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Abstract. The motion recovery for a class of movements in the space by using 
stereo vision is considered by observing at least three points in this paper. The 
considered motion equation can cover a wide class of practical movements in 
the space. The observability of this class of movement is clarified. The 
estimations of the motion parameters which are all time-varying are developed 
in the proposed algorithm based on the second method of Lyapunov. The 
assumptions about the perspective system are reasonable, and the convergence 
conditions are intuitive and have apparently physical interpretations. The 
proposed recursive algorithm requires minor a priori knowledge about the 
system and can alleviate the noises in the image data. Furthermore, the 
proposed algorithm is modified to deal with the occlusion phenomenon. 
Simulation results show the proposed algorithm is effective even in the 
presence of measurement noises.  
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1   Introduction 

In the study of machine vision, observing the motion and the structure of a moving 
object in the space by using the image data with the aid of CCD camera(s) has been 
studied recently. The motion treated in this field is composed of a rotation part and a 
translation part. A very typical method is the application of the extended Kalman 
filter (EKF). Numerous successful results have been reported until now where the 
formulation is based on a discrete expression of the motion, and the observability 
conditions are derived based on the perspective observations of a group of points 
[1][4]. Such a recursive algorithm obviously alleviates the noises in the image data in 
contrast to the non-recursive methods [8] based on solving a set of nonlinear algebraic 
equations. It should be mentioned that some theoretical convergence conditions of 
discrete EKF have been established both as observer and filter [10].  

The observation problem for continuous time perspective systems has been studied 
in the point of view of dynamical system theory in [6][9]. A necessary and sufficient 
condition for the perspective observability is given in [5] for the case that the motion 



parameters are constants. For the movements with piecewise constant motion 
parameters, the perspective observability problems are clarified in [12] for the cases 
of observing one point or a group of points. Furthermore, for the observer design, 
some simple formulations for observing the position of a moving object are proposed 
in [2][3][7]. The proposed observers are guaranteed to converge in an arbitrarily large 
(but bounded) set of initial conditions, and since the convergence is exponential it is 
believed that the performance of the new observers are reliable, robust and would 
quickly compute the position on real data.  

This paper considers the problem of motion recovery for a class of movements 
under perspective observation. Naturally, the motions are formulated in continuous-
time settings and the so-called motion parameters are assumed to be all time-varying. 
The motion parameters are estimated by using image data observed through pin-hole 
camera with constant focal length (normalized to unity). The basic and important idea 
is to analyze the extent to which we can develop a scheme that is guaranteed to 
converge by observing minimum number of points. A dynamical systems approach is 
employed since it provides us with powerful mathematical tools, and a nonlinear 
observer is developed based on the second method of Lyapunov [11].  

The considered motion equation can cover a wide class of practical movements in 
the space. The observability of this class of movement is clarified by observing three 
points. The estimation of the motion parameter is developed in this paper. The 
formulated problem can be converted into the observation of a dynamical system with 
nonlinearities. It should be noted that smoothened image data instead of the measured 
one is used in the proposed formulation in order to alleviate the noises in the image 
data. The assumptions about the perspective system are reasonable, and the 
convergence conditions are intuitive and have apparently physical interpretations. The 
attraction of the new method lies in that the algorithm is very simple, easy to be 
implemented practically. Furthermore, the proposed method requires minor a priori 
knowledge about the system and can cope with a much more general class of 
perspective systems. It should be noted that the changing of focal length is not 
considered in this paper. Furthermore, the algorithm is modified to deal with the 
occlusion phenomenon. Simulation results show the proposed algorithm is effective 
even in the presence of measurement noises. 

2   Problem Statement 

Consider the movement of the object described by  
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where [ ]Txxxtx 321 ,,)( =  is the position; )(tiω  and )3,2,1()( =itbi  are the 
motion parameters.  

It is supposed that the observed position by Camera 1 is defined by 
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and the observed position by Camera 2 is defined by  
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where m and n are constants. The perspective observations are defined in (2) and (3). 
The combination of the observations in (2) together with (3) is called “stereo vision”.  

In this paper, we make the following assumptions. 
(A1). m and n are known constants with . 022 ≠+ nm
(A2). The motion parameters )(tiω  and )3,2,1()( =itbi  are bounded.  
(A3).  meets the condition )(3 tx 0)(3 >>ηtx , where η  is a constant. 

(A4).  and  are bounded. )(ty )(* ty

Remark 1. It is easy to see that assumptions (A3) and (A4) are reasonable by referring 
to the practical systems.  
 

The purpose of this paper is to estimate the motion parameters )(tiω  and 
 by using the perspective observations. )3,2,1()( =itbi

3   Formulation of the Motion Identification 

Define 

)(
1)(

3
3 tx

ty = . (4) 

Then, equation (1) can be transformed as  
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Let  

[ ]Tbbbt 321321 ,,,,,)( ωωωθ = =∆ [ ]T654321 ,,,,, θθθθθθ , (6) 

and  
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Thus, the first two equations in (5) can be rewritten as 
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Similarly, for , it gives )(* ty
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with 
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From (2) and (3),  can be calculated by the average )(3 ty
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Thus, )(tφ  and  are available. )(* tφ

In the following, the vectors )()( tt θφ ⋅  and are estimated in section 3.1 
by using the perspective observations defined in (2) and (3). Then, the motion 
parameters 

)()(* tt θφ ⋅

)(tiω  and )3,2,1()( =itbi  are estimated in section 3.2 by using the stereo 
observation of at least three points. 

3.1   Identification of )()( tt θφ  and  )()(* tt θφ

In the following, the observer of system (8) is formulated. We consider the system 
described by 
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where iiif βα ,,  are positive constants,  can be any small constants, and  is 
chosen as . 

)0(iw )0(ir
0)0( =ir

Let 

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
2

1

tw
tw

tw . (16) 

 
The next theorem is obtained. 

Theorem 1. All the generated signals in (12)-(15) are uniformly bounded and  is 
the asymptotic estimate of 
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Proof. For simplicity, we only give the proof for i=1. Let 
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Now, define  
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The uniformly boundedness of )(1 tη  and )(1 tη&  can be easily derived by using the 

assumptions. Thus, there exist constants 01 >λ  such that 
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Now, consider the Lyapunov candidate  
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Differentiating  yields )(tV
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Integrating the both sides of (25) from 0 to t yields  
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Thus, it can be seen that  and the integral  are bounded. Therefore, 

 as . By the definition of , it gives  and  as 
. The theorem is proved. 
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Similarly to (10), construct the equation 
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where  can be defined by referring (13)-(15) by using the obtained 

image data  from Camera 2. Similar to Theorem 1, it can be concluded that 
 is uniformly bounded and  

⎥
⎦

⎤
⎢
⎣

⎡

)(
)(

*
2

*
1

tw
tw

=∆ )(* tw

)(* ty
)(* tw



( ) 0)()()(lim ** =−⋅
∞→

twtt
t

θφ , (28) 

i.e.  is the asymptotic estimate of . )(* tw )()(* tt θφ

3.2   Identification of )(tθ   

Relations (17) and (28) tell us that, by observing one point via stereo vision, four 
relations about )(tθ  can be obtained. It can be easily checked that the rank of the 

matrix  is three. It can be argued that the relations about ⎥
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by increasing the observation points. Since there are six entries in )(tθ , it can be 
argued that at least two points are needed to get a solution of )(tθ .  

Now, suppose p points are observed. For the j-th point, we denote the obtained 
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By Theorem 1, it gives  
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About the rank of the matrix )(tΦ , we have the next lemma.  
Lemma 1. The matrix )(tΦ  is of full rank if and only if at least three points are not 
on a same line. 
Proof. The proof is omitted. 

Lemma 1 means that at least three points are needed in the proposed formulation.  
Theorem 2. If at least three observed points are not on a same line, then the motion 
parameters are observable and it holds 
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Since the image data is directly used in )(tΦ , the measurement noise will directly 

influence the accuracy of the estimation. In the practical application of the proposed 
algorithm, the image data  and  can be respectively replaced by the 

generated smooth signals  and , since  and 
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where γ  is a positive constant.  

Lemma 2. The generated signals  and  are uniformly bounded and )(ˆ )(
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Proof. By the assumptions (A2)-(A4), it can be seen that 
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By considering the Lyapunov candidate  
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The recursive algorithms of deriving ,  and  obviously 
alleviate the noises in the image data.  
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)(ˆ )*( ty j  and  recpectively, we get a matrix . By combining the 

matrices  together for all j, we get the matrix  expressed as 
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If )(tΦ  is of full rank, then  is of full rank when t is large enough. By using 
Theorem 1, Theorem 2 and Lemma 2, it can be concluded that  
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Thus, the motion parameters can be recovered by observing at least three points. 

4 Consideration of Occlusion 

In the practical applications, the occurrence of occlusion is inevitable. Thus, the 
algorithm should be modified in order to cope with this phenomenon. In the 
occurrence of occlusion, the image data of the observed point is not available. Thus, 
the image data should be replaced by some other virtual signals.  

Suppose the j-th point is not visible by the Camera 1 defined in (2). The method 
formulated in Section 3 of deriving  and  is no longer useful. By 

referring to the dynamics in (5), the virtual signals for  and  are 
constructed by the following dynamical system 
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( )+A  denotes  if A is of full rank, or the pseudo-inverse [13] of it if A is 

not of full rank;  denotes the corresponding vector of  defined in (29) in 
which  is replaced by ;  can be similarly derived by a procedure 
defined in (12)-(15), where the corresponding image data should be replaced by the 
virtual data  and ; the initial values at the instant  when the j-th 
point begins to be not visible should be chosen as 

( ) TT AAA
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)(ˆ tW )(tW
)()( tw j )(ˆ )( tw j )(ˆ )( tw j

)(ˆ̂ )(
1 ty j )(ˆ̂ )(
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)0(ˆ)(ˆ̂ )(
1

)(
1 −= jj yy ττ ; ; . )0(ˆ)(ˆ̂ )(

2
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2 −= jj yy ττ )0(ˆ)(ˆ̂ )(
3

)(
3 −= jj yy ττ (42) 

If the j-th point is not visible by the Camera 2 defined in (3), then the virtual signal 
for  should be similarly derived. Furthermore, if the j-th point is not visible by 

both of the two cameras, the virtual signals for ,  and  should be 
similarly derived.  

)()*( ty j

)()( ty j )()*( ty j )()(
3 ty j

The convergence of the computed motion parameters can be assured, if the total 
length of the intervals on which the data from two cameras is available is much longer 
than the total length of the intervals on which at least one camera is occluded. 

5   Simulation Results 

The simulation is done by the software Simulink in Matlab. The sampling period  is 
chosen as 

∆
02.0=∆ . The measured image data at the sampling point ∆k  is corrupted 

by a random noise which is in the range of )(01.0 ∆ky  (or correspondingly 

). Consider the movement of the object described by )(01.0 * ∆ky
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Four points starting at [ ] , T1,1,1− [ ]T2,2,1 − , [ ]T3,3,0  and [ ]T2,0,2  are 
observed. It is assumed that the third and fourth points are not visible by both of the 
two cameras during the time period [1, 6].  

 
Fig. 1. The difference between )(1 tω  and )(ˆ1 tω . 

 

 
Fig. 2. The difference between  and . )(2 tb )(ˆ

2 tb

 
The simulation results are shown in Figures 1-2. The simulation results of the 

differences )(ˆ)( 22 tt ωω −  and )(ˆ)( 33 tt ωω −  are very similar to that in Figure 1. The 

simulation results of  and  is very similar to that in Fig. 2. It )(ˆ)( 11 tbtb − )(ˆ)( 33 tbtb −



can be seen that very good estimates for the motion parameters are obtained even in 
the presence of measurement noises. 

6 Conclusions 

The motion recovery for a class of movements in the space by using stereo vision has 
considered by observing multiple (at least three) points in this paper. The considered 
motion equation can cover a wide class of practical movements in the space. The 
estimations of the motion parameters which are all time-varying have been developed 
based on the second method of Lyapunov. The assumptions about the perspective 
system are reasonable, and the convergence conditions are intuitive and have 
apparently physical interpretations. The proposed method requires minor a priori 
knowledge about the system and can cope with a much more general class of 
perspective systems. Furthermore, the algorithm has been modified to deal with the 
occlusion phenomenon. Simulation results have shown that the proposed algorithm is 
effective even in the presence of measurement noises. 
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