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Abstract

Truncated signed distance function (TSDF) based volu-

metric surface reconstructions of static environments can be

readily acquired using recent RGB-D camera based map-

ping systems. If objects in the environment move then a pre-

viously obtained TSDF reconstruction is no longer current.

Handling this problem requires segmenting moving objects

from the reconstruction. To this end, we present a novel so-

lution to the motion segmentation of TSDF volumes. The

segmentation problem is cast as CRF-based MAP inference

in the voxel space. We propose: a novel data term by solving

sparse multi-body motion segmentation and computing like-

lihoods for each motion label in the RGB-D image space;

and, a novel pairwise term based on gradients of the TSDF

volume. Experimental evaluation shows that the proposed

approach achieves successful segmentations on reconstruc-

tions acquired with KinectFusion. Unlike the existing solu-

tions which only work if the objects move completely from

their initially occupied spaces, the proposed method permits

segmentation of objects when they start to move.

1. Introduction

The Truncated Signed Distance Function (TSDF) based

volumetric surface representation format [4] represents a

3D environment as a voxel grid in which each voxel stores

the signed distance to the nearest surface. The representa-

tion is widely used in recent RGB-D camera based environ-

ment mapping and localization systems like KinectFusion

[12, 9], Patch Volumes [6] and CopyMe3D [3, 18]. This

paper tackles the problem of segmenting such a volumetric

surface reconstruction of a scene into distinctively moving

objects.

More specifically, given a TSDF-based reconstruction of

a static environment, consider the following scenario. The

static environment is constituted of different objects which

remain static during the reconstruction. Once the scene is

(a) reconstruction

(b) C0 (c) Ck

(d) D0 (e) Dk

(f) segmentation result

Figure 1: Example motion segmentation of the TSDF. A

cylindrical object on a table undergoes translational mo-

tion. (a) The TSDF based reconstruction at time t0. (b), (c)

color images observed at time t0 and tk. (d), (e) correspond-

ing depth images. (f) segmentation output using proposed

method.

reconstructed, one or more rigid objects in the scene start

to move (Figure 1). Thus, the reconstruction no longer rep-

resents the current scene. Given the reference dense recon-

struction of the previously static environment and images

from a moving RGB-D camera observing this currently dy-

namic scene, this paper solves the problem of segmenting

the reference reconstruction into object groups correspond-
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ing to the moving objects and the background.

Apart from the theoretical interest of segmenting TSDF

volumes, solving the above problem has important practi-

cal applications. First of all, if moving objects can be seg-

mented then they can be tracked over time and the recon-

struction (both background and moving objects) can be con-

tinuously updated over time by transforming the objects and

integrating new RGB-D data. For example, this would per-

mit an area of the background that was earlier occluded by

an object to be reconstructed. If moving objects are not han-

dled and moving average based updates are used [12] then

reconstructed objects have to be discarded and mapping ar-

tifcats can be observed. In addition, an automatic 3D object

segmentation method would permit an autonomous robot to

first reconstruct a scene using an RGB-D mapping system

and then to observe and segment objects that start to move.

The fact that the 3D segmentations carry rich structure of

the objects could be useful in helping the robot better han-

dle the situation involved. Moreover, motion segmentation

of reconstructions would permit a user to actively move an

object of interest to get a segmentation of it.

To this end we propose a novel method for motion seg-

mentation of TSDF reconstructions. We cast the segmenta-

tion as a CRF-based MAP inference problem in the voxel

space of the TSDF volume. By computing the motion of

each moving object in the scene using sparse point track

segmentation, we compute a unary likelihood/cost of as-

signing a particular motion label to a pixel in an observed

RGB-D image. This gives rise to a novel data term involv-

ing the voxels. A novel pairwise term is constructed based

directly on the gradients of the TSDF volume. Unlike ex-

isting approaches, this allows us to segment moving objects

that move only slightly.

2. Related Work

Multi-body motion segmentation Existing work on

multi-body motion segmentation has been largely on 2D/3D

sparse point track segmentation [2] and on 2D/2.5D dense

image segmentation [16, 17]. The work is mainly based on

model selection [5], affinity clustering [13] and subspace

clustering. Such work is useful for, but does not directly

tackle dense segmentation of a 3D grid representation such

as a TSDF.

TSDF segmentation In [9], Izadi et al. describe an

occupancy-based approach to segment moving objects from

a TSDF reconstruction. They first map a scene using

KinectFusion. A human user then moves an object in the

scene that needs to be segmented, e.g. a tea pot resting on

a table (Figure 2). When the object is moved from its ini-

tial position to a new position, the initial position becomes

unoccupied (free space). Izadi et al. use the camera pose

obtained from KinectFusion along with the observed depth

images to detect these newly unoccupied voxels represent-

ing the object. However, in order to correctly segment the

object, the object has to be moved completely from its ini-

tially occupied space. If the object is only slightly or par-

tially moved, the complete object cannot be extracted. The

recent work by Herbst et al. [7] on change detection based

segmentation of maps created using PatchVolumes has the

same limitation. In contrast to these works, our method per-

mits segmentation of objects when they start to move.

ray through a pixel

Figure 2: The object segmentation method of Izadi et al.

[9]. The TSDF reconstruction represents a tea pot lying

on a plane. When the tea pot is removed from the scene,

the camera gives depth measurements corresponding to the

plane. Based on this voxels corresponding to the tea pot can

be identified.

The recent work by Ma and Sibley [11] solves motion

based object discovery, object detection, tracking and re-

construction in an integrated system. Moving objects are

discovered by parts of the scene that fail to track with the

dominant object model and each object is reconstructed in

its own TSDF volume in an online fashion. Jacquet et al.

[10] considers the problem of reconstructing multiple mov-

ing objects in separate TSDF volumes allowing the volumes

to interact with each other. While both [11] and [10] pro-

vide a segmentation of an environment as multiple TSDF

volumes, they do not consider the segmentation of an exist-

ing reconstruction into multiple moving objects. For exam-

ple, if an object was stationary during the reconstruction and

later starts to move then unless the scene is reconstructed

from scratch from all the pervious RGB-D images, [11] and

[10] cannot segment the moving object from the reconstruc-

tion.

3. Input and Notation

The input to the motion segmentation problem consists

of the TSDF reconstruction of the environment at time t0,

the RGB-D images observed at time t0 and time tk (k > 0)

as well as the pose of the camera at time t0. During time t0
and tk, objects in the scene undergo rigid motion. Figure 1

illustrates an example input to the problem.

Take any 3D Cartesian coordinate system attached to a

static point of the environment and denote it as the global
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coordinate system g. Let p ∈ R
3 be a point expressed in

this global coordinate system. Then the TSDF value at the

point p is denoted by F (p). Let Γ ⊂ R
3 be the continuous

domain in which the TSDF reconstruction is defined. The

TSDF reconstruction is discretized and made available as

a set of voxels V . A fixed bijective mapping v : V → Γ
between the voxel elements and the points in the continuous

domain is given.

The depth and color images are denoted by D0, Dk and

C0,Ck respectively. Note each image is indexed by the

time instant it was captured. Each depth image Dk and cor-

responding color image Ck are assumed to be registered

with each other. Dk and Ck are such that Dk : Ω → R

and Ck : Ω → R
3 where Ω ⊂ R

2 is the image pixel do-

main. The set of pixels in an image is denoted by P . A

fixed bijective mapping u : P → Ω between the pixel ele-

ments and the continuous image pixel domain exists. Note

the 3D point cloud corresponding to the depth image Dk ex-

pressed in the camera coordinate frame at time tk is given

by Xk(u) = Dk(u)K−1
[

u 1
]T

where K is the camera

intrinsic matrix.

The pose of the camera at time t0 is denoted by Tg,0 ∈
SE(3). Here, Tg,0 is such that it transforms a point x0 ∈ R

3

expressed in the camera coordinate frame at time t0 to

the global coordinate frame g according to the formula
[

xg 1
]T

= Tg,0

[

x0 1
]T

where xg is the coordinate of

the point expressed in the global coordinate frame.

4. Problem Formulation

When objects move, the input TSDF reconstruction no

longer represents the current scene. Thus, using current

camera pose, correspondences between the newly observed

RGB-D measurement and the TSDF reconstruction can

only be established for the static part of the scene. There-

fore, we compute the TSDF segmentation by computing the

likelihood for underlying motions in the RGB-D frame ob-

served before motion by using a minimum of two frames.

The problem is formulated as a CRF-based MAP inference

problem in the voxel grid space of the TSDF at the first

frame.

The voxels in the TSDF volume represent free space, re-

constructed surfaces or the interior of surfaces. Let Λ ⊂ V
be the set of voxels representing the reconstructed surfaces.

Given a set of motion labels L, the task of segmenting the

TSDF reconstruction involves assigning a label fp ∈ L to

each valid voxel p ∈ Λ. Let f denote a particular labeling

assignment. Further, let E be a set of unordered pairs {p, q}
of neighboring elements in Λ. Then using the pairwise CRF

model, the MAP labeling f∗ is expressed

f∗ = argmin
f∈L|Λ|

∑

p∈Λ

Dp(fp) +
∑

{p,q}∈E

Vp,q(fp, fq) (1)

where Dp(fp) = d
fp

p is the unary term (data term) and Vp,q

is the pairwise term.

4.1. Generating Label Space

As noted, during time t0 and tk, some of the objects

in the scene move. We determine the underlying motion

groups by segmenting sparse 3D point correspondences be-

tween the RGB-D images at time t0 and tk. The sparse

segmentation is computed by applying RANSAC (using 3-

point samples) in a greedy manner [19] to extract the Eu-

clidean transformation of each motion group. Here, we

adopt the triangle sampling based method proposed in [15]

to improve the odds of a 3-point sample being an all inlier

sample. The segmentation is then refined using PEARL [5].

The output of sparse motion segmentation is the set of

motion labels L = {1, . . . , m} present in the scene and a

set {Tl
0,k ∈ SE(3)}l∈L of motion parameters of each group.

The notation T
l
0,k is as follows. Consider a point belong-

ing to a motion group l. The point is observed by the cam-

era at time t0 and tk giving 3D coordinate measurements

x0 ∈ R
3 and xk ∈ R

3 respectively. Here, the coordi-

nates are expressed with respect to the camera coordinate

frame at the respective time instants. Then T
l
0,k is such that

[

x0 1
]T

= T
l
0,k

[

xk 1
]T

.

Using similar notation, the Euclidean transformation

which brings xk to the global coordinate frame is denoted

by T
l
g,k. It is straightforward to see that Tl

g,k = Tg,0T
l
0,k for

all k. Note the relationship T
l
g,0 = Tg,0 for all l ∈ L as the

reconstruction represents the environment at time t0. Figure

3 summarizes these Euclidean transformations for a scene

with two motion groups.

1
2

xg

x0 xk

reconstruction at time t0

observation at time t0 observation at time tk

g

Tg,0 Tg,0

T
1
0,k

T
2
0,k

T
1
g,k = Tg,0T

1
0,k

Figure 3: Euclidean transformation notation for a scene

with two motion labels (L = {1, 2}).
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Figure 4: Visualization of the data term. (a)-(b) image space unary costs. (c) cost for the motion label 1 (background motion).

For voxels with no corresponding pixels, cost of c = 0 was used. (d) cost for the motion label 2 (motion of the cylinder) (e)

per voxel winner (label corresponding to the minimum cost). Here, voxels having equal cost values in d1
p and d2

p are shown

in blue color.

4.2. Data term

We construct the data term by computing unary costs for

pixels in the RGB-D image space and associating them with

corresponding voxels (see Figure 4). Let Rl
k(u) denote the

cost of assigning a particular motion label l to a pixel u in

the RGB-D image at time tk. Further, define the function

which maps a pixel u in the RGB-D image at time tk to one

or more voxels in the TSDF reconstruction by

h(u, Dk, T
Lk(u)
g,k ) : Ω × R × SE(3) → P (2)

where Lk(u) ∈ L is the label of pixel u and P is the power

set of V , that is, the set of all possible subsets of V .

In order to obtain the voxels corresponding to a pixel in

the RGB-D image at time tk using the pixel to voxel map-

ping function h, the transformation T
Lk(u)
g,k should be se-

lected from the set {T1
g,k, . . . , Tm

g,k}. However, as Lk are

not known this cannot be performed for all but k = 0 1.

At time t0 all motion groups have the same transformation

Tg,0 (Figure 3). Thus pixels corresponding to the RGB-D

image at time t0 can be mapped to their corresponding vox-

els. Based on this the data term is given by

dl
p =

{

Rl
0(u) p ∈ h(u, D0, Tg,0)

c p /∈
⋃

{h(u, D0, Tg,0)}u∈P

. (3)

Here, c is any finite constant cost assigned for voxels with

no corresponding pixels. Figure 4 illustrates this data term.

4.2.1 Image Space Unary Cost Rl
0

Using the Euclidean transformation T
l
0,k, the point cloud

corresponding to the RGB-D image at time tk can be trans-

1If dense optical flow or per pixel tracking has been computed over all

the image frames then the pixels in an image at time tk can be associated

with the pixels in the image at time t0. In this case, image space unary

costs can be mapped to the voxels using the camera pose Tg,0 at time t0.

However, we do not compute such dense point correspondences.

formed to test the alignment with the point cloud corre-

sponding to the RGB-D image at time t0. The error of the

alignment is computed using 3D position, color and surface

normal information, and stands as our image space unary

cost term Rl
0. Here, the point cloud Xk is first transformed

into time t0 by applying T
l
0,k. The transformed point cloud

is then used to obtain a synthesized depth image D̂l
0 and

color image Ĉl
0 using Z-buffering. The corresponding 3D

point cloud is given by X̂l
0.

3D position alignment cost The 3D position alignment

cost is based on the distance between the corresponding

points.

rl
3D(u) = min(||X0(u) − X̂l

0(u)||, c1)/c1 (4)

Here, c1 > 0 is an upper bound (truncation value) on the

position alignment error.

Color compatibility cost The color compatibility of

the alignment is computed based on normalized cross-

correlation (NCC) between 3x3 image patches of C0 and

Ĉl
0, centered on corresponding pixels. The sum γ of NCC

over all 3 color channels gives the color compatibility. Note

−3 ≤ γ ≤ 3. This is converted to a cost term by

rl
Color(u) = min(3 − γ(C0, Ĉ

l
0,u), c2)/c2 (5)

where 0 < c2 ≤ 6 is an upper bound.

Surface normal alignment cost The surface normal

alignment cost is based on the angle difference between sur-

face normals of the corresponding points. Let the unit sur-

face normal maps for point clouds Xk and X̂l
k be Nk and

N̂l
k respectively. Here, Nk : Ω → R

3. Then the normal

alignment cost is given by
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rl
Normal(u) = min(arccos[N0(u) · N̂l

0(u)], c3)/c3 (6)

where 0 < c3 < 180◦. Here, the surface normal maps are

computed using Plane PCA.

Combined alignment cost The 3D position alignment

cost, color compatibility cost and surface normal alignment

cost are aggregated to produce a combined alignment error

rl(u) =
s1r

l
3D(u) + s2r

l
Color(u) + s3r

l
Normal(u)

s1 + s2 + s3
(7)

where s1, s2 and s3 are mixing coefficients that determine

the relative contribution of respective terms.

Background label unary cost attenuation Assuming

moving objects are spatially concentrated, we increase the

preference of pixels that are farther away from moving ob-

jects to have the background motion label B. Let ρ(u) :
Ω → R be a distance map indicating the 3D distance to

the nearest object feature point, identified using the sparse

segmentation result. Then the updated cost is given by

Rl
0(u) =

{

exp(−0.5 ρ(u)2/σ2) rl(u) l = B

rl(u) otherwise
. (8)

where σ is a parameter that depends on the spatial size of

the objects being considered.

4.2.2 Pixel to Voxel Mapping Function h

For a pixel u in the RGB-D image at time tk, the 3D co-

ordinates xg(u) ∈ R
3 of the corresponding surface point

at time t0 in the global coordinate frame can be computed

using T
Lk(u)
g,k . Here xg is expected to lie on a zero crossing

voxel. In order to gain more support for the segmentation,

we return all voxels along the gradient vector at the voxel

xg . This is achieved by marching the corresponding ray go-

ing through the voxel, from + to - TSDF values (forward)

or vice versa. Algorithm 1 illustrates this approach.

4.3. Pairwise term

Unlike the data term which was computed using the

observed RGB-D images, the pairwise term is computed

solely based on the gradient of the TSDF reconstruction.

The TSDF values F (p) form a scalar field over the 3D vol-

ume defined by the voxel grid. The gradient of this scalar

field is a 3D vector field denoted by

∇F (p) =
[

∂F
∂x

∂F
∂y

∂F
∂z

]T

(9)

Algorithm 1 Pixel to Voxel Mapping

input pixel u, depth image D, Euclidean transformation T ,

truncation distance µ, TSDF volume F and its gradient

∇F
output set of voxels v

1: p ← point given by D(u) expressed in global coordi-

nates

2: raydir ← ∇F (p)
3: raydir ← normalize(raydir)

4: p ← p − raydirµ
5: if p outside bounding box of volume then

6: p ← first voxel along raydir

7: end if

8: v = ∅
9: hit = false, step = 0

10: step size = smallest length of a voxel in all three dimen-

sions

11: while step ≤ (2µ/step size) and p is within the

bounding box of volume do

12: step = step + 1
13: p ← p + raydir step size
14: if |F(p)| < µ then

15: hit = true

16: v = v ∪ voxel at p

17: else if hit == true and |F(p)| == µ then

18: break

19: end if

20: end while

21: return v

where
[

x y z
]T

= p. Here, discrete approximations to

the directional derivatives ∂F
∂x , ∂F

∂y , ∂F
∂z at each voxel can

be computed using centered differences (for interior vox-

els) and forward/backward differences (for border voxels).

The computed directional derivatives can be then scaled ap-

propriately in each dimension to account for the physical

spacing between voxels in each dimension.

The 3D gradients thus computed can be noisy, particu-

larly near truncation borders. Therefore, the bilateral fil-

ter [14] is applied along each dimension of the 3D gradi-

ent volume. That is, given the 3D gradients ∇F (p) =
[

F1(p) F2(p) F3(p)
]T

at each voxel position p in

the voxel domain V , the filtered gradients ∇̃F (p) =
[

F̃1(p) F̃2(p) F̃3(p)
]T

are computed as

F̃i(p)=
1

Wp

∑

q∈V

exp(− ||p−q||2

σ2
s

) exp(− |Fi(p)−Fi(q)|2

σ2
r

)Fi(q)

(10)

for i = 1, 2, 3, where Wp is a normalizing constant. Here,

σs and σr are the spatial and range standard deviations re-

spectively. The filtered gradients are then normalized to unit
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magnitude.

(a) (b)

Figure 5: Gradient of a 2D slice of the TSDF (a) The unit

gradient vectors computed using finite differences repre-

sented as arrows (b) The bilateral filtered output. The black

curve shows the implicit surface.

Figure 5 illustrates the gradients computed for a 2D slice

of the TSDF volume along with the filtered result. As the

gradient of a function is perpendicular to the level set of

the function at the point, the gradient at the zero crossing

(zero level) indicates the surface normal direction. The vox-

els that lie along the surface normal direction exhibit simi-

lar gradient directions. Based on the filtered gradients, the

pairwise term of the segmentation cost function is thus con-

structed as

Vp,q(fp, fq) = λ T(fp 
= fq) exp

(

−θ2
p,q

2σ2
θ

)

(11)

where θp,q = arccos
(

|∇F̃ (p) · ∇F̃ (q)|
)

and σθ is an in-

put parameter. T (·) is such that T (true) = 1 and T (false) =
0. Note the pairwise term introduces a cost for neighbor-

ing voxels with similar gradient direction to have different

labels. λ is a scalar controlling the effect of the pairwise

term.

5. Experimental Results and Discussion

The proposed motion segmentation method was evalu-

ated using several TSDF based reconstructions obtained us-

ing an implementation of the KinectFusion system. A 0.75

m x 0.75 m x 0.75 m volume of an environment was recon-

structed using a voxel grid with a resolution of 256 x 256

x 256. The truncation parameters were set as c1 = 30mm,

c2 = 5 and c3 = 45◦ and the mixing coefficients were set

as s1 = 2, s2 = 4 and s3 = 1. The label corresponding to

the background motion (required in background unary cost

attenuation) was identified based on the largest depth range

and the largest sparse feature point group. The parameter σ
was computed using the maximum volume of the 3D con-

vex hulls of the sparse feature points corresponding to each

object motion group. If the maximum volume is v then σ
was set to σ = 3v1/3. The data term was multiplied by 1000

and the pairwise term scale λ was set to 1e6. The pairwise

term was computed using the 8-connectivity of voxels and

σθ was set to 5◦. α-Expansion [1] was used to solve the

segmentation cost function.

Figure 6 shows the segmentation results for the example

sequence obtained. The cylinder was correctly segmented

from the planar table top. The figure also shows the segmen-

tation result obtained using the existing method by Izadi et

al [9]. As noted their method requires completely moving

the cylinder from its previously occupied position. How-

ever, as the cylinder was only slightly moved (Figure 1),

their method was unable to extract the complete object.

(a) proposed (b) existing

Figure 6: Segmentation results for the cylinder sequence.

(a) the segmented cylinder removed to show the segmenta-

tion boundary. (b) result using the existing method [9].

In another test data sequence, a tea pot and a mug was

slightly moved on a table. Figure 7 shows the results for this

TeaPotMug sequence. The segmentation of sparse feature

points identified three motion groups corresponding to the

two moving objects and the background. The unary costs

obtained for each motion label were then used to segment

the TSDF volume. The tea pot and mug were successfully

segmented from the table.

The CarJacket sequence features a toy car moving on

top of a jacket lying on the floor (Figure 8). Here, the goal

of this experiment was to show that the proposed TSDF

based surface segmentation methodology is not limited to

segmenting objects lying on a plane. As expected, the pro-

posed method could successfully segment the car from rest

of the scene. Supplementary material contains more results.

We list numerical results on the segmentation accuracy

of the proposed method in Table 1. Here the accuracy was

computed by projecting the segmented volumes to manu-

ally labeled depth images and counting the correctly labeled

pixels (expressed as a percentage of the total number of pix-

els). As noted, our method outperforms the existing method

in all three sequences. The table also gives the running time

results of the α-expasion stage (Intel Core i7 1.6GHz CPU).

6. Conclusion and Future Work

In this paper, we considered the problem of motion seg-

mentation of TSDF reconstructions. We proposed an au-
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Figure 7: TeaPotMug sequence and segmentation results. (a)-(c) input. (d)-(f) image space unary costs. (g), (h) segmentation

result using the proposed method.

tomatic method capable of successfully segmenting TSDF

volumes by constructing appropriate data and pairwise

terms. Existing TSDF based mapping systems either can-

not handle the motion of objects which are already recon-

structed, or cannot segment moving objects as and when

they move. The TSDF segmentation method proposed in

this paper addresses these limitations. In future, we plan

to fully integrate the method with KinectFusion to update

Table 1: Quantitative results. segmentation accuracy of

Izadi et al. [9] and ours. |L| = #labels, |Λ| = #valid vox-

els, |E| = #edges, time = running time of α-expasion stage.

Sequence |L| |Λ| |E| accuracy:

[9]

accuracy:

ours

time

Cylinder 2 1.3M 3.6M 94.94% 99.95% 2.37 s

TeaPotMug 3 1.3M 3.7M 89.40% 99.79% 10.28 s

CarJacket 2 1.3M 3.6M 97.67% 99.91% 2.35 s

the reconstruction with new data. Further, we plan to use

cost volume filtering [8] for the inference stage to achieve a

faster running time.
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