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Abstract

We examine the problem of segmenting tracked feature

point trajectories of multiple moving objects in an image

sequence. Using the affine camera model, this motion seg-

mentation problem can be cast as the problem of segment-

ing samples drawn from a union of linear subspaces. Due

to limitations of the tracker, occlusions and the presence of

nonrigid objects in the scene, the obtained motion trajec-

tories may contain grossly mistracked features, missing en-

tries, or not correspond to any valid motion model. In this

paper, we develop a robust subspace separation scheme that

can deal with all of these practical issues in a unified frame-

work. Our methods draw strong connections between lossy

compression, rank minimization, and sparse representation.

We test our methods extensively and compare their perfor-

mance to several extant methods with experiments on the

Hopkins 155 database. Our results are on par with state-

of-the-art results, and in many cases exceed them. All MAT-

LAB code and segmentation results are publicly available

for peer evaluation at http://perception.csl.uiuc.

edu/coding/motion/.

1. Introduction
A fundamental problem in computer vision is to infer

structures and movements of 3D objects from a video se-

quence. While classical multiple-view geometry typically

deals with the situation where the scene is static, recently

there has been growing interest in the analysis of dynamic

scenes. Such scenes often contain multiple motions, as

there could be multiple objects moving independently in a

scene, in addition to camera motion. Thus an important ini-

tial step in the analysis of video sequences is the motion

segmentation problem. That is, given a set of feature points

that are tracked through a sequence of video frames, one

seeks to cluster the trajectories of those points according to

different motions.

In the literature, many different camera models have

been proposed and studied, such as paraperspective, ortho-
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graphic, affine and perspective. Among these the affine

camera model is arguably the most popular, due largely to

its generality and simplicity. Thus, in this paper, we assume

the affine camera model, and show how to develop a robust

solution to the motion segmentation problem. Before we

delve into our problems of interest, we first review the basic

mathematical setup.

Basic Formulation of Motion Segmentation. Suppose we

are given trajectories of P tracked feature points of a rigid

object {(xfp, yfp)}
p=1...P
f=1...F from F 2-D image frames of a

rigidly moving camera. The affine camera model stipulates

that these tracked feature points are related to their 3-D co-

ordinates {(Xp, Yp, Zp)}
P
p=1 by the matrix equation:
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∈ R
2×4 is the affine

motion matrix at frame f . The affine motion matrix is pa-

rameterized by the camera calibration matrix Kf ∈ R
2×3

and the relative orientation of the rigid object w.r.t. the cam-

era (Rf , tf ) ∈ SE(3). From this formulation we see that

rank(Y) = rank(AX) ≤ min(rank(A), rank(X)) ≤ 4. (2)

Thus the affine camera model postulates that trajectories of

feature points from a single rigid motion will all lie in a

linear subspace of R
2F of dimension at most four.

A dynamic scene can contain multiple moving objects, in

which case the affine camera model for a single rigid motion

cannot be directly applied. Now let us assume that the given

P trajectories correspond to N moving objects. In this case,

the set of all trajectories will lie in a union of N linear sub-

spaces in R
2F , but we do not know which trajectory belongs

to which subspace. Thus, the problem of assigning each tra-

jectory to its corresponding motion reduces to the problem



of segmenting data drawn from multiple subspaces, which

we refer to as subspace separation.

Problem 1 (Motion Segmentation via Subspace Sepa-

ration). Given a set of trajectories of P feature points

Y = [y1 . . .yP ] ∈ R
2F×P from N rigidly moving objects

in a dynamic scene, find a permutation Γ of the columns of

the data matrix Y:

Y = [Y1 . . .YN ]Γ−1, (3)

such that the columns of each submatrix Yn, n = 1, . . . , N ,

are trajectories of a single motion.

Related Work on Motion Segmentation. In the literature,

there are many approaches to motion segmentation, that

can roughly be grouped into three categories: factorization-

based, algebraic, and statistical.

Many early attempts at motion segmentation attempt to

directly factor Y according to (3) [1, 7, 11, 12]. To make

such approaches tractable, the motions must be independent

of one another, i.e. the pairwise intersection of the motion

subspaces must be the zero vector. However, for most dy-

namic scenes with a moving camera or containing articu-

lated objects, the motions are at least partially dependent

on each other. This has motivated the development of algo-

rithms designed to deal with dependent motions.

Algebraic methods, such as Generalized Principal Com-

ponent Analysis (GPCA) [19], are generic subspace separa-

tion algorithms that do not place any restriction on the rela-

tive orientations of the motion subspaces. However, when a

linear solution is used, the complexity of algebraic methods

grows exponentially with respect to both the dimension of

the ambient space and the number of motions in the scene,

and so algebraic methods are not scalable in practice.

The statistical methods come in many flavors. Many for-

mulate motion segmentation as a statistical clustering prob-

lem that is tackled with Expectation-Maximization (EM) or

variations of it [17, 13, 9]. As such, they are iterative meth-

ods that require good initialization, and can potentially get

stuck in suboptimal local minima. Other statistical meth-

ods use local information around each trajectory to create a

pairwise similarity matrix that can then be segmented using

spectral clustering techniques [24, 22, 5].

Robustness Issue and Our Approach. Many of the above

approaches assume that all trajectories are good, with per-

haps a moderate amount of noise. However, real motion

data acquired by a tracker can be much more complicated:

1. A trajectory may correspond to certain nonrigid or ran-

dom motions that do not obey the affine camera model

(an outlying trajectory).

2. Some of the features may be missing in some frames,

causing a trajectory to have some missing entries (an

incomplete trajectory).

3. Even worse, some feature points may be mistracked

(with the tracker unaware), causing a trajectory to have

some entries with gross errors (a corrupted trajectory).

While some of the methods can be modified to be robust

to one of such problems [9, 5, 23, 22, 20], to our knowl-

edge there is no motion segmentation algorithm that can el-

egantly deal with all of these problems in a unified fashion.

In this paper, we propose a new motion segmentation

scheme that draws heavily from the principles of data com-

pression and sparse representation. We show that the new

algorithm naturally handles outlying trajectories, and can

be designed to repair incomplete or corrupted trajectories.1

Our methods use the affine camera model assumption, so

we do not make any comparisons with perspective camera-

based methods2. As most extant methods for motion seg-

mentation assume that the number of motions is known, for

fair comparison, we also assume the group count is given.

2. Robust Subspace Separation

In this section, we describe the subspace separation

method that we use for motion segmentation and show that

by properly exploiting the low rank subspace structure in

the data, our method can be made robust to the three kinds

of pathological trajectories discussed earlier.

To a large extent, the goal of subspace separation is

to find a partition of the data matrix Y into submatrices

{Yn}
N
n=1 such that each Yn is maximally rank deficient.

Matrix rank minimization (MRM) is itself a very challeng-

ing problem. The rank function is neither smooth nor con-

vex, and so finding a matrix M that is maximally rank de-

ficient among a convex set of matrices is known to be

NP-Hard. Also, the rank function is highly unstable in

the presence of noise. For a positive semidefinite matrix

M ∈ R
D×D, one can deal with both instability and compu-

tational intractability by minimizing the following smooth

surrogate for rank(M):

J(M, δ)
.
= log2 det (δI+ M) , (4)

where δ > 0 is a small regularization parameter [6].

As we are not minimizing rank(Yn) over a convex set,

subspace separation is not technically an instance of MRM.

However, after a slight modification to (4), we can see a

connection between MRM and the principle of lossy mini-

mum description length (LMDL). Given data Yn ∈ R
D×Pn

drawn from a linear subspace, the number of bits needed to

code the data Yn up to distortion ε2 [15] 3 is given by

1We make a distinction between incomplete and corrupted trajectories:

for incomplete trajectories, we know in which frames the features are miss-

ing; for corrupted ones, we do not have that knowledge.
2Please refer to [16] for work on robust motion segmentation with a

perspective camera model.
3It can be shown that as ε → 0, (5) converges to the optimal coding

length for a Gaussian source, and is also an upper bound for the coding

length of subspace-like data.
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L(Yn, ε) is still a smooth surrogate for rank(Yn), as it is

obtained by subtracting a constant term from J(M, δ), with

M = 1
Pn

YnY
T
n and δ = ε2

D
, and scaling by a constant factor.

Now suppose the data matrix Y ∈ R
D×P , can be parti-

tioned into disjoint subsets Y = [Y1 . . .YN ] of correspond-

ing sizes P1 + · · · + PN = P . If we encode each subset

separately, the total number of bits required is

Ls({Y1, . . . ,YN}, ε)
.
=

N∑

n=1

L(Yn, ε) − Pn log2

Pn

P
. (6)

The second term in this equation counts the number of bits

needed to represent the membership of the P vectors in the

N subsets (i.e. by Huffman coding). In [15], Ma et al.

posit that the optimal segmentation of the data minimizes

the number of bits needed to encode the segmented data up

to distortion ε2.

Finding a global minimum of (6) is a combinatorial prob-

lem. Nevertheless, an agglomerative algorithm, proposed

in [15], has been shown to be very effective for minimizing

(6). It initially treats each sample as its own group, itera-

tively merging pairs of groups so that the resulting coding

length is maximally reduced at each iteration. The algo-

rithm terminates when it can no longer reduce the coding

length. We refer to their algorithm as Agglomerative Lossy

Compression (ALC). See [15] for more details.

2.1. Outlying Trajectories

Dynamic scenes often contain trajectories that do not

correspond to any of the motion models in the scene. Such

outlying trajectories can arise from motions not well de-

scribed by the affine camera model, such as the motion of

non-rigid objects. These kinds of trajectories have been

referred to as “sample outliers” by [2], suggesting that no

subset of the trajectory corresponds to any affine motion

model. Fortunately, ALC deals with these outliers in an

elegant fashion. In [15], it was observed that in low dimen-

sions (≤ 3), all outliers tend to cluster into a single group.

This is because in low dimensions it is very unlikely that

outliers live in a lower-dimensional subspace. Hence it is

more efficient to code them together with respect to a sin-

gle basis for the ambient space. Such a group can be eas-

ily detected, because the number of bits per vector in that

group is very large relative to other groups. However, in

higher-dimensional spaces, such as in our motion segmenta-

tion problem, outliers are more sparsely distributed. Hence,

it is more efficient to code them by representing each out-

lier as a separate group. Such small groups are also easily

detectable.

Figure 1. The motions sequences “1R2RC” (left), “arm” (center),

and “cars10”(right) from the Hopkins155 database [18].

Experiments. For all of the experiments in Section 2, we

choose three representative sequences from the Hopkins155

motion segmentation database [18] for testing: “1R2RC”

(checkerboard), “arm” (articulation), and “cars10” (traffic)

(see Figure 1). We compare the robustness to outliers of

ALC and Local Subspace Affinity (LSA) [22], a spectral

clustering-based motion segmentation algorithm that is rea-

sonably robust to outliers. We add between 0% and 25%

outlying trajectories to the dataset of a given motion se-

quence. Outlying trajectories were generated by choosing a

random initial point in the first frame, and then performing

a random walk through the following frames. Each incre-

ment is generated by taking the difference between the co-

ordinates of a randomly chosen point in two randomly cho-

sen consecutive frames. In this way the outlying trajectories

will qualitatively have the same statistical properties as the

other trajectories, but will not obey to any particular mo-

tion model. We then input these outlier-ridden datasets into

LSA and ALC, respectively, and compute the misclassifica-

tion rate and outlier detection rate for both algorithms.4 For

each experiment we run 100 trials with different randomly

generated outlying trajectories. Table 1 shows the average

misclassification rates and outlier detection rates for each

experiment. As the results show, ALC can easily detect out-

liers without hindering motion segmentation, whereas for

LSA, the outliers tend to interfere with the classification of

valid trajectories.

Table 1. Top: Misclassification rates for LSA and ALC as a func-

tion of the outlier percentage (from 0% to 25%) for three motion

sequences. Bottom: Outlier Detection rates for LSA and ALC as

a function of the outlier percentage for three motion sequences.

1R2RC [%] arm [%] cars10 [%]

[%] LSA ALC LSA ALC LSA ALC

0 2.40 1.09 22.08 0.00 16.84 1.34

7 6.91 1.29 24.17 0.13 31.97 0.40

15 3.09 1.31 15.38 0.06 26.43 0.19

25 2.69 1.16 10.25 0.04 24.59 0.17

1R2RC [%] arm [%] cars10 [%]

[%] LSA ALC LSA ALC LSA ALC

0 98.04 100 77.9 100 86.87 100

7 94.75 99.99 92.79 100 96.82 99.70

15 98.04 99.98 91.34 100 98.84 99.81

25 98.20 99.97 95.56 100 98.76 99.83

4In ALC a trajectory is labeled an outlier if it belongs to a group with

less than five samples. In our implementation of LSA, a trajectory is

labeled as an outlier if its distance from the nearest motion subspace is

greater than a predetermined threshold.



2.2. Incomplete Trajectories

In practice, due to occlusions or limitations of the

tracker, some features may be missing in some frames. This

can lead to incomplete trajectories. However by harnessing

the low rank subspace structure of the data set, it is possible

to complete these trajectories prior to subspace separation.

The key observation is that samples drawn from a low-

dimensional linear subspace are self-expressive, meaning

that a sample can be expressed in terms of a few other

complete samples from the same linear subspace. More

precisely, if the given incomplete sample is y ∈ R
D and

Y ∈ R
D×P is the matrix whose columns are all the com-

plete samples in the data set, then there exists a coefficient

vector c ∈ R
P that satisfies

y = Yc. (7)
As the number of samples P is usually much greater than

the dimension of the ambient space D, (7) is a highly under-

determined system of linear equations, and so, in general, c

is not unique. In fact, any D vectors in the set that span R
D

can serve as a basis for representing y. However, since y

lies in a low-dimensional linear subspace, it can be repre-

sented as a linear combination of only a few vectors from

the same subspace. Hence, its coefficient vector should

have only a few nonzero entries corresponding to vectors

from the same subspace. Thus, what we seek is the sparsest

c:
c∗ = argmin

c

‖c‖0 subject to y = Yc, (8)

where ‖·‖0 is the “ℓ0 norm”, equal to the number of nonzero

entries in the vector. The sparsest coefficient vector c∗ is

unique when ‖c∗‖0 < D/2. In the general case, ℓ0 min-

imization, like MRM, is known to be NP-Hard 5. Fortu-

nately, due to the findings of Donoho et al. [3], it is known

that if c∗ is sufficently sparse (i.e. ‖c∗‖0 . ⌊D+1
3 ⌋), then

the ℓ0 minimization in (8) is equivalent to the following ℓ1

minimization:

c∗ = argmin
c

‖c‖1 subject to y = Yc, (9)

which is essentially a linear program.

We apply these results to the problem of dealing with in-

complete data. We assume that we have a set of samples

Y ∈ R
D×P on the N subspaces with no missing entries,

and we use Y to complete each sample with missing entries

individually. Suppose y ∈ R
D is a sample with missing

entries {yi}i∈I , I ⊂ {1, . . . , D}. Let ŷ ∈ R
D−|I| and

Ŷ ∈ R
(D−|I|)×P be y and Y with the rows indexed by I

removed, respectively. By removing these rows, we are es-

sentially projecting the data onto the (D−|I|)-dimensional

subspace orthogonal to span({ei : i ∈ I}).6 With probabil-

ity one, an arbitrary d-dimensional projection preserves the

structural relationships between the subspaces, as long as

5In fact, when MRM is applied to a set of diagonal matrices, it reduces

to ℓ0 minimization.
6
ei is the i-th vector in the canonical basis for R

D .

the dimension of each subspace is strictly less than d. Thus

if we solve the linear program:7

c∗ = argmin
c

‖c‖1 subject to ŷ = Ŷc, (10)

then the completed vector y∗ can be recovered as

y∗ = Yc∗. (11)

In the literature there are many methods for filling in

missing entries of a low rank matrix [10, 9, 14]. It is impor-

tant to note that low rank matrix completion is quite differ-

ent from our task here. For a matrix with low column rank,

the problem of completing missing data is overdetermined.

Thus algorithms like Power Factorization (PF) [20] essen-

tially solve for the missing entries in a least-squares (mini-

mum ℓ2 norm) sense to preserve the low rank of the matrix.

However, data drawn from a union of subspaces will, in

general, be full rank – the matrix Ŷ is often over-complete.

As such, the problem becomes instead underdetermined so

there is no unique solution for the values of the missing en-

tries. Our method then chooses the unique solution with

the minimum ℓ1 (and hence minimum ℓ0) norm. The vec-

tor with missing entries is represented by the fewest pos-

sible complete vectors, which will in general be from only

one of the subspaces. On the other hand, the least-squares

(ℓ2) solution found with Power Factorization is typically not

sparse [3]. Table 2 compares our method to Power Fac-

torization suggested in [20] for motion segmentation with

missing data. As we see, in the case when the problem is

underdetermined, the ℓ1 solution indeed gives a much more

accurate completion for the missing entries.

Table 2. Average errors over 100 trials in pixels per missing en-

try for Power Factorization (with rank 5) [20] and our ℓ
1-based

feature completion method on the same three motion sequences

used in the previous experiment (Figure 1). For each trial, 10% of

the entries of the data matrix are removed and we use 75% of the

complete trajectories to fill in the missing entries.

1R2RC [pixel] arm [pixel] cars10 [pixel]

PF ℓ
1 PF ℓ

1 PF ℓ
1

0.177 0.033 8.568 0.070 0.694 0.212

Experiments. We now test the limits of our ℓ1-based

method for entry completion. In each trial, we randomly

select a trajectory yp from the dataset for a given sequence,

and remove between 1 and D − 1 = 2F − 1 of its en-

tries. We then apply (10) and (11) to recover the missing

entries8. In order to simulate many trajectories with missing

entries in the dataset, we perform 5 different experiments.

In each experiment, we use a portion (from 20% to 100%)

of the remaining dataset to complete yp. Figure 2 (top)

shows the results for 200 trials. For each sequence, we plot

7As suggested in [21], one can deal with noisy data by replacing the

equality constraint in (10) with ‖ŷ − Ŷc‖2 ≤ ǫ.
8For all of our experiments that use ℓ1-minimization, we use the freely

available CVX toolbox for MATLAB [8].



the average per-entry error of the recovered trajectory w.r.t.

the ground truth versus the percentage of missing entries in

each incomplete trajectory. The different colored plots are

for the experiments with varying percentage of the dataset

used for completion. We see that for all motion sequences,

our method is able to reconstruct trajectories to within sub-

pixel accuracy even with over 80% of the entries missing!

We also see that the performance remains consistent even

when the entries are completed with small subsets of the re-

maining data. This suggests that our method can work well

even if a large number of trajectories have missing features.

2.3. Corrupted Trajectories

Corrupted entries can be present in a trajectory when the

tracker unknowingly loses track of feature points.9 Such

entries contain gross errors. One could treat corrupted tra-

jectories as outliers.10 However, in a corrupted trajectory,

a portion of the entries still correspond to a motion in the

scene, hence it seems wasteful to simply discard such infor-

mation.

Repairing a vector with corrupted entries is much more

difficult than the entry completion problem in Section 2.2,

as now both the number and location of the corrupted en-

tries in the vector are not known. Once again, by taking

advantage of the low rank subspace structure of the dataset,

we can both detect and repair vectors with corrupted entries

prior to subspace separation. Our approach is similar to one

proposed in [21] for robust face recognition.

A corrupted vector ŷ can be modeled as

ŷ = y + e, (12)

where y is the uncorrupted vector, and e ∈ R
D is a vec-

tor that contains all of the gross errors. We assume that

there are only a few gross errors, so e will only have a few

nonzero entries, and thus be sparse11. As long as there are

enough uncorrupted vectors in the dataset, we can express

y as a linear combination of the other vectors in the dataset

as in Section 2.2. If Y ∈ R
P×D is a matrix whose columns

are the other vectors in the dataset, and I ∈ R
D×D is an

identity matrix, then (12) becomes

ŷ = Yc + e = [Y I]

[
c

e

]

.
= Bw. (13)

We would like both the coefficient vector c and the error

vector e to be sparse12. If the true c and e are sufficiently

sparse, we can simultaneously find the sparsest c and e by

9These kind of trajectories are called “intra-sample outliers” in [2].
10Indeed, if a dataset with some corrupted trajectories is input to ALC,

the algorithm will classify those trajectories as outliers, as the gross errors

will greatly increase the coding length of their ground-truth motion group.
11We realize that, in practice, trajectories may be corrupted by a large

number of gross errors. However, it is unlikely that any method can repair

such trajectories, and so it is best to treat them as outliers.
12The columns of Y should be scaled to have unit ℓ2 norm to ensure that

no vector is preferred in the sparse representation of w.

solving the linear program:13

w∗ = argmin
w

‖w‖1 subject to ŷ = Bw. (14)

Once w∗ is computed, we decompose it into w∗ =
[ c∗ e∗ ]T , where c∗ ∈ R

P is the recovered coefficient

vector and e∗ ∈ R
D is the recovered error vector. The re-

paired vector y∗ is simply

y∗ = Yc∗. (15)

The error vector e∗ also provides useful information. The

nonzero entries of e∗ are precisely the gross errors in ŷ.

Experiments. We now test the limits of our ℓ1-based

method for repairing corrupted trajectories. For each trial

in the experiments, we randomly select a trajectory yp from

the given dataset, and randomly select and corrupt between

1 and D − 1 = 2F − 1 entries in the vector. To corrupt the

selected entries, we replace them with random values drawn

from a uniform distribution. We then apply (14) and (15) to

both detect the locations of corrupted entries, as well as re-

pair them. In each experiment we run 200 trials and average

the errors. We perform five experiments of this type, each

with a portion (from 0% to 80%) of the remaining dataset

Y being corrupted in the same way as yp. The results of

these experiments are shown in Figure 2 (bottom). For each

sequence, we plot the the average per-entry error of the re-

paired vector w.r.t. the ground truth versus the percentage

of corrupted entries in each vector. The different colors

represent experiments with varying portions of corrupted Y.

As Figure 2 (bottom) shows, this method is able to recon-

struct vectors to within subpixel accuracy even with roughly

1/3 of the entries corrupted. This is in line with the bound

‖c∗‖0 < ⌊D+1
3 ⌋ given by [3]. We also see that the perfor-

mance remains consistent even if 80% of the entire dataset

is corrupted!

3. Large Scale Experiments

In this section, we perform experiments on the entire

Hopkins155 database. We first discuss what modifica-

tions are needed to tailor ALC to the motion segmenta-

tion problem. We then compare our performance on the

entire database versus some other motion segmentation al-

gorithms. Finally, we do experiments on a set of motion

sequences with real incomplete or corrupted trajectories.

3.1. Applying ALC to Motion Segmentation

ALC requires only a single parameter ε, the variance of

the noise. However, the performance is also affected by the

dimension that the original data is projected onto. Here we

describe some methods for choosing these parameters.

Choosing ε. In principle, ε could be determined in some

heuristic fashion from the statistics of the data. However,

13The presence of the identity submatrix I in B already renders the linear

program stable to moderate noise.



Figure 2. Errors of recovered trajectories for the sequences: “1R2RC” (left), “arm” (center), and “cars10” (right). Top: Results for our

ℓ
1-based trajectory completion. The different colored plots are for experiments with varying percentage of the dataset used for completion.

Bottom: Results for our ℓ
1-based detection and repair of corrupted trajectories. The different colors represent experiments with varying

percentage of corrupted trajectories in the dataset.

most extant motion segmentation algorithms require the

number of motions as a parameter. Thus, in order to make

a fair comparison with other methods, we assume that the

number of motions is given, and use it to determine ε.

Figure 3 shows an example sequence from the database.

We run ALC on this sequence for several choices of ε. On

the right we plot the misclassification rate and estimated

group count as a function of ε. We see that the correct seg-

mentation is stable over a fairly large interval. Using this

observation, we developed the following voting scheme:

1. For a given motion sequence, run the algorithm multi-

ple times over a number of choices of ε.14

2. Discard any ε that does not give rise to a segmentation

with the correct number of groups.15

3. With the remaining choices of ε, find all the distinct

segmentations that are produced.

4. Choose the ε that minimizes the coding length for the

most segmentations, relative to the other choices of ε.

This scheme is quite simple, and by no means optimal,

but as our experiments will show it works very well in prac-

tice.

Figure 3. Left: The “1RT2TCRT B” sequence from the Hop-

kins155 database. Right: The misclassification rate and estimated

group count as a function of ε.

Choosing the Dimension of the Projection d. In general,

Dimension Reduction improves the computational tractabil-

14Our experiments use 101 steps of ε logarithmically spaced in the in-

terval [10−5, 103].
15If none of the choices of ε produce the right number of groups, we

select the ε that minimizes the “penalized” coding length proposed in [15].

ity of a problem. For example, for segmenting affine mo-

tions, [20] suggests projecting the trajectories onto a 5-

dimensional subspace. However, for more complicated

scenes (e.g. scenes with articulated motion), five dimen-

sions may not be sufficient.

ALC scales roughly cubic with the dimension, so, in the-

ory, we can leave our data in a relatively high-dimensional

space. However, due to the greedy nature of the algorithm,

a local minimum segmentation can be found if the samples

do not adequately cover each subspace. Thus, Dimension

Reduction can improve the results of ALC by increasing

the density of samples within each subspace.

A balance needs to be struck between expressiveness and

sample density. One choice, recently proposed in the sparse

representation community [4], is the dimension dsp:

dsp = min d subject to d ≥ 2k log(D/d),

where D is the dimension of the ambient space and k is the

true low dimension of the data. It has been shown, that,

asymptotically, as D → ∞, this d is the smallest projection

dimension such that the ℓ1 minimization is still able to re-

cover the correct sparse solutions. For our problem, using

the affine camera model, we can assume that k = 4 and

obtain a conservative estimate for a projection dimension d.

In our experiments, we test ALC with projection dimen-

sions16 d = 5 (as suggested in [20]), and the sparsity-

preserving d stated above. We refer to the two versions of

the algorithm as ALC5 and ALCsp , respectively.

3.2. Results on the Hopkins155 Database

The Hopkins155 database consists of 155 motion se-

quences categorized as checkerboard, traffic, or articulated.

The motion sequences were obtained using an automatic

tracker, and errors in tracking were manually corrected for

each sequence. Thus in this experiment, there is no attempt

to deal with incomplete or corrupted trajectories. See [18]

for more details on the Hopkins155 database.

16We used Principal Component Analysis (PCA) as our method of Di-

mension Reduction.



We run ALC5 and ALCsp on the checkerboard, traf-

fic, and articulated sequences using the voting scheme de-

scribed earlier to determine ε. For each category of se-

quences, we compute the average and median misclassifi-

cation rates, and the average computation times. We list

these results in Tables 3-6 along with the reported results

for Multi-Stage Learning (MSL) [13] and Local Subspace

Affinity (LSA)17 on the same database. Figure 4 gives two

histograms of the misclassification rates over the sequences

with two and three motions, respectively. There are several

other algorithms that have been tested on the Hopkins155

database (e.g., GPCA, RANSAC), but we list these two al-

gorithms because they have the best reported misclassifica-

tion rates in many categories of sequences.

As these results show, ALC performs well compared to

the state-of-the-art. It has the best overall misclassification

rate as well as for the checkerboard sequences. In categories

where ALC is not the best, its performance is still competi-

tive. The one notable exception is for the set of articulated

sequences. In articulated sequences, it is difficult to track

a lot of trajectories in each limb, but these trajectories live

in a relatively high-dimensional space. Though in theory

one only needs as many trajectories as the dimension of

the subspace, we have observed experimentally that ALC

can make suboptimal groupings when the ambient space is

high-dimensional and the density of the data within a sub-

space is low. Finally, with regard to the projection dimen-

sion, our results indicate that, overall, ALCsp performs bet-

ter than ALC5 .

Table 3. Misclassification rates for sequences of two motions.

Checkerboard MSL LSA ALC5 ALCsp

Average 4.46% 2.57% 2.66% 1.55%

Median 0.00% 0.27% 0.00% 0.29%

Traffic MSL LSA ALC5 ALCsp

Average 2.23% 5.43% 2.58% 1.59%

Median 0.00% 1.48% 0.25% 1.17%

Articulated MSL LSA ALC5 ALCsp

Average 7.23% 4.10% 6.90% 10.70%

Median 0.00% 1.22% 0.88% 0.95%

All Sequences MSL LSA ALC5 ALCsp

Average 4.14% 3.45% 3.03% 2.40%

Median 0.00% 0.59% 0.00% 0.43%

3.3. Experimental Results on Robustness

We now test our robust subspace separation method on

real motion sequences with incomplete or corrupted trajec-

tories. We use the three motion sequences shown in Fig-

ure 5. These sequences are taken from [20] and are sim-

ilar to the checkerboard sequences in Hopkins155. Each

sequence contains three different motions and was split into

three new sequences containing only trajectories from the

17For LSA we report the results for the version that projects the data

onto a 4N -dimensional space.

Table 4. Misclassification Rates for sequences of three motions.

Checkerboard MSL LSA ALC5 ALCsp

Average 10.38% 5.80% 7.05% 5.20%

Median 4.61% 1.77% 1.02% 0.67%

Traffic MSL LSA ALC5 ALCsp

Average 1.80% 25.07% 3.52% 7.75%

Median 0.00% 23.79% 1.15% 0.49%

Articulated MSL LSA ALC5 ALCsp

Average 2.71% 7.25% 7.25% 21.08%

Median 2.71% 7.25% 7.25% 21.08%

All Sequences MSL LSA ALC5 ALCsp

Average 8.23% 9.73% 6.26% 6.69%

Median 1.76% 2.33% 1.02% 0.67%

Table 5. Misclassification Rates over entire Hopkins 155 Database.

Checkerboard MSL LSA ALC5 ALCsp

Average 5.94% 3.38% 3.76% 2.47%

Median 0.00% 0.57% 0.00% 0.31%

Traffic MSL LSA ALC5 ALCsp

Average 2.15% 9.05% 2.76% 2.77%

Median 0.00% 1.96% 0.41% 1.10%

Articulated MSL LSA ALC5 ALCsp

Average 6.53% 4.58% 7.58% 13.71%

Median 0.00% 1.22% 0.92% 3.46%

All Sequences MSL LSA ALC5 ALCsp

Average 5.06% 4.87% 3.83% 3.56%

Median 0.00% 0.90% 0.27% 0.50%

Table 6. Average computation times for various algorithms.

Method MSL LSA ALC5 ALCsp

Checkerboard 17h 40m 10.423s 12m 6s 24m 4s

Traffic 12h 42m 8.433s 8m 42s 17m 19s

Articulated 7h 35m 3.551s 4m 51s 10m 43s

All Sequences 19h 11m 9.474s 10m 32s 21m 3s
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Figure 4. Misclassification rate histograms for various algorithms

on the Hopkins155 database.

first and second groups, first and third groups, and sec-

ond and third groups, respectively. Thus, in total, we have

twelve motion sequences, nine with two motions, and three

with three motions. For these sequences, between 4% and

35% of the entries in the data matrix of trajectories are cor-

rupted. These entries were manually located and labeled.

Incomplete Data. To see how ℓ1-based entry completion

affects the quality of segmentation, we remove the entries of



Figure 5. Example frames from three motion sequences with in-

complete or corrupted trajectories. Sequences taken from [20].

trajectories that were marked as corrupted so that we may

treat them as missing entries. We apply our ℓ1-based en-

try completion method to this data, and input the completed

data into ALC5 and ALCsp , respectively. For comparison,

we also use Power Factorization to complete the data be-

fore segmentation. The misclassification rate for each se-

quence is listed in Table 7. The best overall results are

for our ℓ1-based method combined with ALCsp . However,

while Power Factorization combined with ALC5 also per-

forms competitively, its performance becomes much worse

when combined with ALCsp . These results give some em-

pirical justification to our assertion that Power Factorization

relies on the low rank of a matrix to recover missing entries.

Table 7. Misclassifications rates for Power Factorization and our

ℓ
1-based approach on 12 real motion sequences with missing data.

Method PF+ALC5 PF+ALCsp ℓ
1+ALC5 ℓ

1+ALCsp

Average 1.89% 10.81% 3.81% 1.28%

Median 0.39% 7.85% 0.17% 1.07%

Corrupted Data. We also test our ability to repair cor-

rupted trajectories, and observe the effects of the repair on

segmentation. We simply apply our ℓ1-based repair and de-

tection method to the raw motion sequences, and then input

the repaired data to ALC5 and ALCsp , respectively. The

misclassification rate for each sequence is listed in Table 8.

As the results show, our ℓ1-based approach can repair cor-

rupted trajectories to achieve reasonable segmentations.

Table 8. Misclassifications rates for our ℓ
1-based approach on 12

real motion sequences with corrupted trajectories.

Method ℓ
1+ ALC5 ℓ

1+ ALCsp

Average 4.15% 3.02%

Median 0.21% 0.89%

4. Conclusion

In this paper we have developed a robust subspace sepa-

ration method that applies Agglomerative Lossy Compres-

sion to the problem of motion segmentation. We showed

that by properly exploiting the low rank nature of motion

data, we can effectively deal with practical pathologies such

as incomplete or corrupted trajectories. These techniques

are in fact generic to subspace separation, and can conceiv-

ably be used in other application domains with little modi-

fication.
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