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SUMMARY

Motion sickness (MS) is a common physiological response to real or virtual motion. Numer-

ous studies have investigated the neurobiological mechanism and the control measures of

MS. This review summarizes the current knowledge about pathogenesis and pathophysiol-

ogy, prediction, evaluation, and countermeasures of MS. The sensory conflict hypothesis is

the most widely accepted theory for MS. Both the hippocampus and vestibular cortex might

play a role in forming internal model. The pathophysiology focuses on the visceral affer-

ence, thermoregulation and MS-related neuroendocrine. Single-nucleotide polymorphisms

(SNPs) in some genes and epigenetic modulation might contribute to MS susceptibility and

habituation. Questionnaires, heart rate variability (HRV) and electrogastrogram (EGG) are

useful for diagnosing and evaluating MS. We also list MS medications to guide clinical prac-

tice. Repeated real motion exposure and combined visual-vestibular interaction training

accelerate the progress of habituation. Behavioral and dietary countermeasures, as well as

physiotherapy, are also effective in alleviating MS symptoms.

Introduction

Motion sickness (MS) is a feeling of unwellness caused by motion,

especially during traveling and virtual reality immersion. The

main symptoms of MS include autonomic reactions (nausea, vom-

iting, pallor, sweating, hypersalivation, and stomach awareness)

and sopite syndrome referring to drowsiness, lethargy, and persis-

tent fatigue [1]. Intact vestibular apparatus and sufficient provoca-

tive stimulation are prerequisites for MS. There are great

individual differences in MS susceptibility, which is thought to be

a result of gene-environment interaction [2]. Although the etiol-

ogy and precise neurobiological mechanism of MS are still

ambiguous, several hypotheses have been proposed in which the

sensory conflict hypothesis is the most widely accepted theory.

Varieties of countermeasures have been developed and success-

fully used for decades.

Pathogenesis and Pathophysiology

Sensory Conflict Theory

The “sensory conflict and neural mismatch” theory was originally

proposed by Reason and Brand. It is currently accepted for

explaining MS [3]. MS will develop when mismatches happened

between the integrated pattern of sensory information under real

motion (e.g., in boats, cars, and airplanes) or virtual environment

(e.g., watching 3D video films) and the anticipated “internal

model” formed under normal or experienced conditions [4]. The

physiological significance of “neural mismatch” is to initiate sen-

sory-motor learning and promote self-adjustment, ultimately pro-

ducing MS habituation under novel locomotion environment [5].

Recent studies have added new knowledge to sensory con-

flict theory. Cullen and his colleagues recently identified sen-

sory conflict neurons in the VN and cerebellum. They found

that “vestibular only” (VO) VN neurons and “unimodal” rostral

fastigial nucleus (u-rFN) cerebellar neurons only reacted to pas-

sive head movement (exafferent) but not to anticipated active

afference (reafference) in primates [6]. These sensory conflict

neurons may receive inhibitory innervations canceling “reaffer-

ence” that matches the experience in the “internal model.” As

the sensory conflict theory suggests that neural storage of the

experienced motion pattern can produce novel “internal

model,” it can be presumed that the “exafference” might also

be canceled by novel “internal model” established after habitu-

ation induced by prolonged or repeated passive motion expo-

sure (Figure 1).

Several lines of evidence suggest that brain regions involved in

space orientation and motion perception (hippocampus and

vestibular cortex) are areas where internal model stores [7,8]. As

for the hippocampus, forward–backward translocation and passive

rotation can induce theta rhythm in dentate gyrus and CA1

regions while lesion in these regions can aggravate MS, suggesting
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the hippocampal involvement in processing sensory conflict infor-

mation [9–11]. In the vestibular cortex, electrophysiological

experiments showed that bilateral labyrinthectomy significantly

decreased the firing rate of neurons in dorsal part of middle supe-

rior temporal (MSTd) during physical rotation and translation in

the dark, but not in the visual condition [12]. During large-field

visual motion stimulation, inhibitory visual-vestibular interaction

was observed in brain regions connected indirectly with MSTd in

monkeys [13]. A recent fMRI study showed that long-term space-

flight significantly reduced intrinsic connectivity in insula cortex

in a cosmonaut [14]. These lines of evidence supported that the

vestibular cortex might play a role in visual-vestibular sensory

conflict and possibly in forming “internal model.”

Pathophysiological Mechanisms

Theoretically, activating sensory conflict neurons may trigger

autonomic reaction through vestibulo-autonomic pathways that

connect the VN complex with central autonomic regions [15,16].

Yates et al. have confirmed that vestibular system regulates car-

diovascular function during movement and changes in posture

via vestibulo-sympathetic reflex [17]. Although the contribution

of sensory conflict neurons to VN-autonomic regulation is still

ambiguous, downstream pathophysiological mechanisms of MS

are updated by recent studies emphasizing visceral vestibular con-

vergence, vestibulo-thermal regulation, and MS-related endocrine

(Figure 1).

It has been demonstrated that brain regions associated with

nausea and vomiting not only receive vestibular afference but also

converge gastrointestinal (GI) signal [18], suggesting that visceral

mechanosensory input might facilitate VN-autonomic reaction

during MS. Ossenkopp et al. for the first time reported that MS

can induce hypothermia which has recently been proved to be

caused by increased heat loss resulting from peripheral vasodilata-

tion [19,20]. Ngampramuan et al. proposed that the vestibular

thermoregulatory symptoms may serve as a core pathophysiologi-

cal element of motion-induced nausea in mammals [21]. As body

temperature and biorhythms are significantly disrupted by

chronic hypergravity and bilateral vestibular loss [22], we specu-

late that vestibular system might participate in keeping homeosta-

sis during MS via connections with thermal and rhythmic

regulation centers (Figure 1).

In addition to autonomic reactions, MS also accompanies stress

hormones release and endocrine responses habituated over

repeated motion exposure [23]. Nevertheless, temporal changes

of blood hormones, such as arginine vasopressin (AVP) and

adrenocorticotrophic hormone (ACTH), did not synchronize with

those of motion-induced nausea, suggesting that activating

hypothalamic–pituitary–adrenal axis might be a general stress

response to provocative motion [24]. Recently, ghrelin, an

endogenous ligand for the growth hormone secretogogue recep-

tor, was observed to be related to acute nausea or vomiting [25].

In animals and humans, ghrelin was found to have gastro-proki-

netic activity via facilitating gastric cholinergic activity [25]. Our

study revealed that plasma ghrelin levels were positively corre-

lated with severe seasickness-induced autonomic responses in

humans (unpublished data), which suggests that gastroenteropan-

creatic hormones might play a role in MS development. Never-

theless, more detailed evidence is required to verify this

hypothesis.

Genetic Contributions

MS is a conserved and a cross-species phenotype (from fishes,

amphibia to mammals) with a heritability around 57–70% in

humans [5]. Race disparity is also significant. Chinese are more

sensitive to MS than Caucasian [2]. Finley et al. for the first time

reported that a single-nucleotide polymorphism (SNP) in the a2-
adrenergic receptor gene correlated with individual differences in

autonomic responsiveness to provocative motion and other stres-

sors [26]. Recently, a genomewide association study conducted in

80,494 individuals from the 23 and Me database found that 35

SNPs in genes involved in balance function, eye, ear and cranial

development, neurological processes, glucose homeostasis, or
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Figure 1 Sensory conflict theory and

pathophysiological process of MS.
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hypoxia were associated with self-reported carsickness susceptibil-

ity [27]. Nevertheless, it has been verified that none of these SNPs

is related to vestibular function regulation. It is noteworthy that

some SNPs are in or near genes implicated in glucose and insulin

homeostasis, which links to our pervious finding that hyper-

glycemia is related to the GI symptoms of MS both in human and

rodents [28]. Recent studies have found that SNPs in genes of 5-

Hydroxytryptamine type 3 receptor (5-HT3), cholinergic mus-

carinic receptor type 3 (M3 AChR), morphine (l) opioid receptor,

and neurokinin 1 (NK1) receptors are associated with background

sensitivity to postoperative and chemotherapy-induced nausea

and vomiting (PINV and CINV) [29]. These genetic bases for “final

common pathway” of nausea and vomiting may also contribute to

MS susceptibility.

Patients with migraine and Meniere’s disease are prone to expe-

rience MS especially in female patients [30,31]. Mutations in

genes related to vasculopathy and cortical spreading depression

are responsible for vestibular symptoms and MS hypersusceptibil-

ity in migraine patients [32]. Previous studies have found sporadic

Meniere’s disease might be associated with mutations in genes of

aquaporins and voltage-gated potassium channel expressed in the

inner ear [33]. Given that these genes play important roles in

endolymphatic homeostasis, their mutations ought to contribute

to subnormal or asymmetrical otolith function associated with MS

hypersusceptibility in Meniere patients.

Spaceflight and microgravity can affect the expression of genes

associated with cellular functions [34,35]. Our study also showed

that MS susceptible and insusceptible animals have different gene

expression profile in the caudal VN after motion stimulation [36].

Moreover, for human T-lymphocyte cells, simulated microgravity

exposure could alter the expression of genes involved in DNA

methylation and histone modification, inducing DNA

hypomethylation and mutational changes [37]. These lines of evi-

dence indicate that epigenetic modulations might also contribute

to MS susceptibility diversity and MS habituation. In addition, MS

susceptibility is also influenced by personal characteristics includ-

ing trait-anxiety, aerobic fitness, and hemodynamic as well as age

and sex [38]. The linkage between genetic and epigenetic basis of

these phenotypes and MS merits further investigation.

Prediction and Evaluation

Prevalence Prediction

It has been demonstrated that almost all healthy individuals can

obtain MS when exposed to appropriate provocative motion. MS

prevalence depends on individual threshold to motion stimula-

tion and varies under different situations, which makes it diffi-

cult to predict. Lawther and Griffin established mathematical

models with dependence on various vertical motion parameters

(acceleration magnitude, frequency, and duration) for predicting

incidence of seasickness [39]. Perez Arribas and Lopez Pinerio

have proposed “sicken passengers ration” which represents vari-

ables including ship speed, loading condition, and sea state and

includes the effect of passenger behavior and habituation to

moving environment [40]. These formulas greatly improve ship

design to increase the degree of comfort and the work ability on

the sea.

Individual Susceptibility Prediction

Birren and Fisher for the first time provided a questionnaire

approach to predict seasickness susceptibility [41]. Pensacola

Motion History Questionnaire (PMHQ) and Reason and Brand

MS Susceptibility Questionnaire (MSSQ) were nowadays com-

monly used in MS studies [42–44]. Golding redesigned a MSSQ-

Short by simplifying the scoring and adding vital items including

the demographic (e.g., age, gender, race), the nauseogenic envi-

ronments avoidance (e.g., cars, planes, video games), and vestibu-

lar disorder comorbidities and anthropometric items (e.g., height,

body weight, BMI) to increase the reliability and validity [45,46].

Shupac et al. and other groups assessed vestibular function,

such as vestibular-ocular reflex (VOR), caloric stimulation, and

vestibular-evoked myogenic potential (VEMP), to predict individ-

ual MS susceptibility [47–50]. Stoffregen et al. recently proposed

the postural instability as a precursor of MS susceptibility [51].

Previous studies also demonstrated that computerized dynamic

posturography (CDP) data can be used as indicator of seasickness

susceptibility and habituation [52,53]. In addition, baseline pro-

tein concentration and amylase activity in saliva as well as odor

and taster sensitivity were also used as indicators for predicting

MS susceptibility in human subjects [54–57] (Table 1).

Diagnosis and Evaluation

MS can be diagnosed according to the manifestations during

motion exposure after excluding other pathological disorders.

Graybiel et al. andWiker et al. established two MS severity grading

criteria by scoring 7 categories of cardinal signs and symptoms, and

28 major, minor, or other symptoms, respectively [58,59]. Several

research groups developed different questionnaires for assessing

the multiple dimensions of MS symptoms [60–62] (Table 1).

Heart rate variability (HRV) and electrogastrogram (EGG) are

useful for assessing cardiac sympathovagal interactions and gastric

motility during MS, respectively [63,64]. HRV indices might be

influenced by motion patterns, intersubject variations, subjects’

self-adjustments, vomiting process, and stress response [65,66].

As for the EGG test, increased 4–9 cpm activity and the absence or

decrease of 3 cpm activity may indicate MS-induced nausea and

vomiting, respectively [64]. EGG has also been demonstrated to

be more sensitive than electroencephalogram, electrocardiogram,

and skin conductance in MS evaluation [67].

Fos protein, an indicator of neuronal activity, is considered to

be a molecular indicator for MS development and habituation

[68,69]. Nevertheless, whether Fos expression can illustrate race

and sex difference in MS susceptibility is still unclear. Recently,

we found that motion-induced elevation of serum glucose was

significantly related to GI symptoms of MS and might serve as a

potential MS marker [28] (Table 1).

Motion sickness Medications

In 1869, the first usage of medications for MS is a combination of

chloroform and tincture of belladonna [70]. Nowadays, there are

at least 9 different kinds of drugs used against MS. Anticholiner-

gics and antihistamines are the most effective MS prophylactics

with apparent side effects such as drowsiness and depression. Drug
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combinations are thus used to increase efficacy and alleviate side

effects (Table 2).

Anticholinergics

Atropine, scopolamine (hyoscine), and hyoscyamine have already

been used to treat MS before World War I. A recent cochrane

systematic review of 14 randomized controlled trials (RCTs)

concluded that scopolamine, the nonselective muscarinic cholin-

ergic receptor (mAChR) antagonist, was more effective than pla-

cebo but not superior to antihistamines in preventing MS and was

no more likely to induce drowsiness, blurring vision, or dizziness

compared to other agents [71]. Nevertheless, the precise mAChR

subtypes (M1–M5) that serve as the targets of scopolamine is still

unclear. As we know that all mAChR subtypes are expressed in

the brain, while only M1, M2, and M5 exist in vestibular ganglia

and vestibular end organs in humans [72]. The M1, M3, and M5

are postsynaptic excitatory receptors; M2 and M4 receptors are

inhibitory. Furthermore, selective M3 and M5 antagonist zamife-

nacin was found to be as effective as scopolamine in preventing

Table 1 Prediction and evaluation for MS

Category Description Application References

MS Questionnaires

PMHQ Coriolis stimulation, very low-frequency ship motion, and

simulator stimulation as scoring keys

Predicting SS susceptibility [42,44]

MSSQ Childhood and adults history of transport or entertainment

exposure and MS experience

Predicting susceptibility to real motion-

induced MS

[43,45]

Graybiel rating scales Rating cardinal symptoms including cold sweating, pallor,

increases in salivation, drowsiness, headache, pain, and

nausea and vomiting

Evaluating MS of all forms [58]

Wiker rating scales Rating MS by rigging up 28 major, minor, and other

symptoms

Evaluating MS of all forms [44,59]

Kennedy rating scales Factor analysis of oculomotor, disorientation, and nausea

dimensions

Evaluating SS [60]

Muth rating scales Rating 3 dimensions of nausea including gastrointestinal,

somatic, and emotional distress

Assessing MS-induced nausea [61]

Gianaros rating scales Rating gastrointestinal, central, peripheral, and sopite-

related dimensions

Multidimensional analysis of MS [62]

Vestibular function

VOR Higher gains and lower phase leads Predicting MS susceptibility; indicator of

semicircular canal function

[47,48]

Caloric test Faster slow-phase velocity Predicting MS susceptibility; indicator of

semicircular canal function

[165]

cVEMPs Higher threshold; lower peak-to-peak amplitude interval Predicting MS susceptibility; evaluating

MS habituation; indicator of saccular

function

[49,50]

Physiological indexes

CDP Less stability in condition 5 of SOT; decreased MCT strength Predicting postural instability of MS

susceptibles; evaluating MS habituation

[52,53]

Postural dynamics Greater positional variability; higher temporal dynamics Predicting postural instability of MS

susceptibles

[51]

Odors and tastes

sensitivity

Sensitive to unpleasant odors (e.g., petrol, leather); sensitive

to phenylthiocarbamide tasters

Predicting susceptibility to environment

incentives

[56,57]

HRV Reduction in (HF) high-frequency component; increment in

low-frequency component (LF) and LF/HF ratio

Evaluating MS-induced sympathovagal

disturbance

[63,66]

EGG Increased 4–9 cpm activity; absence or reduction of 3 cpm

activity

Evaluating MS-induced gastric response [50,64]

Core temperature Reduction in core temperature Evaluating MS-induced thermal reaction [20]

Biochemical test

Stress hormones Increment in levels of AVP, ACTH, cortisol, beta-endorphin,

etc. after provocative motion stimulation

Evaluating MS-induced stress [23,166]

Salivary protein and

amylase

High baseline salivary protein concentration; high amylase

activity

Preceding MS susceptibility [54,55]

Fos protein Increase expression Indicator of MS-related neuronal activation;

evaluating vestibular habituation

[69,167]

Serum glucose Elevated after provocative motion stimulation Indicator of severity of GI symptoms of MS [28]

SS, simulator sickness; SOT, sensory organization test; MCT, motor control test.
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MS [73]. These lines of evidence suggest that scopolamine might

exert its antagonistic effect on peripheral M1 and M5 and/or cen-

tral M1 and M3 mAChR to prevent MS.

The commonly used dosage forms of scopolamine include oral

tablets and liquid, transdermal therapeutic system (TTS), and the

intranasal (IN) aerosol (Table 2). The TTS delivering scopolamine

to the mastoid area shows a long-lasting prophylactic effect with-

out psychomotor impairment [74,75]. Noninvasive IN formula-

tion of scopolamine has higher peak plasma concentration and

shorter peak time than oral agents [76,77]. In addition, grapefruit

Table 2 Antimotion sickness medications

Category Dosage formation Usage Application References

Anticholinergics

Scopolamine p.o. (0.6 mg) 0.5–1 h before MS, effective within 6 h Seasickness and experimental MS [71]*

TTS (1.5 mg/patch) 6–8 h before MS, effective over 72 h Seasickness, airsickness,

ship motion simulator,

and experimental MS

[71]* [74,75]

IN (0.4 mg) 0.5 h before MS, effective over 6 h Experimental MS [76,77]*

p.o. (0.3 mg) + TTS 1 h before MS, effective over 72 h Seasickness [168]

Zamifenacin p.o. (20 mg) 1.5 before MS Experimental MS [73]

Antihistamines

Dimenhydrinate p.o. (100 mg) 2 h before MS effective for 8 to 12 h Seasickness and experimental MS [84]* [169]

CG (3 9 20 mg) Chewed for 30 min each during MS Experimental MS [82]*

Cinnarizine Oral (30 or 50 mg) 3 h before MS Seasickness and flight

simulator sickness

[170,171]

Cyclizine (Marezine) p.o. (50 mg) 2 h before MS Experimental MS [172]

Promethazine p.o. ( 25 or 50 mg) 2 h before MS, effective within 12 h Space MS [91,173]

i.m. (25 or 50 mg) 1–2 h before MS, effective within 12 h Space MS, parabolic flight

and experimental MS

[92,174,175]

Suppository (25 or 50 mg) 1–2 h before MS, effective within 12 h Space MS [175]

Meclizine (Antivert) p.o. (25 or 50 mg) 1–2 h before MS, effective within 24 h Experimental MS [94,176]

Chlorpheniramine, p.o. (4 or 12 mg) 3–4 h before MS Experimental MS [83]*

Betahistine p.o. (32 or 48 mg) 1–2 h before MS Seasickness and experimental MS [89] [177]

Dopamine Antagonists

Metoclopramide i.v. (20 mg) 15 min after MS initiation Carsickness [97]*

5-HT1B/1D receptor agonist

Rizatriptan p.o. (10 mg) 2 h before MS Experimental MS in migraineurs [103]*

Sympathomimetics

D-amphetamine p.o. (10 mg) Airsickness [108]

Neuroleptics

Phenytoin p.o. (200 mg) 4 h before MS Seasickness and parabolic flight MS [117,118]

Baclofen p.o. (20 mg) 0.5–1 h before MS Experimental MS [116]

Calcium channel blocker

Flunarizine – – Experimental MS [125]†

l-Opiate receptor agonist

Loperamide p.o. (16 mg) 3 h before MS Experimental MS [126]

Hormones

Dexamethasone i.v. (0.5 mg) Every 6 h for 48 h Experimental MS [124]

Combination

Promethazine +

d-amphetamine

p.o. (25 mg+10 mg) 2 h before MS Airsickness [178]

Scopolamine +

d-amphetamine

p.o. (0.4–1.2 mg+5 mg) 0.5–1 h before MS Parabolic flight MS [179]

Scopolamine +

ephedrine

p.o. (0.3 mg+25 mg)

i.m. (0.2 mg+25 mg)

0.5–1 h before MS or 3 times daily

30 min before MS

Seasickness and experimental MS

Experimental MS

[180]*

[181]

Chlorpheniramine +

ephedrine

p.o. (12 mg+50 mg) 3–4 h MS Experimental MS [83]*

Dimenhydrinate +

scopolamine

– – Air sickness [182]†

p.o., per os; TTS, transdermal therapeutic system; IN, intranasal; CG, chewing gum; i.m., intramuscular; i.v., intravenous. *Randomized control tri-

als. †Dosage unavailable.
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juice can increase the bioavailability of orally administrated scopo-

lamine via inhibiting the cytochrome P-450 3A enzymes which

are involved in oxidative demethylation of the scopolamine, while

the efficacy of IN and TTS of scopolamine are affected by pH value

[78,79].

Antihistamines

In 1949, Gray and Carliner for the first time discovered that anti-

histamine dimenhydrinate was effective in preventing seasickness

[80]. Small RCTs have verified the effectiveness of the first-gener-

ation H1 antihistamines against MS, but the second generations

were ineffective [81–84] (Table 2). Physiological studies suggested

that dimenhydrinate, cinnarizine, and meclizine exerted a central

action on the medial VN in which high density of H1 and H2 recep-

tor were present [85,86], while the promethazine had global sup-

pression effect on vestibular system, but all these antihistamines

had no effect on the central autonomic regions [87]. Betahistine,

an H3 receptor antagonist and a weak H1 receptor agonist, is effec-

tive in the preventing seasickness and increases tolerability to

Coriolis accelerations via reducing histamine release in medial VN

[88,89]. Recent studies found that H4 receptors were expressed in

rat vestibular ganglia, and H4 receptor antagonists had a pro-

nounced inhibitory effect on primary vestibular neuron activity

and significantly alleviated vestibular deficits in rats [90]. These

results highlighted H4 receptors as potential pharmacological tar-

gets for treating MS.

The main dosage forms of antihistamines include oral (all),

intramuscular injection (promethazine and cyclizine), suppository

(promethazine), chewing gum (dimenhydrinate), and sublingual

form (dimenhydrinate) [91]. Putcha et al. found that promet-

hazine, as the only drug given by three different routes (orally,

intramuscularly, and rectally), was most effective and had mini-

mal side effects when administered intramuscularly in astronauts

during space shuttle missions [92]. The diphenhydramine chew-

ing gum has been developed to alleviate antihistamine’s adverse

effects [82,93]. Recently, a new suspension formulation of mecli-

zine was developed with a more rapid effect and higher maximum

concentration than marketed oral tablet [94].

Monoamine Antagonists/Agonist

Dopamine D2 and D3 receptors are known to play a role in nausea

and emesis. They can alter the amount of cAMP within neurons

of the vomiting center via inhibiting adenylate cyclase [95]. Com-

petitive D2 receptor antagonist metoclopramide, administered

through intravenous or intramuscular injection but not oral route,

alleviated overall symptoms and restored gastric emptying after

the initiation of MS [96,97]. In addition, orally administered dom-

peridone, a peripherally restricted D2 receptor antagonist and a1-
adrenoceptor antagonist, failed to prevent spatial disorientation-

induced gastric dysrhythmia and MS symptoms in humans

[98,99] (Table 2). These results suggest that effectiveness of dopa-

mine antagonists may depend on the administration route and

timing. Similarly, although the 5-HT3 receptor antagonists ondan-

setron are extensively used to prevent and suppress CINV and

PONV [100], oral administration of this drug has no preventive

effect against seasickness or experimental MS [101,102]. As MS

can induce delayed gastric emptying and reduce absorption, oral

forms are problematic and injection or transdermal formation is

recommended.

Additionally, two double-blind, placebo-controlled studies

showed that 5-HT1B/1D receptor agonist rizatriptan prevented the

development of MS in migrainous patients [103,104]. The 5-HT2A

antagonist ketanserin significantly suppressed hypergravity-

induced hypophagia in rats, while a 5-HT1A agonist, 8-hydroxy-

2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT),

successfully prevented vomiting induced by motion in cats and

suncus murinus [105–107]. The precise efficacy of these drugs

against MS in humans needs to be verified in the future.

Stimulants and Sedatives

Sympathomimetics d-amphetamine was found to be highly effec-

tive against space MS rather than seasickness [108]. Accumulating

evidence suggests that d-amphetamine and ephedrine might coun-

teract the sedative side effects of scopolamine and antihistamines,

but at the risk of drug addiction and counterbalancing the vestibu-

lar suppression effect (Table 2). Nevertheless, scopolamine used in

combination with d-amphetamine against MS should be cau-

tioned, for scopolamine impairs decision-making and motivational

behavior similar to the effect produced by amphetamine [109].

Modafinil, a potential substitute of amphetamine, significantly

enhanced the efficacy of scopolamine when used in combination

in rodents [110], but failed to prevent MS in humans when used

alone [111]. Caffeine, a much more commonly used psychostimu-

lant, was found to be effective in counteracting scopolamine-in-

duced memory impairment in humans and animals [112,113],

while no study has been performed to evaluate efficacy of caffeine

in the management of MS alone or in combination with scopo-

lamine and antihistamines. Neuroleptics including barbiturates,

diazepam, and baclofen as well as phenytoin were found to be

effective in prevention of MS [114–118] (Table 2).

Other Drugs

Clinical studies have demonstrated that powdered ginger was as

effective as other anti-emetics in reducing the incidence of nausea

and vomiting caused by traveling, while exploratory experimental

studies had controversial outcomes possibly due to different stim-

ulation patterns and evaluation methods used [119,120]. Chinese

medicinal compound recipe composed of ginger, pogostemonis

herba, and radix aucklandiae and an ancient prescription Pingan-

dan are also found to be effective against MS in animals

[121,122]. Our study revealed that ginsenosides combined with

dexamethasone can significantly increase tolerance to accelera-

tion in rats [123], consisting with early findings that dexametha-

sone can reduce susceptibility to space MS in humans [124]

(Table 2). Flunarizine, a calcium channel blocker, was shown to

be a peripherally acting labyrinthine suppressant. It was effective

in preventing MS without central depressive side effects [125]. A

placebo-controlled, crossover study showed that the peripheral

acting l-opiate agonist loperamide attenuated vertical axis rota-

tion-induced nausea in humans [126]. The NK1 receptor antago-

nist aprepitant is successfully used for preventing acute and

delayed CINV [127]. The NK1 receptor antagonists are also effec-
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tive against MS-induced emesis in animals but not in humans

[128–130]. Recent findings have demonstrated that MS is associ-

ated with impaired endocannabinoid activity [123,131,132]. CB1

receptor agonist (Δ9-tetrahydrocannabinol, Δ9-THC) and antago-

nist (cannabidiolic acid) were observed to inhibit emesis induced

by motion in suncus murinus via different neural mechanism

[133,134].

Nonpharmacological Countermeasures

Habituation Training

Transient MS habituation can be induced in animals and humans

by repeated or prolonged motion stimulation and may generally

last for several weeks [69,135,136]. The habituation acquired

under particular stimulus conditions is normally highly specific,

while the time-course of habituation acquirement for linear accel-

eration is quite different from that for angular acceleration in

humans [137]. Repeated exposure may produce more sufficient

habituation than single prolonged stimulation, but desensitization

to one provocative motion could not be transferred to a more sev-

ere motion stimulus [138]. Thus, the objective of habituation

training is to reproduce the sensory conflict as close as possible to

the provocative environment. For instance, horizontal suspen-

sion, parabolic flight, and neutral buoyancy simulation have been

used as microgravity simulation methods for astronaut training

[139,140]. Recent studies have demonstrated that preflight virtual

reality training is also effective against space MS and disorienta-

tion [141]. As sufficient activation of vestibular system is the pre-

requisite to produce novel “internal model,” anti-MS drugs are

not recommended during MS habituation training process

[137,142].

Compared with conventional ground-based training procedures

using revolving chair, winding stair, idler wheel, and swing, com-

bined visual-vestibular habituation training was more effective

and can produce long-term effect against travel-induced MS for

up to 18 weeks in susceptible subjects [143,144]. Recent prospec-

tive studies also showed that optokinetic training comprising ver-

tical, horizontal, and torsional movements of frontly projected

bright spots can reconstitute the effects of swell encountered at

sea and appears to be an effective training modality for the pre-

vention of disabling seasickness [145]. In addition, the pseudoran-

dom galvanic vestibular stimulation (GVS) is expected to be used

in astronaut training against landing sickness, as it accurately

replicated the postural instability, locomotor impairment, and

reduced dynamic visual acuity observed in astronauts after return

from space [146].

Behavioral and other Countermeasures

Forward-looking vision on the distant horizon is effective in alle-

viating MS symptoms via matching visual and vestibular informa-

tion in subjects exposed to simulated ship motion [147].

Controlled breathing is also beneficial for managing MS symptoms

and promoting habituation [148,149]. Nevertheless, breathing

supplemental oxygen had no advantage over breathing air in

reducing MS in healthy adults [150]. MS symptoms can be allevi-

ated by autogenic-feedback training exercise for autonomic

responses control as well as the manipulations to enhance pre-

dictability and positive expectancy [151–153]. Recently, smoking

deprivation, pleasant music, and odors as well as head vibration

and mental distraction have been found to be effective in reducing

MS symptoms [154–157].

High sodium and energy dense or low vitamin A, vitamin C,

and iron diets as well as high frequency of meals in previous 24 h

increased the airsickness occurrences in pilots [158]. A protein-

predominant beverage taken 5 or 30 min before optokinetic stim-

ulation was found to be effective in suppressing gastric tach-

yarrhythmia and MS symptoms [159]. A recent double-blind,

placebo-controlled crossover study found that vitamin C was

effective in suppressing symptoms of seasickness, particularly in

youngsters [160].

Acupuncture at the P6 or Neiguan point to treat nausea and

vomiting has been practiced in China for many years, but it is still

controversial whether SeaBand or ReliefBand designed for acu-

pressure or electrostimulation at P6 are effective in MS treatment

[161,162]. Transcutaneous electrical nerve stimulation of the pos-

terior neck and the right Zusanli acupoint was found to be effec-

tive in reducing simulator sickness symptoms and alleviating

cognitive impairment [163]. Recently, stroboscopic illumination

at 8 herts, by ambient strobe light or by liquid crystal display shut-

ter glasses, reduced the severity of MS symptoms and improved

the performance on the vigilance task in soldiers exposed to a

nauseogenic flight in a helicopter [164].

Conclusion

This study reviews the progress of sensory conflict theory, vestibu-

lar homeostasis regulation and genetic basis of MS. It also summa-

rizes prediction and evaluation, and available countermeasures.

In sensory conflict theory, the “sensory conflict neurons” remain

activated and ultimately disrupt homeostasis and trigger MS

responses if the provocative motion signal or reafference informa-

tion mismatches the “internal model.” The heredity of MS suscep-

tibility involves genetic and epigenetic regulation on genes

participating in cellular metabolism, autonomic regulation, and

vestibular function and development. Several methods are used

for MS prediction and evaluation, but specific indicator is scarce.

The efficacy of anti-MS medications depends on dosage forms and

time of administration. Novel drugs in development show no

remarkable advantages over traditional medications such as anti-

cholinergics and antihistamines. Visual-vestibular habituation

training is the most effective nonpharmacological prophylaxis.

Other measures such as acupuncture and stroboscopic illumina-

tion could be substitutes for medications when side effects are

unacceptable.
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