sequent pose Xt+1 and of curvature κt. Depending on the

application, the trajectory may be required to have a con-

stant curvature κt = κmax for all time steps, or a bounded

curvature 0 ≤ κt ≤ κmax at each time step.

We make two design choices in formulating the

curvature-constrained kinematics. First, we constrain the

length of each circular arc � to be the same for all time

steps. One can just as easily have a separate length param-

eter �t for each time step. However, in our experiments,

we observed that some of these �t values shrink to 0 as

a result of the optimization, producing large gaps between

time steps which is not suitable for collision checking with

obstacles in the environment.

Second, we use a “stop-and-turn” strategy for the kine-

matics, i.e. at each time step t : 0 ≤ t ≤ T − 1, we apply a

rotation φt to the pose Xt and then propagate the frame by a

distance � to arrive at Xt+1. This is a natural choice for nee-

dle steering, since it corresponds to first twisting the base of

the needle, and then pushing it forward, which induces less

damage than constantly twisting the needle tip while push-

ing it. This strategy also results in channels that are easier

for catheters to go through. See Figure 10 for an illustra-

tion. Without loss of generality, we assume that the object

(either the needle tip or a small trajectory segment for the

channels) is oriented along the positive z-axis. Hence, the

poses at adjacent time steps Xt and Xt+1 are related as:

Xt+1 = exp(v∧
t) · exp(w∧

t) ·Xt (24)

where wt = [0 0 0 0 0 φt]T and vt = [0 0 � �κt 0 0]T are the

twist vectors corresponding to the rotation φt and propa-

gating the frame by distance �, respectively. We refer the

reader to the appendix and to the excellent treatise on the

SE(3) Lie group by Murray and Shankar (1994) for details

on the ∧ : R
6 → se(3) and exp : se(3) → SE(3) operators.

Optimization Formulation: For notational convenience,

we concatenate the states from all time steps as X = {Xt :

t ∈ T } and the control variables as U = {φt, κt : t ∈ T , �}.

The planning objective is transcribed as a constrained, non-

convex trajectory optimization problem as given below:

min
X ,U

α�Cost� + αφCostφ + αOCostO (25a)

subject to (25b)

log(Xt+1· (exp(v∧
t) · exp(w∧

t) · Xt)
−1)∨ = 06 (25c)

X0 ∈ Pentry, XT ∈ Ptarget (25d)

sd(Xt, Xt+1,O) ≥ dsafe + darc (25e)

− π ≤ φt ≤ π (25f)

κt = κmax or 0 ≤ κt ≤ κmax (25g)

�

T−1
∑

t=0

κt ≤ cmax for channel planning (25h)

The constraints and costs are described in detail below.

8.2.1. Kinematics constraint (Equation (25c)). We trans-

form the kinematic constraint from Equation (24) to a stan-

dard non-convex equality constraint form by using the log

map and relying on the identity log(I4×4) = 06. We refer

the reader to the appendix for more details.

8.2.2. Collision constraint (Equation (25e)). We impose

constraints to ensure that the trajectory avoids collisions,

where sd(Xt, Xt+1,O) is the signed distance between the

trajectory segment in time interval [t, t + 1] and the set

of obstacles O. The signed distance corresponds to the

minimum translation distance required to either put two

geometric shapes in contact or separate them if they are

overlapping. Two objects are non-colliding if the signed dis-

tance is positive, and we want to ensure that the trajectory

has a user-defined safety margin dsafe. The distance between

two convex shapes can be calculated by the GJK algorithm

(Gilbert et al., 1988) and the penetration depth is calculated

by the EPA (Van den Bergen, 2001). We approximate the

segment by the convex hull of the object (the needle tip or

a small segment on the channel) between time t and t + 1,

and we account for the approximation error in rotation by

adding an error correction term darc. Instead of numerically

computing the gradient, we linearize the signed distance

using the contact normal n̂. We include the continuous-

time non-convex no-collisions constraint is included as a

ℓ1 penalty in the optimization (Section 4.2).

8.2.3. Total curvature constraint (Equation (25h)). For

channel planning, we constrain the total curvature of the

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 13

trajectory to ensure that catheters carrying the radioac-

tive source can be pushed through the channels without

buckling (Garg et al., 2013).

8.2.4. Costs (Equation (25a)). To penalize tissue damage

for needle steering and to optimize channel lengths for min-

imum radiation exposure, the objective imposes costs on the

total length of the trajectory and the twists at each time step:

Cost� = T� and Costφ =

T−1
∑

t=0

φ2
t (26)

For needle steering, we add an extra term to favor large min-

imum clearance from obstacles to deal with expected needle

deflections during execution:

CostO = − min
0≤t≤T−1
Oi∈O

sd(Xt, Xt+1,Oi) (27)

Instead of directly including the non-convex cost term

CostO in the objective, we include an auxiliary variable dmin

in the optimization and reformulate the cost as

CostO = −dmin, dmin ≤ sd(Xt, Xt+1,Oi) (28)

The objective (25a) is a weighted sum of the costs above,

where α�, αφ , αO ≥ 0 are user-defined, non-negative coef-

ficients to leverage different costs. A relatively large αO, for

instance, may result in trajectory with larger clearance from

obstacles, at the expense of a longer trajectory.

8.3. Trajectory optimization over SE(3)

The optimization problem outlined in Equation (25) is,

however, described directly over the set of poses X . One

could use a global parameterization of the rotation group,

such as axis-angle coordinates or Euler angles. The draw-

back of those parameterizations is that they distort the

geometry—e.g. consider how a map of the world is dis-

torted around the poles. This distortion can severely slow

down an optimization algorithm, by reducing the neighbor-

hood where local (first- and second-order) approximations

are good.

In this work, we generalize sequential convex

optimization to the case where the domain is a differ-

entiable manifold such as the SE(3) Lie group rather than

R
n by considering a local coordinate parameterization of

the manifold (Saccon et al., 2013). This parameterization

is given by the Lie algebra se(3), which is defined as the

tangent vector space at the identity of SE(3). We refer the

reader to the appendix for additional details.

In this work, we construct and solve each convex sub-

problem in terms of the increments to the previous solution.

At the ith iteration of SQP, let X̄ (i) = {x̄
(i)

0 , . . . , x̄
(i)
T } be the

sequence of incremental twists (step) computed by solving

the convex subproblem. Given a trajectory consisting of a

sequence of nominal poses X̂ (i) = {X̂
(i)

0 , . . . , X̂
(i)
T }, the sub-

sequent sequence of poses is obtained by applying X̄ (i) as

X̂ (i+1) = {exp(x̄
(i)

0
∧) · X̂

(i)

0 , . . . , exp(x̄
(i)
T

∧) · X̂
(i)
T }.

Convexification: For trajectory optimization problems,

there are two ways to construct locally convex approxima-

tions of the costs and constraints for setting up the con-

vex subproblem. One can either convexify the costs and

constraints directly around the current solution X̂ (i), which

might correspond to an infeasible trajectory that does not

satisfy the kinematic constraints (Equation (24)). Alter-

natively, we can forward integrate the computed controls

and then construct the convex approximation around the

integrated trajectory, which is guaranteed to satisfy all kine-

matic constraints, but the trajectory might violate the con-

straints on the entry zone and target zone. It is easier to

satisfy constraints on the start and target zones without for-

ward integration but the differential curvature constraint

is difficult to satisfy. We present a detailed comparison of

these two methods below.

Multi-trajectory optimization: In this work, we also

consider the problem of computing multiple curvature-

constrained trajectories that are mutually collision-free. The

complexity of solving ntraj trajectories simultaneously while

avoiding collisions between trajectories increases rapidly as

a function of ntraj. Although the size of the optimization

vector grows linearly, the number of collision constraints

between trajectories grows quadratically in ntraj. In addition,

the chances of getting stuck in an infeasible local optima

becomes much higher as ntraj increases. A natural extension

is to solve for each trajectory sequentially in a predefined

order while avoiding collisions with previously computed

trajectories. However this approach may result in conflicts

where trajectories that are computed first may collide with

the target zone of trajectories that need to be solved for later.

Instead, we repeatedly compute each trajectory individ-

ually, where the optimization is initialized by a perturbed

version of the previous solution. The previously computed

trajectories are added as static obstacles to the environment

since the objective is to compute trajectories that are mutu-

ally collision-free. Randomly perturbing the solution from

previous optimization runs also has the desirable side effect

of perturbing the optimization to potentially finding better

local optima.

8.4. Simulation experiments

We experimentally evaluated our approach in two real-

world applications involving medical needle steering and

designing channel layouts for intracavitary brachytherapy.

We implemented our algorithm in C++ and ran all the

experiments on a machine with a Intel i7 3.5 GHz CPU and

used Gurobi as the underlying Quadratic Program solver.

Medical needle steering: We used an anatomical model

of the human male pelvic region to simulate needle inser-

tion in tissue for delivering radioactive doses to targets

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

14 The International Journal of Robotics Research

Fig. 11. Changing the value of the parameter αO influences the

clearance of the trajectory from obstacles in the environment.

Zoomed in view of the male prostate region (target inside prostate

shown in red). (a) Smaller clearance from obstacles (Cowper’s

glands) with αO = 1 resulting in a potentially unsafe trajectory.

(b) Larger clearance from obstacles with αO = 10.

within the prostate. We considered randomly sampled tar-

gets within the prostate for our experiments. We set the

entry zone to be a 0.1 cm × 5 cm × 2.5 cm region on

the perineum (skin) through which needles are typically

inserted for needle-based prostate procedures. The target

zones were modeled as spheres around the target points

with radius 0.25 cm, within the range of average place-

ment errors (≈ 0.63 cm) encountered during procedures

performed by experienced clinicians (Taschereau et al.,

2000). The average distance between the entry zone and the

target zone is 10 cm and and we set κmax = 0.125 cm−1. We

used T = 10 time steps for our experiments, such that the

step length was roughly 1 cm. For the objective function, we

used α� = αφ = 1, and we compared the planned trajectory

with different choices of the clearance coefficient αO.

We compared the effect forward integration on the

entire trajectory for constructing the underlying convex

subproblems. We also compared the performance of our

optimization-based approach with a sampling-based RRT

planner (Xu et al., 2008) for computing constant curvature

trajectories for the needle. The planner was modified to plan

backwards starting from target zones because it is easier to

compute feasible constant curvature trajectories.

Planning for a single needle: We first analyzed the

planned trajectory for single needle insertion using 400

sampled points in the prostate. In addition to the setup

above, we require that the needle insertion axis is at a devia-

tion of at most 5◦ from the horizontal, which is a restriction

usually imposed by needle steering hardware that constrains

the needle to be horizontal. We do not constrain the orien-

tation of the needle tip at the target. We enforced a safety

distance dsafe = 0.25 cm between the trajectory and obsta-

cles. The error correction term for rotations (Section 4.2)

is computed to be darc = 0.001 cm, which is ignored con-

sidering the scale of the environment we are planning in

(of the order of cm). We compared the planned trajectory

with αO = 1 or αO = 10, examples of which are shown

in Figures 11(a) and 11(b). Using a larger clearance coeffi-

cient results in trajectories farther away from obstacles, at

the expense of slightly longer paths.

For each task, we repeatedly ran the optimization initial-

ized by a perturbed solution of the previous run, and we

allowed up to five reruns. We evaluated the performance of

no forward integration versus forward integration in terms

of the average running time, percentage of solved problems,

and quality metrics for the converged solutions. From the

statistics listed in Table 3, we can see that forward integra-

tion outperforms no forward integration in terms of percent-

age of solved problems and running times. It is worth noting

that the optimization solves a larger percentage of problems

with αO = 10 as compared to using αO = 1 because in

the latter case, the optimization finds it difficult to simul-

taneously satisfy both the kinematics constraint (Equation

(25c)) and the collision avoidance constraint (Equation

(25e)) when the trajectory is closer to obstacles and has less

free space in the environment for improvement.

Our approach outperforms the RRT planner in terms

of the number of problems solved. Here, the RRT plan-

ner was allotted 10 s to find a solution, pending which it

reported that a solution could not be found. The trajec-

tories computed using the RRT planner also have a very

high twist cost, which is a result of the randomized nature

of the planning algorithm. Since the twist cost is directly

correlated with tissue damage, the trajectories computed

using our approach are preferable over those computed by a

randomized planner.

Planning for multiple needles: We analyzed the perfor-

mance of our algorithm planning for five needle trajectories

using 1000 sampled points within the prostate (200 trials).

We compared the result of no forward integration vs for-

ward integration, applying our proposed multi-trajectory

planning algorithm. Using forward integration offers an

advantage over not using it in terms of computational time

required to compute a feasible solution and the quality of

trajectories computed. Figure 1(e) shows planned trajec-

tories for a single trial. Table 4 summarizes our result,

which shows the advantage of our proposed approach. Our

approach outperforms the RRT planner in terms of the num-

ber of problems solved. The trajectories computed using

the RRT planner have a very high twist cost, which is also

undesirable. We also tested planning for multiple trajecto-

ries simultaneously, but the running time was too long and

the algorithm failed to find a solution for three needles or

more.

Channel layout design: We set up a simplified scene for

designing the channel layout. We consider a scenario where

a 3D printed implant is prepared for treatment of OB/GYN

tumors (both vaginal and cervical), as shown in Figure 1(f).

The implant was modeled as a cylinder of height 7 cm

and radius 2.5 cm, with a hemisphere on top with radius

2.5 cm. The dimensions of the implant was designed based

on dimensions reported by Garg et al. (2013). We placed

three tumors and picked eight (oriented) target poses inside

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 15

Table 3. Single needle planning: Sampling-based RRT planner versus TrajOpt.

RRT TrajOpt

No forward Forward No forward Forward

integration integration integration integration

αO = 1 αO = 10 αO = 10 αO = 10

Success fraction 0.67 0.76 0.80 0.79 0.89

Time (s) 9.8 ± 8.1 1.8 ± 1.2 1.6 ± 1.7 1.9 ± 1.3 1.8 ± 1.7

Path length: cm 11.1 ± 1.5 11.3 ± 1.4 11.6 ± 1.7 11.9 ± 1.7 13.1 ± 2.3

Twist cost: radians 34.9 ± 10.0 1.4 ± 1.4 1.0 ± 1.0 1.6 ± 1.6 1.0 ± 1.0

Clearance: cm 0.5 ± 0.4 0.7 ± 0.5 0.5 ± 0.3 1.3 ± 0.4 1.2 ± 0.5

Table 4. Multiple needle planning: Sampling-based RRT planner

versus TrajOpt.

RRT TrajOpt

No forward Forward

integration integration

Success fraction 0.48 0.75 0.79

time (s) 50.0 ± 19.0 18.0 ± 9.0 15.3 ± 15.2

Path length: cm 54.6 ± 3.1 53.9 ± 2.5 56.5 ± 3.4

Twist cost: radians 168.3 ± 28.4 3.8 ± 1.5 2.5 ± 1.8

Clearance: cm 0.1 ± 0.08 0.1 ± 0.03 0.1 ± 0.06

the implant. We set the entry region to be the base of the

implant, with a deviation angle at most 10◦ to the perpen-

dicular direction. We require that the curvature along the

path is at most 1 cm−1 and that the total curvature on the

trajectory (Equation (25h)) is at most 1.57. This constraint

is important to ensure that catheters carrying the radioac-

tive seed can be pushed through the channels. Instead of

planning forward from the entry to the target, we planned

backwards from the target to the entry zone using colloca-

tion with backward integration, since the entry constraint is

much easier to satisfy than the target constraint. Figure 1(f)

shows a channel layout computed using our method.

We compared the performance of our approach with a

highly optimized RRT-based planner (Garg et al., 2013)

proposed for this specific application (Table 5). Both the

RRT-based approach and our approach have a random-

ization aspect associated with them—while the RRT uses

random sampling, our multi-trajectory planning procedure

uses random perturbations to initialize the optimization. We

solved the same problem 100 times to investigate the ran-

domized aspect of both approaches. Our approach is able

to compute a feasible solution in almost all cases, whereas

the RRT algorithm fails more often to find a feasible solu-

tion. The RRT planner also computed plans that have a

higher cumulative path length and twist cost as compared

to the solution computed using our approach, which is

undesirable.

Table 5. Channel layout planning: Sampling-based RRT planner

versus TrajOpt.

Success fraction 0.74 0.98

Time (s) 30.8 ± 17.9 27.7 ± 9.8

Path length: cm 41.3 ± 0.3 38.9 ± 0.1

Twist cost: radians 65.5 ± 8.4 4.1 ± 1.1

9. Discussion

In this section, we compare our approach vis-à-vis

CHOMP (Ratliff et al., 2009; Zucker et al., 2012) and

sampling-based motion planners (LaValle, 2006), and dis-

cuss the importance of trajectory initialization for trajectory

optimization methods.

9.1. Comparison with CHOMP

Our approach uses optimization in the same spirit as

CHOMP, with the following key differences: (a) the numer-

ical optimization method used, and (b) the method of

checking for collisions and penalizing them.

a. Distance fields versus convex–convex collision check-

ing: CHOMP uses the Euclidean distance transform—a

precomputed function on a voxel grid that specifies the

distance to the nearest obstacle, or the distance out of

an obstacle. Typically each link of the robot is approxi-

mated as a union of spheres, since the distance between

a sphere and an obstacle can be bounded based on

the distance field. The advantage of distance fields is

that checking a link for collision against the environ-

ment requires constant time and does not depend on

the complexity of the environment. On the other hand,

spheres and distance fields are arguably not very well

suited to situations where one needs to accurately model

geometry, which is why collision-detection methods

based on meshes and convex primitives are more preva-

lent in applications like real-time physics simulation

(Coumanns, 2012) for speed and accuracy. Whereas

convex–convex collision detection takes two colliding

shapes and computes the minimal translation to get

them out of collision, the distance field (and its gradient)

merely computes how to get each robot point (or sphere)

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

16 The International Journal of Robotics Research

out of collision; however, two points may disagree on

which way to go. Thus convex–convex collision detec-

tion arguably provides a better local approximation of

configuration space, allowing us to formulate a better

shaped objective.

The CHOMP objective is designed to be invariant

to reparametrization of the trajectory. This invariance

property makes the objective better shaped, helping the

gradient pull the trajectory out of an obstacle instead

of encouraging it to jump through the obstacle faster.

Our method of collision checking against the swept-out

robot shape achieves this result in a completely different

way.

b. Projected gradient descent versus SQP: CHOMP uses

(preconditioned) projected gradient descent, i.e. it takes

steps x ← Proj(x − A−1∇f (x)), whereas our method

uses sequential quadratic programming (SQP), which

constructs a locally quadratic approximation of the

objective and locally linearizes constraints. Taking a

projected gradient step is cheaper than solving a QP.

However, an advantage of sequential quadratic pro-

gramming is that it can handle infeasible initializations

and other constraints on the motion using penalties and

merit functions, as described in Section 3. We note that

popular non-convex optimization solvers such as KNI-

TRO and SNOPT also use an SQP variant. Another

advantage of using SQP is that there is additional flex-

ibility in adding other cost terms to the objective and

constraints, which allows TrajOpt to tackle a larger

range of planning problems, including planning for

underactuated, non-holonomic systems.

9.2. Comparison with sampling-based planners

It is important to note that our approach is not a replace-

ment for sampling-based motion planning methods such

as RRTs (LaValle, 2006). It is not expected to find solu-

tions to difficult planning problems (e.g. bug trap or maze

path finding) and is not guaranteed to find a solution if

one exists, i.e. it does not offer probabilistic complete-

ness guarantees. However, our experiments indicate that

our approach can still efficiently compute locally optimal,

collision-free trajectories from scratch using infeasible tra-

jectory initializations as opposed to smoothing a previously

computed collision-free trajectory. In contrast to other tra-

jectory smoothing methods, our approach does not nec-

essarily require a collision-free trajectory initialization to

begin with.

9.3. Importance of trajectory initialization

Trajectory optimization for motion planning is a challeng-

ing non-convex constrained optimization problem. Given

an initial trajectory that may contain collisions and vio-

late constraints, trajectory optimization methods such as

TrajOpt and CHOMP can often quickly converge to a high-

quality, locally optimal solution. However, these methods

Fig. 12. Failure cases when using TrajOpt. (a) Initial path for

full-body planning. (b) The trajectory optimization outcome,

which is stuck in an infeasible condition. (c) The initial path for

the arm planning and the collision cannot be resolved in the final

trajectory (d).

suffer from a critical limitation: their performance heav-

ily depends on the provided trajectory initialization and

they are not guaranteed to find a collision-free solution

as the no-collisions constraints in the optimization are

non-convex.

For instance, certain initializations passing through

obstacles in unfavorable ways may get stuck in infeasible

solutions and cannot resolve all the collisions in the final

outcome, as illustrated in Figure 12. Figure 13 shows some

scenarios illustrating how trajectory optimization tends to

get stuck in local optima that are not collision-free. It is

important whether the signed distance normal is consistent

between adjacent links or adjacent waypoints in an initial

trajectory, else a bad initialization tends to have adjacent

waypoints which push the optimization in opposing direc-

tions. As a consequence, these methods typically require

multiple initializations. This explains why the use of multi-

ple trajectory initializations performs better for challenging

planning problems (Tables 1 and 2).

Sampling-based motion planning methods such as RRTs

or PRMs could be used to compute a feasible initialization

that could be used to seed our optimization approach. This

could potentially improve the success rate of our approach

at the cost of additional computation.

10. Source code and reproducibility

All of our source code is available as a BSD-licensed

open-source package called TrajOpt that is freely available

at http://rll.berkeley.edu/trajopt. Optimization problems can

be constructed and solved using the underlying C++ API or

through Python bindings. Trajectory optimization problems
 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 17

x1

x2

x3

x4

n2

n3

(a)

x1

x2

x3

x4

(b)

x1 x2 x3 x4 x5

(c)

l3

l2

l1

n3

n2

(d)

Fig. 13. Illustration of typical reasons for trajectory optimization to get stuck in local optima that are not collision-free. (a) The gradient

based on penetration depth may push waypoints in in-consistent directions. (b) The gradient based on distance fields has the same

problem. (c) When a robot collides simultaneously with multiple obstacles, the robot may get stuck in an infeasible local optimum as

different obstacles push the robot in different directions. (d) For a robot with multiple links, the gradient may result in inconsistent

directions for different links. xi in these figures denote configurations at different time steps along the trajectory.

can be specified in JSON string that specifies the costs, con-

straints, degrees of freedom, and number of timesteps. We

are also working on a MoveIt plugin (Chitta et al., 2012) so

our software can be used along with ROS tools.

For robot and environment representation, we use Open-

RAVE, and for collision checking we use Bullet, because of

the high-performance GJK-EPA implementation and colli-

sion detection pipeline. Two different backends can be used

for solving the convex subproblems: (a) Gurobi, a commer-

cial solver, which is free for academic use (Gurobi, 2012);

and (b) BPMPD (Mészáros, 1999), a free solver included in

our software distribution.

The benchmark results presented in this paper

can be reproduced by running scripts provided at

http://rll.berkeley.edu/trajopt/ijrr. Various examples,

including humanoid walking, arm planning with orien-

tation constraints, and curvature-constrained trajectory

planning for medical needle steering and designing channel

layouts, are included with our software distribution.

11. Conclusion

We presented TrajOpt, a trajectory optimization approach

for solving robot motion planning problems. At the core of

our approach is the use of sequential convex optimization

with ℓ1 penalty terms for satisfying constraints, an efficient

formulation of the no-collision constraint in terms of the

signed distance, which can be computed efficiently for con-

vex objects, and the use of support mapping representation

to efficiently formulate the continuous-time no-collision

constraints.

We benchmarked TrajOpt against sampling-based plan-

ners from OMPL and CHOMP. Our experiments indi-

cate that TrajOpt offers considerable promise for solving

a wide variety of high-dimensional motion planning prob-

lems. We presented a discussion of the importance of tra-

jectory initialization for optimization based approaches. We

also presented an extension of our trajectory optimization

approach to planning curvature-constrained trajectories in

3D environments with obstacles. The source code for all

the reported experiments and the associated benchmark has

been made available freely for the benefit of the research

community.

Acknowledgements

We thank Jeff Trinkle, Dmitry Berenson, Nikita Kitaev, and anony-

mous reviewers for insightful discussions and comments on the

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

18 The International Journal of Robotics Research

paper. We thank Kurt Konolige and Ethan Rublee from Industrial

Perception Inc. for supporting this work and providing valuable

feedback. We thank Ioan Sucan and Sachin Chitta for help with

MoveIt!, and we thank Anca Dragan, Chris Dellin, and Siddhartha

Srinivasa for help with CHOMP.

Funding

This research was supported in part by the National Science Foun-

dation (NSF) (grant number IIS-1227536: Multilateral Manipula-

tion by Human-Robot Collaborative Systems), by the Air Force

Office of Scientific Research (AFOSR) (Young Investigator Pro-

gram (YIP) grant number FA9550-12-1-0345), by a Sloan Fel-

lowship, and by the Intel Science and Technology Center on

Embedded Computing.

References

Absil P, Mahony R and Sepulchre R (2009) Optimization Algo-

rithms on Matrix Manifolds. Princeton, NJ: Princeton Univer-

sity Press.

Alterovitz R, Siméon T and Goldberg K (2007) The stochas-

tic motion roadmap: A sampling framework for planning with

Markov motion uncertainty. In: Proceedings of Robotics: Sci-

ence and systems (RSS), Atlanta, GA, USA, 27–30 June 2007.

Belta C and Kumar V (2002) Euclidean metrics for motion gen-

eration on SE(3). Journal of Mechanical Engineering Science

216(1): 47–60.

Bernardes MC, Adorno BV, Poignet P, et al. (2013) Robot-assisted

automatic insertion of steerable needles with closed-loop imag-

ing feedback and intraoperative trajectory replanning. Mecha-

tronics 23(6): 630–645.

Betts JT (2010) Practical Methods for Optimal Control and Esti-

mation Using Nonlinear Programming, Vol. 19. Philadelphia,

PA: Society for Industrial & Applied Mathematics.

Brock O and Khatib O (2002) Elastic strips: A framework for

motion generation in human environments. International Jour-

nal of Robotics Research 21(12): 1031–1052.

Chitta S, Sucan I and Cousins S (2012) Moveit![ROS topics].

IEEE Robotics and Automation Magazine 19(1): 18–19.

Cignoni P, Montani C and Scopigno R (1998) A comparison

of mesh simplification algorithms. Computers and Graphics

22(1): 37–54.

Cohen B, Sucan I and Chitta S (2012) A generic infrastructure for

benchmarking motion planners. In: Proceedings of the Inter-

national conference on Intelligent robots and systems (IROS),

Algarve, Portugal, 7–12 October 2012, pp. 589–595.

Coumanns E (2012) Bullet physics library. Available at:

http://www.bulletphysics.org.

Dragan AD, Ratliff ND and Srinivasa SS (2011) Manipula-

tion planning with goal sets using constrained trajectory opti-

mization. In: Proceedings of the International conference on

robotics and automation (ICRA), Shanghai, 9–13 May 2011,

pp. 4582–4588.

Dubins LE (1957) On curves of minimal length with a constraint

on average curvature, and with prescribed initial and termi-

nal positions and tangents. American Journal of Mathematics

79(3): 497–516.

Duindam V, Alterovitz R, Sastry S, et al. (2008) Screw-based

motion planning for bevel-tip flexible needles in 3D environ-

ments with obstacles. In: Proceedings of the International con-

ference on robotics and automation (ICRA), Pasadena, CA,

USA, 19–23 May 2008, pp. 2483–2488.

Duindam V, Xu J, Alterovitz R, et al. (2010) Three-dimensional

motion planning algorithms for steerable needles using inverse

kinematics. International Journal of Robotics Research 29(7):

789–800.

Engh JA, Minhas DS, Kondziolka D, et al. (2010) Percutaneous

intracerebral navigation by duty-cycled spinning of flexible

bevel-tipped needles. Neurosurgery 67(4): 1117–1122.

Erez T and Todorov E (2012) Trajectory optimization for domains

with contacts using inverse dynamics. In: Proceedings of the

International conference on intelligent robots and systems

(IROS), Algarve, Portugal, 7–12 October 2012, pp. 4914–4919.

Ericson C (2004) Real-time Collision Detection. Amsterdam;

London: Morgan Kaufmann.

Frazzoli E, Dahleh MA and Feron E (2005) Maneuver-based

motion planning for nonlinear systems with symmetries. IEEE

Transactions on Robotics 21(6): 1077–1091.

Garg A, Patil S, Siauw T, et al. (2013) An algorithm for comput-

ing customized 3D printed implants with curvature constrained

channels for enhancing intracavitary brachytherapy radiation

delivery. In: Proceedings of the IEEE International conference

on automation science and engineering (CASE) Madison, WI,

USA, 17–21 August 2013, pp. 3306–3312.

Gilbert E, Johnson D and Keerthi S (1988) A Fast procedure

for computing the distance between complex objects in three-

dimensional space. IEEE Journal of Robotics and Automation

4(2): 193–203.

Gurobi (2012) Gurobi optimizer reference manual. Available at:

http://www.gurobi.com.

Han J, Datta S and Ekkad S (2013) Gas Turbine Heat Transfer and

Cooling Technology. Boca Raton, FL: CRC Press.

Hauser K and Ng-Thow-Hing V (2010) Fast smoothing of

manipulator trajectories using optimal bounded-acceleration

shortcuts. In: Proceedings of the International conference on

robotics and automation (ICRA), Anchorage, AK, USA 3–8

May 2011, pp. 2493–2498.

Houska B, Ferreau HJ and Diehl M (2011) An auto-generated

real-time iteration algorithm for nonlinear MPC in the

microsecond range. Automatica 47(10): 2279–2285.

Hwangbo M, Kuffner J and Kanade T (2007) Efficient two-phase

3D motion planning for small fixed-wing UAVs. In: Proceed-

ings of the International conference on robotics and automa-

tion (ICRA), Roma, Italy, 10–14 April 2007, pp. 1035–1041.

Kalakrishnan M, Chitta S, Theodorou E, et al. (2011) STOMP:

Stochastic trajectory optimization for motion planning. In:

Proceedings of the international conference on robotics and

automation (ICRA), Shanghai, 9–13 May 2011, pp. 4569–4574.

Kallmann M, Aubel A, Abaci T, et al. (2003) Planning collision-

free reaching motions for interactive object manipulation and

grasping. Computer Graphics Forum 22(3): 313–322.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for

optimal motion planning. International Journal of Robotics

Research 30(7): 846–894.

Kavraki L, Svestka P, Latombe JC, et al. (1996) Probabilistic

roadmaps for path planning in high-dimensional configuration

spaces. IEEE Transactions on Robotics and Automation 12(4):

566–580.

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Schulman et al. 19

Khatib O (1986) Real-time obstacle avoidance for manipulators

and mobile robots. International Journal of Robotics Research

5(1): 90–98.

Kuffner J and LaValle S (2000) RRT-connect: An efficient

approach to single-query path planning. In: Proceedings of the

International conference on robotics and automation (ICRA),

San Francisco, CA, USA, 24–28 April 2000, Vol. 2, pp.

995–1001.

Lamiraux F, Bonnafous D and Lefebvre O (2004) Reactive path

deformation for nonholonomic mobile robots. IEEE Transac-

tions on Robotics 20(6): 967–977.

Lampariello R, Nguyen-Tuong D, Castellini C, et al. (2011) Tra-

jectory planning for optimal robot catching in real-time. In:

Proceedings of the International conference on robotics and

automation (ICRA), Shanghai, 9–13 May 2011, pp. 3719–3726.

LaValle S (2006) Planning Algorithms. Cambridge; New York:

Cambridge University Press.

Lengagne S, Vaillant J, Yoshida E, et al. (2013) Generation of

whole-body optimal dynamic multi-contact motions. Interna-

tional Journal of Robotics Research 32(10): 1104–1119.

Lien JM and Amato NM (2007) Approximate convex decompo-

sition of polyhedra. In: Proceedings of the ACM symposium on

solid and physical modeling, Beijing, China, 4–6 June 2007,

pp. 121–131.

Likhachev M, Gordon G and Thrun S (2003) ARA*: Anytime A*

with provable bounds on sub-optimality. In: Advances in Neu-

ral Information Processing Systems (NIPS), Vancouver, BC,

Canada, 9–11 December 2003, pp. 1–8.

Likhachev M and Stentz A (2008) R* search. In: Proceedings

of the national conference on artificial intelligence (AAAI),

Chicago, IL, USA, 13–17 July 2008, pp. 344–350.

Majewicz A, Siegel J and Okamura A (2014) Design and evalua-

tion of duty-cycling steering algorithms for robotically-driven

steerable needles. In: Proceedings of the International confer-

ence on robotics and automation (ICRA) (in press).

Mamou K and Ghorbel F (2009) A simple and efficient approach

for 3D mesh approximate convex decomposition. In: IEEE

International conference on image processing (ICIP), Cairo,

Egypt, 7–9 November 2009, pp. 3501–3504.

Mészáros C (1999) The BPMPD interior point solver for convex

quadratic problems. Optimization Methods and Software 11(1–

4): 431–449.

Minhas DS, Engh JA, Fenske MM, et al. (2007) Modeling of nee-

dle steering via duty-cycled spinning. In: Proceedings of the

international conference of the IEEE Engineering in Medicine

and Biology Society (EMBS), Lyon, France, 23–26 August

2007, pp. 2756–2759.

Mordatch I, Todorov E and Popovic Z (2012) Discovery of com-

plex behaviors through contact-invariant optimization. ACM

SIGGRAPH 31(4): 43.

Murray RM and Shankar SS (1994) A Mathematical Introduction

to Robotic Manipulation. Boca Raton, FL: CRC Press.

Nocedal J and Wright S (1999) Numerical Optimization. New

York: Springer Verlag.

Pan J, Zhang L and Manocha D (2012) Collision-free and smooth

trajectory computation in cluttered environments. International

Journal of Robotics Research 31(10): 1155–1175.

Park C, Pan J and Manocha D (2012) ITOMP: Incremental trajec-

tory optimization for real-time replanning in dynamic environ-

ments. In: Proceedings of the International conference on auto-

mated planning and scheduling (ICAPS), Sao Paulo, Brazil,

25–29 June 2012, pp. 207–215.

Patil S and Alterovitz R (2010) Interactive motion planning

for steerable needles in 3D environments with obstacles. In:

Proceedings of the International conference on biomedical

robotics and biomechatronics (BioRob), Tokyo, Japan, 26–29

September 2010, pp. 893–899.

Patil S, Burgner J, Webster RJ III, et al. (2014) Needle steering

in 3D via rapid replanning. IEEE Transactions on Robotics (in

press).

Pivtoraiko M (2012) Differentially constrained motion planning

with state lattice motion primitives. Technical Report CMU-

RI-TR-12-07, Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA.

Posa M and Tedrake R (2013) Direct trajectory optimization of

rigid body dynamical systems through contact. In: Algorith-

mic Foundations of Robotics X. Berlin; New York: Springer,

pp. 527–542.

Quinlan S and Khatib O (1993) Elastic bands: Connecting path

planning and control. In: Proceedings of the International con-

ference on robotics and automation (ICRA), Atlanta, GA, USA,

May 1993, pp. 802–807.

Ratliff N, Zucker M, Bagnell J, et al. (2009) CHOMP: Gra-

dient optimization techniques for efficient motion planning.

In: Proceedings of the International conference on robotics

and automation (ICRA), Kobe, Japan, 12–17 May 2009, pp.

489–494.

Reed K, Majewicz A, Kallem V, et al. (2011) Robot-assisted nee-

dle steering. IEEE Robotics and Automation Magazine 18(4):

35–46.

Reeds J and Shepp L (1990) Optimal paths for a car that goes

both forwards and backwards. Pacific Journal of Mathematics

145(2): 367–393.

Saccon A, Hauser J and Aguiar AP (2013) Optimal control on Lie

groups: The projection operator approach. IEEE Transactions

on Automatic Control 58(9): 2230–2245.

Schulman J, Ho J, Lee A, et al. (2013) Finding locally opti-

mal, collision-free trajectories with sequential convex opti-

mization. In: Proceedings of Robotics: Science and systems

(RSS), Berlin, Germany, 24–28 June 2013.

Shanmugavel M, Tsourdos A, Zbikowski R, et al. (2007) 3D

path planning for multiple UAVs using Pythagorean hodograph

curves. In: Proceedings of the AIAA guidance, navigation,

and control conference, Hilton Head, SC, USA, 20–23 August

2007, pp. 20–23.

Sucan IA and Kavraki LE (2009) Kinodynamic motion planning

by interior–exterior cell exploration. In: Algorithmic Founda-

tion of Robotics VIII. Berlin; Heidelberg, Germany: Springer,

pp. 449–464.

Sucan IA, Moll M and Kavraki LE (2012) The open motion plan-

ning library. IEEE Robotics and Automation Magazine 19(4):

72–82.

Taschereau R, Pouliot J, Roy J, et al. (2000) Seed misplacement

and stabilizing needles in transperineal permanent prostate

implants. Radiotherapy and Oncology 55(1): 59–63.

Tassa Y, Erez T and Todorov E (2012) Synthesis and stabilization

of complex behaviors through online trajectory optimization.

In: Proceedings of the International conference on intelligent

robots and systems (IROS), Algarve, Portugal, 7–12 October

2012, pp. 4906–4913.

Van den Bergen G (2001) Proximity queries and penetration depth

computation on 3D game objects. In: Proceedings of the game

developers conference (GDC), Hilton Head, SC, USA, 20–23

August 2007.

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

20 The International Journal of Robotics Research

Vukobratović M and Borovac B (2004) Zero-moment point—

Thirty five years of its life. International Journal of Humanoid

Robotics 1(1): 157–173.

Warren CW (1989) Global path planning using artificial poten-

tial fields. In: Proceedings of the International conference on

robotics and automation (ICRA), Scottsdale, AZ, USA 14–19

May 1989, pp. 316–321.

Webster RJ III, Kim JS, Cowan NJ, et al. (2006) Nonholonomic

modeling of needle steering. International Journal of Robotics

Research 25(5–6): 509–525.

Werner A, Lampariello R and Ott C (2012) Optimization-based

generation and experimental validation of optimal walking tra-

jectories for biped robots. In: Proceedings of the International

conference on Intelligent robots and systems (IROS), Algarve,

Portugal, 7–12 October 2012, pp. 4373–4379.

Xu J, Duindam V, Alterovitz R, et al. (2008) Motion planning

for steerable needles in 3D environments with obstacles using

rapidly-exploring random trees and backchaining. In: IEEE

International conference on automation science and engineer-

ing (CASE), Washington DC, USA, 23–26 August 2008, pp.

41–46.

Xu J, Duindam V, Alterovitz R, et al. (2009) Planning fireworks

trajectories for steerable medical needles to reduce patient

trauma. In: Proceedings of the International conference on

intelligent robots and systems (IROS), St Louis, MO, USA

11–15 October 2009, pp. 4517–4522.

Yang K and Sukkarieh S (2010) An analytical continuous-

curvature path-smoothing algorithm. IEEE Transactions on

Robotics 26(3): 561–568.

Zucker M, Ratliff N, Dragan AD, et al. (2012) CHOMP: Covariant

Hamiltonian optimization for motion planning. International

Journal of Robotics Research 32(9–10): 1164–1193.

Appendix: Background on SE(3)

The special Euclidean group SE(3) is a 6D configuration

space consisting of the pose (3D position and 3D orien-

tation). The Lie algebra se(3) is defined as the tangent

vector space at the identity of SE(3). The SE(3) group and

se(3) algebra are related via the exponential and log maps,

exp : se(3) → SE(3) and log : SE(3) → se(3), where exp

and log correspond to the matrix exponential and log oper-

ations. In this particular case, closed-form expressions exist

for the exp and log operators (Appendix A in Murray and

Shankar (1994)).

Given a vector x̄ =
[

p̄
r̄

]

∈ R
6 that represents the

incremental twist, the corresponding Lie algebra element

is given by the mapping ∧ : R
6 → se(3) as

x̄∧
=

[

[r̄] p̄

0T
3 0

]

where the notation [r̄] for the vector r̄ = [r̄x r̄y r̄z]
T ∈ R

3 is

the 3 × 3 skew-symmetric matrix given by

[r̄] =

[

0 −r̄z r̄y

r̄z 0 −r̄x
−r̄y r̄x 0

]

Intuitively, r̄ represents the incremental rotation and p̄ rep-

resents the incremental translation to be applied to a nomi-

nal pose. The inverse is defined by the operator ∨ : se(3) →

R
6 to recover x̄ given a Lie algebra element, i.e.

[

[r̄] p̄

0T
3 0

]∨

=

x̄. The local neighborhood X of a nominal pose X̂ ∈ SE(3)

is defined in terms of x̄ ∈ R
6 as

X = exp(x̄∧) · X̂

Conversely, given a nominal pose X̂ and a pose X , the

corresponding twist x̄ ∈ R
6 can be recovered as:

x̄ = log(X · X̂ −1)∨

 at UNIV CALIFORNIA BERKELEY LIB on June 18, 2014ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

