
Motion Synthesis for 3 Articulated Figures and

Mass-Spring Models

Citation
Partovi, Hadi, Jon Christensen, Amir Khosrowshahi, Joe Marks, and J. Thomas Ngo. 1994.
Motion Synthesis for 3 Articulated Figures and Mass-Spring Models. Harvard Computer Science
Group Technical Report TR-06-94.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015802

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015802
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Motion%20Synthesis%20for%203%20Articulated%20Figures%20and%20Mass-Spring%20Models&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Motion Synthesis for 3D Articulated Figures and Mass-Spring Models

Hadi Partovi
Harvard University

Jon Christensen
Harvard University

Amir Khosrowshahi
Harvard University

Joe Marks
DEC CRL

J. Thomas Ngo
Harvard University

Abstract

Motion synthesis is the process of automatically generating visually
plausible motions that meet goal criteria specified by a human
animator. The objects whose motions are synthesized are often
animated characters that are modeled as articulated figures or mass-
spring lattices. Controller synthesis is a technique for motion
synthesis that involves searching in a space of possible controllers
to generate appropriate motions. Recently, automatic controller-
synthesis techniques for 2D articulated figures have been reported.
An open question is whether these techniques can be generalized to
work for 3D animated characters. In this paperwe report successful
automatic controller synthesis for 3D articulated figures and mass-
spring models that are subject to nonholonomic constraints. These
results show that the 3D motion-synthesis problem can be solved
in some challenging cases, though much work on this general topic
remains to be done.

CR Categories: I.2.6 [Artificial Intelligence]: Learning—
parameter learning. I.2.6 [Artificial Intelligence]: Problem Solv-
ing, Control Methods and Search—heuristic methods. I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
animation. I.6.3 [Simulation and Modeling]: Applications.

Additional Key Words: Spacetime constraints,controller synthesis,
banked stimulus-response (BSR) controllers, stochastic optimiza-
tion, evolutionary computation.

1 Introduction

The task of specifying motion for animated characters, whether
the specification takes the form of key frames or parameters for
a physical simulation, is still performed in an essentially manual
way. A major goal in animation research is to automate this task.
This is the motion-synthesis problem [1].

Early work on motion synthesis for 2D articulated figures led
to the development of local-optimization techniques for refining
coarse, user-supplied trajectories for animated characters [3, 22, 6].
This work borrowed ideas from optimal control theory [4] and
numerical optimization [10].

A very different approach to motion synthesis—an approach
that takes inspiration from recent similar work in AI and robotics
[7, 16, 15, 2]—is predicated upon the notion of computing motion
controllers for animated characters automatically. A motion con-
troller governs the actuators in a character’s physical model. In this
context, the motion-synthesis problem becomes one of controller
synthesis: the goal is to create a motion controller that, when exe-
cuted, will cause the character to move in a manner consistent with
physical law and with goal criteria supplied by a human animator.

Conventional local-optimization techniques do not appear to
be appropriate for controller synthesis. One recent alternative

approach is due to Van de Panne and Fiume [21]. In their approach,
a motion controller is a sensor-actuator network (SAN), a nonlinear
network that connects binary sensors to the actuators that move the
character. Connection weights are computed using a combination
of random generate and test, simulated annealing, and stochastic
gradient ascent. A competing approach, due to Ngo and Marks
[17, 18, 8], employs a banked stimulus-response (BSR) controller,
a set of mutually independent stimulus-response rules that govern
a character’s behavior. The parameters for the BSR controller are
found by an evolutionary search mechanism.

The controller-synthesis approach has produced exciting results,
but only for 2D articulated figures. An open question is whether
this approach will generalize to 3D, especially for characters whose
physical models are subject to nonholonomic constraints [11], such
as those imposed by contact with external objects like the ground.1

There is every reason to believe that the generalization to 3D should
be very difficult. The dimensionality of the controller space ap-
proximately doubles for a creature with a given number of joints,
primarily because each joint can have two degrees of freedom
(x2.2). More importantly, with many 3D articulated figures, a large
fraction of the search space is occupied by controllers that cause
the character to lose balance and fall over unrecoverably. This
problem is much less severe in 2D.

Nevertheless, in this paper we report on several experiments in
which effective motion controllers of the BSR variety were gener-
ated automatically for a selection of motion-synthesis problems in-
volving 3D articulated figures subject to nonholonomic constraints
imposed by the ground (x2). The problems considered involve
characters that are expected to have varying degrees of stability,
including relatively steady quadrupeds (x2.1) and a comically un-
stable biped (x2.2). We also present results for motion-synthesis
problems involving a 3D mass-spring model subject to nonholo-
nomic constraints (x3). These results constitute solid evidence that
3D motion synthesis, although harder than 2D motion synthesis, is
by no means impossible for a range of interesting problems.

2 3D Articulated Figures

Our initial research in motion synthesis for 3D articulated figures
began with an investigation of time-based BSR motion controllers
(x2.1). Recent results [9, 8] showed that this kind of motion con-
troller is simpler to code, easier to search, and just as able to
generate useful motions for 2D articulated figures as the original
BSR controller with physical sensors [17, 18]. This also proved
true for stable 3D articulated figures, but not for unstable ones.
For motion-synthesis problems involving an unstable biped, we
had to resort to BSR controllers with physical sensors (x2.2) to get

1Tu et al. [20] have producedanecdotal evidence in the form of a video that the 3D
motion-synthesis problem for mass-spring models that are not subject to nonholonomic
constraints can be solved in a convincing fashion, at least for simple 12-spring models
of fish.

0 tper 2tper 4tper 5tper3tper

T = 5tper

1 2 3 4

Rule Stimulus Response
1 [t

1
begin; t

1
end) (�

1
1 ;

1
1 ; : : : ; �

1
N�1;

1
N�1; �

1
)

2 [t

2
begin; t

2
end) (�

2
1 ;

2
1 ; : : : ; �

2
N�1;

2
N�1; �

2
)

3 [t

4
begin; t

3
end) (�

3
1 ;

3
1 ; : : : ; �

3
N�1;

3
N�1; �

3
)

4 [t

4
begin; t

4
end) (�

4
1 ;

4
1 ; : : : ; �

4
N�1;

4
N�1; �

4
)

Figure 1: An illustration of a time-based BSR motion controller.

satisfactory results.

2.1 Time-based motion controllers

In a time-based BSR motion controller, the sole input “sensor”
indicates the passage of time, so that the bank of stimulus-response
rules is equivalent to a simple script of responses that is performed
one or more times [8]. In our form of the BSR motion controller
(Figure 1), a time interval with user-defined length tper is broken
into a small numberC of mutually exclusive regimes. During each
regime, the corresponding stimulus-response (SR) rule is active.
The sequence of regimes is repeated to fill the length of the simula-
tion, T , which is also chosen by the user. Thus, if tper < T , then the
sequence of actions specified by the rules is repeated periodically.2

If, on the other hand, tper � T , then the action sequence is not
constrained to be periodic.

Each SR rule in a time-based controller for anN -rod creature is
specified by the following parameters:

� A half-open time interval [tbegin; tend) during which the rule is
active. By analogy with BSR controllers whose sensors are
physical, we refer to each time interval as a stimulus region,
or simply a stimulus. The values in a valid time interval
are subject to some constraints: 0 � tbegin; tend < tper; the
intervals in different rules must be disjoint; and the union of
the intervals in all the rules must be [0; tper).

� A set of target Euler angles �
i

;

i

for each joint i (1 � i �

N � 1) in the figure.

� A time constant � .

While a given rule is active, the figure is deformed so that the
actual Euler angles for each joint approach the target angles at
a rate governed by the time constant. The absolute position and
orientation of the figure are then determined by physical simulation
of the deforming figure [12].

Thus, a time-based BSR controller contains C � 1 independent
stimulus boundaries, C(2N � 2) target Euler angles, and C time
constants, giving a total of 2CN � 1 variables. (The value t

per

is

2For all the time-based motion-controller results given in the paper and shown in
the accompanying videotape, tper =

T

5 and the number of SR rules C = 4, just as
in Figure 1.

Randomly generate 1,000 motion controllers
Initialize population to be the best 100 controllers
Rank order the population
for evaluation = 1 to 250,000

Select a controller by rank-based selection
Mutate the controller and re-evaluate it
Insert the new controller into the population by rank
Delete the lowest-ranked controller

end for

Figure 2: One form of stochastic population hill climbing.

also essential to the specification of the controller, but because it
is set by the user we do not count it as an independent parameter.)
For example, Rex (depicted in Figure 14) has N = 11 rods and
C = 4 SR rules, so the total number of variables is 87. It is the task
of the search algorithm to find 87 floating-point values for these
variables that will cause the figure to achieve the desired objective,
which is expressed as a scalar fitness function. (A sample fitness
function that is used to elicit horizontal movement is the distance
traveled by the figure’s center of mass.) The search algorithm
used for the work reported here is a type of stochastic population
hill climbing, described in Figure 2. Simple search algorithms of
this kind have been shown empirically to be more effective for
BSR-controller synthesis than other, more sophisticated kinds of
evolutionary computation that involve crossover operations [9, 8].

The initial steps in the search algorithm are designed to pro-
duce a good initial population of random controllers (for details of
the randomization process, see the discussion of mutation below).
Once the population of controllers has been initialized, the algo-
rithm calls for a repeated cycle of controller selection, mutation,
insertion, and deletion. The selection step is done according to
the rank ordering of the controllers: the higher a controller is in
the ranking, the more likely it is to be selected. This causes com-
putational effort to be focused on the areas of the search space in
which the best solutions have been found, but without eliminating
suboptimal areas from consideration. The mutation step modifies
a copy of the selected controller in the following ways:

1. One randomly selected rule in the controller is subjected to
creep, in which all of the independent rule parameters are
changed by a small, random amount.

2. With probability p =

1
2 , a randomly selected rule is reini-

tialized. This is done by generating random values for all
the parameters in the rule. The time-interval and target-angle
parameters are distributed uniformly; the time-constant pa-
rameter is distributed logarithmically [17, 18].

The insertion and deletion steps are straightforward.

Figure 13 shows a trajectory that is typical of those produced
by time-based BSR motion controllers. Cujo, a dog-like creature,
propels himself forward by bounding repeatedly. The trajectory
depicted in Figure 14 is the result of separate motion-synthesis
problems that were solved seriatim: three distinct motion con-
trollers are used to make Rex walk, then turn 90�, then walk again.
The fitness function for Cujo was simply the distance traveled by
his center of mass; Rex’s fitness function was similar, but also in-
cluded secondary terms that penalized sideways motion and falling

0

2

4

6

8

10

12

14

16

18

0 50000 100000 150000 200000 250000 300000

F
i
t
n
e
s
s

of Evaluations

Learning Time-Based and Physics-based Controllers for Rex

"Time"
"Physics"

Figure 3: Learning curves for both kinds of motion controller.

down.

The progress of the search algorithm in finding one of Rex’s mo-
tion controllers (for one of the walking motions) is shown in Fig-
ure 3: the top curve depicts the best time-based controller found so
far, plotted against the number of controller evaluations performed.
In typical fashion for the articulated figures considered here, rapid
progress is made through the first 50,000 evaluations, after which
progress is generally slower. One evaluation of a motion controller
for Rex requires 1,000 time steps of simulation, and about 0.3 sec-
onds of elapsed time on a Digital 3000/400 AXP workstation. An
acceptable controller had therefore evolved in just under five hours.

2.2 Controllers with physical sensors

The simplicity and power of time-based BSR motion controllers
make them very attractive when compared to the original BSR
controllers with physical sensors [8]. Unfortunately, there is some
evidence to suggest that the time-based approach may have inherent
limitations. The most difficult motion-synthesis problem we have
considered is that of making Bob the Biped walk. Bob, a biped
with point feet (see Figure 15), is very unstable, so he falls over
easily. To date, we have been unable to generate automatically a
time-based motion controller for Bob that allows him to walk more
than a couple of steps before keeling over.3

However, we have been successful in computing useful motion
controllers for Bob when physical sensors are employed. These
controllers [17, 18] are similar to the time-based BSR controller
illustrated in Figure 1, except for the following key differences:

� Unlike a time-based stimulus, which is an interval on the time
line, a physical stimulus is a multidimensional hyperrectan-
gle in sense space (the space spanned by the physical sense
variables).4

3Because of the particulars of the physical model and the SR-rule representation,
getting Bob to walk is more like trying to learn to use stilts than trying to learn
regular walking. By permitting one’s ankles to bend upon contact with the ground,
a human walker can maintain balance even when on only one foot. If Bob had
true feet, he could not do the same because his internal deformations are determined
kinematically, without information about the ground. The additional computational
cost of a more general physical model and simulator able to handle these phenomena
might place results comparable to those reported here beyond the reach of our current
serial hardware.

4The physical senses used in our 3D-articulated-figure controllers are the height

� Physical stimulus regions can overlap,so an arbitration proce-
dure is required to choose between multiple applicable rules
[17, 18]. Likewise, the stimuli do not necessarily cover the
sense space. This situation also requires special treatment
[17, 18].

� More SR rules are desirable for controllers with physical
sensors (usually 10 rules suffice).

These differences in the underlying BSR representation necessitate
changes in the search algorithm. The basic form of the algorithm
remains the same (Figure 2), but the initialization and mutation pro-
cedures require modification. Every rule in a time-based controller
is guaranteed to be executed during each time period of duration
tper, but no such a priori guarantee can be made for a controller with
physical sensors. In fact, the addition of a randomly generated SR
rule to an existing controller is exponentially unlikely to affect the
generated motion, because a randomly generated stimulus region
occupies an exponentially small fraction of the full volume of the
sense space. Therefore, to ensure that non-creep mutations play a
useful role, it is necessary to devise relevanceheuristics—methods
for generating random stimulus regions that are guaranteed to af-
fect the generated motion. The relevance heuristic employed in the
original work on BSR controllers [17, 18] prescribes that a newly
generated stimulus hyperrectangle contain a point in sense space
in common with the motion generated by the unmutated controller.
With 3D figures, it was necessary to augment this relevance heuris-
tic with information about the direction of the current path in sense
space. Applying four rounds of this kind of mutation operation to
the first set of 100 motion controllers was also found to be a useful
strategy for enriching the initial population, as was the application
of a low-pass filter to the values of all the physical senses to remove
noise and high-frequency variation.

While we found that motion controllers with physical sensors
generally attained fitness scores inferior to time-based controllers
for stable articulated figures (see Figure 3), they were distinctly su-
perior for Bob the Biped. The walk depicted in Figure 15 was one of
two effective, forward-facing walking strategies discovered.5 (The
strategy not shown here was a highly periodic shuffling motion.)
We also noticed a considerable variation in the quality of the BSR
controllers found by different runs of the same algorithm when
physical sensors were used (see Figure 4), which suggests that
multiple runs of the algorithm (or a larger population of candidate
solutions) might be best for 3D articulated-figure motion-synthesis
problems with this level of difficulty.

3 3D Mass-Spring Models

In extending the BSR approach to motion-synthesis problems for
3D mass-spring models, we decided to stick with one character, Mr.
Jello, for initial experimentation. Mr. Jello is a cube-like character

of the center of mass, the linear velocity, the angular velocity, the up vector (the latter
three senses are expressed as 3D vectors in a figure-centric local coordinate system),
contact forces and collision impulses for each possible contact point, and internal
Euler angles for each flexible joint. The increased complexity of each SR rule and the
desirability of having more rules in a BSR controller with physical sensors means that
880 floating-point numbers are used to specify a motion controller for Bob the Biped.
The correspondingnumber for Rex (Figure 14) is 1,280.

5To our amusement (and then to our annoyance),several controllers were computed
that achieved net forward movement, but in such a way that Bob either gyrated or
faced backward through much of the motion. To eliminate this undesirable behavior,
we modified the fitness function to penalize trajectories in which Bob experienced a
net rotation about the vertical axis.

0

2

4

6

8

10

12

14

16

18

20

0 50000 100000 150000 200000 250000 300000

F
i
t
n
e
s
s

of Evaluations

Three Learning Curves for Bob the Biped

Figure 4: Variability in search-algorithm performance.

Cross springs

Edge springs

Point masses

Figure 5: Mr. Jello’s internal structure.

who is modeled as eight point masses connected by 24 springs, 12
of which run along the edges of the cube, and 12 of which traverse
face diagonals, as shown in Figure 5. The springs serve as actuators
for Mr. Jello: he moves by dynamically changing the rest lengths
of his springs.6 Our goal was to synthesize motion controllers that
would make Mr. Jello perform simple tasks like walking, tumbling,
and jumping.

Because of their relative simplicity, we began by considering
time-based BSR controllers for these motion-synthesis problems.
The time-based controllers used for Mr. Jello are similar in principle
to those used for the various 3D articulated figures (x2.1), but they
differ in the following details:

� Each time interval is represented by the midpoint of the in-
terval, tmid. (This seems like an inconsequential difference
relative to the scheme in which interval boundaries are rep-
resented explicitly, but it appears to produce a small but no-
ticeable improvement in the controllers generated.)

� A response consists only of a list of rest lengths, �

i

, for
each spring i. (All edge and cross springs have the same
stiffness and damping characteristics, respectively, which are
determined by four global constants set by the user.)

For the trajectories shown in Figures 16–18 and on the accompa-
nying videotape, we used controllers that had 10 rules, and a value

6The physical simulator we used for this research is straightforward and unso-
phisticated. It uses fixed-time-step Euler integration, the simple Coulomb model of
dynamic friction, and impulse-based collision simulation for the point masses.

t = 0 t = T = t per
1 2 3 4 5 6 7 8 9 10

Rule Stimulus Response
1 t

1
mid (�

1
1; �

1
2; : : : ; �

1
24)

2 t

2
mid (�

2
1; �

2
2; : : : ; �

2
24)

...
...

...
10 t

10
mid (�

10
1 ; �

10
2 ; : : : ; �

10
24)

Figure 6: An illustration of a time-based BSR motion controller
for Mr. Jello.

Initialize and evaluate a single controller
for evaluation = 1 to 50,000

Mutate the controller and re-evaluate it
if the new controller is better than the old one then

Replace the old controller with the new one
end if

end for

Figure 7: Stochastic hill climbing.

of tper = T (see Figure 6). The latter decision led to aperiodic
motions, which we considered to be more interesting for Mr. Jello.
Thus a complete time-based motion controller for Mr. Jello consists
of 10 � 25 = 250 floating-point numbers. (We do not count the
stiffness, damping, and t

per

constants as independent parameters
because they are user specified.)

To find good controllers automatically, we experimented with
three different search algorithms, shown in Figures 7–9.7 The first
algorithm (Figure 7) is a simple form of stochastic hill climbing, the
second (Figure 8) follows a standard simulated-annealing approach
[14, 5], and the third (Figure 9) is a slightly simplified form of the
stochastic-population-hill-climbing algorithm encountered earlier
(Figure 2). The remaining unspecified details concern the initial-
ization and mutation steps: all random initial values are uniformly
distributed, and the different kinds of mutation operator and their
respective probabilities of application are given in Table 1.8

For the problems we considered, all three search algorithms
performed well. Sample trajectories for three problems are illus-
trated in Figures 16–18: Mr. Jello learns to jump, tumble, and
shuffle. (More sample trajectories are shown on the accompanying
videotape.) Learning plots for the three algorithms are shown in
Figures 10–12 for the task of Mr. Jello jumping. In these learning
plots, a point is plotted for each evaluation made. Thus it is possi-
ble to see not only the best solution found so far—as can be seen
in learning-curve plots like those in Figures 3 and 4—but also how
much time the algorithm is spending investigating good, medium,
and bad solutions. Even though the differences in performance
were small, stochastic population hill climbing fared best for the

7In choosing stochastic population hill climbing as the search algorithm for motion-
synthesis problems involving3D articulated figures, we were relyingon a comparative
study of search algorithms for motion-synthesis problems involving 2D articulated
figures [9, 8]. Mass-spring lattices are sufficiently different that we thought it prudent
to conduct a similar empirical study (though on a smaller scale) to determine an
effective search algorithm for this type of physical model.

8The values in the table are probably not essential to proper operation of the
algorithm. They are stated here merely for completeness.

Initialize and evaluate a single controller
Set the temperature T = Tinit

for evaluation = 1 to 50,000
Mutate the controller and re-evaluate it
Compute ∆E, the change in the fitness function

caused by the random mutation
if the new controller is worse then

Undo the mutation with probability P = 1:0 � e

�∆E=T

end if
Decrease T according to the annealing schedule

end for

Figure 8: Simulated annealing.

Initialize population to be 100 random controllers
Rank order the population
for evaluation = 1 to 50,000

Select a controller randomly
Mutate the controller and re-evaluate it
Insert the new controller into the population by rank
Delete the lowest-ranked controller

end for

Figure 9: Another form of stochastic population hill climbing.

Probability Mutation Operation
0.1 Creep a time-interval midpoint tmid

0.2 Creep a rest length �

0.2 Creep every rest length �

i for some i
0.1 Randomize a time-interval midpoint tmid

0.2 Randomize a rest length �

0.2 Randomize every rest length �

i for some i

Table 1: Mutation operations for mass-spring models.

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s

of Evaluations

Figure 10: Learning plot for stochastic hill climbing.

majority of problems we considered.

One evaluation of a motion controller for Mr. Jello requires about
670 time steps of simulation, and about 0.6 secondsof elapsed time
on a DECstation 5000. On a more current machine, e.g., a Digital
3000/400 AXP workstation, this figure would decrease by about
a factor of four. Given that only 15,000 evaluations were needed
to get good solutions for the problems considered here, a motion
controller for a simple motion-synthesis task involving a character
of Mr. Jello’s complexity can probably be produced in about 40
minutes on a modern mid-range workstation.

4 Conclusions and Future Work

The results described here provide the first solid evidence that
motion synthesis for 3D characters can be done automatically in a
variety of challenging cases.

In future work on 3D articulated figures,we would like to address
the following issues:

� Better physical models and a more general way of specify-
ing a response in the BSR framework are needed in order to
get more realistic motion. For example, the current response
model does not allow us to incorporate a foot that will auto-
matically lay flat on the ground when the foot is planted—this
is the reason why all the articulated figures walk on point feet.

� Fitness functions that reward graceful motion appropriately
are also needed to get motion that is visually more plausi-
ble. Our current algorithms sometimes generate motion that,
while physically realistic, does not match the kind of motion
we expect to see for a given character. Preliminary results
with 2D articulated figures [8] and with the 3D characters
considered in this paper suggest that much can be gained by
making fitness functions more sophisticated.

� The ability to concatenate in time previously computed mo-
tion controllers9 for a specific character would allow an ani-

9We anticipate that controllerswith physical senses can be concatenatedwith better

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s

of Evaluations

Figure 11: Learning plot for simulated annealing.

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fi
tn

es
s

of Evaluations

Figure 12: Learning plot for stochastic population hill climbing.

mator to assemble complex, composite motions for that char-
acter in real time, without having to wait while new motion-
synthesis problems are solved. An animation editor that sup-
ports this kind of interaction for 2D articulated figures has
been tested [8], but it remains to be seen whether this ap-
proach can be generalized to 3D.

For 3D mass-spring models, our focus is on the following issues:

� We need to gain experience with additional mass-spring mod-
els. We have begun to work with a worm-like character of
greater complexity than Mr. Jello, but it is too early to know
whether the simple methods that work well for Mr. Jello apply
equally well to more complex mass-spring lattices.

� An animation editor of the kind discussed above for 3D ar-
ticulated figures would also be useful for 3D mass-spring
models.

� Although Mr. Jello has a simple symmetric structure, we in-
tentionally did not take advantage of symmetry in specifying
the form of the motion controller or the nature of the search
algorithm, because we wanted to discover how much could
be achieved with a simple, unstructured, general approach to
the problem. Taking advantage of structural symmetry in 3D
mass-spring models might well provide additional leverage
for future motion-synthesis techniques. A related idea is to
try to synthesize motion in terms of modal dynamics [19] for
mass-spring lattices.

� Perhaps the most important outcome of this work will be re-
newed interest in the approximate Jell-O equation of Heck-
bert [13], J = 0. Here we have been able to cast this funda-
mental equation in time-dependent form, and, paradoxically,
it appears that

@

@t

J 6= 0:

—maybe.

5 Acknowledgments

This work was supported in part by an NSF grant to Martin Karplus,
and by an equipment grant from Digital Equipment Corp. HP is
grateful for a summer internship at Digital Equipment Corpora-
tion’s Cambridge Research Lab.

References

[1] N. I. Badler, B. A. Barsky, and D. Zeltzer, editors. Making
Them Move: Mechanics, Control, and Animation of Articu-
lated Figures. Morgan Kaufmann, San Mateo, CA, 1991.

[2] R. D. Beer and J. C. Gallagher. Evolving dynamical neural
networks for adaptive behavior. Adaptive Behavior, 1(1):91–
122, Summer 1992.

[3] L. S. Brotman and A. N. Netravali. Motion interpolation by
optimal control. Computer Graphics, 22(4):309–315, August
1988.

success than time-based controllers, which are not sensitive to initial conditions.

[4] A. Bryson and Y. Ho. Applied Optimal Control: Optimiza-
tion, Estimation, and Control. Hemisphere Publishing Corp.,
1975.

[5] V. Cerny. A thermodynamical approach to the travelling sales-
man problem: An efficient simulation algorithm. Journal of
Optimization Theory Applications, 45:41–51, 1985.

[6] M. F. Cohen. Interactive spacetime control for animation.
Computer Graphics, 26(2):293–302, July 1992.

[7] H. de Garis. Genetic programming: Building artificial ner-
vous systems using genetically programmed neural network
modules. In Proceedings of the Seventh International Con-
ference on Machine Learning, pages 132–139, Austin, Texas,
June 1990.

[8] A. Fukunaga, L. Hsu, P. Reiss, A. Shuman, J. Christensen,
J. Marks, and J. T. Ngo. Motion-synthesis techniques for 2D
articulated figures. In review, 1994.

[9] A. Fukunaga, J. T. Ngo, and J. Marks. Automatic control
of physically realistic animated figures using evolutionary
programming. In Proceedings of the Third Annual Confer-
ence on Evolutionary Programming (EP94), San Diego, CA,
February 1994. To appear.

[10] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimiza-
tion. Academic Press, San Diego, CA, 1981.

[11] H. Goldstein. Classical Mechanics. Addison-Wesley, 2nd
edition, 1980.

[12] J. K. Hahn. Realistic animation of rigid bodies. Computer
Graphics, 22(4):299–308, August 1988.

[13] P. S. Heckbert. Ray tracing JELL-O brand gelatin. Computer
Graphics, 21(4):73–74, July 1987.

[14] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimiza-
tion by simulated annealing. Science, 220:671–680, 1983.

[15] J. R. Koza and J. P. Rice. Automatic programming of robots
using genetic programming. In Proceedings of the Tenth
National Conference on Artificial Intelligence, pages 194–
201, Menlo Park, California, 1992. American Association
for Artificial Intelligence.

[16] P. Maes and R. A. Brooks. Learning to coordinate behaviors.
In Proceedings of the Eighth National Conference on Arti-
ficial Intelligence, pages 796–802, Menlo Park, California,
1990. American Association for Artificial Intelligence.

[17] J. T. Ngo and J. Marks.Physically realistic motion synthesis in
animation. Evolutionary Computation, 1(3):235–268, 1993.

[18] J. T. Ngo and J. Marks. Spacetime constraints revisited. In
SIGGRAPH ’93 Conference Proceedings, pages 343–350.
ACM SIGGRAPH, Anaheim, CA, August 1993.

[19] A. Pentland and J. Williams. Good vibrations: Modal dy-
namics for graphics and animation. Computer Graphics,
23(3):215–222, July 1989.

[20] S. Tu, D. Terzopoulos, and E. Fiume. Go Fish! ACM
SIGGRAPH Video Review, Issue 91, 1993.

[21] M. van de Panne and E. Fiume. Sensor-actuator networks.
In SIGGRAPH ’93 Conference Proceedings, pages 335–342,
Anaheim, CA, August 1993. ACM SIGGRAPH.

[22] A. Witkin and M. Kass. Spacetime constraints. Computer
Graphics, 22(4):159–168, August 1988.

Figure 13: Cujo bounds from right to left.

Figure 14: Rex walks, turns, and walks again.

Figure 15: Bob the Biped walks.

Figure 16: Mr. Jello jumps.

Figure 17: Mr. Jello walks by tumbling.

Figure 18: Mr. Jello walks by shuffling.

