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Abstract

This paper presents two families of motion primitives for enabling fast, agile flight through a dense obstacle field. The

first family of primitives consists of a time-delay dependent 3D circular path between two points in space and the con-

trol inputs required to fly the path. In particular, the control inputs are calculated using algebraic equations which

depend on the flight parameters and the location of the waypoint. Moreover, the transition between successive maneu-

ver states, where each state is defined by a unique combination of constant control inputs, is modeled rigorously as

an instantaneous switch between the two maneuver states following a time delay which is directly related to the agility

of the robotic aircraft. The second family consists of aggressive turn-around (ATA) maneuvers which the robot uses to

retreat from impenetrable pockets of obstacles. The ATA maneuver consists of an orchestrated sequence of three sets

of constant control inputs. The duration of the first segment is used to optimize the ATA for the spatial constraints

imposed by the turning volume. The motion primitives are validated experimentally and implemented in a simulated

receding horizon control (RHC)-based motion planner. The paper concludes with inverse-design pointers derived from

the primitives.
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1. Introduction

Birds flying through dense forests represent a combination

of agile airframes and adroit motion planners capable of

ensuring collision-free flight at high speeds in obstacle-rich

environments. The motivation for this paper is the

prospect of replicating the capability of birds to ensure that

unmanned fixed wing aircraft can fly rapidly through a

dense obstacle field such as a forest. Our recent paper

(Paranjape et al., 2013a) showed how to control the turning

flight using wing articulation which is present naturally in

flapping wings.

There are multiple challenges to flying a robotic air-

craft at high speeds in a densely crowded field: localiza-

tion and navigation; online path planning; and

determining the control inputs required to follow a path

demanded by the path planner. The control design chal-

lenge is particularly exacerbated in fixed-wing aircraft,

whose dynamics are highly nonlinear and the aerody-

namics are rife with significant structural and parametric

uncertainties, particularly in flight regimes which are

desirable for rapid maneuvering. From a purely motion

planning (as against control design) perspective, the

flight speed envelope of fixed wing robotic aircraft is

restricted and, importantly, bounded from below by a sig-

nificant positive value (i.e. the stall speed of the

airframe).

This paper focuses primarily on the control design prob-

lems. We assume that: (1) an existing path planner, which is

aware of the limitations of the airframe and the workings of

the control system, chooses waypoints along the path; and

(2) the robotic aircraft is equipped with a vision-based navi-

gation system or lidar which provides, among other things,

the bearing and distance to a waypoint. Such vision-based

navigation and localization systems are well-established in
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the literature (Langelaan and Rock, 2005; Celik et al.,

2009; Bry et al., 2012; Dani et al., 2013; Yang et al., 2013).

In this paper, we solve two problems.

1. The first problem is a standard two-point boundary

value problem: given a waypoint, determine the con-

trol inputs required to fly the robotic aircraft to that

waypoint. A key challenge here is to make the control

determination formula or algorithm as simple as possi-

ble for computation efficiency, while accurately

accommodating the nonlinear dynamics of the robotic

aircraft and the dynamics of the control actuators.

2. The second problem is particularly relevant for high-

speed flight through an obstacle-rich field: if the path

planner is unable to identify a suitable waypoint,

determine the control inputs required to reverse the

heading of the robotic aircraft inside the available

volume.

We design two families of motion primitives, one for

each problem, which are continuously parametrized in the

space of control inputs. The first family of primitives con-

sists of steady 3D turns designed for normal forward flight

between two prescribed points in space. The second family

of primitives consists of instantaneous 3D turns accom-

plished using a sequence of constant control inputs, which

are referred to as aggressive turn-around (ATA) maneuvers.

Unlike the steady turns, which guide the robotic aircraft

between two waypoints, the ATA maneuver allows a robotic

aircraft flying at high speeds to reverse its heading inside a

small volume of space. It is meant to allow the robot to

back-track safely if it approaches an impenetrable pocket of

obstacles. The net effect of including the ATA family is that

it allows the aircraft to operate safely at much higher speeds

than it could otherwise (see, e.g., Karaman and Frazzoli,

2012).

The motion primitives designed in the paper enable effi-

cient online path planning by providing algebraic solutions

to the two-point boundary value problem of determining

the control inputs required to steer a robotic aircraft

between two points in space. The motion primitives expli-

citly accommodate the dynamics of the robotic aircraft,

using the internal time-scale separation and time-delay-

based model of agility, while providing a practical way to

enable fixed-wing robotic aircraft to back-track along their

path without performing a stop-and-U-turn maneuver

which was hitherto possible only in quadrotors and

helicopters.

1.1. Literature review

The problem of flying a robotic aircraft through an obstacle

field falls within the ambit of robotic motion planning in

the presence of differential constraints. Well-known meth-

odologies for solving this problem include those based on

state-space sampling, mathematical programming, potential

function-based solutions, and decoupled trajectory and path

planning (see Goerzen et al. (2010) for an extensive review

of these methods from the perspective of unmanned aerial

vehicles).

The motion primitives-based approach to motion plan-

ning is particularly appealing because the path planner

relies on very limited knowledge about the aerial vehicle

beyond the kinematic constraints expressed in the form of

motion primitives. Therefore, for example, a single path

planner can be used for a large class of off-the-shelf robotic

aircraft equipped with their own autopilots and control sys-

tems. Conversely, the path planning algorithm can be cho-

sen from a wide range of methods such as probabilistic

road maps (PRM) (Kavraki et al., 1996), rapidly exploring

random trees (RRT) (Frazzoli et al., 2002; Schouwenaars

et al., 2003; Frazzoli et al., 2005; Kehoe et al., 2006;

LaValle, 2006), and model predictive control (Gray et al.,

2012).

A motion primitive is defined via a known sequence of

control inputs which results in well-characterized motion.

For example, a turn in 3D space consists of constant eleva-

tor, aileron, rudder and thrust settings, with each control

combination defining a unique combination of turn rate,

flight speed, and flight path angle (rate of climb or des-

cent). On the other hand, an aggressive maneuver may

require a sequence of control inputs, even through active

state feedback, e.g. aggressive heading reversals proposed

by Matsumoto et al. (2010).

The motion primitives are provided to the path planner

as a library, and a trajectory generated by the path plan-

ner is deemed to be feasible if it can be written as a con-

catenation of trajectories from the library (Frazzoli et al.,

2002; Schouwenaars et al., 2003; Frazzoli et al., 2005)

and if it satisfies prescribed collision-avoidance con-

straints, which may include safety margins to accommo-

date modeling and parametric uncertainties in the flight

dynamics. In addition to motion primitives used for nom-

inal flight (i.e. straight flight and turns), it is possible to

use certain rapid transitory maneuvers, as illustrated by

Schouwenaars et al. (2004) for the case where the under-

lying maneuver automaton failed to find a feasible cruis-

ing solution. A major drawback of using a library

consisting of only finitely many control combinations as

primitives is that it potentially rules out a large set of oth-

erwise flyable paths. Another drawback is that the pro-

cess of constructing a sequence of primitives for flying

between successive waypoints while ensuring compatibil-

ity between the primitives can be computationally tedious

when picking primitives from a library. In contrast, Dever

et al. (2006) presented a general motion planning frame-

work using continuously parametrized motion primitives,

where numerical interpolation among a continuously

parametrized family of motion primitives, together with

boundary condition matching, yielded the desired trajec-

tory and the set of control inputs required to fly the

trajectory.
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1.2. Contributions

This paper aims to design two families of motion primitives

which are continuously parametrized in the space of control

inputs (as against continuously parametrized with respect

to the flight time with a finite number of control combina-

tions (Frazzoli et al., 2005)) for agile flight through a dense

obstacle field. The first family of primitives consists of

steady 3D turns between two given points in the space,

while the second family of primitives consists of transient

ATA maneuvers for achieving an almost instantaneous

reversal of heading. The notion of airframe agility is rigor-

ously captured in the switching logic between successive

primitives via a time-delay formulation. The contributions

of the paper are as follows.

1. Analytical formulae, in the form of algebraic relations,

are derived for control inputs required to accomplish a

circular 3D turn between two points in space, subject

to the performance limitations of the robotic aircraft.

These formulae are motivated by pure pursuit laws for

missiles and large aircraft (Ollero and Heredia, 1995;

Park et al., 2007; Berg-Taylor et al., 2008), and were

presented by the present authors in Paranjape et al.

(2013b). A formal, analytical approach is presented to

account for limited airframe agility, wherein the finite

agility is modeled as a non-zero value of the time

required to switch between successive control inputs.

This forms the basis of the stitching logic for the

motion primitives presented in the paper.

2. An ATA maneuver is designed to help the motion

planner deal with localized impenetrable pockets of

obstacles (see Figures 1 and 2). The ATA maneuver,

first presented by the present authors in Paranjape

et al. (2013c), is an instantaneous 3D turn with a

sequence of constant control inputs, and with the time

delay between the inputs acting as an additional design

parameter. The ATA maneuver could help increase the

speeds at which aircraft can fly safely through dense

obstacle fields. The ATA maneuver primitive is

derived offline and the only online computation

required is the choice of the time delay, based on the

sensed shape of the turning volume.

3. The aforementioned primitives are demonstrated

experimentally through indoor flight tests. They are

also incorporated into a receding horizon (or model

predictive) control (RHC)-based motion planner

whose capabilities are demonstrated by simulation.

The motion planning algorithm used in this paper is

similar to PRM in that at every point it chooses, from

amongst a randomly generated sample of waypoints in

the visible region, a feasible waypoint which mini-

mizes a prescribed cost function. However, unlike

PRM, and since the environment is unknown, the path

planning is done locally as increasingly more informa-

tion about the environment becomes available as the

flight progresses.

4. Simulation results are used to assess the maximum

speed at which the aircraft can navigate through the

forest, as a function of the tree density, without getting

trapped in inescapable ATA loops.

The derivation of the closed-form formulae for the tra-

jectory between successive waypoints, which is used to

compute the constant control inputs required to fly it, brings

with it additional benefits. The values of the control inputs

can be used in the cost function for optimizing the path (see

Section 5). Moreover, the analytical expression for the tra-

jectory connecting successive waypoints can be used to

compute the distance of the trajectory from nearby obsta-

cles, and assess the feasibility of the trajectory quickly.

Finally, since expressions for the control inputs as well as

the trajectories are in the form of closed-form algebraic

equations (in contrast to online optimization or numerical

interpolation approaches used in the literature), their com-

putation is simple and computationally light, which frees

up computational resources for tasks such as sensing and

mapping.

Karaman and Frazzoli (2012) computed an upper bound

on the flight speed above which collision-free flight was

almost surely impossible, as well as a lower bound below

which an infinite number of collision-free trajectories were

guaranteed to exist. The work presented in this paper,

despite some commonality in spirit, is different in that our

Fig. 1. Situation where an aggressive turn is mandated.

Fig. 2. Schematic of ATA maneuvers.
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notion of a safe flight speed is less restrictive; flight speeds

are considered safe only when the possibility of the so-

called ATA traps is negligible (aside from collision avoid-

ance). ATA traps are situations where the only admissible

maneuvers are a repeating sequence of ATAs, essentially

blocking the aircraft inside a spatial pocket (see Section

5.2)

Some of the material presented in this paper was pre-

sented previously at conferences (Paranjape et al., 2013b,c).

A summary of the major changes is in order.

1. In Section 5.1, we have added an analytical derivation

of the maximum expected deviation of the aircraft tra-

jectory about the primitive, which yields a value for

the threshold distance used for assessing the admissi-

bility of a candidate trajectory.

2. The derivation of the control laws is altogether new

vis-á-vis the prior publications. It may be found,

together with the calculation of the deviation about the

primitive, in Section 6.1 and Appendix B.

3. We have added extensive experimental results in this

paper. We have also included simulation results which

show the dependence of flight time on the flight speed,

and the maximum flyable speed on the density of the

forests (Section 5.2).

The paper is organized as follows. The equations of

motion are derived in Section 2. Control laws for steady

3D turns (also called routine flight) are derived in Section

3, together with an analytical approach for accommodating

the agility of the robotic aircraft. Aggressive turns are mod-

eled in Section 4, and the motion planning algorithm is

described in Section 5 together with simulation results.

Experimental results are presented in Section 6, while in

Section 7, the analysis of the aforementioned sections is

used to derive design pointers for robotic aircraft intended

for missions involving high-speed flight in forest-like

environments.

2. Equations of motion and inner-loop control

We will state the equations of motion in the standard form

found in the literature on flight mechanics (Kelley and

Edelbaum, 1970; Kelley, 1971). In Table 1, we have intro-

duced the commonly used symbols in flight mechanics.

The angle of attack a is defined as the angle made by the

longitudinal axis of the aircraft (the axis that passes through

the rear tip of the fuselage and the nose of the aircraft) with

the projection of the velocity vector onto the plane of sym-

metry of the aircraft. The wind axis roll angle m is the com-

plement of the angle made by the lift vector with the global

horizontal plane. The wind axis roll angle m differs from

the body axis bank angle (denoted by f and also referred

to as the body roll angle), in that it is given by sin m = sin

f cos(g + a), where g is the flight path angle which mea-

sures the inclination of the velocity vector with respect to

the global horizontal plane. The angles a and m have been

depicted in Figure 3.

The complete equations of motion of a rigid aircraft are

given in Appendix B. The complete state of a rigid aircraft

is described by two sets of variables. The first set of vari-

ables, called the outer states, consists of the position coor-

dinates x, y, z and the velocity vector of the robotic aircraft

(V, g, x). Note that velocity vector has been described in

terms of its magnitude and two angles which define its

orientation with respect to a ground-fixed inertial frame of

reference. The second set of variables, called the inner

states, consists of the Euler angles and angular velocity

vector of the robotic aircraft. These two sets are not

decoupled. Rather, there is a time-scale separation between

them: the dynamics of the inner states are an order of mag-

nitude faster than those of the outer states. We will ignore

the dynamics of the inner states while deriving the

motion primitives with the understanding that they can be

controlled adequately by inner-loop controllers (see

Section 6.1 and Figure 4).

For the dynamics of the outer states, the thrust Tc, angle

of attack ac, and the wind axis roll angle mc act as the con-

trol inputs. The motion primitives are defined in terms of

the outer states whose dynamics are described presently. To

simplify the notation, define

k=
rS

2m
, T =

Thrust

m
ð1Þ

where r is the density of air, S is the area of the wing (a ref-

erence area), and m denotes the mass of the aircraft. Note

that k is the scaled inverse of the wing loading mg/S, where

g is the gravitational constant. The outer-state dynamics are

Table 1. Nomenclature.

Symbol Explanation

CL(a),CD(a) coefficients of lift and drag
T thrust per unit mass
V flight speed
a angle of attack
g, x flight path angle, heading angle
m wind axis roll angle

Fig. 3. Angle of attack a and wind axis roll angle m depicted

schematically, with V denoting the velocity vector (coming out of

the plane of the paper in the front view).
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then described by the following equations (Kelley and

Edelbaum, 1970; Kelley, 1971):

_x=V cosg cosx, _y=V cosg sinx, _h=V sing

_V = T cosa� kV 2CD(a)
� �

� g sin g

_g=
T sina

V
+ kVCL(a)

� �

cosm�
g cosg

V

_x=
T sina

V
+ kVCL(a)

� �

sinm

cosg

ð2Þ

where h denotes the altitude of the robot. The thrust T,

angle of attack a and bank angle m are related to the com-

manded values Tc, ac, and mc through the first-order

equations

_T = aT (Tc � T ), _a= aa(ac � a), _m= am(mc � m)

ð3Þ

where a{�} denote the inverses of the time constants. The

behavior in (3) is achieved with the help of inner-loop con-

trollers for a and m. The motion planning problem involves

choosing waypoints and mapping their choice to Tc, ac, and

mc.

The angle of attack is controlled directly by deflecting

the elevator, a flap located on the horizontal tail of the air-

craft. If the a-dynamics of an aircraft (given in Appendix

B) are stable and show desirable convergence properties, it

may suffice to use a feed-forward signal for the elevator

deflection: de = f(ac), where the function f(�) can be deter-

mined either from high-fidelity models or from flight tests,

as described in Section 6.1.

The control of the wind axis roll angle m is a coupled

roll–yaw control problem which involves regulating the

sideways motion of the aircraft (in particular, the angle of

sideslip, b, whose dynamics is given in Appendix B, is

usually regulated at zero) while controlling the bank angle

of the aircraft. Roll–yaw control is provided by the ailerons

and the rudder, which are located on the main wing and the

vertical tail, respectively. In some aircraft, such as the one

used for the experiments described in this paper, the ailer-

ons may be absent. In such cases, the rudder is used for

ensuring that the aircraft rolls through the appropriate angle

(m), but the sideways motion itself is not explicitly regu-

lated. A similar roll–yaw control problem was solved in

Paranjape et al. (2013a), where wing articulation provided

a primarily yaw-based control action. The design of inner-

loop controllers which actuate the rudder and the elevator

for controlling m and a has been addressed for an experi-

mental aircraft in Section 6.1 and follows a similar

approach as in Paranjape et al. (2013a). We note here that

the control law for the rudder deflection dr is of the form

rc= rc(mc,V ), a known feed-forward mapping,

dr= kp(rc � r)+ kI

Z t

0

(rc � r) dt
ð4Þ

where r is the body axis yaw rate, and rc denotes the com-

manded yaw rate. The proportional and integral gains kp,

kI . 0 are designed on a case-by-case basis. The derivation

of the feed-forward mapping rc(mc, V) has been explained

in Section 6.1.

A final note concerns time delays in the sequel. We will

encounter two different time delays: the first, denoted by

ta, is the time spent until an instantaneous switch from one

maneuver state to another, and captures the finite time

required to perform a transition between the maneuver

states (Section 3) in the presence of internal dynamics; the

second, td, will denote the time, after the commencement

of the ATA, when the aircraft starts to roll into the turn

(Section 4).

3. Mapping end points to control inputs: The

agility connection

In this section, we derive an algebraic formula which maps

the distance and the bearing of the desired waypoint to the

control input required to reach it, such that the dynamics of

the vehicle (2) are not ignored in the process. This is a

unique feature of our algorithm.

The waypoints are chosen inside a 3D visual sensing

cone which is defined by placing the aircraft at its vertex,

and by aligning the axis of symmetry of the cone with the

instantaneous velocity vector. The length of the cone is

bounded by the sensing radius.

We first make the notion of aircraft agility precise. We

interpret agility as the ability to change accelerations rap-

idly, and therefore, define agility tentatively as the rate of

change of acceleration for translational motion and rate of

change of angular velocities for rotational motion

(Paranjape and Ananthkrishnan, 2006). For example, the

turn rate (which is the rate of change of the velocity vector

and hence an acceleration) is changed by rotating the lift

vector about the longitudinal (body x-)axis. Thus, the time

required to rotate the lift vector through a prescribed angle

is an important agility metric.

In this section, we will start with the assumption of

unlimited agility (instantaneous rotation of the lift vector,

Fig. 4. Two-stage control system for the robotic aircraft. The

motion primitives derived in Sections 3 and 4 constitute the

‘‘outer loop’’ controller.
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Section 3.1), and then use the results to analyze the case of

finite agility (Section 3.2).

3.1. Unlimited agility

Consider the dynamics of x from (2), given by

_x=
T sina

V
+ kVCL

� �

sinm

cosg
ð5Þ

When the agility is infinite, it is possible to change _x

instantaneously between any two admissible values (includ-

ing the limiting values), reflecting the ability to change m

and a instantaneously.

Suppose that the aircraft turns with a constant speed V.

This assumption simplifies the derivation of the primitives

considerably. While implementing the primitives in a prac-

tical setting, the value of V should be replaced by the velo-

city at the waypoint where the control input commands are

calculated, if the flight speed is expected to remain more or

less the same during consecutive segments. If the flight

speed is expected to change significantly, the expected

value of the average flight speed during the segment should

be used for computing the control inputs (Tc, ac, mc).

Consider Figure 5 which shows the x–y projection of

the 3D sensing cone at an arbitrary instant of time. With a

mild abuse of notation, we refer to the location of the air-

craft at this instant of time as the current waypoint. The

vertex of the cone coincides with the aircraft. Suppose that

the robotic aircraft needs to reach the point (d, u) shown in

Figure 5, which is chosen as a candidate next waypoint by

the motion planning algorithm. Note that the altitude of the

next waypoint need not be the same as the current way-

point, but we will first address the motion in the projected

x–y plane. The trajectory linking them can be parametrized

by a single set of constant control inputs (T, a, m). From

Figure 5, we deduce that the turn radius is given by

R=
d cos u

sin 2u
=

d

2 sin u
ð6Þ

Since the turn radius is also given by R=V cosg= _x, it
follows from (5) and (6) that the commanded value of m for

(3) satisfies

sinmc=
2 sin u cos2 g

kCL+
T sina
V 2

� �

d
ð7Þ

We will now eliminate the term kCL + T sin a/V2.

From the equation for _g in (2), it follows that we can

choose the angle of attack a and thrust T to ensure that

kCL+
T sina

V 2
=

1

cosm

_gdes

V
+

g

V 2
cosg

� �

ð8Þ

where _gdes denotes the desired value of _g. We will derive

an expression for _gdes later in this section. Substituting (8)

into (7) gives the following expression for mc:

tanmc=
2V 2 sin u cos2 g

d g cosg+V _gdesð Þ
ð9Þ

If we assume that _gdes � (g=V ), we get the following

simplified expression:

tanmc=
2V 2 sin u cosg

gd
ð10Þ

If the value of mc is larger than the limiting value, it is

possible to change the commanded flight path angle gc to

compensate for the deficiency in m. In general, we choose

gc to ensure that aircraft reaches the waypoint at the desired

altitude. We estimate the commanded flight path angle as

gc = tan21((hwaypoint 2 hcurrent)/d), where hcurrent is the alti-

tude of the aircraft at the current waypoint. This is, in fact,

the average value of the flight path angle over the complete

segment. Let gcurrent denote the flight path angle at the cur-

rent waypoint. We choose _gdes as the average rate of

change of _g over the complete segment:

_gdes= 2(gc � gcurrent)=tway, where tway’d/V denotes the

flight time between the current and the next waypoint.

From (8), we choose ac to satisfy

CL(ac)=
2V (gc � gcurrent)=tway+ g cosgc

kV 2 cosmc

�
T sinac

kV 2 cosmc

ð11Þ

The commanded value of thrust Tc is found by solving

for _V = 0 in (2):

Tc=
kV 2CD(ac)+ g singc

cosac

ð12Þ

Fig. 5. Circular trajectory given an end point, and assuming

infinite agility. It must be noted that the cone shown here is a 2D

projection of a 3D visual sensing cone, and the circular trajectory

is also the 2D projection of the 3D trajectory connecting the

waypoints which may have different altitudes.
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Note that the thrust T is used in (11) with the assumption

that the thrust will not change significantly during the time

tway.

The final note in this section concerns the case where

the desired flight speed, Vcom, in the segment between the

two waypoints is considerably different from the speed at

the first of the two waypoints, denoted V1. In such cases,

the thrust command Tc in (12) can be augmented by an

additive term kT(Vcom 2 V1), where kT . 0 can be chosen

using the approach used for deriving the coefficient of gc
2 g in (11). We note, however, that the speed command

should be held fixed to the extent possible because the phu-

goid (V 2 g) dynamics are usually slow and under-

damped.

3.2. Finite agility using time-delay-based

approach

Finiteness in agility is a consequence of the fact that a and

m both require a finite amount of time to change values. A

well-designed inner-loop controller will ensure that the

dynamics of a and m behave like low-pass filters, as illu-

strated in (3).

A low-pass filter of the form 1

ts+ 1
may be viewed as

the first-order Padé approximation of a time delay t (see

Kuo and Golnaraghi, 2003, p. 183). Alternatively, one may

formally map the response of a system coupled to a low-

pass filter to that of the same system with a time-delayed

input, and it can be shown that t is indeed a suitable value

of the time-delay that yields an identical steady-state

response in both cases, at least for step inputs. This has

been shown in Appendix C. It must be noted that we have

actually solved an ‘‘inverse-Padé approximation’’ problem;

i.e. given the rational transfer function model for the m

dynamics (Equation (3)), we have obtained the most suit-

able time-delay approximation for it.

Thus, we can model the agility of an aircraft via a time

delay in the system. In particular, this allows us to decom-

pose the trajectory of the aircraft, as it switches from one

control input to another and flies from the vertex of the

cone in Figure 6 to the waypoint located at a distance d and

bearing u from the vertex (labeled as the ‘‘original trajec-

tory’’ in Figure 6), as the sum of two segments (labeled as

the ‘‘effective trajectory’’): (i) a drift with the initial control

input m0 for time ta = 1/am, where am is a measure of the

roll agility in Equation (3); and (ii) a drift along the new roll

angle mc for the remainder of the time. The two segments

take the aircraft to (d, u) in the same time as the original tra-

jectory, but do not coincide with the original trajectory. We

seek to calculate mc given (d, u).

We first note that the drift distance can be approximated

by Vta, and the aircraft may be assumed to turn through an

angle _x
0
ta during this time, where _x

0
is the initial turn rate.

As long as ta is small, the initial drift distance may be

approximated by that along a straight line segment connect-

ing the initial point and the switching point between the

two segments.

After the initial drift is complete, the controls switch to

the new configuration; in particular, m07!mc. We can now

use the formulation from Section 3.1 after replacing (d,

u) with the new distance d0 and bearing angle un (see

Figure 7).

From the quadrilateral S0OCS in Figure 7, it is evident

that :SS0O = p 2 2n, so that :S0OS = :S0SO = n.

Thus, it follows that un = p 2 na 2 n, where the angle na
is yet to be determined.

The new distance, d0, and the angle n are given by

d02= d2+ (Vta)
2 � 2dVta cos (u� n), n=

_x
0
ta

2
ð13Þ

We calculate the angle na using the cosine rule:

cos na=
(d0)2+ (Vta)

2 � d2

2d0Vta
=

Vta � d cos (u� n)

d0

ð14Þ

The new bearing is given by un = p 2 na 2 n, and we

can use the formulation from the previous section with (d,

u) (d0, un):

tanmc=
2V 2 sin un cosg

gd0
ð15Þ

The angle of attack and thrust commands (ac and Tc) for

(3) are chosen as described in (11) and (12).

s

Fig. 6. Decomposing the original trajectory (solid blue) into a

drift with the original control inputs and a circular trajectory with

the new control inputs to the desired end point when the agility is

finite (dashed red). The point O is the current waypoint, S

denotes the switching point between the two sets of control

inputs, and W denotes the waypoint.
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4. Aggressive turn primitive

Aggressive turns are performed with the objective of rever-

sing the aircraft heading, i.e. changing it by 180�, when

collision-free forward flight is infeasible within the perfor-

mance limitations of the aircraft (see Figure 1). The word

‘‘aggressive’’ also suggests that these maneuvers take the

aircraft to the boundary of its flight envelope, and they are

unsustainable (and, hence, purely transient) in nature. We

assume that the sensing systems on board the aircraft can

detect the obstacles around the turning volume in order to tune

the ATA maneuver (in a sense which will become evident later

in this section). The validity of this assumption can be ensured

by designing the motion planning algorithm appropriately.

However, a problem may arise in this regard if, for example,

the ATA in question follows another ATA as a result of a

delayed actuator response or adverse gusts which lead to a

heading change in excess of the planned change of 180�. This

limitation has not been addressed in the paper.

We design the ATA primitive systematically using an

optimal control formulation. The optimal control problem

is stated as follows:

min
Tc, ac, mc

hgg
2(tf )+

Z tf

0

(hxx
2
+hyy

2
+hhh

2
+hTT

2

c ) dt

subject to the dynamics in (2) and (3) and

x(tf )� x(0)=p, m(tf )= 0

Tc 2 ½0, Tmax�, jacj �amax, jmcj �mmax

ð16Þ

where 0 \ amax � astall. In this section, we assume that,

Tmax = 8, amax = 35�, and mmax = 60�.

Note that the terminal time tf is a free variable. The

constraint m(tf) = 0 and the penalty on the terminal

flight path angle g(tf) (in the form of hg . 0) ensure

that the aircraft recovers to a wing-level flight condition

with as straight a flight path as possible. The weights hx,

hy and hh are chosen to match the spatial constraints.

The constraints on the control inputs are chosen to

match real aircraft, such as the experimental testbed in

Figure 15(a).

We will first attempt to solve the optimum control prob-

lem analytically to understand the structure of the ATA

metric in terms of the control inputs required for it. It will

transpire that the ATA maneuver can be viewed as a

sequence of bang–bang control inputs. In order to identify

the switching instants, we will solve the complete problem

numerically.

Define the Hamiltonian

H =hxx
2
+hyy

2
+hhh

2
+hTT

2

c + lxV cosg cosx

+ lyV cosg sin x+lhV sing

+ lV (T cosa� kV 2CD � g sing)

+ lg
T sina

V
+ kVCL(a)

� �

cosm�
g cosg

V

� �

lx
T sina

V
+ kVCL(a)

� �

sinm

cosg
+ lmam(mc � m)

+ lTaT (Tc � T )+ laaa(ac � a)

ð17Þ

This gives us the following dynamical equations for the

co-states

Fig. 7. Half cone showing a magnified view from Figure 6, as an aid to computing the distance and bearing to the waypoint W after

the drift along the old control inputs. The point S denotes the switching point, while S0 is the intersection of the velocity vector at S

with the axis of the cone. The point C is the center of the circular arc which forms the drift trajectory with the old control inputs (see

Figure 6).

364 The International Journal of Robotics Research 34(3)

 at UNIV OF ILLINOIS URBANA on March 2, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


_lx= � 2hxx,
_ly= � 2hyy,

_lh= � 2hhh

_lV = � (lx cosg cosx+ ly cosg sin x+lh sing)

+ 2lVkVCD+ lg
T sina

V 2 � kCL

� �

cosm�
g cosg

V 2

� �

+ lx
T sina

V 2
� kCL

� �

sinm

cosg

� �

_lg = lxV sin g cosx+ lyV sin g sin x � lhV cosg)

+ lVV cosg � lg
g sin g

V

� lx
T sina

V
+ kVCL

� �

sinm sing

cos2 g

_lx = lxV cosg sinx � lyV cosg cosx

_lm= amlm+
T sina

V
+ kVCL

� �

lg sinm� lx
cosm

cosg

� �

_lT = aTlT � lV cosa�
sina

V
lg cosm+ lx

sinm

cosg

� �

_la= aala+lV (T sina+ kV 2CDa
)�

T cosa

V
+ kVCLa

� �

lg cosm+ lx
sinm

cosg

� �

ð18Þ

The boundary conditions for the co-states are given by

lx(tf )= ly(tf )= lh(tf )=lV (tf )= lT (tf )= la(tf )= 0,

lg(tf )= 2g(tf ), H(tf )= 0

ð19Þ

The optimum control inputs are found using

Pontryagin’s minimum principle:

Tc=
lTat

hT

, mc= � sign(lm)mmax

ac= � sign(la)amax

ð20Þ

From (20), we expect ac and mc to follow a ‘‘bang–

bang’’ profile during the ATA. The switching times, how-

ever, are difficult to estimate analytically. Therefore, we

solve the optimal control problem numerically using

GPOPSII (software available online at http://www.gpops2.-

com) which uses a direct optimization method. Results for

the two cases [hx, hy, hh] = [1, 5, 1] and [1, 1, 5] are

plotted in Figure 8. These cases capture short and narrow

volumes, respectively. In both cases, the aircraft performs a

3D turn. The angle of attack reaches the maximum value

rapidly. The specific thrust is more or less constant, around

5 m/s2. Although the maximum value of mc = 60� is

attained in both cases, the important distinction is the

instant at which the roll commences, with respect to the

pull-up (which measures the time delay between the pull

up to amax and the roll to mc,max). Note that, in both cases,

m returns to zero after the aircraft has turned through 140�.

It is also worth noting that the duration of the maneuver is

almost the same, approximately 2 s, in both cases.

The pull up to amax with wings more or less level (i.e.

mc = 0) causes the aircraft to climb and slow down. A

larger time delay between the pull-up to amax and the roll

to mc,max causes the aircraft to slow down considerably

while gaining altitude, after which it changes the heading

rapidly before accelerating and descending to its previous

altitude. On the other hand, a smaller time delay between

the pull-up and the roll leads to a more or less steady turn,

as is evident from Figure 8.

The above analysis leads to the hypothesis that aggres-

sive turns can be performed by commanding constant val-

ues of Tc and ac(= amax), while mc follows a three-segment

‘‘bang–bang’’ profile, as illustrated in Figure 9.

� Segment 1: mc = 0 for 0 � t� td, where the value of

td depends on the shape of the turning volume.
� Segment 2: mc = 6mc,max, while p 2 jx 2 xinitialj .

Dxcrit, where Dxcrit is the heading angle through which

the aircraft turns while rolling from jmj = mc,max to

m = 0. We estimate Dxcrit analytically later in this

section.
� Segment 3: mc = 0 as the aircraft recovers to level flight

after a 180� heading change.

The physical interpretation of the three segments is as

follows. In the first segment of Figure 9, the aircraft decele-

rates rapidly and attains a positive value of the flight path

angle g. There is, however, a trade-off involved here: the

reducing flight speed tends to reduce the turn rate for a

given combination of a and m, while increasing g increases

the turn rate. Moreover, as the aircraft climbs for the dura-

tion of the first segment, it is to be expected that the height

of the turning volume limits the duration of the first

segment.

In the second segment, the aircraft banks to the maxi-

mum possible bank angle to achieve the largest possible

turn rate and thereby the smallest possible turn radius (mea-

sured in the horizontal plane). In the third segment, the air-

craft merely recovers to level flight.

The complete ATA maneuver primitive is described in

Algorithm 1. The shape of the volume available for turning

(narrow versus short) can be sensed and the duration of the

first segment, td, can be chosen accordingly. In a practical

setting, td corresponds to the time lapsed between the trans-

mission of the pull-up and roll commands. Note that the

value of td is bounded from above by the time required for

the aircraft to decelerate to the stalling speed, i.e. the speed

below which the lift is insufficient to balance the weight of

the aircraft.

Figure 10 depicts ATA trajectories for various values of

td, with mmax = 1.1 rad. It is evident that a large value of td
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permits turns inside a narrow volume, while smaller values

lead to wider turns with a smaller change in altitude. This

observation can be explained as follows. When the aircraft

pulls up to amax, it climbs rapidly and decelerates in the

process. The increase in altitude as well as the reduction in

speed are directly proportional to the duration of the pull-

up. The increased flight path angle helps reduce the turn

radius. The conclusions obtained from Figure 10 match

those from Figure 8. The trajectories in Figure 8(a) have a

profile similar to Figure 10.

Although the qualitative trends in Figure 10 are inde-

pendent of the initial conditions, a non-zero g can improve

the turning performance significantly. A lower initial speed

reduces the forward distance covered during the turn.

However, it has virtually no bearing on the actual turn

radius.

For the ATA maneuver in Algorithm 1, we need to esti-

mate Dxcrit, which is the angle through which the aircraft
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Fig. 8. Trajectory and flight parameters for two sets of [hx, hy, hh]: [1, 1, 5] and [1, 5, 1] : (a) 3D trajectory; (b) wind axis angles; (c)

thrust and speed; (d) heading angle.

Fig. 9. An annotated version of Figure 8(b) showing the three

stages of an ATA.
Fig. 10. Plots showing the aggressive turn trajectory for td 2 [0,

1], with the darker curves denoting a larger time delay.
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turns before commencing recovery to level flight. The value

of Dxcrit depends on the agility; when the agility is infinite,

we would set Dxcrit = 0. For a robotic aircraft whose agility

is finite, i.e. with _m= am(mc � m) as in (3), and with am
finite, we calculate Dxcrit by assuming that V, g and a do

not change significantly in the short time 1/am. Assuming

that the robotic aircraft turns at a bank angle mmax, we get

the following expression for Dxcrit using (2):

Dxcrit=
T sina=V + kVCL

am cosg
sinmmax

An approximate value of Dxcrit can be found by setting

mmax’p/2 and cos g’ 1:

Dxcrit’
T sina=V + kVCL

am

Note that CL is set at the outset by fixing a; k and am are

known parameters, and V can be measured. It may be possi-

ble to compute Dxcrit continuously, and commence recovery

when its value matches the remaining value of the heading

change.

For the robotic aircraft considered here, k = 0.37,

CL = 1.6 during the turn, am = 8 s21, while V’ 5 m/s dur-

ing the recovery phase. The thrust was set to T’ 5 for the

simulations in Figure 8. This gives Dxcrit’ 42�, which is

quite close to that obtained in Figure 8.

To compute the thrust Tc for the maneuver in Algorithm

1, we start by assuming a zero change in altitude and final

speed, in which case energy balance implies that the role of

thrust is to compensate for the energy dissipated due to the

drag, so that

Tc=

R lf
0
kCDV

2 dl
R lf
0
dl

=
kCD

R tf
0
V 3 dt

R tf
0
V dt

ð21Þ

where lf denotes the length of the path flown by the robotic

aircraft during the ATA maneuver. If we assume that the air-

craft slows down almost to zero and the values of accelera-

tion and deceleration are constant (i.e. dt = dV/acceleration,

which allows us to replace dt in (21) by dV), we get

Tc=
kCD(amax)V

2

0

2
ð22Þ

This value, however, needs to be used with caution

because the aircraft need not recover all of its kinetic

energy at the end of the turn (as seen in Figure 8). This can

reduce the thrust requirement significantly as seen in

Figure 8.

5. Implementation as part of a motion

planning algorithm

The primary objective of this section is to show how the

motion primitives derived in Sections 3 and 4 can be used

in a motion planning algorithm for high-speed flight in a

densely crowded environment. The motion planning algo-

rithm derived in this section combines the aforementioned

motion primitives with a RHC framework. The objective of

the motion planning algorithm is to take the robotic aircraft

to within a threshold distance of the goal. The threshold

distance can be set of zero if the goal is a terminal destina-

tion, while a non-zero value can be chosen for the threshold

distance if the goal is an entity to be observed or tracked.

5.1. RHC-based motion planning algorithm

The objective of the motion planner is to guide the robotic

aircraft to the goal (xgoal, ygoal, hgoal). Let j0 = (x0, y0, h0)

denote the location of the robotic aircraft at an instant

where the control inputs are to be computed. We choose

points ji= (xi, yi, hi) 2 V randomly, where V denotes the

visible region and the index i satisfies 1 � i � N for a

suitably large sample size N.

Let S = {si(t)} denote the set of trajectories si(t) which

connect the starting point j0 to the waypoint ji, as shown in

Figure 11. The mapping ji7!si(t) is obtained from the ana-

lytical formulae derived in Section 3, which, in fact, yield

the map ji7!uc,i, the vector of constant control inputs (see

Equations (11), (12), and (15)) which are required to fly the

trajectory si.

Let T = fT jg � V denote the set of obstacles (each of

which carries a unique index j). Let us denote the distance

of an obstacle from a trajectory by d(si(t), T j). Let J

denote the cost function whose value at a point j is denoted

by J(j, j0). From the set of candidate way points {ji}

(1 � i � N), the motion planner chooses a point jnext

jnext= argmin
ji

fJ (ji, j0)jmin
j
fd(si(t), T j)g. threshold; uc, i admissibleg

ð23Þ

If none of the points j1,.,jN are found to be feasible,

then the motion planner commands the ATA maneuver

described in Algorithm 1 (see also Section 4).

In order to prevent overly conservative thresholds, one

may allow the threshold to depend on the dynamics and a

Algorithm 1. ATA maneuver.

Result: x x6p
Initialize t t0 and xf = x6p
whilex 6¼xfdo

ac = amax, Tc from (22)
if t . t0+ td and jxf 2 xj . Dxcrit then
mc mc,max

else
mc = 0

end

end
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stochastic model of the disturbances (Hu et al., 1999). The

threshold distance can be calculated using information

about the convergence rate and the robustness of the flight

controller, as illustrated presently. An alternate but related

approach is to use the expected deviation from the nominal

trajectory in the design of the nominal primitive itself

(Schouwenaars et al., 2004).

One interesting point in connection with choosing the

threshold distance is avoiding local trapping regions. For

example, due to a limited sensing range, the robot could fly

into a funnel which, in some cases, may lead to an enclosed

region inside which an ATA may not be safely executed. To

prevent such events, the threshold should be chosen to be

large enough to accommodate an ATA maneuver. The

threshold may be chosen as a function of the flight speed,

and it can be made time-varying if required.

5.1.1. Computation of deviation about mean trajectory. We

can find a conservative estimate for the threshold distance

by letting cos g’ 1 so that the translational motion can be

approximated by

_x=V cosx, _y=V sin x, _x= kVCL sinm

and hence (since dx = kVCL sin m dt)

dx

dx
=

cosx

kCL sinm
,

dy

dx
=

sinx

kCL sinm
ð24Þ

Ideally, the aircraft would turn with a constant value of

m = mc and CL=CLc . If the values of m and CL differ from

mc and CLc, respectively, we get errors ex = x 2 xc and ey =

y 2 yc, where (xc(t), yc(t)) is the trajectory obtained using

the commanded inputs. From (24), the error dynamics are

given by

dex

dx
=

cosx

kCLc sinmc

CLc sinmc

CL sinm
� 1

� �

dey

dx
=

sin x

kCLc sinmc

CLc sinmc

CL sinm
� 1

� � ð25Þ

so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2x + e2y

q

�
1

kCLc sinmc

CLc sinmc

CL sinm
� 1

�

�

�

�

�

�

�

�

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 cosx
p

’
1

kCLc sinmc

CLc sinmc

CL sinm
� 1

�

�

�

�

�

�

�

�

‘

x

ð26Þ

where ||�||N = suptj�j. The angle x will eventually depend

upon how long the aircraft turns.

Note that 1/(kCL sin mc) = Rc, the commanded turn

radius. If we assume a 5% error in CL sin m with respect to

the commanded value, then
CLc sinmc

CL sinm
� 1

�

�

�

�

�

�

‘

\0:05. We can

let x’ 1, i.e. a turn through 60� before the next update, in

which case the size of the tube is bounded above by 0.05Rc,

and 2 m is a reasonable estimate for the drift, assuming a

turn radius of 40 m.

Algorithm 2. Motion planner for agile flight.

Result Safe, fast flight through a forest and arrival at
jgoal = (xgoal, ygoal, hgoal) initialization: fly = 1
// fly = 1: routine flight (Section 3); fly = 0: ATA (Section 4)
Position: j0 = (x0, y0, h0)
while dgoal . dnom do

Draw N samples Vn : = (xi, yi, hi) 2 V, 1� i�N
Define out = zeros(n, 5) (cost, feasibility, control)
for every ji 2 Vndo
Compute trajectory si(t) and control inputs uc,i from (11),

(12) and (15)
Compute d(si(t), T j)8 T j 2 V
if di s.t. min (d(si(t), T j)).threshold then

out (i,:) = [J(ji, j0),1,uc,i]
end

end
if max (out(:, 2)) = 0 then

// No feasible trajectory
fly = 0

else
find j = arg mini{out(i, 1)jout (i, 2) = 1}
uc uc,j = out (j, 3: 5)
set time of flight tflight=s�1j (jj)

end
if fly = 1 then
Fly ‘‘routinely’’ with control uc for tflight
Update position j0
recompute dgoal

else
Perform ATA using Algorithm 1
set fly = 1
Update position j0
Recompute dgoal

end
end

Fig. 11. The 3D sensing cone with the obstacles (labeled as T i),

the candidate waypoints (marked by X and labeled by ji), and the

trajectories to the waypoints (marked by si). The grey areas are

occluded and hence not sampled for candidate waypoints.
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For the limiting case where mc = 0, i.e. when the aircraft

is required to fly straight, we can estimate the size of the

tube assuming first-order convergence for m, i.e.

m(t)=m
0
e�amt, where am . 0 is the time constant for the

m dynamics and m0 is the initial error in m (after the agility

has been accounted for). Since the value of x and m are

small, we estimate the drift from a straight line path (given,

without loss of generality, by x = 0) using

€y(t)’kV 2CLm= gm
0
e�amt ) jy(t)j

�
g

am2
jm

0
j amt þ e�amt � 1
�

�

�

�

ð27Þ

where yð0Þ ¼ 0 and _yð0Þ ¼ 0 are assumed.

The above equation allows us to choose the update time

t as a function of the agility am, the permissible value of

deviation and expected initial error jm0j. In general, a large

value of am (i.e. a higher amount of agility) permits a larger

sampling time. Interestingly enough, the permissible value

of sampling interval is independent of the flight speed.

5.1.2. Motion planning. The motion planner first runs at

the instant of commencing flight. Thereafter, it runs at the

end of pre-defined interval, or after an ATA maneuver if

one needs to be performed. The motion planner stops when

the robotic aircraft’s distance from the goal,

dgoal ¼
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xgoal � x0)
2
+ (ygoal � y0)

2
+ (hgoal � h0)

2

q

, is

less than or equal to some nominal value dnom. The com-

plete algorithm has been described in Algorithm 2.

Note that the sampling instances, i.e. instances when the

control inputs are computed and commanded, need not

coincide with proximity to the waypoints. In fact, sampling

should be performed much before the robotic aircraft

reaches the intended waypoint, in order to steer away from

obstacles that may have initially been beyond its sensing

radius. This approach lends the motion planning algorithm

an RHC-like structure (Morgan et al., 2014).

The RHC-based algorithm described above has no built-

in provision to prevent cyclic paths from recurring. The

only way to do as much is to preserve a memory of the path

chosen, as well as a record of paths not taken, i.e. by com-

bining map-building and navigation (Choset, 1996; Oriolo

et al., 1998; Choset, 2001). A coverage-based module can

be readily incorporated into Algorithm 2.

A final point concerns the computational cost of the

motion planning algorithm at each running instant. Once

the N candidate waypoints are chosen, the motion primitive

takes O(N ) steps for computation, since it is in the form of

algebraic expressions, together with the computation of the

center of the circular arcs which constitute the trajectory to

each waypoint. The distance between a given tree and the

trajectory can be computed using another algebraic expres-

sion d (centre of arc, tree) 2 R, where R is the radius of

the circular arc. Therefore, the computational time is

O(N)×O(card(T )), where card(T ) denotes the cardinal-

ity of the set of trees.

5.2. Simulations

We demonstrate the capabilities of the motion planner

described in Algorithm 2 and the ATA maneuver through

simulations performed in Matlab. The equations of motion

presented in Appendix B are used for simulation, unlike

the restricted set (2) used to derive the motion primitives.

The robotic aircraft weighs 100 g, has a wing area

S = 0.5 m2, while the coefficients of lift and drag are given

by CL = 0.3 + 2.5a, and CD= 0:03+ 0:3C2

L. The maxi-

mum values of thrust and wind axis roll angle are given by

Tmax = 1.2 and mmax = 61.1 rad. The limiting angle of

attack (used as a proxy for the stall angle of attack) is

amax = 35�. A forest with a specified number of trees is

generated such that the coordinates of the trees and their

radii are chosen through (mutually independent) Poisson

distributions, and the tree radii are constrained between 0.5

and 1 m.

Let j0 denote the position of the robotic aircraft at

which sampling is performed, and for a candidate waypoint

ji, let ugoal (j0, ji) denote the angle between the segment ji
2 j0 and j0 2 goal, i.e. ugoal(j0, ji) measures the bearing

to the waypoint in relation to the bearing to the goal. Then,

the ‘‘cost’’ of choosing ji is defined by Ji(ji, j0) = (1 2

cos(ugoal(j0, ji))). This particular cost function is, by no

means, unique or optimal in any sense. It can be replaced

by a function of the user’s choice.

The stopping condition is set to dgoal \ 20 m, while the

threshold distance in (23) is set to 2 m (see Section 5.1.1).

The start point and the goal are at (20, 20) and (190, 190),

respectively.

Figure 12 shows the simulation of an aircraft flying

through a 200× 200m2 forest with 500 trees distributed

randomly with a Poisson distribution. The commanded

speed is set to 9 m/s, while in each instant of running the

motion planner, a total of 100 points are sampled in the

visible space as candidate waypoints. Figure 13 shows the

zoomed in view of an area where a series of ATA maneu-

vers is employed to navigate a particularly dense patch.

The results show that the motion planning algorithm

(Algorithm 2) successfully guides the aircraft through the

forest. Interestingly, the ATA maneuver was required even

at a slower flight speed of 6 m/s (a different case from the

example shown in Figure 12), which demonstrates its

importance during flight in obstacle-rich environments.

Figure 14 shows the mean statistics obtained by simulat-

ing flight at various speeds through a 200 m × 200 m

forest with different number of trees. A surprising observa-

tion is that the expected time of flight from the starting

point to the end point does not change much as the flight

speed increases. This is due to an increase in the number of

ATA maneuvers required at higher flight speeds. Moreover,

at higher flight speeds, the proportion of failed flights

increases; a flight is said to have failed if the aircraft is

trapped in a large number of ATA loops. In simulations,

the flights were deemed to have failed if the number of

ATA maneuvers exceeded 20. The fail-safe speed is thus
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defined as the maximum speed at which no such trapping

regions are found. Not surprisingly, the fail-safe speed rises

rapidly as the density of trees in the forest decreases. It

must also be noted, from Figure 14(b), that the average

number of ATAs is around 1 as the flight speed reduces to

4 m /s. It is expected that ATA maneuvers will extend the

speed envelope in a similar manner when used with other

path planners as well.

6. Experiments

6.1. Demonstration of the motion primitives in

Section 3

In order to demonstrate the motion primitives derived in

Section 3, and the time-delay-based switching logic, we

conducted a series of indoor flight tests using the Parkzone

MiniVapor (shown in Figure 15(a) together with a photo of

the testing volume, Figure 15(b)). The geometric and iner-

tial properties of the MiniVapor are summarized in Table 8.

The Vicon motion capture system was used to obtain the

position and the orientation of the aircraft. The experiments

were conducted inside a test volume measuring

7 m × 4 m × 2.5 m.

A notable feature of the MiniVapor is the absence of

ailerons, and hence the lack of direct roll control capability.

This naturally results in a small value of am, which mea-

sures the roll agility of the aircraft (see Equation (2)). The

aircraft has an moving vertical tail which provides com-

bined roll–yaw control, which requires a critical modifica-

tion in the implementation of the motion primitives.

Moreover, for the experiments, we did not control the alti-

tude of the aircraft owing to the short duration of the flight

tests. Instead, the elevator and the thrust regulated the flight

path angle g as described presently.

The rate of change of the wind axis roll is given by

_m=
p cosa+ r sina

cosb
ð28Þ

Consider the problem of stabilizing the equilibrium

condition m = 0 using m feedback and the vertical tail

(or rudder) input, dr, as the control input. The deflection

dr gives rise to rolling as well as a yawing moment (L

and N):

Fig. 12. (a) Trajectory of the robotic aircraft in 3D space as it navigates a forest and (b) its projection on the x–y plane. Red circles in

the x–y projection denote the locations of the ATA maneuvers.

Fig. 13. Magnified view from Figure 12 showing the trajectory

of the robotic aircraft as it performs a series of ATA maneuvers

in a dense patch of trees in the forest.

Table 2. Key properties of the MiniVapor.

Property Value (in SI units)

Mass 11 g (including tracking markers)
Wing span and chord 0.28 and 0.12
Principal moment of
inertia (× 1024)

0.33, 2.8, 3.13 (estimated)

Maximum thrust (N) 0.09
Maximum specific thrust
(thrust/mass)

8.18

Non-dimensional constant
k = rS/2m

1.86

Typical cruising speed range 2 2 4 m/s
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L(dr)= Ldrdr, N (dr)=Ndrdr

where Ldr\0 and Ndr.0 (see Appendix B). If the wind-

axis roll angle is perturbed by a small Dm . 0 (without

loss of generality), then in order to ensure that the incre-

mental D _m\0, the rudder can try to make Dp and/or Dr

negative by providing a negative rolling and/or negative

yawing moment. However, these two effects cannot be

achieved simultaneously due to the differing signs of Ldr
and Ndr . In fact, m-feedback leads to oscillations except

when a very small control gain is used. However, a small

gain slows down the stabilization to the point where it is

practically useless.

A more appropriate control design method is to map the

steady-state value of m to a steady state value of r. We start

with an expression derived in Appendix B:

r= ( cosa cosg cosm� sina sing) _x

We note that sin g sin a� cos a cos g cos m under rou-

tine flying conditions. Substitution for _x from (2) gives

r= cosa cosm kVCL+
T sina

V

� �

sinm

Finally, by substituting for _g= 0 in (2), we get

(a)

(b) (c)

Fig. 14. Statistics of (a) cruise time and (b) aggressive turns for various flight speeds in a forest with 500 trees, and (c) the maximum

fail-safe speed as a function of the tree density (number of trees per square meter).

Fig. 15. The experimental setup: (a) an off-the-shelf MAV called the Parkzone MiniVapor and (b) the testing area with a Vicon

motion capture system.
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r=
g

V
cosa cosg sinm

This is a bijective mapping between steady-state values

of m and r, which allows us to map mc, which is com-

manded by the motion primitive, to a commanded value rc
for control design:

rc=
g

V
cosac sinmc

with mc obtained from (15), and with the additional

assumption cos g’ 1. Although this is certainly not the

case for the ATA maneuver, designing the ATA maneuver

with a saturated rudder deflection eliminates any necessity

to use the above mapping for ATA. It remains to explain

the selection of ac and Tc. For experiments, we set gc = 0

(thereby not requiring any particular altitude). The flight

speed command, denoted be V, is mapped directly to the

elevator deflection de using an empirical formula obtained

from flight tests:

de1 = 0:1846�
0:78

V 2 cosmc

ð29Þ

where the additional subscript ‘1’ is used to denote a feed-

forward signal, pending the addition of some feedback

terms. The choice of a feed-forward V 2 de map, as against

a feedback controller, is justified by the well-damped pitch-

ing dynamics. The expression for ac is determined in a

similar fashion:

ac= 0:12+
0:981

V 2 cosmc

Note that the choice of mc from (15) is independent of ac

and depends only on V and the location of the waypoint.

The elevator deflection command is the sum of de1 from

(29) and terms that compensate for g:

de= de1 + 0:4g+ 0:7

Z t

0

g dt

The g-terms are necessary to prevent the aircraft from

losing altitude rapidly during turns. The thrust Tc is chosen

as follows:

Tc= 0:8� g � 1:2

Z t

0

g dt

where the bias value of 0.8 is the minimum value of thrust

required for level flight. The inner-loop controller for dr
was a proportional-integral law:

dr= 0:08(rc � r)+ 0:35

Z t

0

(rc � r) dt

In our description of the results, we will frequently refer

to a point by its coordinates (x, y). Unless otherwise stated,

both x and y are given in meters.

Figure 16 shows the results of a series of flight tests

where the objective was to fly to only one waypoint, after

which the flight terminated. The aircraft was hand-launched

from (22.2, 21.4). The calculation of the value mc (see

Equation (15)) explicitly made use of the information about

the launching point and assumed that the aircraft flew in a

straight line parallel to y = 0 until it commenced a turn.

The errors seen in Figure 16 arose primarily from this

assumption. Nevertheless, the maximum miss distance was

seen to be 45 cm in the results shown in Figure 16. In four

out of five cases, the error in the final position averages

around 10 cm.

Figure 17 shows the trajectory of the robotic aircraft dur-

ing fifteen flight tests to the waypoint [5, 1]. The experi-

ment was similar to that reported in Figure 16, except that

the waypoint was commanded only after the aircraft crossed

x = 2 m, until which point the controller was given a com-

mand of mc = 0. Upon activation at x = 2 m, the controller

used a time delay of ta = 0.8 s to compute the drift trajec-

tory using the instantaneous values of the flight parameters,

following the approach in Section 3.2. The maximum miss

distance is 75 cm, and that too during only one of the

flights. In all other cases, the maximum error distance is

less than 50 cm, and the mean error across the 15 flights

was 20 cm. Figure 18 is a montage showing flight from the

hand-launch to the desired waypoint.

Figure 19 shows the trajectory of the robotic aircraft as

it flew a path with two waypoints in addition to a starting

point located around [22, 21]. The first waypoint was at

[2, 0], while the second waypoint [5, 1] became the com-

manded waypoint after the aircraft crossed x = 2. Unlike

the two flight tests described earlier (Figures 16 and 17),

the control law was switched on as soon as the aircraft

attained a minimum speed of 1.5 m/s. The transient beha-

vior of the aircraft in the initial moments of flight intro-

duced a significant variation in flight paths across the five

Fig. 16. Trajectory of the robotic aircraft during ten experiments

involving flights to three different waypoints (denoted by h). The

aircraft was hand-launched, which reflects in the discrepancy in

the initial conditions.
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tests. The most significant effect of the variation is the

180� range for the final heading angles (x) of the aircraft

after crossing the waypoint [5, 1]. This is in stark contrast

to Figures 16 and 17, where the aircraft crossed the com-

manded waypoint with more or less the same heading in

each flight test. The results in Figure 19 also demonstrate

the importance of allowing the transient behavior to

attenuate before the primitives-based controller is

activated.

6.2. Effect of control laws on ATA

In order to examine the effect of including an inner-loop

controller on the performance of an ATA, we implemented

a controller of the form (Paranjape et al., 2013c)

pc= kp,m(mc � m)+ kI ,m

Z t

0

(mc � m) dt

dr= kp, p(pc � p)+ kI , p

Z t

0

(pc � p) dt

ð30Þ

Note that a roll rate-based controller is quite effective

when turning rapidly, unlike while trying to stabilize around

level flight. This control law was tested experimentally on

the MiniVapor (see Figure 15(a)). Some of the flight tests

are included in the supplementary video, Extension 1.

Figure 20 shows the turn radius as a function of the time

delay td between the pull-up and roll. Simulation results are

shown alongside the experimental data.

The simulations show that, unlike the conclusions of

Figure 10, the turn radius is optimized for a zero time

delay, which is also verified in experiments. The varia-

tion in turn diameters is about 0.1 m (10 cm) for the

complete range of td considered here, which also con-

trasts sharply with Figure 10. The discrepancy between

the simulation and experiments, in Figure 20, is largely

due to the modeling uncertainties, particularly in the

moments of inertia and drag estimates.

7. Inverse-design principles

We present some inverse-design principles for robotic air-

craft intended for high-speed flight through densely

crowded spaces. First, Equations (2) and (6) yield the fol-

lowing expression for the turning radius R after ignoring

the contribution from T: R= cos2 g
kCL sinm

,
1

which provides the

upper bound on the turn radius for given CL and k. The

expression for R is independent of V: therefore, the turn

radius, which is a measure of how crowded an obstacle

field can be flown through, is independent of the flight

speed, but depends strongly on k (which is a scaled inverse

of the wing loading) and the maximum achievable value of

CL, which depends primarily on the Reynolds number and

the shape of the airfoil.

Second, a key metric which constrains the class of navig-

able obstacle fields is am, which measures how rapidly an

aircraft can change its turn rate. It turns out that am}V2,

i.e. the aircraft agility increases with its speed. Therefore,

high-speed flight is a better alternative to low speed flight

even from the point of view of flight dynamics, aside from

making for a spectacular sight.

Finally, we note that the turn radius is inversely propor-

tional to k= rS
2m
, which is clearly an important design para-

meter. A large value of k yields a tighter ATA maneuver,

and the volume inside which an ATA maneuver can be per-

formed increases rapidly with reducing k. However, a larger

value of k is ideally suitable for slow flight. Therefore, k

Fig. 18. Snapshot showing flight to the waypoint (flanked by the two tripods) following a hand-launch.

Fig. 17. Trajectory of the robotic aircraft during 15 flights to the

waypoint [5, 1] (denoted by h). The three ellipses are actually

circles (distorted due to the axes) which correspond to error radii

of 0.25, 0.5 and 0.75 m. Some of the landings can be seen in the

supplementary video (Extension 1).
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needs to be optimized for the class of obstacle fields that

the robotic aircraft is designed to cross as well as the

desired time of crossing.

Suppose that the obstacle field density requires a mini-

mum value of R, denoted as Rmin. The average value of

cos2g’ 1 while CL,max = 1 is also a reasonable estimate.

Typical values of m are in excess of 30� (load factor of 1.2

during a level turn), and we may thus set sin m = 0.5. Then,

we need k to satisfy

rS

2m
¼
D
k 	

2

Rmin

, i:e:,
m

S
�

Rmin

3

The above expression automatically imposes an upper

bound on the wing loading. The bound can be relaxed by

computing cos g more accurately, but that process requires

a design to start with. Thus, it is possible to perform inverse

design iteratively. An increased mass allowance can be used

for installing improved sensing and computational capabil-

ity on board. As a numerical illustration, g = 20� permits

an additional mass equal to 12% of the first estimate (which

was obtained by assuming g = 0).

8. Conclusion

In this paper, we presented a novel approach for construct-

ing and stitching together two families of motion primitives

for agile autonomous robotic aircraft flying at high speeds

in dense obstacle fields. The motion primitive are continu-

ously parametrized in the space of the control inputs. The

key idea behind the stitching logic for primitives is to

model the transition between two maneuver states as an

instantaneous switch between the two states following a

characteristic time delay which depends on the agility of

the robot.

The first family of primitives consists of steady 3D turns

between successive waypoints chosen by the motion plan-

ning algorithm. By assuming steadiness, we derived alge-

braic formulae between the control inputs required to

accomplish the turn, and the distance and the bearing

between successive waypoints. The stitching between suc-

cessive primitives was modeled as an instantaneous switch

between the two maneuvers following a characteristic time

delay which depends on the roll agility of the aircraft. The

resulting stitching logic was directly incorporated into the

derivation of the algebraic expressions for the control

inputs.

The second family consists of ATA primitives, designed

to allow aircraft, flying at high speeds, to back-track from

impenetrable regions of the obstacle field by performing

instantaneous turns inside a small volume. The instanta-

neous turns are composed of three segments. In particular,

the duration of the first segment is equal to the time delay

between the command to pull-up to the prescribed angle of

attack and the command to roll to the maximum possible

angle for the turn. This time delay can be optimized for the

shape of the turning volume. However, the quantitative

relation between the shape of the turning volume and the

time delay was shown to be sensitive to the inner-loop

controllers.

Both families of primitives were demonstrated in experi-

ments to prove their feasibility as well as to demonstrate the

effect of inner-loop controllers on the primitives. The primi-

tives can be combined readily with an off-the-shelf motion

planning algorithm. This was demonstrated by numerically

simulating an RHC-based motion planning algorithm which

directly incorporated the motion primitives derived in the

paper. The simulations also demonstrated the maximum

speed at which high speed is flight is possible without get-

ting trapped locally in ATA loops.

Fig. 20. Simulation results and experimental data showing the

effect of a control law (Paranjape et al., 2013c) on the turn

diameter during an ATA. Note that the turn radius is measured in

the horizontal (x–y) plane.
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Fig. 19. Trajectory of the robotic aircraft during five flights

across two waypoints. In all cases, the aircraft was commanded

to fly to [2, 0] and then to [5, 1], with the crossing of x = 2

triggering the change in waypoint command. The three ellipses

are circles, as in Figure 17, correspond to error radii of 0.25, 0.5

and 0.75 m.
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Appendix A: Index to Multimedia Extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRRYouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Appendix B: Equations of motion

The complete state space of the motion of a rigid airplane

consists of 12 variables which can be grouped into four

groups.

1. Position coordinates: x, y, z.

2. Velocity: V, a, b, denoting the flight speed, angle of

attack, and angle of sideslip.

3. Euler angles f, up, c (roll, pitch, yaw, respectively).

4. Body axis angular rates: p, q, r.

The primary aerodynamic coefficients are called the

coefficients of lift (CL), drag (CD), side force (CY), rolling,

pitching and yawing moments (Cl, Cm, Cn). The equations

of motion of a rigid aircraft are given by [2008, 2011]:

_V =
1

m
T �

1

2
rV 2SCD � mg sing

� �

_a= q� tanb(p cosa+ r sina)�
1

mV cosb

T sina

V
+

1

2
rV 2SCL � mg cosm cosg

� �

_b= p sina� r cosa+
1

mV

mg sinm cosg+
1

2
rV 2SCY � T cosa sinb

� �

_p=
Iy � Iz

Ix
qr+

1

Ix

1

2
rV 2SbCl

� �

_q=
Iz � Ix

Iy
rp+

1

Iy

1

2
rV 2ScCm

� �

_r=
Ix � Iy

Iz
pq+

1

Iz

1

2
rV 2SbCn

� �

_f= p+ tan up(q sinf+ r cosf)

_up= q cosf� r sinf

_c= sec up(r cosf+ q sinf)

_x=V cosg cosx, _y=V cosg sin x, _h=V sin g,

where T denotes the thrust, and the angles g, x and m are

obtained from

sing= cosa cosb sin up � sinb sinf cos up

� sina cosb cos up cosf

sinx cosg= cosa cosb cos up sinc

+ sinb( sinf sin up sinc+ cosf cosc)

+ sina cosb( cosf sin up sinc� sinf cosc)

sinm cosg= cosa sinb sin up+ cosb sinf cos up

� sina sinb cosf cos up

cosm cosg= sina sin up+ cosa cos up cosf:

The wing geometry is specified in terms of the span (b),

chord length (c), and area (S).

The non-dimensional sideforce coefficient CY contains

an affine contribution from the vertical tail (or rudder, as

the case may be) deflection dr, so that

CY[CY (a,b, p, r)+CY , drdr

The term CYdr
is the partial derivative of CY with respect

to dr and is referred to as the ‘‘dr-derivative of CY’’. A simi-

lar nomenclature applies to other partial derivatives. The

non-dimensional rolling and yawing moment coefficients,

Cl and Cn, are given by

Cl = htCY , Cn= � ltCY

where ht . 0 is the distance of the aerodynamic center of

the vertical tail from the plane containing the wings and

fuselage, while lt . 0 is the distance between the center of

Table of Multimedia Extensions

Extension Media type Description

1 Video Demonstration of steady and
aggressive turn primitives
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gravity of the aircraft and the aerodynamic center of the

vertical tail. If we let CY , dr\0 (without loss of generality),

it follows that

Cn, dr.0 and Cl, dr\0

We define the dr-derivatives of the rolling and yawing

moments as

Ldr =
1

2
rV 2SbCl, dr , Ndr =

1

2
rV 2SbCn, dr

where S denotes the wing area and b denotes the wing span.

Finally, we relate the body axis yaw rate r to the steady

turn rate _x, assuming _a= _b= _m= _g=b= 0. A complete

discussion is beyond the scope of this paper, but it can be

shown that

p

q

r

2

6

4

3

7

5
=

cosa 0 � sina

0 1 0

sina 0 cosa

2

6

4

3

7

5

1 0 0

0 cosm sinm

0 � sinm cosm

2

6

4

3

7

5

cosg 0 � sing

0 1 0

sing 0 cosg

2

4

3

5

0

0

_x

2

4

3

5

=

�( cosa sing+ sina cosm cosg) _x

sinm cosg _x

( cosa cosm cosg � sina sing) _x

2

4

3

5

Appendix C: Time-delay approximation of

first-order systems

Consider a system given by

_x= ku, _u= a(uc � u) ð31Þ

where a . 0 and k are constants. The above system repre-

sents an integral dynamics coupled with a first-order

actuator, similar to the turn dynamics in (2) and (3). The

control input uc is modelled as a unit step function. We

want to replace the actuator dynamics with a delayed step

input to the integrator system.

The response of the system with a step input uc is given

in the Laplace domain by given by

x(s)=
ka

s2(s+ a)
, x(0)= u(0)= 0

so that

x(s)=
k

s2
�

k

as
+

k

a(s+ a)
) x(t)= kt �

k

a
1� e�atð Þ

If we replace the actuator dynamics with a time-delayed

step input u(t 	 t) = 1 and u(t \ t) = 0, we get x(t 	
t) = k(t 2 t) and x(t \ t) = 0. We would like to choose

the time delay t to minimize the error between the value of

x(t) obtained using the time-delayed input and that obtained

with the actuator dynamics. It is easy to see that t = 1/a is

necessary to achieve a zero steady state error; if the error

need to be zero for a specific value of t, say tf, then we can

choose t= 1�e
�atf

a
. In particular, as a becomes large (i.e. as

the actuator dynamics become much faster than the dura-

tion of the maneuver), it suffices to choose the limiting

value t = 1/a.
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