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ABSTRACT
Human activity modeling and recognition using wearable
sensors is important in pervasive healthcare, with applica-
tions including quantitative assessment of motor function,
rehabilitation, and elder care. Previous human activity recog-
nition techniques use a “whole-motion”model in which con-
tinuous sensor streams are divided into windows with a fixed
time duration whose length is chosen such that all the rel-
evant information in each activity signal can be extracted
from each window. In this paper, we present a statistical
motion primitive-based framework for human activity repre-
sentation and recognition. Our framework is based on Bag-
of-Features (BoF), which builds activity models using his-
tograms of primitive symbols. We experimentally validate
the effectiveness the BoF-based framework for recognizing
nine activity classes and evaluate six factors which impact
the performance of the framework. The factors include win-
dow size, choices of features, methods to construct motion
primitives, motion vocabulary size, weighting schemes of
motion primitive assignments, and learning machine kernel
functions. Finally, we demonstrate that our statistical BoF-
based framework can achieve much better performance com-
pared to a non-statistical string-matching-based approach.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications; J.3 [Computer
Applications]: Life and Medical Sciences

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Pervasive Healthcare, Wearable Sensing Technologies, Hu-
man Activity Recognition, Motion Primitives, Pattern Recog-
nition, Bag-of-Features
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1. INTRODUCTION
In pervasive healthcare, human activity analysis and recog-

nition plays a central role because the specific activities peo-
ple perform in their daily lives can be used to assess the
fitness of human body and quality of life. Traditionally,
activity analysis is studied as a computer vision problem
where human activities are captured by cameras deployed in
the infrastructure. The major drawback of the vision-based
platform is its inability to track people beyond the reach
of the cameras. The emergence of wearable sensor systems
attempts to address this problem. These sensors are minia-
turized such that they can be worn on the human body and
continuously capture people’s activity signals unobtrusively.

Most wearable sensor-based activity recognition techniqu-
es represent activities using a“whole-motion”model in which
continuous sensor streams are divided into fixed-length win-
dows. The window length is properly chosen such that all
the information of the activity can be extracted from each
window. Features are then extracted from the window which
are used as input to the classifier for classification. Although
this “whole-motion” model has proven very effective in ex-
isting studies, the performance is highly dependent on the
window length [1]. As a possible solution to this problem,
motion primitive-based models were proposed and have re-
cently attracted numerous research attention.

The motion primitive-based models are inspired by the
similarity of human speech signals and human motion [2].
In human speech recognition, sentences are first divided into
isolated words, which are then divided into a sequence of
phonemes. Models are first built for the approximately 50
phonemes shared by all words (in English). These phoneme
models then act as the basic building blocks to build words
and sentences in a hierarchical manner [3]. Following the
same idea, in motion primitive-based model, each activity is
represented as a sequence of motion primitives which act as
the smallest units to be modeled. Different from the “whole-
motion”model that examines the global features for human
activities, motion primitives capture the invariance aspects
of the local features and more importantly, provide insights
for better understanding of human motion.

The key issues related to the motion primitive-based model
are: (1) constructing meaningful motion primitives that con-
tain salient motion information; and (2) representing activ-
ities based on the extracted primitives. Most existing ap-
proaches construct primitives either using fixed-length win-
dows with identical temporal/spatial duration or through
clustering. Each window is then mapped to a symbol ac-



cording to a specific mapping rule. As a consequence, the
continuous activity signal is transformed into a string of
symbols where each symbol represents a primitive. Figure 1
shows an example on two activity classes: walking forward
(top) and running (bottom). For illustration purposes, a
total of five motion primitives are used (labeled A, B, C,
D, E in different colors). In this example, walking forward
contains five types of motion primitives (A, B, C, D, E)
while running contains four (B, C, D, E). For both activi-
ties, the first line shows the original sensor signal and the
second line shows the primitive mapping of the original sen-
sor signal. Below these are five lines showing the locations
of the five motion primitives in the signal. The last line
is a sample of the symbol string. To build activity models

Figure 1: An example of activity representation
(walking forward (top) and running (bottom)) us-
ing five motion primitives (labeled A, B, C, D, E in
different colors).

based on these extracted primitives, one common strategy
is to adopt a string-matching-based approach. Specifically,
in the training stage, for each activity class, a string which
minimizes the sum of intra-class distances is created and acts
as a template to represent all training instances belonging
to that class. Since different strings in general do not have
the same length, the distances between them are normally
measured by edit distance (Levenshtein distance) [4]. In
the recognition stage, the test instance is first transformed
into the primitive string, and then classified to the activity
class whose template matches the test instance the best. Al-
though this string-matching-based strategy shows competi-
tive performance in both vision-based and wearable sensor-
based activity recognition tasks [5] [6] [7] [8], the main draw-
back is its high sensitivity to noise and its poor performance
in the presence of high intra-class variation [9]. Under such
conditions, it is extremely difficult to extract a meaningful
template for each activity class. Therefore, to overcome this
problem, we use a statistical-based approach.

Our statistical motion primitive-based framework is based
on the Bag-of-Features (BoF) model, which has been applied
in many applications such as text document classification,
texture and object recognition and demonstrated impressive
performance [10]. Different from the string-matching-based
strategy, our BoF-based framework takes advantage of the
state-of-the-art learning machines with the aim to build sta-
tistically robust activity models. There are two goals of this

work. The first goal is to explore the feasibility of applying
a BoF-based framework for human activity recognition and
examine whether BoF can achieve better performance com-
pared to the string-matching-based approach. Our second
goal is to perform a thorough study on several factors which
could impact the performance of the framework. These fac-
tors include the size of windows, choices of features, meth-
ods to construct motion primitives, size of motion vocab-
ulary, weighting schemes of motion primitive assignments,
and kernel functions of the learning machines.

The rest of this paper is organized as follows. Section 2
gives a brief survey of some recent work on human activ-
ity recognition. Section 3 introduces the sensing platform
and dataset used for this study. Section 4 describes the
basic idea of BoF and outlines the key components of the
BoF framework. Section 5 presents our experimental re-
sults on the evaluations of these factors and compares the
performance between BoF and the traditionally used string-
matching-based approach. Finally, section 6 concludes this
paper and establishes directions for future work.

2. RELATED WORK
In keeping with our recognition technique, we broadly

group existing activity recognition methods into two cat-
egories based on the granularity level human activities are
modeled: “whole-motion”-based methods and motion prim-
itive based methods. In this section, we review some recent
work from each category respectively.

In the case of “whole-motion” model, different combina-
tions of features and classifiers have been extensively studied
on different sets of activities. In [11], Bao et al. studied sta-
tistical and frequency domain features in conjunction with
four classifiers including decision trees (C4.5), decision ta-
bles, naive Bayes and nearest-neighbor. Among these classi-
fiers, the decision tree achieved the best performance with an
overall recognition accuracy of 84%. Ravi et al. in [12] used
similar features as in [11]. They compared the performance
of various base-level classifiers with meta-level classifiers in-
cluding Bagging, Boosting, Plurality Voting, and Stacking.
Based on the experimental results, they concluded that us-
ing meta-classifiers was in general effective. In particular,
combining classifiers using Plurality Voting turned out to
be the best classifier.

Recently, motion primitive-based approaches receive nu-
merous research attention due to their capability of captur-
ing local characteristics of activity signals. In [6], motion
primitives were constructed by dividing the activity trajec-
tory into fixed-length windows with identical spatial dura-
tion, where each window was mapped to a motion primi-
tive based on its trajectory direction in the Cartesian space.
The problem of activity recognition was then formulated
as a standard string-matching problem. Fihl et al. in [5]
took a similar idea but replaced the standard deterministic
string-matching algorithm with a probabilistic-based string-
matching strategy by using the probabilistic edit distance in-
stead of the standard edit distance. Keogh et al. in [13] tack-
led the problem from a different angle. They constructed
motion primitives based on the shapes of the raw streaming
sensor signals where a subsequence of the raw sensor signal
was identified as a motion primitive if its shape was maxi-
mally representative of an activity class. Activity recogni-
tion was performed by searching the subsequence which had
the most similar shape as the known motion primitive.



In this work, we follow the basic principles of the motion
primitive-based model. Different from the existing approach-
es which formulat activity recognition as a string/sha-pe
matching problem, we take advantage of the statistical learn-
ing machines, with the hope that the statistical approach
could remedy the drawbacks of the non-statistical approaches
and therefore make the recognition system more robust.

3. SENSING PLATFORM AND DATASET
For this work, data is recorded using an off-the-shelf mul-

timodal sensing platform called MotionNode [14] (see Fig-
ure 2). MotionNode is a 6-DOF inertial measurement unit
(IMU) specifically designed for human motion sensing ap-
plications. It integrates a 3-axis accelerometer, a 3-axis gy-
roscope, and a 3-axis magnetometer. In this work, only the
data sampled from the accelerometer and gyroscope is con-
sidered. The measurement range for each axis of accelerom-
eter and gyroscope is ±6g and ±500dps respectively. The
sampling rates for both accelerometer and gyroscope are set
to 100 Hz. This setting is high enough to capture all the
details of normal human activities [11].

To collect data, six participants with different gender, age,
height, and weight are selected to perform nine types of ac-
tivities listed in Table 1. We select these activities because
they correspond to the most basic and common activities in
people’s daily life and are useful for both elder care and per-
sonal fitness applications. During data collection, to extract
the maximal information while minimizing the obtrusive-
ness of the sensing device, a single MotionNode is packed
into a mobile phone pouch and attached to the participant’s
right front hip. Each participant performs five trials for each
activity on different days at various indoor and outdoor lo-
cations without supervision.

(a) MotionNode platform (b) During data collection, 
MotionNode is packed firmly into a 
mobile phone pouch and attached to 
the subject’s front right hip.

Figure 2: MotionNode sensor and its placement dur-
ing data collection

4. THE BAG-OF-FEATURES FRAMEWORK
Figure 3 gives a graphical overview of our BoF-based fram-

ework for human activity representation and recognition.
The framework consists of two stages. In the training stage,
the streaming sensor data of each activity is first divided into
a sequence of fixed-length window cells whose length is much
smaller than the duration of the activity itself. Features
are extracted from each window cell to form a local feature
vector. The local feature vectors from all training activ-
ity classes are then pooled together and quantified through
an unsupervised clustering algorithm to construct the mo-
tion vocabulary, where the center of each generated cluster

ID Activity Description
1 Walk forward The subject walks forward along

a straight street/corridor
2 Walk left The subject keeps walking counter-clockwise

around the circle
3 Walk right The subject keeps walking clockwise

around the circle
4 Go up stairs The subject goes up one flight
5 Go down stairs The subject goes down one flight
6 Run forward The subject runs forward at his/her

normal speed
7 Jump up The subject stays at the same position

and keeps jumping up
8 Sit on a chair The subject sits on a chair either working

or resting. Fidgeting is also considered
to belong to this class

9 Stand The subject stands and talks to somebody

Table 1: Activities and their brief descriptions

is treated as a unique motion primitive in the vocabulary.
By mapping the window cells to the motion primitives in
the vocabulary, the activity signal is then transformed into
a string of motion primitives. Here, we assume that activ-
ity signals do not follow any grammar and thus information
about the temporal order of motion primitives is discarded.
Instead, we construct a histogram representing the distri-
bution of motion primitives within the string, and map the
distribution into a global feature vector. Finally, this global
feature vector is used as input to the classifier to build ac-
tivity models and learn the classification function. In the
recognition stage, we first transform the unknown stream of
sensor data into motion primitives and construct the global
feature vector based on the distribution of the motion prim-
itives. Then we classify the unknown sensor data to the
activity class that has the most similar distribution in the
primitive space. In the remainder of this section, we present
the details of all the key components of this framework.

4.1 Size of Window Cells
As the first parameter of our BoF framework, the size of

window cells is known to have a critical impact on recogni-
tion performance [1]. A large size may fail to capture the
local properties of the activities and thus dilute the discrim-
inative power of the motion primitive-based model. A small
size, on the other hand, is highly sensitive to noise and thus
is less reliable to generate meaningful results. This trade-off
between discrimination and stability motivates the studies
of the size of window cells. Our survey shows that a wide
range of window cell sizes have been used in previous work,
leading to difficulties in interpreting and comparing their
results. At one extreme, Huynh et al. in [15] and Krause
et al. in [16] extracted features from a 4 seconds window
and a 8 seconds window respectively. At the other extreme,
Stiefmeier et al. in [6] adopted a 0.1 second window. In this
work, we experiment with window sizes ranging from 0.1 to
2 seconds. The best size is the one at which the classifica-
tion accuracy reaches the maximum. We did not experiment
with window size beyond 2 seconds since the“whole-motion”
model has exhibited good performance at and beyond such
scales in many existing studies.

4.2 Features
It is well understood that high quality features are es-

sential to improve the classification accuracy of any pattern
recognition system. In human activity recognition, a variety
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Figure 3: Block diagram of Bag-of-Features (BoF)-based framework for human activity representation and
recognition

of features both in time and frequency domains have been
investigated within the framework of the “whole-motion”
model. Popular examples are mean, variance, FFT coeffi-
cients, spectral entropy, correlation etc. However, little work
has been done on feature analysis at the primitive level. As
a consequence, whether the features that work well at the
“whole-motion” level can be extended to the primitive level
remains an interesting question to be explored.

In this work, we evaluate two feature sets at the primitive
level. The first feature set contains traditionally used sta-
tistical features. However, at primitive level, since the total
number of samples within each window cell is much smaller,
complex statistical features such as skewness, kurtosis, and
spectral entropy may not be reliably calculated. Therefore,
we only consider statistical features that can be reliably cal-
culated at primitive level. Table 2 lists the statistical fea-
tures we include in this work. These features are extracted
from each axis of both accelerometer and gyroscope.

The second set of features are called physical features,
which are derived based on the physical parameters of hu-
man motion [17]. The definitions of the physical features we
study in this work are listed below.

• Movement Intensity (MI): MI is defined as

MI(t) =

√
ax (t)2 + ay (t)2 + az (t)

2, (1)

the Euclidean norm of the total acceleration vector af-
ter removing the static gravitational acceleration, where
ax (t), ay (t), and az (t) represent the tth acceleration
sample of the x, y, and z axis in each window respec-
tively. This feature is independent of the orientation
of the sensing device, and measures the instantaneous
intensity of human movements at index t. We do not
use MI directly, but compute the mean (AI) and vari-
ance (VI) of MI over the window and use them as two
features given by

AI =
1

T

(
T∑

t=1

MI(t)

)
(2)

V I =
1

T

(
T∑

t=1

(MI(t)−AI)2

)
(3)

where T is the window length.

• Normalized Signal Magnitude Area (SMA): SMA
is defined as

SMA =
1

T

(
T∑

t=1

|ax (t)|+
T∑

t=1

|ay (t)|+
T∑

t=1

|az (t)|
)

, (4)

the acceleration magnitude summed over three axes
within each window normalized by the window length.
This feature is used as an indirect estimation of energy
expenditure [18].

• Eigenvalues of Dominant Directions (EVA): Do-
minant directions refer to the directions along which
intensive human motion occurs. They are extracted as
the eigenvectors of the covariance matrix of accelera-
tion along the x, y, and z axis in each window. The
eigenvalues measure the corresponding relative motion
magnitude along the directions. In this work, we use
the top two eigenvalues as our features, corresponding
to the relative motion magnitude along the vertical di-
rection and the heading direction respectively.

• Correlation between Acceleration along Grav-
ity and Heading Directions (CAGH): CAGH is
calculated as the correlation coefficient between the
acceleration along the gravity direction and the accel-
eration along the heading direction.

• Averaged Velocity along Heading Direction
(AVH): AVG is computed by averaging the instan-
taneous velocity along the heading direction at each
time t over the window. The instantaneous velocity at
each time t is calculated by numerical integration of
the acceleration along the heading direction.

• Averaged Velocity along Gravity Direction
(AVG): AVG is computed by averaging the instanta-
neous velocity along the gravity direction at each time



Statistical Feature Description
Mean The DC component (average value) of the signal over the window

Standard Deviation Measure of the spreadness of the signal over the window
Root Mean Square The quadratic mean value of the signal over the window
Averaged derivatives The mean value of the first order derivatives of the signal over the window
Mean Crossing Rate The total number of times the signal changes from below average to above average

or vice versa normalized by the window length

Table 2: Statistical features calculated at the primitive level

t over the window. The instantaneous velocity at each
time t is calculated by numerical integration of the ac-
celeration along the gravity direction.

• Averaged Rotation Angles related to Gravity
Direction (ARATG): ARATG captures the rotation
movement of the human torso by calculating the cu-
mulative sum of the rotation angles around the gravity
direction, normalized by the window length.

• Averaged Acceleration Energy (AAE): AAE is
defined as the mean value of the energy over three ac-
celeration axes, where energy is the sum of the squared
discrete FFT component magnitudes of the signal from
each sensor axis, normalized by the window length.
The DC component of the FFT is excluded in this
sum since it is already measured by the mean feature.

• Averaged Rotation Energy (ARE): ARE is de-
fined as the mean value of the energy over three gyro-
scope axes.

It is worth noting that the extraction of physical features
is different from statistical features. For statistical features,
each feature is extracted from each sensor axis individually.
In comparison, most of the physical features are extracted
from multiple sensor axes. In other words, sensor fusion is
performed at the feature level for physical features.

4.3 Primitive Construction
Primitive construction forms the basis of BoF and thus

plays an important role in our framework. The extracted
primitives are expected to contain salient human motion in-
formation and thus could be used to interpret human motion
in a more meaningful way. Existing approaches construct
motion primitives either using fixed-length windows with
identical temporal/spatial duration or through unsupervised
clustering. Stiefmeier et al. in [6] first recorded the motion
trajectory and divided the trajectory into fixed-length win-
dows with identical spatial duration. Motion primitives were
then constructed by quantifying all the fixed-length windows
based on their trajectory directions calculated in the Carte-
sian space. Krause et al. in [16], Huynh et al. in [15], and
Ghasemzadeh et al. in [8] followed the same procedure as
in [6], but using clustering algorithms to group data points
with consistent feature values to construct motion primi-
tives. In [16] and [15], authors used K-means for clustering.
In [8], Gaussian Mixture Model (GMM) was used and was
argued to outperform K-means by the authors due to its
tolerance to cluster overlap and cluster shape variation. In
this work, we evaluate both K-means and GMM methods.

4.4 Vocabulary Size
The result of primitive construction is a motion vocabu-

lary where each generated cluster is treated as a unique mo-
tion primitive in the vocabulary. As a result, the vocabulary

size is equal to the total number of clusters. Vocabulary Size
has a similar effect as the size of window cells mentioned in
Section 4.1. Specifically, a small vocabulary may lack dis-
criminative power since two window cells may be assigned
into the same cluster even if they are not similar to each
other. On the contrary, a large vocabulary is sensitive to
noise and thus susceptible to overfitting.

In [15], Huynh et al. experimented with vocabulary sizes
ranging from 10 to 800. The best vocabulary size was deter-
mined based on the classification accuracy. Ghasemzadeh et
al. in [8] selected the vocabulary size with the best Bayesian
Information Criterion (BIC) score. In [16], the best vocabu-
lary size was determined by the guidance of Davies-Bouldin
index. In our study, we experiment with vocabularies of
5 to 200 primitives. These vocabulary sizes cover most of
the implementation choices in the existing work. The best
vocabulary size is determined empirically, similar to our de-
termination of the best window cell size.

4.5 Primitive Weighting
Given the motion vocabulary, the next step is to construct

the global feature vector to represent activities based on
the distribution of the motion primitives. There are many
ways to describe the distribution. In this work, we evaluate
three weighting schemes that map the distribution of motion
primitives to the global feature vectors.

• Term Weighting: Term weighting originates from
text information retrieval where the counts of occur-
rences of words in a given text are used as features
for text classification tasks. In our case, the local fea-
ture vector extracted from each window cell is first
mapped to its nearest motion primitive in the feature
space. This quantization process generates a primitive
histogram which describes the distribution of the mo-
tion primitives for each activity. Given the primitive
histogram, the feature value of each dimension of the
global feature vector is set to the count of the corre-
sponding motion primitive in the histogram.

Formally, let xi be the local feature vector associated
with the ith window cell of the activity signal x, and
let Pj denote the j

th primitive (cluster) out of m prim-
itives (clusters) in the vocabulary. The term weighting
feature mapping ϕterm is defined as

ϕterm(x) = [ϕ1, . . . , ϕm]T ,

where ϕj =
∑
i∈x

ϕi
j ,

and ϕi
j = δ(xi ∈ Pj).

(5)

• Binary Weighting: Binary weighting is similar to
term weighting, but with the difference that the feature
value of each dimension of the global feature vector is



either 1 or 0. The value 1 indicates the presence of
the corresponding motion primitive in the primitive
histogram while value 0 indicates the absence. The
binary weighting feature mapping ϕbinary is defined as

ϕbinary(x) = [ϕ1, . . . , ϕm]T ,

where ϕj =
∨
i∈x

ϕi
j ,

and ϕi
j = δ(xi ∈ Pj).

(6)

where
∨

is the logical OR operator.

• Soft Weighting: The two weighting schemes describ-
ed above are directly migrated from the text informa-
tion retrieval domain. For text, words are discrete and
sampled naturally according to language context. For
human motion signals in our case, signals are continu-
ous and motion primitives are the outcome of cluster-
ing. Based on this difference, although the harsh quan-
tization that associates each window cell with only its
nearest cluster shows good performance in the tasks
of text analysis and categorization, it may not be op-
timal for continuous smoothly-varying human motion
signals. For example, two window cells assigned to the
same motion primitive are not necessarily equally sim-
ilar to that primitive since their distances to the prim-
itive may be different. Therefore, the significance of
motion primitives is weighted more accurately if these
distances are taken into consideration. In this work,
we propose a soft weighting scheme that takes the dis-
tances (similarity) between window cells and motion
primitives into account during weight assignment.

Formally, let cj denote the jth cluster center (prim-
itive prototype), and let K(·, ·) represent the kernel
function for similarity measure. The soft weighting
feature mapping ϕsoft is defined as

ϕsoft(x) = [ϕ1, . . . , ϕm]T ,

where ϕj =
∑
i∈x

ϕi
j ;ϕ

i
j = K(xi, cj).

(7)

where K(xi, cj) measures the similarity between the
ith window cell xi and cluster center cj . In this work,
we use the Laplacian kernel

K(xi, cj) = exp(−||xi − cj ||
σj

) (8)

where σj is the standard deviation of primitive Pj . As
a consequence, the feature value of the jth dimension
of the global feature vector ϕj measures the total sim-
ilarity of all the window cells of the activity signal x
to the primitive prototype cj .

4.6 Classifier and Kernels
The choice of classifier is critical to the recognition per-

formance. Since the size of the motion vocabulary can be
potentially large, in this work, we choose Support Vector
Machines (SVMs) to be our learning machine. They have
proved to be very effective in handling high dimensional data
in a wide range of machine learning and pattern recognition
applications [19].

SVM aims to maximize the margin between different class-
es, where margin is defined as the distance between the de-
cision boundary and the nearest training instances. These

instances, called support vectors, finally define the classifi-
cation functions [20]. Mathematically, for a two-class classi-
fication scenario, given a training set of instance-label pairs
(xi, yi), i = 1, . . . , l where xi ∈ Rn represents the n-dimensi-
onal feature vector and yi ∈ {1,−1} represents the class la-
bel, the support vector machines require the solution of the
following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to: yi
(
wTφ(xi) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l

(9)

where φ is a function that maps training instance xi into a
higher (maybe infinite) dimensional space; ξi are called slack
variables, which measure the degree of misclassification; and
C > 0 is the soft-margin constant acting as a regulariza-
tion parameter to control the tradeoff between training error
minimization and margin maximization.

To enable efficient computation in high-dimensional fea-
ture space, a kernel function K(xi,xj) ≡ φ(xi)

Tφ(xj) is
defined. The choice of the kernel function K(xi,xj) is crit-
ical for statistical learning. Although a number of general
purpose kernels have been proposed, it is unclear which one
is the most effective for BoF in the context of human ac-
tivity classification. In this work, we evaluate the following
two kernels which are all Mercer kernels [20].

• Linear kernel:

Klinear(xi,xj) = xT
i xj (10)

• Gaussian RBF kernel:

KGaussian(xi,xj) = exp(−γ||xi − xj ||2), γ > 0 (11)

5. EVALUATION
In this section, we evaluate the effectiveness of our BoF-

based framework. We divide the dataset into training set
and test set. Since each participant performs five trials for
each activity, we use three trials from each participant as
training set to build activity models. Three-fold cross val-
idation is used to determine the corresponding parameters.
The vocabulary of motion primitives is learned from half of
the training set. The remaining two trials from each partic-
ipant are used as test set. A confusion table is built from
the test set to illustrates the performance of the framework.

5.1 Impact of Window Cell Sizes
Our first experiment aims to evaluate the effect of different

window cell sizes on the classification performance. In this
experiment, we use the statistical feature set, K-means for
primitive construction, term weighting and linear kernel for
SVM training. Figure 4 shows the average misclassification
rates as a function of window cell sizes 0.1, 0.2, 0.3, 0.4, 0.5,
0.8, 1, 1.5, and 2 seconds. Each line represents one vocabu-
lary size. As shown in the figure, vocabulary size 5 has the
worst performance across all window cell sizes. This indi-
cates that using only 5 motion primitives is not sufficient to
differentiate nine activities. In comparison, for other three
vocabulary sizes, the performances are 30% better on aver-
age, with the misclassification rates ranging from 12.4% to
19.8% across all window cell sizes. If we look at each case
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Figure 4: Impact of Window Cell Sizes

individually, vocabulary size 50 reaches its minimum mis-
classification rate at 0.2 second window cell size, and the
rate starts rising as the size increases. For vocabulary size
100 and 150, the misclassification rates reach the first lo-
cal minimum at 0.2 second, and only vary slightly when the
window cell size is less than 0.8 second. The performances
start degrading when the size is beyond 1 second. Based on
these observations, we conclude that the appropriate win-
dow cell size is around 0.2 second. Therefore, we only use
0.2 second window cell in the remaining experiments.

5.2 Impact of Vocabulary Sizes
In this experiment, we study the impact of different vo-

cabulary sizes on the classification performance of our BoF
framework. We fix the window size to 0.2 second and keep
other factors the same as in the last experiment. Figure 5
shows the average misclassification rates as a function of vo-
cabulary sizes 5, 10, 25, 50, 75, 100, 125, 150, 175, and 200.
The error bars represent the standard deviation in the cross
validation. As illustrated in the figure, the misclassification
rate drops significantly from vocabulary size 5 and stabi-
lizes starting from vocabulary size 75. The misclassification
rate reaches the minimum of 12.0% (88.0% accuracy) when
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Figure 5: Impact of Vocabulary Sizes

150 motion primitives are used. When the number of mo-
tion primitives is bigger than 150, the misclassification rate
increases slightly. This indicates that a vocabulary of 150
primitives is sufficient for our activity set. Another inter-
esting observation when combining the results in Figure 4
and Figure 5 is that vocabulary size has a more significant
impact on the performance than the size of window cell.

5.3 Comparison of Features
Next, we examine the effects of features. Specifically, we

use the statistical feature set and physical feature set de-
scribed in the previous section and keep other factors the
same to construct motion primitives and build activity mod-
els respectively. The results are shown in Figure 6. Similar
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to the statistical features, the misclassification rate based
on the physical features drops significantly from vocabulary
size 5 and stabilizes starting from vocabulary size 75. The
misclassification rate reaches its minimum of 9.9% (90.1%
accuracy) when 100 motion primitives are used.

In addition, it is interesting to observe that the physi-
cal features outperform the statistical features consistently
across all vocabulary sizes, with an improvement of 5.7%
for the same vocabulary size on average. This indicates that
primitives constructed from physical features contain more
salient and meaningful motion information compared to the
primitives constructed from statistical features. In order
to validate this argument and have a better understanding
of why the physical features perform better, we map the
primitives constructed by statistical features and physical
features onto the original sensor signals respectively. Fig-
ure 7 shows the primitive mappings based on the physical
features (top) and the statistical features (bottom) on the
same sensor signal (running in this example). For illustra-
tion purposes, a total of five motion primitives are used,
with different colors representing different primitives. As
illustrated, different feature sets lead to different primitive
mappings. For statistical features, it is obvious that primi-
tives are constructed based on the signal’s statistical char-
acteristics. For example, the primitive in red corresponds
to the data points which have mid-range raw values and a
positive derivative. The primitive in blue corresponds to the
data points which have high raw values and a small deriva-
tive. In comparison, primitives constructed based on the



Figure 7: The difference of primitive mapping be-
tween physical features (top) and statistical features
(bottom)

physical features contain useful physical meanings that help
discriminate different activities. For example, the primitive
in cyan illustrated in Figure 7 only occurs in half cycle. This
primitive may be a very important primitive for describing
the motion of the subject’s left/right hip (the subject wears
the sensing device at this location (see Figure 2)) during
running. Since physical features outperform statistical fea-
tures consistently across all vocabulary sizes, only physical
features will be used in the remaining experiments.

5.4 Comparison of Primitive Construction Al-
gorithms

This section compares the performance of the two primi-
tive construction algorithms: K-means and Gaussian Mix-
ture Model (GMM). As shown in Figure 8, for GMM, the
misclassification rate drops significantly from vocabulary size
5. The misclassification rate reaches the minimum of 18.5%
(81.5% accuracy) when 150 motion primitives are used. Co-
mpared to GMM, it is interesting to see that K-means achie-
ves better performance consistently across all vocabulary
sizes, with an improvement of 13.5% for the same vocab-
ulary size on average. Our result contradicts the arguments
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Figure 8: Comparison of Primitive Construction Al-
gorithms

of the authors in [8], indicating that K-means is powerful to
handle cluster overlap and shape variations of human motion
data as long as the number of clusters is sufficient.

5.5 Comparison of Weighting Schemes
Figure 9 illustrates the performance differences between

three primitive weighting schemes. We first examine the
relationship between binary weighting and term weighting.
In both cases, the misclassification rates drop and then sta-
bilize as the size of vocabulary increases in general. The
difference between these two cases is that term weighting
outperforms binary weighting by a large margin when the
vocabulary size is small and by a small margin when the
vocabulary size becomes large. This is because that, with a
larger vocabulary size, the counts of a large number of mo-
tion primitives are either 0 or 1, which makes term weighting
and binary weighting similar. Next, we see that the Lapla-
cian kernel-based soft weighting scheme outperforms both
term weighting and binary weighting across all vocabulary
sizes except vocabulary size 10. In particular, soft weight-
ing achieves the minimum misclassification rate at 7% (93%
accuracy) when 125 motion primitives are used. This result
indicates that, different from words in text information re-
trieval which are discrete, motion primitives extracted from
continuous human motion signals are smooth, and taking
the smoothness into account is significant to the classifica-
tion performance of the BoF framework.
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Figure 9: Comparison of Weighting Schemes

5.6 Comparison of Kernel Functions
In this experiment, we examine the performance of BoF

framework when two different kernel functions are used. The
results are shown in Figure 10. As illustrated, neither ker-
nel predominates everywhere, but linear kernel is preferred
when the vocabulary size is equal or larger than 100. This
observation can be attributed to the fact that motion prim-
itives are linear separable when the dimension of primitive
space is high.

5.7 Confusion Table
The experimental results presented in the previous subsec-

tions demonstrate that all six factors are influential to the
final classification performance of our BoF-based framework.
Here, we investigate the best possible choices of the six fac-



Classified Activity
Walk forward Walk left Walk right Go up stairs Go down stairs Run forward Jump up Sit on a chair Stand Total Recall

1 Walk forward 126 6 7 2 1 0 0 0 0 142 88.7%

G
ro
u
n
d
T
ru
th

2 Walk left 7 159 0 0 0 0 0 0 0 166 95.8%
3 Walk right 9 0 190 2 0 0 0 1 0 202 94.1%
4 Go up stairs 3 0 0 27 1 0 0 0 0 31 87.1%
5 Go down stairs 2 1 0 0 26 1 0 0 0 30 86.7%
6 Run forward 0 0 0 0 0 93 0 0 0 93 100%
7 Jump up 0 0 0 0 0 0 54 1 0 55 98.2%
8 Sit on a chair 0 0 0 0 0 0 0 169 9 178 94.9%
9 Stand 0 1 1 0 0 0 0 22 134 158 84.8%

Total 147 167 198 31 28 94 54 193 143
Precision 85.7% 95.2% 96.0% 87.1% 92.9% 98.9% 100% 87.6% 93.7%

Table 3: Confusion table for the best factor combination when using 0.2 second window cell, physical feature
set, vocabulary size = 125, K-means for primitive construction, soft weighting for motion primitive assignment,
and linear kernel for SVM training. The entry in the ith row and jth column is the count of activity instances
from class i but classified as class j. Overall classification accuracy is 92.7%.
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Figure 10: Comparison of Kernel Functions

tors with the goal of exploring the upper limit of the perfor-
mance of the BoF framework for human activity recognition.
Based on the results presented earlier, we determine the best
combination of factors to be 0.2 second window cell, phys-
ical feature set, a vocabulary with 125 motion primitives,
K-means for primitive construction, Laplacian kernel-based
soft weighting for motion primitive assignment, and linear
kernel for SVM training. To evaluate the performance of the
BoF-based framework with the best combination of factors,
a confusion table is built from the test set and is shown in
Table 3. The overall recognition accuracy across all activi-
ties is 92.7%. If we examine the recognition performance of
each activity individually, jump up and run forward are the
two easiest activity classes to recognize. go upstairs and go
downstairs have relatively low recall values since they can
be confused with other walking-related activities. stand has
the lowest recall value because it is often confused with sit
on a chair. This result makes sense since both stand and
sit on a chair are static activities, and we expect difficulty
in differentiating different static activity classes especially
when the sensing device is attached to the hip of the sub-
jects. Finally, for walk forward, walk left and walk right are
the two dominant activity classes which walk forward is mis-
classified into. However, walk left and walk right never get
confused with each other.

5.8 Comparison with String-Matching
As our last experiment, we conduct a comparative eval-

uation with the non-statistical string-matching-based ap-
proach. We implement the string-matching method described
in [8]. We select this method because the authors in [8] also
use a clustering algorithm to construct motion primitives.
To make a fair comparison, we use a 0.2 second window cell
with statistical features andK-means primitive construction
algorithm for both BoF and string-matching. The results are
shown in Figure 11. As illustrated in the figure, the aver-
age misclassification rate of the string-matching-based ap-
proach ranges from 37% to 54% across all vocabulary sizes.
In addition, there is no clear trend of the misclassification
rate as the vocabulary size varies. This indicates that the
string-matching-based approach is not stable such that it
is extremely difficult to determine a meaningful vocabulary
size. Moreover, as expected, the string-matching-based ap-
proach performs consistently worse compared to BoF by a
large margin across all vocabulary sizes. As explained in
the first section, this is because extracting meaningful string
templates for the string-matching-based approach is difficult
when the activity data is noisy and has a large intra-class
variation.
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6. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the feasibility of us-

ing a Bag-of-Features (BoF)-based framework for human ac-
tivity representation and recognition. The benefit of this
framework is that it is able to identify general motion prim-
itives which act as the basic building blocks for modeling
different human activities. We have studied six key factors
which govern the performance of the BoF-based framework.
Our experimental results validate the effectiveness of this
framework and show that all the six factors are influential
to the classification performance of the BoF framework. As
a summary, our BoF framework achieves a 92.7% overall
classification accuracy with a 0.2 second window cell and a
vocabulary of 125 motion primitives constructed based on
physical features using K-means clustering and soft weight-
ing. This result is 32.3% higher than the corresponding non-
statistical string-matching-based approach.

Since we assume that activity signals do not follow any
grammar, our baseline BoF framework is totally based on
the primitive distribution. Therefore, it is interesting to
explore whether using the temporal order of motion primi-
tives in addition to BoF is beneficial. Hidden Markov Model
(HMM) and Conditional Random Field (CRF) are two pow-
erful models to capture temporal correlations of the sequen-
tial signals. Although HMM and CRF models have been
applied to the activity recognition problem in recent years,
little work has done on building HMM/CRF on top of BoF.
We will work along this direction as our future work.
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