
����������
�������

Citation: Gong, L.; Chen, B.; Xu, W.;

Liu, C.; Li, X.; Zhao, Z.; Zhao, L.

Motion Similarity Evaluation

between Human and a Tri-Co Robot

during Real-Time Imitation with a

Trajectory Dynamic Time Warping

Model. Sensors 2022, 22, 1968.

https://doi.org/10.3390/s22051968

Academic Editor: Felipe Martins

Received: 4 January 2022

Accepted: 28 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Motion Similarity Evaluation between Human and a Tri-Co
Robot during Real-Time Imitation with a Trajectory Dynamic
Time Warping Model

Liang Gong *,† , Binhao Chen † , Wenbin Xu, Chengliang Liu, Xudong Li, Zelin Zhao and Lujie Zhao

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
cbh_mage@sjtu.edu.cn (B.C.); wenbinx@princeton.edu (W.X.); chlliu@sjtu.edu.cn (C.L.);
lxd834740904@alumni.sjtu.edu.cn (X.L.); sjtuytc@sjtu.edu.cn (Z.Z.); zhaolujie@alumni.sjtu.edu.cn (L.Z.)
* Correspondence: gongliang_mi@sjtu.edu.cn; Tel.: +86-13918376686
† These authors contributed equally to this work.

Abstract: Precisely imitating human motions in real-time poses a challenge for the robots due to
difference in their physical structures. This paper proposes a human–computer interaction method
for remotely manipulating life-size humanoid robots with a new metrics for evaluating motion
similarity. First, we establish a motion capture system to acquire the operator’s motion data and
retarget it to the standard bone model. Secondly, we develop a fast mapping algorithm, by mapping
the BVH (BioVision Hierarchy) data collected by the motion capture system to each joint motion
angle of the robot to realize the imitated motion control of the humanoid robot. Thirdly, a DTW (Dy-
namic Time Warping)-based trajectory evaluation method is proposed to quantitatively evaluate
the difference between robot trajectory and human motion, and meanwhile, visualization terminals
render it more convenient to make comparisons between two different but simultaneous motion
systems. We design a complex gesture simulation experiment to verify the feasibility and real-time
performance of the control method. The proposed human-in-the-loop imitation control method
addresses a prominent non-isostructural retargeting problem between human and robot, enhances
robot interaction capability in a more natural way, and improves robot adaptability to uncertain and
dynamic environments.

Keywords: motion imitation; life-size humanoid robot; BioVision hierarchy; motion capture; DTW-
based trajectory evaluation; human-in-the-loop control

1. Introduction

In 2017, the National Natural Science Foundation of China (NSFC) launched a major
research project, the Tri-Co Robot (Coexisting-Cooperative-Cognitive Robot). Tri-Co Robots
are those that can naturally interact and collaborate with the operating environment,
humans, as well as other robots and that are adaptive to complex dynamic environments [1].
Over the years, Tri-Co robots have formed many different types due to different scenarios,
different functions, and different tasks completed, where human–robot interaction (HRI)
has become an important research field and has received extensive attention in academia
and industry.

The working scenes of robots are mainly scenes of human life, and most of these
scenes are constructed according to human scales, needs, and capabilities. Whether it is
industrial robots, agricultural robots, or various service robots, humanoid robots have
relative advantages when replacing or helping humans in their work. Compared to the
general-purpose HRIs, humanoid robots have many advantages. First of all, humanoid
robots have the same structure and scale as humans, which means that they can imitate
most of the actions that humans can do. Secondly, humanoid robots provide a platform
for the subsequent development of HRIs. Due to the similar structures between humanoid
robots and humans, human experience can give first-person guidance to robots in the form
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of teaching and can even derive humanoid autonomous decision-making methods. Thirdly,
humanoid robots can use existing human knowledge and skills to improve performance
and greatly reduce the cost of HRI. Our team has proposed a kind of human robot control
method [2], which is used to control humanoid robots so that the robots can imitate
human motion.

It is a valuable method to teach robots behaviors that are not pre-programmed nat-
urally, and it promotes the interactivity between humans and humanoid robots. Taking
humans as an example, humans always learn new knowledge and skills through imi-
tation [3]. For humanoid robots, it is usually easier to imitate human behavior than to
program the controller directly [4]. Therefore, it is particularly important for humanoid
robots to imitate humans. Humanoid behavior is the basis of humanoid robot motion [5].

There are several related works over the past few years. Marcia Riley et al. use an
external camera and the operator’s head-mounted camera to obtain body posture, and
calculated the joint angle by a fast full-body inverse kinematics (IK) method. They use this
method to realize a real-time simulation of a Sarcos humanoid robot with 30 degrees of
freedom (DOF). In addition, some articles ([1,6–8]) use Kinect to collect pictures, perform
gesture recognition, and reproduce similarities on humanoid robots through various al-
gorithms actions. With the upgrading of machine vision algorithms, some new methods
have emerged. Emily-Jane Rolley-Parnell uses an RGB-D camera to photograph human
movements, obtains image information and depth information from it, uses an openpose
algorithm to obtain two-dimensional information of human skeleton posture, and realizes
the control of humanoid robots through solution [9]. In addition to vision, researchers
have also tried other sensory methods. Abhay Bindal fixes an accelerometer motion sensor
and an infrared sensor on the human leg to obtain data to control the gait movement of
biped robots in real time [10]. Akif DURDU connects potentiometers to human joints, and
after classification by neural network, controls the robot to perform movement [4]. Shingo
Kitagawa uses a newer method: they develop a miniature tangible cube. They use this
cube to obtain the controller’s arm information, thus realizing the control of the robot’s
arms [11]. However, there are some demerits in existing works. First of all, the use of
vision for motion recognition and control is not reliable because these methods are sensitive
to lighting conditions and complex backgrounds. With wearable sensors, the accuracy
of motion control will be significantly improved. Secondly, solving the whole-body IK
problem will inevitably affect the real-time performance. Thirdly, motion imitation has
rarely been applied to humanoid robots with human-level dexterity due to the pending
issue of how to deal with the incongruent geometrics between humans and robots.

In this article, we propose a human-in-the-loop system, which implements the robot
imitating the real-time motion of human upper limbs on the life-size open source 3D
humanoid robot InMoov. The InMoov robot has a structure similar to human beings, with a
total of 29 degrees of freedom, 22 of which are used and controlled in our system. The flow
of motion simulation is as follows. First, we use wearable sensors to capture the movement
of the upper limbs of the human body. These data are saved in the BVH (BioVision
Hierarchy) format and transmitted to the robot controller industrial computer. Next, the
BVH data are analyzed by mathematical methods and converted into the corresponding
joint angle data of the robot. Finally, the industrial computer sends the joint angle data
to the lower controller in real time to control the robot. This kind of human-in-the-loop
system provides a novel, real-time, and accurate method for the imitation of human actions
on humanoid robots. In addition, this paper also proposes a trajectory evaluation method,
which is based on DTW (Dynamic Time Warping), to evaluate the similarity between
human behavior and robot motion.

This paper is organized as follows. In Section 2, the motion capture system is in-
troduced. Section 3 discusses the setup of the humanoid robot. Section 4 presents the
realization of real-time motion imitation on the humanoid robot, which provides a quanti-
tative model for describing the incongruent feature between human and robot. Section 5
conducts several experiments on complicated gesture imitation through our proposed
method. Finally, Sections 6 and 7 give the discussions and conclusions.
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2. Motion Capture System

This section introduces the motion capture system. The system mainly includes a
motion sensor for capturing human motion and a human motion redirection method that
links human motion with a simplified skeleton model.

2.1. Motion Sensor

We used a wearable sensor designed by Noitom Technology Ltd. in Beijing, China.
It is a system composed of 32 9-axis sensors. This system is small in size, easy to wear,
and has strong applicability. By connecting with Axis Neuron Pro (ANP) on the Windows
operating system, the system can perform calibration and data transmission management.
At the same time, the collected data can visually reflect the operator’s movement in ANP.

2.2. Human Motion Retargeting

Motion redirection is a classic problem, which aims to redistribute and combine the
motion of one object to another while keeping the two motion styles consistent [12]. By
using motion redirection, BVH data can be used to reproduce the human motion collected
by the sensor on the ANP bone model. BVH data can store the hierarchical movement
of the skeleton, that is, the movement of the child node depends on the movement of the
parent node [13].

The BVH data we use do not include position channels; each joint uses only three
rotation data while keeping the length of the bones connecting the joints unchanged. Next,
since the wearable sensor can be regarded as being fixed on the operator, the posture of the
operator can be calculated through the three rotation angles of each joint.

3. Setup of Humanoid Robot

The humanoid robot has a humanoid design, which has a similar structure and scale
to the human body, and can imitate the movement of the human body [14]. However,
due to the complexity of the human body structure and the limitations of traditional
manufacturing methods, there have been few subtle humanoid robot designs for a long
time. Today, with the rapid development of 3D printing technology, 3D-printed humanoid
robots such as InMoov, Flobi, and iCub are designed to be used as experimental platforms
for HRI research.

The research in this article is based on the InMoov 3D printed life-size humanoid robot
initiated by French sculptor Gael Langevin in 2012 [15]. The InMoov robot contains a total
of 29 degrees of freedom, 22 of which are controlled in the motion simulation of this article,
including 5 DOF for each hand, 4 for each arm, 3 for each shoulder, and 2 for the neck, as
shown in Figure 1. In terms of control, the upper controller uses the Arduino Mega 2560.
On the one hand, the upper controller needs to communicate with the industrial computer
to retrieve the joint angle control information. On the other hand, it needs to communicate
with the lower controllers, which include four Arduino Nano boards, through the Modbus
RTU protocol. Each Arduino Nano controls the movement of six servos through PWM.

Figure 1. DOF of the humanoid robot (DOF of fingers are not shown).
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4. Real-Time Imitation of Human Motion

The overall structure of the proposed method is shown in Figure 2. First, the ROS
(Robot Operating System) operating system is adopted to use message subscription and
publication for data communication to ensure the security of data transmission. Secondly,
a fast mapping algorithm is established to convert the Euler angle of each joint in the BVH
data into the joint angle of the corresponding joint in a very simplified way. Thirdly, the
trajectory evaluation function is used to quantify the degree of similarity between the tra-
jectory of the robot and the trajectory of humans. Fourthly, the collected human movement
and robot movement can be observed and compared on different visualization terminals.

Figure 2. Whole structure of the proposed method.

4.1. Data Transmission

Nodes, which are the message processing units in the ROS system, are used to sub-
scribe or publish messages to ROS topics [16]. The data flow of the system in this article is
visualized in Figure 3, where ellipses represent nodes and squares represent topics.

• rosserial_server_socket_node connects with the win32 console through TCP/IP and
then advertises the topic, perception_neuron/data_1;

• perception_neuron_one_topic_talk_node subscribes to the previous topic and then
converts Euler angles in BVH data to joint angles, which are then published to another
topic called Controller_joint_states;

• joint_state_publisher subscribes to the previous topic and realizes the real-time simu-
lation of robot model;

• perception_serial will send joint angles to the low-level slave controller through a
serial port after obtaining them from Contoller_joint_states.

The above content shows that the data transmission on the industrial computer is
mainly carried out on ROS. After the data leave the industrial computer, the packaged joint
angle needs to be transmitted to the upper and lower controllers through the serial port.
In order to prevent packet loss or data misalignment during transmission, we designed
a specific communication protocol, as shown in Figure 4. The time stamp data and joint
angle data are converted into integers through a specific encoding method in the protocol.
The communication protocol includes 2 bits of time stamp data, 22 bits of position data
corresponding to each joint, and 2 bits of CRC16 check code, which are generated based on
the first 27 bits to ensure the safety of data transmission.
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Figure 3. Visualized data stream through ROS publish_subscribe messaging.

Figure 4. Designed Communication Protocol.

4.2. Mapping Algorithm

In order for the InMoov robot to imitate the motion of the human body, it is necessary
to design an algorithm to calculate the corresponding joint angle based on the Euler angle
in the BVH data. Through the three Euler angles of each joint in BVH, we can calculate the
rotation matrix between the child link and the parent link. Assuming that the Euler angle
of rotation order ZYX can be expressed as ϕ, θ, ψ, the rotation matrix of the child frame
relative to the parent frame is:

Rparent
child =

cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

1 0 0
0 cosψ −sinψ
0 sinψ cosψ

 (1)

Figure 5 shows the mapping problem. The joints of humans and humanoid robots are
not exactly the same. Limited by mechanical constraints, some joints of humanoid robots
cannot achieve rotation in three independent directions. For each joint, the situation is
different, so we need to formulate algorithms for different situations.

The first case is that the degrees of freedom of the human joints are the same as the
degrees of freedom of the robot joints. Take the shoulders as an example. The shoulders of
the InMoov robot are similar to the shoulders of the human body, both have three degrees
of freedom, and their rotation axes can be approximately regarded as perpendicular to each
other. Assuming the joint angles of three shoulder joints are relatively α, β, γ, the rotation
matrix of the arm coordinate system relative to the shoulder coordinate system can be
expressed as:

Rshoulder
arm =

cosα −sinα 0
sinα cosα 0

0 0 1

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

1 0 0
0 cosγ −sinγ
0 sinγ cosγ

 (2)

From the formula, you only need to make the ϕ, θ, ψ angle obtained from the motion
sensor equal to the α, β, γ angle of the control robot. The only thing to note is that the
rotation sequence of the two must be the same.
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Figure 5. Three motion systems with different constraints. (a) shows the human motion system with
biological constraint. (b) shows the BVH motion system with no constraint. (c) shows the robot
motion system with mechanical constraint.

The second one is conversion from two human DOF to one robot DOF. In the upper
limbs, this type of conversion mainly includes the elbow and wrist. Take the elbow as an
example. The elbow of a human can bend and rotate, while the elbow of a robot can only
bend. In order to calculate the bending joint angle Ω of the elbow of the robot, as shown
in the Figure 6, with the assumptions that sensors are fixed with respect to the human
body and the x-direction is along the links, we can derive the following equations with the
rotation matrix (1). R1

2 stands for the rotation matrix of frame x2y2z2 with respect to x1y1z1.
x̂1

1 is the description of unit vector of x1 in frame x1y1z1.

Figure 6. Elbow conversion from 2 DOF to 1 DOF. x1y1z1 and x2y2z2 are the DH coordinate systems
connecting the two links of the elbow joint, respectively. Ω is the bending angle of the elbow joint.

x̂2
2 = (1, 0, 0)T (3)

x̂2
1 = R1

2 x̂2
2 = (cosθcosϕ, cosθsinϕ,−sinθ)T (4)

< x̂2
1, x̂1

1 >= arccos(cosθcosϕ) (5)

Ω = π− < x̂2
1, x̂1

1 >= π − arccos(cosθcosϕ) (6)

The wrist is similar to the elbow. The difference is that the robot wrist can only rotate
rather than bend. We need to compute the joint angle for rotating, which is ω, as shown
in Figure 7. We apply the same mathematical notation settings above and obtain the
following results:
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Figure 7. Wrist conversion from 2 DOF to 1 DOF. x1y1z1 and x2y2z2 are the DH coordinate systems
connecting the two links of the elbow joint, respectively. ω is the rotating angle of the elbow joint.

ẑ2
2 = (0, 0, 1)T (7)

ẑ2
1 = R1

2ẑ2
2 =

 sinϕsinψ + cosϕsinθcosψ
−cosϕsinψ + sinϕsinθsinψ

cosθcosψ

 (8)

< ẑ2
1, ẑ1

1 >= arccos(cosθcosψ) (9)

ω =< ẑ2
1, ẑ1

1 >= arccos(cosθcosψ) (10)

According to formulas 6 and 10, we draw the mapping of the robot’s elbow and wrist
with the sensor’s data, as shown in Figures 8 and 9.

The last case is conversion from three human DOF to two robot DOF, such as in the
neck joint. The solution to this case resembles that for the shoulder joint, and we only need
to take two of three Euler angles in the corresponding order.

Figure 8. Elbow joint angle map.
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Figure 9. Wrist joint angle map.

4.3. Trajectory Imitation Evaluation

The elbow and wrist joints of robots are different from human upper limbs and lack
some degrees of freedom. This leads to the fact that the robot cannot perform one-to-one
correspondence of joints when imitating human actions. Robots need to map human
movements to themselves through a mapping algorithm. In this case, multiple motion
trajectories of the human operator may be mapped to the same robot trajectory, as shown
in Figure 10, if we apply our proposed mapping algorithm. To this end, we need a method
to quantitatively assess the degree of similarity between human motion trajectories and
robot trajectories. So, we propose the DTW trajectory evaluation method.

Figure 10. Schematic diagram of three human trajectories mapped to the same robot trajectory.

Taking wrist mapping as an example, as shown in the Figure 10, three motion tra-
jectories of human operators are drawn, marked as A, B, and C, respectively, and the
robot trajectories they map to are the same. Each trace has several marker points, which
are sample points for the simulation. The trajectory A is a special trajectory, which is a
movement trajectory made by making the wrist bending angle θw = 0. From the data sheet,
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the robot trajectories mapped by these three trajectories are the same, from 0 degrees to
180 degrees, and the overall time length is the same, but there is a scaling phenomenon
in the time series. Reaching the same robot angle, different human trajectories differ by
a maximum of 20 frames. If the point-to-point error calculation is performed directly
according to the time series, there will be a time deviation between the corresponding
two points used for the calculation. This approach fails to capture how similar the overall
trajectories are. The introduction of the DTW distance can be used to solve this timing
drift phenomenon. Obviously, with the continuous advancement of the trajectory, the
accumulation of point-to-point distances will only continue to increase, while the DTW
distance will vary according to the overall similarity of the trajectory.

For a trajectory with n discrete moments, we build a DTW square matrix Dn×n to
describe the DTW distance between human motion trajectory and robot trajectory. In this
matrix, di,j means the DTW distance between the human trajectory data at time i and the
robot trajectory data at time j. In addition, the elements in D obey the following iterative
relationship, where the si means the human trajectory data at time i, and rj means the robot
trajectory data at time j. For a trajectory used for evaluation, any cut at a certain moment
can be regarded as an independent trajectory. Therefore, the diagonal elements of the DTW
matrix D, that is, diag(D), can be selected for drawing, which can more intuitively and
dynamically show the similarity of the trajectory in the process.

di,j = distance(si, rj) + min(di−1,j−1, di−1,j, di,j−1) (11)

where the distance(si, rj) is the Euclidean distance between si and rj.
Our method uses DTW to calculate the timing similarity of various body parts, and

then we set weights for every joint to calculate the weighted average of the trajectory
differences of the whole system. Take the imitation of the arm motion of a humanoid robot
as an example. Suppose the robot has three degrees of freedom at the shoulder, and one
degree of freedom at the elbow and wrist, so that each degree of freedom will produce a
DTW distance. We take the range of activity of each degree of freedom as its respective
weight. W∗ is the weight of each joint angle, D∗ is DTW distance of each joint angle, and
Aw is the DTW distance of the robot system:

Wx = max(x)−min(x) (12)

Aw =
Ws1Ds1 + Ws2Ds2 + Ws3Ds3 + WeDe + WwDw

Ws1 + Ws2 + Ws3 + We + Ww
(13)

4.4. Different Visualization Terminals

On one hand, as shown in Figure 11 on the left, ANP provides a skeletal model to
visualize the human movement collected by the sensor. The skeleton model analyzes the
BVH data and uses Euler angles to show the rotation of each joint of the operator.

On the other hand, as shown in Figure 11 on the right, ROS provides a simulation
environment that can visualize the robot model. This requires converting the robot’s 3D
model into URDF (unified robot description format) format. URDF is an XML-based
language that mainly describes the general robot simulation model in the ROS system,
including the shape, size, color, kinematics, and dynamic characteristics of the model [16].
We import the open source robot STL file into URDF after adjusting the scale. Then, we
use Xacro (XML Macros) to reuse a structure for two different parts, namely, the left arm
and the right arm, and automatically generate a URDF file. The Table A1 shows some basic
syntax. Finally, we call RVIZ (a visualization tool in ROS) to visualize the robot model and
make it run in real time according to the calculated joint angle.
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Figure 11. Different visualization terminals for different motion systems.

5. Results

This section presents the experimental results using the proposed method based on the
humanoid robot. The results can be seen from Figures 12 and 13. To verify the feasibility of
the system, we take various photos from the human motion imitation system, including
different positions of two arms, face orientations and movements of fingers. These gestures
are complicated because imitation of these gestures entails the rotation of most revolute
joints at the same time rather than one or two. In addition, the consistency between the
wearer’s action and the humanoid robot’s action has demonstrated that the robot has
successfully followed the motion of the wearer’s upper limbs, thus proving the feasibility
of our proposed method. In addition, the synchronous latency of less than 0.5 seconds
validates the real-time performance.

We use a degree of freedom rotation experiment on the right shoulder to illustrate the
accuracy of our system. Figure 14 shows the comparison of the trajectory of the operator
and the humanoid robot. The operator makes an arc trajectory, and his arm rotates 49◦,
while the humanoid robot turns over 52◦ under real-time control, the absolute error is close
to 3◦, which is about 6.1% of the rotation angle of the human arm. The relative error is
small, which proves that our method has high accuracy.

Figure 12. Experiments of different gestures with arms and head.
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Figure 13. Comparison between fingers.

To evaluate the accuracy of the robot’s imitation of human motion trajectories, we
randomly generated two human motion trajectories and recorded the joint angles of the
robot when the robot imitated the human motion trajectories. It is worth mentioning that
the three shoulder joints apply to the conversion from three human DOF to three robot DOF,
so that their DTW distances are zeros. According to the range of each degree of freedom,
we set Ws1 = 150, s1 ∈ (−30, 120); Ws2 = 210, s2 ∈ (−120, 90); Ws3 = 40, s3 ∈ (−20, 20);
We = 135, e ∈ (0, 135); Ww = 180, w ∈ (−180, 0). We calculate the DTW distance of the
elbow and the wrist, and finally calculate the DTW distance of the robot system, as shown
in Figure 15.

As time elapses, the DTW distance of each joint in each experiment keeps increasing,
which is obviously the result of the accumulation of errors generated by the mapping
during the experiment. In the curve of the wrist joint, there are obvious special phenomena,
and we found the appearance of several sharp points. The reason for this phenomenon is
that when the trajectory reaches the cusp, the rotational freedom of the operator’s wrist
quickly reaches the limit position, and the bending freedom of the wrist changes greatly,
making the action difficult for the robot to imitate. In the subsequent process, the DTW
distance is reduced to a normal level because the robot’s actions at the moment are similar
to the actions in the subsequent trajectory. According to the characteristics of the DTW
algorithm, a better corresponding method will be selected to determine the DTW distance.

Figure 14. Snapshots for motion trajectory.



Sensors 2022, 22, 1968 12 of 14

Figure 15. DTW distance in the experiment.

During the experiment, the second human motion trajectory we randomly generated
had smaller elbow rotation and wrist bending motions than the first one. Therefore, as
shown in the figure, the DTW distance of the elbow, wrist, and the whole system in the first
experiment is larger than that in the second experiment. What is more, since the bending
of the elbow has little effect on the imitation of the robot’s actions, while the rotation of
the wrist has a greater influence, in the two experiments, the DTW distance of the wrist is
significantly larger than that of the elbow. Since the DTW distance of the shoulder is zero,
the DTW distance of the system is generally smaller than the former two.

In general, the DTW-based metrics reveals the following robot imitation characteristics.
First, human poses that are difficult for robots to imitate can be identified with a large DTW
value and hereby can be avoided at a choreographic stage. Secondly, it is feasible to judge
which trajectories can be imitated more accurately and which trajectories are more difficult
to imitate among the multiple trajectories in the attainable workspace of the robots.

6. Discussion

In this article, we demonstrate a novel teleoperation method that uses lightweight
wearable inertial sensors to collect human motion data and map it to the robot. Compared
with some existing teleoperation methods, this method adopts first-view mapping, which
makes the operator feel more immersive and the robot imitate more accurately. In addition,
we propose a DTW trajectory evaluation method, which more accurately describes the
similarity between human motion trajectories and robot motion trajectories.

However, our method still has some limitations. In terms of teleoperation methods,
firstly, there are differences in the structure of humans and robots. We use a special mapping
algorithm, which also means that we have lost part of the data collected by the sensor.
This will lead to deviations between robots‘ actions and humans’ actions. In addition,
the working space of the robot’s joint angle is limited due to mechanical design, such
as the robot’s arm failing to go over the shoulder. Secondly, since the rotation of the
human joints is achieved through the rotation of the bones, and the wearable sensor is
worn on the surface of the human body, there is a certain angular displacement deviation
from the bones. Therefore, when the operator does some special actions, there will be
obvious errors. Other factors include accumulated drift error and so on. In terms of DTW
trajectory evaluation, although this method describes the similarity between trajectories
more accurately and quantitatively, we can only compare it with the method that directly
calculates the Euclidean distance . Although this method quantitatively expresses the
degree of similarity, the quantitative index can only be used to compare the size with each
other to determine the pros and cons, and there is no numerical correspondence.

In future work, we expect to design a more reasonable mapping algorithm, which
can reduce the influence of non-isomorphic mapping on the accuracy of robot trajectory
simulation through the linkage between joints. Meanwhile, the DTW trajectory evaluation
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method can be used as an indicator to evaluate whether the mapping algorithm makes the
imitation trajectory of the robot more accurate in future research.

7. Conclusions

In this article, a human-in-the-loop system for humanoid robots to imitate human
motion is proposed, and the metrics of evaluating to what extent the robot motion is similar
to that of human are highlighted. The system realizes a real-time simulation and evaluation
of humanoid robots through a motion capture system, a fast mapping algorithm, a time
series trajectory evaluation method, and multiple visual terminal displays. Under the
experiment of a variety of human motion postures, this system has demonstrated good
real-time performance and accuracy, and it has also been quantitatively analyzed in terms
of the motion similarity evaluation system. This work laid a foundation on improving the
robot’s interactive capabilities, especially for human motion imitation.
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Appendix A

Table A1. Fundamental grammars of Xacro.

Command Definition Usage

Property <xacro:property name=“pi” value=“3.14” /> < · · · value =“ ${2*pi}”· · ·/>
Argument <xacro:arg name=“use_gui” default=“false”/> < · · · use_gui:= true · · ·/>

Macro <xacro:macro name=“arm" params=“side”/> <xacro:arm side=“left”/>
Including <xacro:include filename=“other_file.xacro" />
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1. Yavşan, E.; Uçar, A. Gesture imitation and recognition using Kinect sensor and extreme learning machines. Measurement 2016,

94, 852–861. [CrossRef]
2. Xu, W.; Li, X.; Xu, W.; Gong, L.; Huang, Y.; Zhao, Z.; Zhao, L.; Chen, B.; Yang, H.; Cao, L.; et al. Human-robot Interaction Oriented

Human-in-the-loop Real-time Motion Imitation on a Humanoid Tri-Co Robot. In Proceedings of the 2018 3rd International
Conference on Advanced Robotics and Mechatronics (ICARM), Singapore, 18–20 July 2018; pp. 781–786. [CrossRef]

http://doi.org/10.1016/j.measurement.2016.09.026
http://dx.doi.org/10.1109/ICARM.2018.8610806


Sensors 2022, 22, 1968 14 of 14

3. Riley, M.; Ude, A.; Wade, K.; Atkeson, C.G. Enabling real-time full-body imitation: A natural way of transferring human
movement to humanoids. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, Taipei, Taiwan,
14–19 September 2003; Volume 2, pp. 2368–2374.

4. Durdu, A.; Cetin, H.; Komur, H. Robot imitation of human arm via Artificial Neural Network. In Proceedings of the International
Conference on Mechatronics-Mechatronika, Brno, Czech Republic, 5–7 December 2015; pp. 370–374.

5. Hyon, S.H.; Hale, J.G.; Cheng, G. Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown
External Forces. IEEE Trans. Robot. 2007, 23, 884–898. [CrossRef]

6. Ding, I.J.; Chang, C.W.; He, C.J. A kinect-based gesture command control method for human action imitations of humanoid robots.
In Proceedings of the International Conference on Fuzzy Theory and ITS Applications, Yilan, Taiwan, 26–28 November 2014;
pp. 208–211.

7. Bindal, A.; Kumar, A.; Sharma, H.; Kumar, W.K. Design and implementation of a shadow bot for mimicking the basic motion
of a human leg. In Proceedings of the International Conference on Recent Developments in Control, Automation and Power
Engineering, Noida, India, 12–13 March 2015; pp. 361–366.

8. Koenig, A.; Rodriguez Y Baena, F.; Secoli, R. Gesture-based teleoperated grasping for educational robotics. In Proceedings of the
2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), Vancouver, BC, Canada,
8–12 August 2021; pp. 222–228.

9. Rolley-Parnell, E.J.; Kanoulas, D.; Laurenzi, A.; Delhaisse, B.; Rozo, L.; Caldwell, D.; Tsagarakis, N. Bi-Manual Articulated Robot
Teleoperation using an External RGB-D Range Sensor. In Proceedings of the 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 298–304.

10. Gobee, S.; Muller, M.; Durairajah, V.; Kassoo, R. Humanoid robot upper limb control using microsoft kinect. In Proceedings of
the 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, Malaysia, 27–29 November 2017;
pp. 1–5. [CrossRef]

11. Kitagawa, S.; Hasegawa, S.; Yamaguchi, N.; Okada, K.; Inaba, M. Miniature Tangible Cube: Concept and Design of Target-Object-
Oriented User Interface for Dual-Arm Telemanipulation. IEEE Robot. Autom. Lett. 2021, 6, 6977–6984. [CrossRef]

12. Meng, X.; Pan, J.; Qin, H. Motion Capture and Retargeting of Fish by Monocular Camera. In Proceedings of the International
Conference on Cyberworlds, Chester, UK, 20–22 September 2017; pp. 80–87.

13. Dai, H.; Cai, B.; Song, J.; Zhang, D. Skeletal Animation Based on BVH Motion Data. In Proceedings of the 2010 2nd International
Conference on Information Engineering and Computer Science, Wuhan, China, 25–26 December 2010; pp. 1–4.

14. Rodriguez, N.E.N.; Carbone, G.; Ceccarelli, M. Antropomorphic Design and Operation of a New Low-Cost Humanoid Robot.
In Proceedings of the IEEE/RAS-Embs International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy,
20–22 February 2006; pp. 933–938.

15. Gong, L.; Gong, C.; Ma, Z.; Zhao, L.; Wang, Z.; Li, X.; Jing, X.; Yang, H.; Liu, C. Real-time human-in-the-loop remote control for a
life-size traffic police robot with multiple augmented reality aided display terminals. In Proceedings of the 2017 2nd International
Conference on Advanced Robotics and Mechatronics (ICARM), Tai’an, China, 27–31 August 2017; pp. 420–425. [CrossRef]

16. Wang, Z.; Gong, L.; Chen, Q.; Li, Y.; Liu, C.; Huang, Y. Rapid Developing the Simulation and Control Systems for a Multifunctional
Autonomous Agricultural Robot with ROS; Springer International Publishing: Berlin/Heidelberg, Germany, 2016.

http://dx.doi.org/10.1109/TRO.2007.904896
http://dx.doi.org/10.1109/ICORAS.2017.8308046
http://dx.doi.org/10.1109/LRA.2021.3096475
http://dx.doi.org/10.1109/ICARM.2017.8273199

	Introduction
	Motion Capture System
	Motion Sensor
	Human Motion Retargeting

	Setup of Humanoid Robot
	Real-Time Imitation of Human Motion
	Data Transmission
	Mapping Algorithm
	Trajectory Imitation Evaluation
	Different Visualization Terminals

	Results
	Discussion
	Conclusions
	Appendix A
	References

