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ABSTRACT suited to properly formalize learning and classification stages

. . . and to cope with noise and uncertainty. One of the main ad-
This paper describes an original approach for non paramets

) i N . “~"vantages of our statistical scheme was to make feasible an
ric motion analysis in image sequences. Itrelies on a statist-g, 5 o+ computation of conditional likelihood functions, and
ical modeling of distributions of local motion-related meas- then, to achieve in a simple and efficient manner model es-
urements, computed over image sequences, resulting o 4ion -~ On the other hand, its main shortcoming was to
spatio-temporal random walks. It handles in a single prob- yis.aq spatial properties of motion information. To handle
abllI.StIC framework bqth spatial and temporal propertlgs of within a single statistical modeling framework both tem-
motion content. The important feature of our method is to poral and spatial aspects of dynamic content, we exploit

hmak;,-ffeas!ble the er>]<act com_plcjjtanon of conditional likeli- g i temporal random walks within successive maps of
ood functions. We have carried out motion recognition ex- o _related measurements. It allows us to keep the cru-

.perime.nts overa large set of real image sequences Comprisc':ial properties of temporal Gibbs models in terms of ex-
Ing various motion types. act computation of conditional likelihood functions and in
terms of model estimation efficiency.
1. INTRODUCTION AND PROBLEM STATEMENT The remainder of this paper is organized as follows.
Section 2 presents the local motion-related measurements
As far as general dynamic image content recognition is con-we utilize for non parametric motion activity modeling. In
cerned, the use of non parametric techniques as oppose&ECtiOﬂ 3, the statistical modeling of motion information
to 2D parametric motion models appears quite relevant. In and the issue of estimating these models are addressed. Sec-
that context, the pioneering work of Nelson and Polana [4] tion 4 presents the application to motion classification and
introduced the notion of temporal textures which refer to experimentalresults. Section 5 contains concluding remarks.
complex motion types (such as moving crowds, river flows

or wind blown tree;), and relied on _technlques on_gmally 2 LOCAL MOTION-RELATED MEASUREMENTS
developed for spatial texture analysis to characterize mo-

tlontp()lntent. Global mo?on-basle]:::l fe?tukrjes Compu(;ed cfjrom Our approach for non parametric motion analysis relies on a
S?"’.‘t'z ct:oo?currfe:nces 0 norma.thow 1elds wlere Int' €ed €X statistical modeling of distributions of local motion-related
ploited to classily sequences €ither as simple motions (ro'measurements. Dense optic flow field estimation remain

tation, translz?\tion, d_ivergenc_e) or as_tempora_l textures. I yigie it and costly, especially for complex dynamic scenes
[5], new spatial motion activity descriptors, still computed such as temporal textures. We prefer to consider local motion-

fro(rjn dr_lfcf) rmal flow f'?'d_S' w_(la_rehad?jcled using Folurler spectfrum related quantities directly evaluated from the spatio-temporal
and difference statistics. To handle temporal aspects of MO iy atives of the intensity function. The local motion-related

tion content, we .have defined in [1] temporal motion-based measurement already used in [2] is given at pixby:
features determined from temporal cooccurrences of local

motion-related measurements. S IVI(@)]| - |7 (q)|
Further investigating the analogy with texture analysis Vobs(p) = qez(p) 5 1)
and exploiting the correspondence between cooccurrence max (77 72(16.7"(11) VIl )

measurements and probabilistic models [6], we have presen-

ted in [2] a non parametric statistical motion modeling frame-where F(p) is a3 x 3 window centered omp, 1> a pre-
work using temporal Gibbs models. Compared to determined constant related to the noise level in uniform
feature-based methods, statistical approaches appear mom@eas (typicallyy = 5), I; the temporal derivative of the



intensity functionI, and VI its spatial gradient. Quant-
ity veps(p) IS @ weighted local average of the normal flow
vn(p) = |L()|/IIVI(p)||. It has proven more reliable than
normal flow, used in [4, 5], which is known to be sensitive
to noise attached to the computation of the spatio-temporal
derivatives of the intensity function.

ObViOUSIy, when Considel’ing this local measure, we have map k£ — 1 map k mapk + 1
lost any motion direction information. However, in the con-
text of motion recognition, this is not a real shortcoming Fig. 1. Two examples of spatio-temporal neighborhood for
as stressed in previous work [1, 2], since we are rather in-pointp in framek : 14-neighborhood (symbok§ and 26-
terested in discriminating general motion types. Contrary neighborhood (symbokando).
to [4, 5], we do not exploit the direction information at- y- 5 gefined as :
tached to normal flows. As a matter of fact, direction in-

. . . =T
formation rather reflects the spatial texture pattern presentin _ .
the observed scene, whereas we aim at providing a general Pm(Y) = Pr(Yo) 11 Ppm(YilYi-1) 2)

description of motion content almost independent of these o )
spatial characteristics. where M refers to the statistical model accounting for the

Our statistical modeling of motion activity requires to distribution attached to the observed random protesghe

quantize the continuous motion-related measurementsuSe Of spatio-temporal random walks permits to evaluate
{vobs(p)}. To cope with erroneous values, we apply a quant- spatlo—temporal cooccurrences of_m.otlon—related measure-
ization on a predefined interval. It indeed appears relevantMents, which supplies a single statistical framework to handle
to introduce a limit beyond which measures are no more re-Poth temporal and spatial properties of motion activity.
garded as usable. In practice, we U§ejuantization levels We assume thaa (Yo) follows a uniform law. There-

in the interval0, 4]. In the sequely will referto a sequence ~ foré, the knowledge of the transition matrpfa(Yi =

of maps of motion-related measurements, Ardthe space ~ “/Yi-1 = ¥')}(v.)ea> entirely specifies the motion activ-
of the quantized motion-related measurements. ity model M. In order to supply an exponential formulation
of Py(Y), we introduce the Gibbsian potentialsy, =

{Ym(v, V") }w,vr)en» defined by :
3. STATISTICAL MOTION ACTIVITY MODELING Pad(Ys = v|Yiet = V) = exp W ag (v, 1) 3)
3.1. spatio-temporal random walks with 37 cx exp Uy (v, ') = 1. Pp(Y) can be rewritten

) ) o o according to an exponential expression:
To characterize motion activity within video sequences, we

exploit random walks as investigated in [3] for the charac-  Pum(Y =y) = Prm(Yo = o) -exp[Tp o T(y)]  (4)
terization of the spatial color distributions of still images. In

this paper, we rely on spatio-temporal random walks within
sequences of motion-related measurement maps. A rando
walk is specified by a spatio-temporal neighborhood. Two

wherel , o I'(y) is a dot product between model potentials
and cooccurrence measurementB(y) =

M
ML, ' 9) }wryenz, with:

different examples of neighborhood systems with 14 and 26 i=T

interactions are given in Fig.1. At instanthe random walk L(v,V'|y) = Z 6(yi —v) - (yi1 — V') (5)
goes from the current positiqé;, p;) € {1,.., K} xRtoa i=1

new location(k;+1, pi+1) € {1,..., K} x R, whereK'is  \heres is the Kronecker symbol. Then, the dot product

the length of the sequence of motion-related measurementy ,, o I'(y) can be simply expressed as:

maps andR the image grid. The new location is chosen

with a uniform probability within the spatio-temporal neigh- Ty el(y) = Z Uy (v, V) -T(v,v'y)  (6)
borhood of point(k;,p;). We randomly select the initial (v,v')EA?

location (ko, po). If an image border is reached, the ran-
dom walk goes on from a new randomly chosen spatio-
temporal location in{1,.., K} x R. Thus, at iteratior?’,

we have defined a sequence of successive posiiors
{(ko,po), --, (kT,pr)}. The associated motion-related meas-
urement sequence is denoted py= {y;}icqo, ., With

y; = xr,(pi). y can be considered a{s tE]ee{realiz}ation ofa Yy v)=I|T(]y)/ Z L, v'ly) (7)
random proces¥’, and the likelihood functiorP,(Y") of v'eA

For a sequencg the Maximum Likelihood (ML) model
estimate is given by the empirical occurrences of the trans-
itions observed in the sequengeThe potentials of the es-
timated ML modelM w.r.t. y are then given by:



A B C D E F G H
A 83.00 11.00 2.00
3.2. Statistical similarity measure of motion activity . 74.00 — 9.00 370-80
Given two image sequences, we want to evaluate the degrée sy
of similarity between their respective motion activity levels. 40.00  60.00
We noteM! and M? two motion activity models issued || P 200 oo 2o
from two different video sequences, afid,andl'? the as- E [ 250 ' 95.0 2.50
sociated cooccurrence distribution$t! and M? were es- - g-gg 92.00 — 3.00
timated from two random walk realizatiop$ andy?. 200  45.00 53.00
We introduce a similarity measum@(M?!, M?) rely- G || 800 12.00 80.00
. . . K 10.00 14.00 76.00 2.00
ing on a symmetrical version of the Kullback-Leibler (KL) 11500 95.00
divergence which evaluates the distance between two proly- 2.50 2.50 95.0

ability distributions as the expectation of their log-ratio: e
y P g Table 1. Percentage of correct and false classification ac-

cording to the different motion classes. For each class, we
report results obtained using the RW method (bold type) and
the TG method (italic type). For instance, the percentages
of samples from class (A) assigned to class (A), (D) and (E)
are resp.83%, 11.00% and2.00% using the RW method.

DM, M2) = % [KLM M) + KLM MY (8)

where K L(M*||M?) denotes the KL divergence. Its ap-
proximation comes to compute a log-ratio of likelihoods
evaluated ony* w.r.t. respectively modeM* and M? [2].
Using the exponential formulation (4), we obtain:

KLMIMY) ~ %[li CWpp]er

4.2. Learning and classification stage
9)

This expression quantifies the loss of information occurring
when substituting\1? for M! to account for the motion
activity corresponding to.

To cope with motion recognition, we first perform a super-
vised learning stage using a training set of image sequences,
and, in a second step, we achieve motion recognition over
a test set. These two sets are defined as follows. Each im-
age sequence is divided into subsequences of six images to
consider sequences of five maps of motion-related measure-
ments. Thus, we obtain 57 samples in each class leading to a
total set of 456 sequences. Then, the first ten samples of the
first sequence of the seven first classes, (A) to (G), are used
We have carried out motion recognition experiments over as the training data for the classifier. For class (H), since the
an image sequence $atcluding eight motion classes. The sequences contain only 30 frames, we consider the first five
video set contains four kinds of temporal texture: wind blownsubsequences of the first two sequences of this class. Fi-
grass (A), gentle sea waves (B), rough water turbulence (C)nally, we obtain a training sett comprising 80 sequences,
and wind blown trees (D). We also introduce one class of and a test seff including 376 sequences of five images.
static anchor shot from news program involving a weak mo- For each element € A, the learning stage consists
tion activity (E) . In addition, two classes of rigid motion are in estimating and storing the associated statistical motion
included: sequences involving moving (descending or as-activity modelM® and cooccurrence measuremerftsEach
cending) escalator (F) and traffic image sequences (G). Themotion class is then described by a set of motion activ-
last class (H) is formed by sequences of a pedestrian walk-ty models. The classification stage resorts to a nearest-
ing either from the left to the right or from the right to the neighbor classification scheme. Givieg B, we determine
left. All these sequences have been acquired with a staticthe associated motion activity modet® and cooccurrence
camera. Moving camera can be handled as well [2]. distributionT"®. The recognition step comes to determine
Each motion class except class (H) is represented bythe closest motion class according to the statistical similar-
three sequences of one hundred frames. Class (H) includely measureD. We retrieve within the set of stored models
ten sequences of thirty images (five shots involving a ped- { M@} ,c 4, the modelM? the nearest of modeM?, i.e.
estrian moving from the left to the right and five ones a ped- G = arg min,c 4 D(M?, M?) andb is finally stated as be-
estrian walking from right to the left). Fig.2, we display longing to the motion class @f.
for each class in one image representative of each sequence
(for class (H), we have selected three shots over the ten se-

4. APPLICATION TO MOTION RECOGNITION

4.1. Experimental set of image sequences

guences belonging to this class).

Iwe thank INA, Département Innovation, Direction de la Recher-

che, for providing the news sequences, and, C.H. Peh and L.F.

Cheong at National University of Singapore for providing temporal

texture samples. The sequences of the video set can be viewed atT = ?’XK' ) : -
considered the temporal Gibbsian modeling framework presen-

http://www.irisa.fr/prive/rfablet/baseeca mvt.english.html.

4.3. Classification experiments

In addition to experiments carried out using statistical mod-
els derived from spatio-temporal random walks of length
R| with a 26-neighborhood (see Fig.1), we have




= o™
Fig. 2. Experimental video set: for each of the eight motion classes (A to H), we display three images representative of
each sequence of the motion class. The eight classes contain various dynamic contents: (A) wind blown grass, (B) gentle
sea waves, (C) rough turbulent water, (D) wind blown trees, (E) anchor shot in news program (F) moving escalator, (G) car

traffic and (H) pedestrian walking.

ted in [2] for comparison purpose. In the sequel, we denote 5. CONCLUSION

as the TG method the approach using Temporal Gibbsian

models, and as the RW method the one based on spatioWWe have presented a single non parametric statistical mo-
temporal random walks. tion modeling framework which can capture both temporal

and spatial aspects of motion activity. It relies on statist-

As shown in Tab.1, the RW method succeeds in dis- ical models estimated from spatio-temporal random walks

Zr?'r!ahtmg the elgf:t mguon. classesgge;ér(lyeq n SUbseCtlonWithin sequences of maps of local motion-related motion
. W'.t a correct.(? assl ication rate 81.257% In average. measurements. It can be straightforwardly used for motion
The highest classification error corresponds to motion class

o). Itis d he misclassificati tthe el X dclassification or recognition issues since it makes feasible
(C). Itis due to the misclassi |ca’F|on of the elements issued 4 simple both ML model evaluation and the computa-
from the second sequence of this class.

. . ) Its motion actvity yjoy of the motion activity similarity measure. The mo-
is indeed at an intermediate level between motion activity tion recognition experiments carried out over a video set

of class (B) and the two other sequences of class (C). Thes%omprising various types of dynamic content (rigid motion,

;esults_ emé) hasize the}t(;he comp!eth re(;p\llgry_ of mot;on In'temporal texture, pedestrian walking) demonstrates the effi-
ormation by means ot dense opt|c_ OWTIEIdS 1S not always ciency of our method for motion activity characterization.
necessary for issues such as motion recognition or classi-

fication. Furthermore, it suggests that the use of motion-
related measurements which do not comprise direction in-
formation is sufficient to recover general motion types.
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