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Abstract

This paper uses a simple method for representing motion
in successively layered silhouettes that directly encode
system time termed the timed Motion History Image
(tMHI). This representation can be used to both (a)
determine the current pose of the object and  to (b)
segment and measure the motions induced by the object
in a video scene.  These segmented regions are not
“motion blobs”, but instead motion regions naturally
connected to the moving parts of the object of interest.
This method may be used as a very general gesture
recognition “toolbox”.  We use it to recognize waving
and overhead clapping motions to control a music
synthesis program.

1. Introduction and Related Work

Three years ago, a PC cost about $2500 and a low end
video camera and capture board cost about $300. Today
the computer could be had for under $700 and an
adequate USB camera costs about $50. It is not surprising
then that there is an increasing interest in the recognition
of human motion and action in real-time vision. For
example, during these three years this topic has been
addressed by [[5][6][7][8][9][10][11][12][15] [17][24]]
among others. Several survey papers in this period have
reviewed computer vision based motion recognition [25],
human motion capture [[22][23]] and human motion
analysis [1].  In particular, with the advent of inexpensive
and powerful hardware, tracking/surveillance systems,
human computer interfaces, and entertainment domains
have a heightened interest in understanding and
recognizing human movements. For example, monitoring
applications may wish to signal only when a person is
seen moving in a particular area (perhaps within a
dangerous or secure area), interface systems may require
the understanding of gesture as a means of input or
control, and entertainment applications may want to
analyze the actions of the person to better aid in the
immersion or reactivity of the experience.

One possible motion representation is found by collecting
optical flow over the image or region of interest
throughout the sequence, but this is computationally
expensive and many times not robust.  For example,
hierarchical [2] and/or robust estimation [4] is often

needed, and optical flow frequently signals unwanted
motion in regions such as loose and textured clothing.
Moreover, in the absence of some type of grouping,
optical flow happens frame to frame whereas human
gestures may span seconds. Despite these difficulties,
optical flow signals have been grouped into regional blobs
and used successfully for gesture recognition [9].

An alternative approach was proposed in [13] where
successive layering of image silhouettes  is used to
represent patterns of motions.  Every time a new frame
arrives, the existing silhouettes are decreased in value
subject to some threshold and the new silhouette (if any)
is overlaid at maximal brightness.  This layered motion
image is termed a Motion History Image (MHI).  MHI
representations have the advantage that a range of times
from frame to frame to several seconds may be encoded in
a single image.  Thus MHIs span the time scales of human
gestures.

Figure 1  Process flow chart with section numbers.

In this paper, we generalize the Motion History Image to
directly encode actual time in a floating point format
which we call the timed Motion History Image (tMHI).
We take Hu Moment shape descriptors [19] of the current
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silhouette to recognize pose. A gradient of the tMHI is
used to determine normal optical flow (e.g. motion flow
orthogonal to object boundaries). The motion is then
segmented relative to object boundaries and the motion
orientation and magnitude of each region is obtained.  The
processing flow is summarized in Figure 1 where numbers
indicate which section that processing step is described in.
The end result is recognized pose, and motion to that pose
-- a general “tool” for use in object motion analysis or
gesture recognition.  Section 5 compares the
computational advantages of our approach with the optical
flow approaches such as used in [9].  We use our
approach in section 6 to recognize walking, waving and
clapping motions to control musical synthesis.

2. Pose and Motion Representation

2.1. Silhouettes and Pose Recognition

The algorithm as shown in Figure 1 depends on generating
silhouettes of the object of interest. Almost any silhouette
generation method can be used.  Possible methods of
silhouette generation include stereo disparity or stereo
depth subtraction [3], infrared back-lighting [12], frame
differencing [13], color histogram back-projection [6],
texture blob segmentation, range imagery foreground
segmentation etc.  We chose a simple background
subtraction method for the purposes of this paper as
described below.

2.1. 1. Silhouette Generation

Although there is recent work on more sophisticated
methods of background subtraction [[14][18][21]], we use
a simplistic method here. We label as foreground those
pixels that are a set number of standard deviations from
the mean RGB background.  Then a pixel dilation and
region growing method is applied to remove noise and
extract the silhouette.  A limitation of using silhouettes is
that no motion inside the body region can be seen.  For
example, a silhouette generated from a camera facing a
person would not show the hands moving in front of the
body.  One possibility to help overcome this problem is to
simultaneously use multiple camera views.  Another
approach would be to separately segment flesh-colored
regions and overlay them when they cross the foreground
silhouette.

 2.1.2. Mahalanobis Match to Hu Moments of Silhouette

Pose

For recognition of silhouette pose, seven higher-order Hu
moments [19] provide shape descriptors that are invariant
to translation and scale. Since these moments are of
different orders, we must use the Mahalanobis distance

metric [26] for matching based on a statistical measure of
closeness to training examples.
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where x  is the moment feature vector, m is the mean of

the training moment vectors, and K -1 is the inverse
covariance matrix for the training vectors. The
discriminatory power of these moment features for the
silhouette poses is indicated by a short example. For this
example, the training set consisted of 5 people doing 5
repetitions of 3 gestural poses (“Y”, “T”, and “Left Arm”)
shown in Figure 2 done by each of five people.  A sixth
person who had not practiced the gestures was brought in
to perform the gestures.

Figure 2  Test postures “Y”, “T” and “|-“.

Table 1 shows typical results for pose discrimination. We
can see that even the confusable poses “Y” and “T” are
separated by more than an order of magnitude making it
easy to set thresholds to recognize test poses against
trained model poses.

Pose Y Pose T Pose |-

Test Y 14 204 2167

Test T 411 11 11085

Test |- 2807 257 28

Table 1  Discrimination results of posture recognition.
Distance to correct pose model is much smaller than
distances to incorrect poses.

An alternative approach to pose recognition uses gradient
histograms of the segmented silhouette region [5].

2.2. timed Motion History Images (tMHI)

In this paper, we use a floating point Motion History
Image [10] where new silhouette values are copied in with
a floating point timestamp in the format:
seconds.milliseconds. This MHI representation is  updated
as follows:
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where �  is the current time-stamp, and �  is the maximum
time duration constant (typically a few seconds)
associated with the template.  This method makes our
representation independent of system speed or frame rate
(within limits) so that a given gesture will cover the same
MHI area at different capture rates.  We call this
representation the timed Motion History Image (tMHI).
Figure 3 shows a schematic representation for a person
doing an upward arm movement.

Figure 3 Successive silhouettes of an upward arm
movement  encoded in floating point timestamps yields
the  tMHI at right.

2.3. Motion History Gradients

Notice in the right image in Figure 3 (tMHI) that if we
took the gradient of the tMHI, we would get direction
vectors pointing in the direction of the movement of the
arm.  Note that these gradient vectors will point
orthogonal to the moving object boundaries at each “step”
in the tMHI giving us a normal optical flow representation
(see middle left image, Figure 4). Gradients of the tMHI
can be calculated efficiently by convolution   with
separable Sobel filters in the X and Y directions yielding
the spatial derivatives:F x yx ( , ) and F x yy ( , ) .  Gradient

orientation at each pixel is then:
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We must be careful, though, when calculating the gradient
information because it is only valid at locations within the
tMHI.  The surrounding boundary of the tMHI should not
be used because non-silhouette (zero valued) pixels would
be included in the gradient calculation, thus corrupting the
result. Only tMHI interior silhouette pixels should be
examined.  Additionally, we must not use gradients of
MHI pixels that have a contrast which is too low (inside a
silhouette) or too high (large temporal disparity) in their
local neighborhood. Figure 4 center, left shows raw tMHI
gradients. Applying the above criteria to the raw gradients

yeilds a masked region of valid gradients in Figure 4
center, right.

After calculating the motion gradients, we can then extract
motion features to varying scales.  For instance, we can
generate a radial histogram of the motion orientations
which then can be used directly for recognition as done in
[10].  But, an even simpler measure is to find the global
motion orientation as discussed next.

3. Global Gradient Orientation

Calculation of the global orientation should be weighted
by normalized tMHI values to give more influence to the
most current motion within the template.  A simple
calculation for the global weighted orientation is as
follows:
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where �  is the global motion orientation, � ref  is the base

reference angle (peaked value in the histogram of
orientations), �( , )x y  is the motion orientation map found

from gradient convolutions, ( , , ( , ))norm tMHI x yδτ δ
is a normalized tMHI value (linearly normalizing the
tMHI from 0-1 using the current time-stamp �  and
duration � ), and angDiff x y ref( ( , ), )� �  is the

minimum, signed angular difference of an orientation
from the reference angle.  A histogram-based reference
angle (� ref ) is required due to problems associated with

averaging circular distance measurements. Figure 4 shows
from left to right a tMHI, the raw gradients, the masked
region of valid gradients and finally the orientation
histogram with global direction vector calculated.

Figure 4 tMHI; Gradients; Mask; Global Orientation.

Figure 5 below shows global motion direction for the
movements of kneeling, walking and lifting the arms.



Figure 5 Global motion: kneeling, walking, arms up.

4. Motion Segmentation

Any segmentation scheme begs the question as to what is
being segmented. Segmentation by collecting “blobs” of
similar direction motion collected frame to frame from
optical flow as done in [9] doesn’t guarantee that the
motion corresponds to the actual movement of objects in a
scene. We want to group motion regions that were
produced by the movement of parts or the whole of the
object of interest. A novel modification to the tMHI
gradient algorithm has an advantage in  this regard – by
labeling motion regions connected to the current
silhouette using a downward stepping floodfill, we can
identify areas of motion directly attached to parts of the
object of interest.

4.1. Motion Attached to Object

By construction, the most recent silhouette has the
maximal values (e.g. most recent timestamp) in the tMHI.
We scan the image until we find this value, then “walk”
along the most recent silhouette’s contour to find attached
areas of motion.  Below, let dT be a time difference
threshold, for example, the time difference between each
video frame. The algorithm for creating masks to segment
motion regions is as follows (with reference to Figure 6):

1. Scan the tMHI until we find a pixel of the current
timestamp. This is a boundary pixel of the most
recent silhouette (Figure 6b).

2. “Walk” around the boundary of the current silhouette
region looking outside for recent (within dT)
unmarked motion history “steps”. When a suitable
step is found, mark it with a downward floodfill
(Figure 6b). If the size of the fill isn’t big enough,
zero out the area.

3. Store the segmented motion masks that were found.

4. Continue the boundary “walk” until the silhouette has
been circumnavigated.

Figure 6 (a) tMHI from a moving “block”. (b) Find
current silhouette region; “walk” the boundary and
fill downwards wherever a step found; (c) Store the
found motion masks.

In the algorithm above, “downfill” refers to floodfills that
will fill (replace with a labeled value) pixels with the same
value, OR pixels of a value one step (within dT) lower
than the current pixel being filled. The segmentation
algorithm then relies on 2  parameters: (1) The maximum
allowable downward step distance dT (e.g.  how far back
in time can a past motion be considered to be connected to
the current silhouette); (2) The minimum acceptable size
of the downward flood fill (else zero it out because the
region is too small -- a motion “noise” region).

The algorithm above produces segmentation masks that
are used to select portions of the valid motion history
gradient described in Section 2.3. These segmented
regions may then be labeled with their weighted regional
orientation as described in Section 3.  Since these
segmentation masks derive directly from past motion that
“spilled” from the current silhouette boundary of the
object, the motion regions are directly connected to the
object itself.  We give segmentation examples in the
section below.

4.2. Motion Segmentation Examples

Figure 8 shows a hand opening and closing in front of a
camera.  Note that the small arrows correctly catch the
finger motion while the global motion is ambiguous.
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Fill
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Figure 8 Segmented and global finger motion for hand
open and close.

Figure 9 shows a kicking motion from left to right. At left,
hands had just been brought down as indicated by the
large global motion arrow.  The small segmentation arrow
is already catching the leftward lean of the body at right.
In the center, left image the left leg lean and right leg
motion are detected. At center right, the left hand motion
and right leg are indicated. At right, the downward leg
motion and rightward lean of the body are found.

Figure 9 Kicking motion.

Figure 10 shows segmented motion and recognized pose
for lifting the arms into a “T” position and then dropping
the arms back down.  The large arrow indicates global
motion over a few seconds, the smaller arrows show
segmented motion as long as the corresponding silhouette
region moved less than 0.2 seconds ago.

Figure 10 Arms up, T pose, arms down.

5. Comparison to Optical Flow Methods

The motion segmentation method in Cuttler and Turk [9]
employed a block matching method of optical flow; we’ll
use this as our comparison. Our motion segmentation
method was implemented using OpenCV, an optimized
open source computer vision library maintained by Intel
Corporation [28].  The code optimization results are
recorded in “CPU cycles per element” (pixel) so that
performance numbers are independent of CPU speed.  In
OpenCV, generic block matching optical flow is reported
to run at 1003 cycles per element  for an 8x8 window with
a search range 8 which can catch motion disparities <= 16
pixels, comparable to the disparities reported by Cuttler
and Turk. Cuttler and Turk report optimized block
matching results that are about 2.7 times faster due to their
use of a sparse correspondence search pattern and only
calculating motion for areas indicated by frame
differencing.   As a result of these approximations, they
are able to speed up their algorithm to about 369 cycles
per element.  These are good results, yet our tMHI method
is over 3 times faster at 106 cycles per element.  For
segmentation, they use a region growing method which
takes about 76 cycles per element.  We use flood fill
which takes 34 cycles per element.  In total then, Cuttler
and Turk’s method consumes 445 cycles per element, our
tMHI method uses 140 cycles per element for a factor of
3.2 speed up.  Thus, say, using 160x120 video images at
30Hz on a 500MHz Pentium III, the optical flow based
method would use about half the CPU, our algorithm
would use about one sixth of the CPU leaving more time
to do things with the recognized gestures.

6. Example of Use -- Conducting Music

To demonstrate the utility of the tMHI segmentation as a
motion gesture recognition “tool”, we decided to control a
vocal music synthesizer with 3D spatial sound with the
following gesture movement controls:

•  Detect walk-on/walk-off to set and reset the music.

•  Waving gestures control the music tempo.

•  Waving with the left(right) arm moves the music
left(right). Waving both arms centers the music.

•  A full, “jumping jack” over the head clap sends the
music outward.

•  Clapping with hands held over the head pulls the
music back in.

Figure 11 shows the recognition of the above gestures. In
the figure the large circle shows direction and amount
(pointer length) of global motion, the small circles show
segmented motion occurring in quadrants around the user.
From this we see that walking on or off can easily be
detected by a large sideward motion with two segmented
sideward motions on the same side. In the rest of the
gestures, waving and clapping can be detected by the
sinusoidal motion patterns that they make.



Figure 11 Across from top left to bottom right: Walk-
on; down beat; full clap; over head clap detected.

In Figure 12 at top, the angle of motion of the left hand
clapping over the user’s head shows a sinusoidal pattern.
In Figure 12 at bottom, the angle of motion of the left
hand downbeats shows a sinusoidal pattern. Many
techniques can be used to recognize such patterns, for
example, using a Hidden Markov Model (HMM) to learn
the sinusoidal parameters.

For our application, the sinusoidal movement patterns
were circularly rotated prior to recognition (and display)
so that the maximal extent of the gesture would be at
bottom.  Using this representation, we found recognition
to be quite reliable just by detecting a large negative
derivative followed by an upward derivative.  This catches
the movement right at the lowest point of the downbeat or
at the point where the hands meet in clapping.  These
recognitions were automatically detected and displayed as
shown in Figure 11.  The exact settings for detecting
gestures were set using a training tape and then run on
another tape. The recognition rate was 100%.

Figure 12 Angle of motion over time shows a
sinusoidal pattern for the left hand clapping at top,
and the left hand waving downbeats at bottom.

7. Summary

In this paper we extended earlier motion template research
[13] by offering a method of calculating normal optical
flow motion orientations directly from the motion history
template. We also presented a novel method of normal
optical flow motion segmentation based on the tMHI that
segments motion into regions  that are meaningfully
connected to movements of the object of interest. This
motion segmentation, together with silhouette pose
recognition, provides a very general and useful “tool” for
gesture recognition.  In addition, this new algorithm is
computationally quicker than motion segmentation
algorithms based on optical flow.       
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