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Abstract

This paper presents new methods for automatic classification and retrieval of motion capture data facilitating

the identification of logically related motions scattered in some database. As the main ingredient, we introduce

the concept of motion templates (MTs), by which the essence of an entire class of logically related motions can

be captured in an explicit and semantically interpretable matrix representation. The key property of MTs is that

the variable aspects of a motion class can be automatically masked out in the comparison with unknown motion

data. This facilitates robust and efficient motion retrieval even in the presence of large spatio-temporal variations.

Furthermore, we describe how to learn an MT for a specific motion class from a given set of training motions. In

our extensive experiments, which are based on several hours of motion data, MTs proved to be a powerful concept

for motion annotation and retrieval, yielding accurate results even for highly variable motion classes such as

cartwheels, lying down, or throwing motions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

The typical life cycle of a motion capture clip in the conven-
tional production of computer-generated animations is very
short: after some rehearsal, a motion clip is captured, in-
corporated in a single 3D scene, and then never used again.
For reasons of flexibility, efficiency, and cost, much research
on motion reuse for off-line and on-line synthesis of new
motions from prerecorded motion data has been conducted.
Here, the identification and extraction of logically related
motions scattered within a large data set arises as a major
problem. Such automatic methods for comparison, classifi-
cation, and retrieval of motion data also play an important
role in fields such as sports sciences, biometrics, medicine,
and computer vision.

One major problem in content-based comparison of mo-
tion data is that logically similar motions need not be nu-
merically similar, see [KG04]. In other words, there are cer-
tain aspects associated with a motion class that may show
significant spatio-temporal variations between different exe-
cutions of the motion, while other aspects are typically con-
sistent. Like a fingerprint, these consistent aspects form the
very essence of the motion class. In this paper, we propose a
novel method for capturing the spatio-temporal characteris-

tics of an entire motion class in a compact matrix represen-
tation called a motion template (MT). Given a set of training
motions representing a motion class, a motion template that
explicitly encodes the consistent and the variable aspects of
the motion class can be learned. In addition, motion tem-
plates have a direct, semantic interpretation: an MT can eas-
ily be edited, manually constructed from scratch, combined
with other MTs, extended, and restricted, thus providing a
great deal of flexibility.

Based on our matching techniques, motion templates pro-
vide a fully automatic way of retrieving logically related
motion segments from a large database and classifying or
annotating segments of unknown motions. Here, a key con-
tribution of our paper is to automatically exclude the vari-
able aspects of a motion in the matching process while fo-
cusing on the consistent aspects—it is this idea that allows
us to identify logically related motions even in the presence
of large variations. This strategy can also be viewed as an
automatic way of selecting appropriate features for the com-
parison in a locally adaptive fashion. In our experiments, we
used qualitative boolean features that express suitable geo-
metric relations between parts of the human body, as intro-
duced by Müller et al. [MRC05]. As an important advantage,
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our approach is generic in the following sense: by simply in-
terchanging the feature set, one can use the same methods
to characterize motions at different levels of granularity. For
example, one could design one feature set that is specialized
in full-body motions, and other feature sets that characterize
aspects of arm or leg motions at a more detailed level.

The remainder of this paper is structured as follows. After
discussing related work in Sect. 2, we briefly review the con-
cept of relational motion features as introduced by Müller
et al. [MRC05] in Sect. 3 and give an overview of the fea-
ture set used in our experiments in Appendix A. In Sect. 4,
we describe how to use a set of logically related training
motions to learn a class MT that captures the essence of
the underlying motion class. Such a class MT can then be
used as a matching operator for motion data streams that
responds to motion segments belonging to the respective
class, facilitating efficient and automatic motion annotation
and retrieval, see Sect. 5. To prove the practicability of MT-
based matching, we conducted extensive experiments based
on a training set comprising roughly 1,500 short motion
clips grouped into 64 classes as well as an unannotated test
database consisting of 210 minutes of motion data. We com-
pare MT-based matching to other methods, including the re-
trieval method by Müller et al. [MRC05] and several base-
line methods using numerical similarity measures. To sub-
stantially speed up the annotation and retrieval process, we
introduce an index-based preprocessing step to cut down the
set of candidate motions by using suitable keyframes.

2. Related Work

The reuse of motion capture data via editing and morphing
techniques has been a central topic in data-driven computer
animation for a decade, starting with [BW95, WP95]. Since
then, many different methods have been suggested to cre-
ate new, realistic motions from prerecorded motions; see,
for example, [GP00, PB02, AFO03, KG04, CH05, ZMCF05]
and the references therein. Motion reuse requires efficient re-
trieval and browsing methods in order to fully exploit large
motion databases. Due to possible spatio-temporal varia-
tions, the difficult task of identifying similar motion seg-
ments still bears open problems. Most of the previous ap-
proaches to motion comparison are based on features that are
semantically close to the raw data, using 3D positions, 3D
point clouds, joint angle representations, or PCA-reduced
versions thereof, see [WCYL03, KG04, KPZ∗04, SKK04,
FF05, HPP05]. One problem of such features is their sen-
sitivity towards pose deformations, as may occur in logi-
cally related motions. To achieve more robustness, Liu et
al. [LZWM05] transform motions into sequences of cluster
centroids, which absorb spatio-temporal variations. Motion
comparison is then performed on these sequences. The strat-
egy of already absorbing spatio-temporal variations at the
feature level is also pursued by Müller et al. [MRC05], who
introduce relational features. It will turn out that such rela-

tional features become a powerful tool in combination with
matching methods based on dynamic time warping (DTW).
Originating from speech processing, DTW has become a
well-established method to account for temporal variations
in the comparison of related time series, see [RJ93]. In the
context of motion retrieval, most of the approaches cited
above rely on some variant of this technique—the crucial
point being the choice of features and local cost measures.
DTW is also used for motion alignment in blending applica-
tions such as the method by Kovar and Gleicher [KG03].

Automatic motion annotation and classification are close-
ly related to the retrieval problem and constitute important
tasks in view of motion reuse. Arikan and Forsyth [AFO03]
propose a semi-automatic annotation procedure for motion
data using SVM classifiers. Ramanan and Forsyth [RF03]
apply this annotation technique for 3D motion data as a pre-
processing step for the automatic annotation of 2D video
recordings of human motion, using hidden Markov mod-
els (HMMs) to match the 2D data with the 3D data. Rose
et al. [RCB98] group similar example motions into “verb”
classes to synthesize new, user-controlled motions by suit-
able interpolation techniques. Several approaches to clas-
sification and recognition of motion patterns are based on
HMMs, which are also a flexible tool to capture spatio-
temporal variations, see, e. g., [BH00, GG04]. Opposed to
HMM-based motion representations, where timing informa-
tion is encoded in the form of transition probabilities, the
motion representation developed in this paper encodes abso-
lute and relative lengths of key events explicitly. Temporal
segmentation of motion data can be viewed as another form
of annotation, where consecutive, logically related frames
are organized into groups, see, e. g., [FMJ02, BSP∗04].

3. Relational Motion Features

In the following, a motion capture data stream D is regarded
as a sequence of poses, where each pose consists of a full set
of 3D coordinates describing the joint positions of a skeletal
kinematic chain for a fixed point in time; see the lower right
part of Table 6. In order to grasp characteristic aspects of
motions, we adopt the concept of relational motion features,
which describe (boolean) geometric relations between spec-
ified points of a pose, see [MRC05]. As an example of such
a feature, consider a fixed pose for which we test whether the
right foot lies in front of (feature value zero) or behind (fea-
ture value one) the plane spanned by the center of the hip (the
root), the left hip joint, and the left foot, cf. Table 6 (a). Ap-
plying a set of f relational motion features to a motion data
stream D of length K in a pose-wise fashion yields a feature

matrix X ∈ {0,1} f×K , see Fig. 2 for an example. The kth

column of X then contains the feature values of frame k and
will be denoted by X(k), k ∈ [1 : K] := {1,2, . . . ,K}. The
main point is that even though relational features discard a
lot of detail contained in the raw motion data, important in-
formation regarding the overall configuration of a pose is
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retained. Moreover, relational motion features are invariant
under global orientation and position, the size of the skele-
ton, and local spatial deformations of a pose, cf. [MRC05].

In this paper, we use the feature set described in Ap-
pendix A, which comprises f = 39 relational features and
is very similar to the features used in [MRC05]. Note that
our feature set has been specifically designed to focus on
full-body motions. However, the methods described in this
paper are generic, and the proposed test feature set may be
replaced as appropriate for the respective application.

4. Motion Templates

Generalizing boolean feature matrices, we introduce in this
section the concept of motion templates (MTs), which is
suited to express the essence of an entire class of motions. A
motion template of dimension f and length K is a real-valued
matrix X ∈ [0,1] f×K . Each row of an MT corresponds to
one relational feature, and time (in frames) runs along the
columns, see Fig. 3 for an example. For the rest of the paper,
we assume that all MTs under consideration have the same
fixed dimension f . Intuitively, an MT can be thought of as a
“fuzzified” version of a feature matrix; for the proper inter-
pretation of the matrix entries, we refer to Sect. 4.1, where
we describe how to learn an MT from training motions by a
combination of time warping and averaging operations.

During the learning procedure, a weight vector α ∈ R
K
>0

is associated with an MT, where the total weight ᾱ :=
∑

K
k=1 α(k) is at least one. We say that the kth column X(k) of

X has weight α(k). These weights are used to keep track of
the time warping operations: initially, each column of an MT
corresponds to the real time duration of one frame, which we
express by setting all weights α(k) to one. Subsequent time
warping may change the amount of time that is allotted to an
MT column. The respective weights are then modified so as
to reflect the new time duration. Hence, the weights allow us
to unwarp an MT back to real time, similar to the strategy
used in [HPP05].

4.1. Learning MTs from Example Motions

Given a set of N example motion clips for a specific motion
class, such as the four cartwheels shown in Fig. 1, our goal
is to automatically learn a meaningful MT that grasps the
essence of the class. We start by computing the feature ma-
trices for a fixed set of features, as shown in Fig. 2, where,
for the sake of clarity, we only display a subset comprising
ten features from our test feature set. From this point for-
ward, we will consider feature matrices as a special case of
MTs. Weight vectors α are attached to each of the MTs and
initialized to α(k) = 1 for all k.

Now, the goal is to compute a semantically meaningful
average over the N input MTs, which would simply be the
arithmetic mean of the feature matrices if all of the mo-
tions agreed in length and temporal structure. However, our

Figure 1: Selected frames from four different cartwheel motions.
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Figure 2: Relational feature matrices resulting from the motions

in Fig. 1 for selected features with associated weight vectors. The

columns represent time in frames, whereas the rows correspond to

boolean features encoded as black (0) and white (1), and are num-

bered in accordance with the relational features defined in Table 6.

The weight vectors are displayed as color-coded horizontal bars.

MTs typically differ in length and reflect the temporal vari-
ations that were present in the original motions. This fact
necessitates some kind of temporal alignment prior to av-
eraging. We do this by choosing one of the input MTs as
the reference MT, R, and applying dynamic time warping
(DTW) [RJ93] to compute optimal alignments of the re-
maining MTs with R (we measure local distances of feature
vectors by the Manhattan distance, which coincides with the
Hamming distance for boolean feature vectors.) According
to these optimal alignments, the MTs are locally stretched
and contracted, where time stretching is simulated by du-
plicating MT columns, while time contractions are resolved
by forming a weighted average of the columns in question.
As indicated above, the weights α associated with an MT X

must now be adapted accordingly: in case a column X(ℓ) was
matched to n columns R(k), . . . ,R(k+n−1) of the reference,
the new weights α′(k+ i) are set to 1

n α(ℓ) for i = 0, . . . ,n−1,
i. e., the weight α(ℓ) is equally distributed among the n

matching columns. In case column R(k) of the reference was
matched to multiple columns of X , the new weight α′(k) is
the sum of the weights of the matching columns in X .

Now that all MTs and associated weight vectors have the
same length as the reference MT, we compute the weighted
average over all MTs in a column-wise fashion as well as
the arithmetic mean α of all weight vectors. Note that the
total weight, ᾱ, equals the average length of the input mo-
tions. Fig. 3 (a) shows the results for our cartwheel example,
where the top left MT in Fig. 2 acted as the reference. Fi-
nally, we unwarp the average MT according to the weight
vector: column ranges with α(k) < 1 are unwarped by con-
tracting the respective MT columns into one average col-

c© The Eurographics Association 2006.



M. Müller & T. Röder / Motion Templates for Automatic Classification and Retrieval of Motion Capture Data

20 40 60 80

3

4

5

6

15

16

29

30

33

34
0

0.5

1

1

2

20 40 60 80

3

4

5

6

15

16

29

30

33

34
0

0.5

1

1

2

(a) (b)

Figure 3: (a) Average MT and average weights computed from the

MTs in Fig. 2 after all four MTs have been aligned with the top

left MT, which acted as the reference. The MTs are coded in white

(1), black (0), and shades of gray for intermediary values (red and

yellow in the color version). (b) Unwarped version of the MT in (a).

umn (e. g., k = 6, . . . ,10 in Fig. 3 (a)), while columns with
α(k) > 1 are unwarped by duplicating the respective col-
umn (e. g., k = 42). Since in general, columns will not have
integer or reciprocal integer weights, we additionally per-
form suitable partial averaging between adjacent columns
such that all weights but the last are one in the resulting un-
warped MT, see Fig. 3 (b). Note that the total weight, ᾱ, is
preserved by the unwarping procedure. The average MT now
constitutes a combined representation of all the input mo-
tions, but it is still biased by the influence of the reference
MT, to which all of the other MTs have been aligned. Our
experiments show that it is possible to eliminate this bias by
the following strategy: we let each of the original MTs act as
the reference and perform for each reference the entire av-
eraging and unwarping procedure as described above. This
yields N averaged MTs corresponding to the different refer-
ences. Then, we use these N MTs as the input to a second
pass of mutual warping, averaging, and unwarping, and so
on. The procedure is iterated until no major changes occur.
Fig. 4 shows the output for N = 11 training motions.

Interpretation of MTs: An MT learned from training mo-
tions belonging to a specific motion class C is referred to as
the class template XC for C. Note that the weight vector does
not play a role any longer. Black/white regions in a class MT,
see Fig. 4, indicate periods in time (horizontal axis) where
certain features (vertical axis) consistently assume the same
values zero/one in all training motions, respectively. By con-
trast, gray regions (red to yellow in the color version of this
paper) indicate inconsistencies mainly resulting from varia-
tions in the training motions (and partly from inappropriate
alignments). Some illustrative examples will be discussed in
Sect. 4.3.

4.2. Experimental Results

For our experiments, we systematically recorded several
hours of motion capture data containing a number of well-
specified motion sequences, which were executed several
times and performed by five different actors. Using this data,
we built up the database D210 consisting of roughly 210
minutes of motion data. Then, we manually cut out suitable
motion clips from D210 and arranged them into 64 differ-
ent classes. Each such motion class (MC) contained 10 to
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Figure 4: Class MT for ‘CartwheelLeft’ based on N = 11 training

motions. The boxes are exemplarily discussed in Sect. 4.3.

Motion Class C Comment Size N ᾱ M t(C)
CartwheelLeft left hand first on floor 21 11 105.3 6 17.0
ElbowToKnee start: relbow/lknee 27 14 36.6 5 4.9
JumpingJack 1 repetition 52 26 35.5 6 19.3
KickFrontRFoot 1 kick 30 15 53.3 5 9.4
KickSideRFoot 1 kick 30 15 48.9 6 10.1
LieDownFloor start: standing pose 20 10 165.0 5 25.6
RotateRArmBwd3 3 times 16 8 80.8 4 3.8
RotateRArmFwd3 3 times 16 8 83.6 4 3.9
Squat 1 repetition 52 26 47.3 5 24.6
WalkSideRight3 3 steps 16 8 123.0 3 5.5

Table 1: DMC contains 10 to 50 different variations for each of

its 64 motion classes. This table shows ten of the motion classes,

along with their respective size, the size N of the training subset, the

average length ᾱ in frames, as well as the number M of iterations

and the running time t(C) in seconds required to compute XC .

50 different realizations of the same type of motion, cover-
ing a broad spectrum of semantically meaningful variations.
For example, the motion class ‘CartwheelLeft’ contained 21
variations of a cartwheel motion, all starting with the left
hand. The resulting motion class database DMC contains
1,457 motion clips, amounting to 50 minutes of motion data.

Table 1 gives an overview of some of the motion classes
contained in DMC. We split up DMC into two disjoint
databases DMCT and DMCE, each consisting of roughly
half the motions of each motion class. The database DMCT

served as the training database to derive the motion tem-
plates, whereas DMCE was used as a training-independent
evaluation database. All databases were preprocessed by
computing and storing the feature matrices. Here, we used
a sampling rate of 30 Hz, which turned out to be sufficient
in view of MT quality. The duration of the training motion
clips ranged from half a second up to ten seconds, leading
to MT lengths between 15 and 300. The number of training
motions used for each class ranged from 7 to 26. Using 3
to 7 iterations, it took on average 7.5 s to compute a class
MT on a 3.6 GHz Pentium 4 with 1 GB of main memory,
see Table 1. For example, for the class ‘RotateRArmFwd3’,
the total computation time was t(C) = 3.9 s with ᾱ = 83.6,
N = 8, and M = 4, whereas for the class ‘CartwheelLeft’, it
took t(C) = 17.0 s with ᾱ = 105.3, N = 11, and M = 6.

4.3. Examples

To illustrate the power of the MT concept, which grasps
the essence of a specific type of motion even in the pres-
ence of large variations, we discuss the class template for
‘CartwheelLeft’ as a representative example. Fig. 4 shows
the cartwheel MT learned from N = 11 example motions,
which form a superset of the motions shown in Fig. 1. Recall
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(a) ‘RotateRArmFwd3’(N = 8) (b) ‘RotateRArmBwd3’(N = 8)

(c) Combination
of (a) and (b)
(N = 16)

Figure 5: Class MTs (only shown for the upper feature set, see

Table 6) for arm rotation motions, three repetitions each.

that black/white regions in a class MT correspond to con-
sistent aspects of the training motions, while gray/colored
regions correspond to variable aspects. The following obser-
vations illustrate that the essence of the cartwheel motion is
captured by our class MT. Considering the regions marked
by boxes in Fig. 4, the white region (a) reflects that dur-
ing the initial phase of a cartwheel, the right hand moves
to the top (feature F5 in Table 6). Furthermore, region (b)
shows that the right foot moves behind the left leg (F15).
This can also be observed in the first poses of Fig. 1. Then,
both hands are above the shoulders (F3, F4), as indicated by
region (c), and the actor’s body is upside down (F33, F34), see
region (d) and the second poses in Fig. 1. The landing phase,
encoded in region (e), exhibits large variations between dif-
ferent realizations, leading to the gray/colored regions. Note
that some actors lost their balance in this phase, resulting in
rather chaotic movements, compare the third poses in Fig. 1.

The motion classes ‘RotateRArmFwd3’ and ‘RotateR-
ArmBwd3’ stand for three repetitions of forward and back-
ward rotation of the right arm, respectively. They are closely
related, even though we do not consider them as logically
similar. The respective class MTs are shown for the upper
feature set in Fig. 5 (a) and (b). Even though the two class
MTs exhibit a similar zero-one distribution, there is one
characteristic difference: in the forward rotation, the right
arm moves forwards (F1) exactly when it is raised above the
shoulder (F3 is one). By contrast, in the backward rotation,
the right arm moves forwards (F1) exactly when it is below
the shoulder (F3 is zero). Using the training motions of both
classes, it is possible to learn a single, combined MT, see
Fig. 5 (c). Indeed, the resulting MT very well reflects the
common characteristics as well as the disagreements of the
two involved classes.

5. MT-based Matching for Annotation and Retrieval

Given a class C of logically related motions, we have derived
a class MT XC that captures the consistent as well as the in-
consistent aspects of all motions in C. Our application of
MTs to automatic annotation and retrieval are based on the
following interpretation: the consistent aspects represent the
class characteristics that are shared by all motions, whereas
the inconsistent aspects represent the class variations that are
due to different realizations. Then, the key idea in designing
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Figure 6: (a) Class MT for ‘CartwheelLeft’ from Fig. 4. (b) The

corresponding quantized MT.

a distance measure for comparing a class MT with unknown
motion data is to mask out the inconsistent aspects such that
related motions can be identified even in the presence of
large variations. In Sect. 5.2, we define such a distance mea-
sure, which is based on DTW. Our experiments on MT-based
annotation and retrieval are then described in Sect. 5.3–5.5.

5.1. Classical DTW

To fix the notation, we summarize some basic facts
on classical DTW. Let X = (X(1),X(2), . . . ,X(K)) and
Y = (Y (1),Y (2), . . . ,Y (L)) be two feature sequences with
X(k), Y (ℓ) ∈ F , k ∈ [1 : K], ℓ ∈ [1 : L], where F denotes a
feature space. In our case, we will have F = [0,1] f . Further-
more, let c : F ×F → R denote a local cost measure on F .
In the later discussion, c will denote the Manhattan distance.
DTW is a standard technique to align X and Y with respect to
the cost measure c. Recall that a warping path is a sequence
p = (p1, . . . , pM) with pm = (km, ℓm) ∈ [1 : K]× [1 : L] for
m ∈ [1 : M] satisfying the following conditions:

(i) Boundary condition: p1 = (1,1) and pM = (K,L).
(ii) Monotonicity condition: 1 ≤ k1 ≤ k2 ≤ . . . ≤ kM = K

and 1 ≤ ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓM = L.
(iii) Step size condition: pm+1 − pm ∈ {(1,0),(0,1),(1,1)}.

The total cost of p is defined as ∑
M
m=1 c(X(km),Y (ℓm)). Now,

let p∗ denote a warping path having minimal total cost
among all possible warping paths. Then, the DTW distance
DTW(X ,Y ) between X and Y is defined to be the total cost
of p∗. It is well-known that p∗ and DTW(X ,Y ) can be com-
puted in O(KL) using dynamic programming, see [RJ93].

5.2. MT-based Matching

In order to compare a class MT with the feature matrix re-
sulting from an unknown motion data stream, we use a sub-
sequence variant of DTW. The crucial point of our matching
strategy is the local cost measure, which disregards the in-
consistencies encoded in the class MT. To this end, we intro-
duce a quantized MT, which has an entry 0.5 at all positions
where the class MT indicates inconsistencies between dif-
ferent executions of a training motion within the same class.
More precisely, let δ, 0 ≤ δ < 0.5, be a suitable threshold.
Then for an MT X ∈ [0,1] f×K , we define the quantized MT
by replacing each entry of X that is below δ by zero, each
entry that is above 1−δ by one, and all remaining entries by
0.5. In our experiments, we used the threshold δ = 0.1. See
Fig. 6 for an example of a quantized MT.
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Now, let D be a motion data stream. The goal is to identify
subsegments of D that are similar to a given motion class
C. Let X be a quantized class MT of length K and Y the
feature matrix of D of length L. We define for k ∈ [1 : K] and
ℓ ∈ [1 : L] a local cost measure cQ(k, ℓ) between the vectors
X(k) and Y (ℓ). Let I(k) := {i ∈ [1 : f ] | X(k)i 6= 0.5}, where
X(k)i denotes a matrix entry of X for k ∈ [1 : K], i ∈ [1 : f ].
Then, if |I(k)| > 0, we set

c
Q(k, ℓ) =

1

|I(k)| ∑
i∈I(k)

|X(k)i −Y (ℓ)i|, (1)

otherwise we set cQ(k, ℓ) = 0. In other words, cQ(k, ℓ) only
accounts for the consistent entries of X with X(k)i ∈ {0,1}
and leaves the other entries unconsidered. Furthermore, to
avoid degenerations in the DTW alignment, we use the mod-
ified step size condition pm+1 − pm ∈ {(2,1),(1,2),(1,1)},
cf. (iii) of Sect. 5.1. This forces the slope of the warping
path to assume values between 1

2 and 2. Then, the distance
function ∆C : [1 : L] → R∪{∞} is defined by

∆C(ℓ) :=
1

K
min

a∈[1:ℓ]

(

DTW
(

(X ,α) , Y (a : ℓ)
)

)

, (2)

where Y (a : ℓ) denotes the submatrix of Y consisting of
columns a through ℓ ∈ [1 : L]. (Due to the modified step size
condition, some of the DTW distances in (2) may not ex-
ist, which are then set to ∞.) Note that the function ∆C can
be computed by a standard subsequence DTW, see [RJ93].
Furthermore, one can derive from the resulting DTW matrix
for each ℓ ∈ [1 : L] the index aℓ ∈ [1 : ℓ] that minimizes (2).
The interpretation of ∆C is as follows: a small value ∆C(ℓ)
for some ℓ ∈ [1 : L] indicates that the motion subsegment of
D starting at frame aℓ and ending at frame ℓ is similar to the
motions of the class C. Note that using the local cost function
cQ of (1) based on the quantized MT (instead of simply using
the Manhattan distance c) is of crucial importance, as illus-
trated by Fig. 7. Further examples are discussed in Sect. 5.3.

5.3. MT-based Annotation

In the annotation scenario, we are given an unknown mo-
tion data stream D for which the presence of certain motion
classes C1, . . . ,CP at certain times is to be detected. These
motion classes are identified with their respective class MTs
X1, . . . ,XP, which are assumed to have been precomputed
from suitable training data. Now, the idea is to match the in-
put motion D with each of the Xp, p = 1, . . . ,P, yielding
the distance functions ∆p := ∆Cp

. Then, every local min-
imum of ∆p close to zero indicates a motion subsegment
of D that is similar to the motions in Cp. As an example,
we consider the distance functions for a 35-second gym-
nastics motion sequence with respect to the motion classes
C1 =‘JumpingJack’, C2 =‘ElbowToKnee’, and C3 =‘Squat’,
see Fig. 8. For C1, there are four local minima between
frames 100 and 300, which match the template with a cost
of nearly zero and exactly correspond to the four jumping
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Figure 7: (a) Distance function ∆C based on cQ of (1) for the quan-

tized class MT ‘CartwheelLeft’ and a motion sequence D consisting

of four cartwheel (reflected by the four local minima close to zero),

four jumping jacks, and four squats. (b) Corresponding distance

function based on the Manhattan distance without MT quantization,

leading to a much poorer result.
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4×‘JumpingJack’ 4×‘Skier’ 2×‘ElbowToKnee’ 4×‘Squat’

Figure 8: Resulting distance functions for a 35-second gymnastics

sequence consisting of four jumping jacks, four repetitions of a ski-

ing coordination exercise, two repetitions of an alternating elbow-

to-knee motion, and four squats with respect to the class MTs for (a)

‘JumpingJack’, (b) ‘ElbowToKnee’, and (c) ’Squat’.

jacks contained in D, see Fig. 8 (a). Note that the remaining
portion of D is clearly separated by ∆1, yielding a value far
above 0.1. Analogously, the two minima in Fig. 8 (b) and the
four minima in Fig. 8 (c) correspond to the two repetitions of
the elbow-to-knee exercise and the four squats, respectively.
The choice of suitable quality thresholds for ∆p as well as an
evaluation of our experiments will be discussed in the next
sections.

5.4. MT-based Retrieval

The goal of content-based motion retrieval is to automati-
cally extract all logically similar motions of some specified
type scattered in a motion capture database D. By concate-
nating all documents of D, we may assume that the database
is represented by one single motion data stream D. To re-
trieve all motions represented by a class C, we compute the
distance function ∆C with respect to the precomputed class
MT. Then, each local minimum of ∆C below some qual-
ity threshold τ > 0 indicates a hit. To determine a suitable
threshold τ and to measure the retrieval quality, we con-
ducted extensive experiments based on several databases.
We start with the evaluation database DMCE, which consists
of 718 motion clips corresponding to 24 minutes of motion
data, see Sect. 4.2. Recall that DMCE is disjoint to the train-
ing database DMCT, from which the class MTs were derived.
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Fixing a quality threshold τ, we computed a set Hτ of hits for
each of the 64 class MTs in a fully automated batch mode.
Based on a manually generated annotation of DMCE used as
the ground truth, we then determined the subset H+

τ ⊆ Hτ

of relevant hits corresponding to motion clips of the respec-
tive class. Table 2 shows some representative retrieval re-
sults for six different choices of τ. For example, for the mo-
tion class ‘ClapHandsAboveHead’ and the quality threshold
τ = 0.02, all of the 7 resulting hits are relevant—only one
clapping motion is missing. Increasing the quality thresh-
old to τ = 0.04, one obtains 16 hits containing all of the
8 relevant hits. However, one also obtains 8 false positives,
mainly coming from the jumping jack class, which contains
a similar arm movement. The precision and recall values are
very good for whole-body motions such as ‘JumpingJack’,
‘Cartwheel’, or ‘LieDownFloor’—even in the presence of
large variations within a class. Short motions with few char-
acteristic aspects such as the class ‘GrabHighRHand’ are
more problematic. For τ = 0.04, one obtains 49 hits con-
taining 12 of the 14 relevant movements. Confusion arises
mainly with similar classes such as ‘DepositHighRHand’ or
‘GrabMiddleRHand’ and with subsegments of more com-
plex motions containing a grabbing-like component such as
the beginning of a cartwheel. Even from a semantical point
of view, it is hard to distinguish such motions. Similar confu-
sion arises with increasing values of τ for the kicking, walk-
ing/jogging, rotation, or sitting classes. However, most of the
relevant hits could be found among the top ranked hits in
all cases. For the classes ‘RotateRArmFwd1’ and ‘RotateR-
ArmBwd1’, see Fig. 5 (a) and (b), all relevant movements
could be correctly identified. Using a combined MT, as indi-
cated by Fig. 5 (c), the two classes could not be distinguished
any longer—the characteristics that had separated the two
classes were now regarded as mere variations and therefore
masked out in the retrieval process.

The above experiments imply that the quality threshold
τ = 0.06 constitutes a good trade-off between precision and
recall. Since the distance function ∆C yields a ranking of the
retrieved hits in a natural way, our strategy is to allow for
some false positives rather than to have too many false neg-
atives. Furthermore, note that the running time of MT-based
retrieval depends linearly on the size of the database, where
the bottleneck is the computation of the distance function
∆C . For example, in case of the 24-minute database DMCE it
took 4–28 seconds to process one query—depending on the
respective MT length and the number of hits, see Table 2.

To speed up the retrieval on large databases, we introduce
a keyframe-based preselection step to cut down the set of
candidate motions prior to computing ∆C . More precisely,
for each class MT a small number of characteristic columns
is labeled as keyframes. In our experiments, this labeling
was done automatically using a simple heuristic: we basi-
cally picked two to five columns from the quantized MT
that had many “white” entries (i. e., entries close to one,
indicating some consistent action) and few “gray” entries

Motion Class C N |Hτ| / |H+
τ | K t(∆C)

CartwheelLeft 10 1 4 6 8 9 10 106 12.971 4 6 8 9 10

ClapHandsAboveHead 8 5 7 16 39 61 81 25 4.145 7 8 8 8 8

ElbowToKnee 13 8 11 12 13 13 22 36 4.198 11 12 13 13 13

GrabFloorRHand 8 6 8 11 20 41 75 61 8.365 7 7 8 8 8

GrabHighRHand 14 15 22 49 58 115 201 68 11.397 9 12 13 14 14

HopBothLegs 18 13 19 22 32 126 334 24 6.5613 17 17 18 18 18

HopRLeg 21 17 19 22 35 66 107 18 3.0817 19 21 21 21 21

JogRightCircleRFootStart4 8 6 13 37 41 53 74 59 7.734 8 8 8 8 8

JumpingJack 26 25 26 26 26 33 40 34 4.1125 26 26 26 26 26

KickFrontRFoot 15 3 6 26 90 239 385 54 13.703 5 12 12 13 14

KickSideRFoot 15 6 13 27 48 163 359 51 12.885 9 14 14 15 15

LieDownFloor 10 4 6 8 8 9 11 172 28.054 6 8 8 9 9

RotateRArmBwd1 8 6 6 7 34 70 151 27 5.166 6 7 8 8 8

RotateRArmFwd1 8 6 6 7 39 77 186 28 6.136 6 7 8 8 8

RotateRArm(Bwd&Fwd)1 16 12 12 39 101 235 453 26 9.9512 12 13 15 16 16

SitDownChair 10 4 9 17 29 53 70 83 12.924 8 10 10 10 10

SitDownFloor 10 9 15 25 34 48 61 106 15.784 6 9 10 10 10

SkierLeftFootStart 15 12 13 15 16 25 56 36 4.8012 13 15 15 15 15

Squat 26 23 24 26 26 26 27 48 5.6923 24 26 26 26 26

WalkFwdRFootStart4 8 17 21 25 44 69 131 82 11.427 7 8 8 8 8

WalkBwdRFootStart4 7 6 7 7 24 72 101 97 13.416 7 7 7 7 7

WalkSideRight3 8 7 8 11 14 28 49 123 16.087 8 8 8 8 8

Table 2: Representative retrieval results for the evaluation

database DMCE for various class MTs. Note that DMCE is disjoint

to the training database DMCT, from which the class MTs were de-

rived. N denotes the number of relevant motions contained in DMCE.

|Hτ| (first rows) denotes the number of hits and |H+
τ | (second rows)

the number of relevant hits with respect to the quality thresholds

τ = 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1. Finally, K denotes the

length of the class MT and t(∆C) the running time in seconds re-

quired to compute the respective distance function ∆C .

(i. e., entries indicating inconsistencies). Then, in the pre-
processing step, we extract the motion segments that contain
the specified keyframes in the correct order within suitable
time bounds. This preselection can be done efficiently using
standard indexing techniques with inverted lists as described
in [MRC05]. The computation of the distance function ∆C

is then performed only on the preselected motion segments.
We applied this strategy to our 210-minute database D210,
which was introduced in Sect. 4.2. Some retrieval results as
well as running times are summarized in Table 3 (upper). To
assess retrieval quality, we manually inspected the set H0.06

of hits as well as the database D210 for each class to deter-
mine the set H+

0.06 of relevant hits. For example, the database
D210 contains 24 left cartwheels. Using two automatically
determined keyframes, it took 20 milliseconds to reduce the
data from 210 to 2.8 minutes—1.3% of the original data.
Then, MT retrieval was performed on the preselected 2.8
minutes of motion, which resulted in 21 hits and took 0.83
seconds. These hits contained 20 of the 24 cartwheels.

Even though keyframes are a powerful tool to signif-
icantly cut down the search space, there is also an at-
tached risk: one single inappropriate keyframe may suffice
to produce a large number of false negatives. For exam-
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Motion Class C #(kf) sel (m) sel (%) t(kf) N |H0.06| |H+
0.06| t(∆C)

CartwheelLeft 2 2.8 1.3% 0.02 24 21 20 0.83
ElbowToKnee 2 0.8 0.4% 0.03 29 16 16 0.13
GrabHighRHand 2 8.9 4.2% 0.14 30 128 30 2.77
JumpingJack 2 1.5 0.7% 0.09 52 50 50 0.19
LieDownFloor 2 15.3 7.2% 0.06 20 24 16 4.42
RotateRArmFwd1 2 0.5 0.2% 0.48 66 6 5 0.17
SitDownChair 2 16.2 7.6% 0.11 20 27 4 3.00
Squat 2 2.2 1.1% 0.08 56 55 55 0.33

Motion Class C #(kf) sel (m) sel (%) t(kf) N |H0.06| |H+
0.06| t(∆C)

GrabHighRHand 3 3.2 1.5% 0.16 30 59 30 1.08
RotateRArmFwd1 3 1.0 0.5% 0.33 66 32 32 0.63
SitDownChair 3 3.8 1.8% 0.17 20 34 16 1.28

Table 3: Upper: Retrieval results for the database D210 and τ =
0.06 based on automatic keyframe selection. The second to fourth

columns indicate the number of keyframes, the size of the prese-

lected data set in minutes and percent as well as the running time

for the preprocessing step. N is the number of relevant motions in

D210. |H0.06| and |H+
0.06| denote the number of hits and the num-

ber of relevant hits, respectively. t(∆C) indicates the running time in

seconds required to compute ∆C on the preselected motions. Lower:

Retrieval results for manually selected keyframes.

ple, this happened for the classes listed in Table 3 (lower).
For these classes, using more appropriate, manually selected
keyframes led to a significant improvement. A further ben-
efit of the keyframe approach is that the large number of
false positives, as typical for short and unspecific motions,
can be easily cut down by adding a single keyframe. See, for
example, the motion class ‘GrabHighRHand’ in Table 3 (up-
per). For future work, we plan to improve our ad-hoc method
of keyframe selection. To this end, we have conducted first
experiments to automatically learn characteristic keyframes
from positive and negative motion examples employing a
strategy based on genetic algorithms. It would also be possi-
ble to use similar methods as described in [ACCO05]

As a further test, we used the 180-minute database
DCMU

180 containing motion capture material from the CMU
database [CMU03]. Similar results and problems can be
reported as for D210. Interestingly, our class MT X for
‘CartwheelLeft’ yielded no hits at all—as it turned out, all
cartwheels in DCMU

180 are right cartwheels. We modified X

by simply interchanging the rows corresponding to feature
pairs pertaining to the right/left part of the body, see Table 6.
Using the resulting mirrored MT, four out of the known
five cartwheels in DCMU

180 appeared as the only hits. Due
to their semantic meaning, class MTs can easily be modi-
fied in an intuitive way without any additional training data.
Even designing a class MT from scratch (without resorting
to any training motions) proved to be feasible. For example,
to identify ‘sweeping with a hand brush’ in DCMU

180 , we de-
fined an MT of length 50, setting all matrix entries to 0.5
except for the rows corresponding to F13 (right hand fast),
F32 (spine horizontal), and F33 (right hand lowered), which
were set to one. Eight out of ten hits in DCMU

180 were relevant.

5.5. Comparison to Other Retrieval Methods

We compared our MT-based retrieval system to several base-
line methods using subsequence DTW on raw motion cap-

Motion Class rMT
5/10/20 sMT rRF

5/10/20 sRF r
Q
5/10/20 sQ r3D

5/10/20 s3D

CartwheelLeft 5/10/10 12.83 5/10/10 1.62 4/6/7 1.63 1/1/2 2.38
Squat 5/10/10 259.5 5/10/10 16.1 5/7/9 2.79 4/6/7 2.52
LieDownFloor 5/9/10 11.65 5/9/10 2.10 4/7/9 1.69 2/3/7 1.29
SitDownFloor 4/6/10 19.33 3/4/8 1.60 2/5/7 2.13 3/5/8 1.56
GrabHighRHand 5/7/9 33.93 5/8/8 9.72 3/5/8 3.39 1/3/4 2.22

Table 4: Recall values (r) in the top 5/10/20 ranked hits and sepa-

ration quotients (s) for different DTW-based retrieval methods: mo-

tion templates (MT), relational feature matrices (RF), quaternions

(Q), and relative 3D coordinates (3D).

ture data with suitable local distance measures. It turned out
that such baseline methods show little or no generalization
capability. The database (3.8 minutes, or 6,750 frames sam-
pled at 30 Hz) consisted of 100 motion clips: ten different
realizations for each of ten different motion classes. For each
of the ten motion classes, we performed motion retrieval in
four different ways:

(MT) retrieval using a quantized class MT,

(RF) DTW using the relational feature matrix of a single
example motion and Manhattan distance,

(Q) DTW using unit quaternions and spherical geodesic
distance,

(3D) DTW using 3D joint coordinates (normalized w. r. t.
root rotation and size) and Euclidean distance.

For each strategy, we computed a ∆ curve as in Fig. 7 and
derived the top 5, top 10, and top 20 hits. Table 4 shows the
resulting recall values (note that there are exactly 10 correct
hits for each class) for five representative queries. As a fur-
ther important quality measure of a strategy, we computed
the separation quotient, denoted by s, which is defined as
the median of ∆ divided by the median of the cost of the cor-
rect hits among the top 10 hits. The larger the value of s, the
better the correct hits are separated from the false positives,
enabling the usage of simple thresholding strategies on ∆ for
the retrieval. Only for our MT-based strategy, the separation
is good enough. These observations indicate that MT-based
retrieval outperforms the other methods.

We also compared MT-based retrieval to the method by
Müller et al. [MRC05]. Their system is based on fuzzy
queries, and the performance heavily depends on the query
formulation, which involves manual specification of a query-
dependent feature selection. For each query, we carefully se-
lected a suitable subset of features, which proved to be a
time-consuming process. The resulting precision/recall val-
ues on DMC are very good and reflect what seems to be
achievable by their technique, see Table 5. For MT-based
retrieval, we quote precision/recall values for two quality
thresholds, τ = 0.02 and τ = 0.06. Our experiments show
that the retrieval quality of our fully automatic MT-based
approach is in most cases as good and in many cases even
better than that obtained by Müller et al. [MRC05], even af-
ter hand-tweaking their parameters. Hence, our MT-based
approach enables us to replace manual, global feature selec-
tion by fully automatic, local feature selection without loss
of retrieval quality.
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Motion Class rMT
0.02 pMT

0.02 rMT
0.06 pMT

0.06 rFuz pFuz

CartwheelLeft 0.57 1.00 0.90 1.00 1.00 1.00
HopBothLegs 0.94 0.89 1.00 0.52 0.58 0.62
HopRLeg 0.95 1.00 1.00 0.57 0.79 0.18
LieDownFloor 0.70 1.00 0.85 0.81 0.95 0.90
WalkBwdRFootStart4 1.00 1.00 1.00 0.26 0.53 0.36

Table 5: Precision (p) and recall (r) values for representative

queries, comparing fuzzy retrieval (Fuz) vs. MT-based retrieval. The

subscript indices for MT-based retrieval indicate the value of τ.

6. Conclusions and Future Work

In this paper, we introduced the concept of a motion tem-
plate, which encodes the characteristic and the variable as-
pects of a motion class. We proposed an automatic pro-
cedure to learn a class MT from example motions. As a
further contribution, we applied class templates to motion
annotation and retrieval. By automatically masking out the
variable aspects of a motion class in the retrieval process,
related motions can be identified even in the presence of
large variations and without any user intervention. Exten-
sive experimental results show that our methods work with
high precision and recall for whole-body motions and for
longer motions of at least a second. More problematic are
very short and unspecific motion fragments. Here, the use
of suitably defined keyframes is a promising concept to not
only speed up the retrieval process, but also to eliminate
false positives. For future work, we plan to continue our ex-
periments with genetic algorithms to extract characteristic
keyframes based on our template representation. In collab-
oration with the HDM school of media sciences (Stuttgart),
we investigate how motion templates may be used as a tool
for specifying animations—replacing a keyframe-based by
a template-based animation concept—similar to approaches
such as [RCB98, AFO03].

A. Test Feature Set for Full-body Motion

In this paper, we rely on f = 39 relational features, see
Table 6. Our features are derived from a small num-
ber of generic relational features, which encode cer-
tain joint constellations in 3D space and time. Specif-
ically, we used the following generic features: Fplane =

F
( j1, j2, j3; j4)
θ,plane , Fnplane = F

( j1, j2, j3; j4)
θ,nplane , Fangle = F

( j1, j2; j3, j4)
θ,angle ,

Fmove = F
( j1, j2; j3)
θ,move , Fnmove = F

( j1, j2, j3; j4)
θ,nmove , and Ffast = F

( j1)
θ,fast.

Each of these features maps a given pose to the set {0, 1}
and depends on a set of joints, denoted by j1, j2, . . ., as well
as on a threshold value or threshold range θ. For the time be-
ing, we identify θ with θ1, as specified in the eighth column
of Table 6—the meaning of θ2 will be explained below.

The first generic feature Fplane assumes the value one iff
joint j4 has a signed distance greater than θ ∈ R from the
oriented plane spanned by the joints j1, j2 and j3. For exam-
ple, setting j1 =‘root’, j2 =‘lhip’, j3 =‘ltoes’, j4 =‘rankle’,
one obtains the feature F15, see Table 6 (a). A similar test

is performed by F
( j1, j2, j3; j4)
θ,nplane , but here we define the plane in

terms of a normal vector (given by j1 and j2), and fix it at

j3, see Table 6 (d). The generic feature F
( j1, j2; j3, j4)
θ,angle assumes

the value one iff the angle between the directed segments
determined by ( j1, j2) and ( j3, j4) is within the threshold
range θ ⊂ R, as indicated by Table 6 (b). The remaining
three generic features operate on velocity data that is approx-
imated from the 3D joint trajectories of the input motion:

F
( j1, j2; j3)
θ,move considers the velocity of joint j3 relative to joint

j1 and assumes the value one iff the component of this veloc-
ity in the direction determined by ( j1, j2) is above θ, see, for

example, Table 6 (c). The generic feature F
( j1, j2, j3; j4)
θ,nmove has

similar semantics, but the direction is given by the normal
vector of the oriented plane spanned by j1, j2, and j3. The

generic feature F
( j1)
θ,fast assumes the value one iff joint j1 has

an absolute velocity above θ.

The simple quantization scheme using only the threshold
θ as described for the generic features is prone to strong out-
put fluctuations if the input value fluctuates slightly around
the threshold. To alleviate this problem, we employ a ro-
bust quantization strategy using two thresholds, θ1 and θ2,
together with a hysteresis-like thresholding scheme, which
effectively suppresses most unwanted zero-one fluctuations.

Acknowledgements: We thank Bernd Eberhardt from
HDM Stuttgart for providing us with the mocap data,
Michael Clausen for constructive and valuable comments,
and the CMU motion lab for sharing their skeleton files.
Some of the data was obtained from [CMU03], which was
created with funding from NSF EIA-0196217. Tido Röder is
supported by the German National Academic Foundation.

References

[ACCO05] ASSA J., CASPI Y., COHEN-OR D.: Action synopsis:
pose selection and illustration. ACM TOG 24, 3 (2005), 667–676.

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.: Motion
synthesis from annotations. ACM TOG 22, 3 (2003), 402–408.

[BH00] BRAND M., HERTZMANN A.: Style machines. In Proc.

ACM SIGGRAPH (2000), pp. 183–192.

[BSP∗04] BARBIC J., SAFONOVA A., PAN J.-Y., FALOUTSOS

C., HODGINS J., POLLARD N.: Segmenting motion capture
data into distinct behaviors. In GI ’04: Proc. Graphics interface

(2004), Canadian Human-Comp. Comm. Soc., pp. 185–194.

[BW95] BRUDERLIN A., WILLIAMS L.: Motion signal process-
ing. In Proc. ACM SIGGRAPH (1995), pp. 97–104.

[CH05] CHAI J., HODGINS J.: Performance animation from low-
dimensional control signals. ACM TOG 24, 3 (2005), 686–696.

[CMU03] CMU: http://mocap.cs.cmu.edu, 2003.

[FF05] FORBES K., FIUME E.: An efficient search algorithm
for motion data using weighted PCA. In Proc. ACM SIG-

GRAPH/Eurographics SCA (2005), pp. 67–76.

[FMJ02] FOD A., MATARIC M. J., JENKINS O. C.: Automated
derivation of primitives for movement classification. Auton.

Robots 12, 1 (2002), 39–54.

c© The Eurographics Association 2006.

http://mocap.cs.cmu.edu


M. Müller & T. Röder / Motion Templates for Automatic Classification and Retrieval of Motion Capture Data

ID set type j1 j2 j3 j4 θ1 θ2 description

F1/F2 u Fnmove neck rhip lhip rwrist 1.8 hl/s 1.3 hl/s rhand moving forwards
F3/F4 u Fnplane chest neck neck rwrist 0.2 hl 0 hl rhand above neck
F5/F6 u Fmove belly chest chest rwrist 1.8 hl/s 1.3 hl/s rhand moving upwards
F7/F8 u Fangle relbow rshoulder relbow rwrist [0◦ ,110◦ ] [0◦ ,120◦ ] relbow bent

F9 u Fnplane lshoulder rshoulder lwrist rwrist 2.5 sw 2 sw hands far apart, sideways
F10 u Fmove lwrist rwrist rwrist lwrist 1.4 hl/s 1.2 hl/s hands approaching each other

F11/F12 u Fmove rwrist root lwrist root 1.4 hl/s 1.2 hl/s rhand moving away from root
F13/F14 u Ffast rwrist 2.5 hl/s 2 hl/s rhand fast
F15/F16 ℓ Fplane root lhip ltoes rankle 0.38 hl 0 hl rfoot behind lleg

F17/F18 ℓ Fnplane (0,0,0)⊤ (0,1,0)⊤ (0,Ymin,0)⊤ rankle 1.2 hl 1 hl rfoot raised
F19 ℓ Fnplane lhip rhip lankle rankle 2.1 hw 1.8 hw feet far apart, sideways

F20/F21 ℓ Fangle rknee rhip rknee rankle [0◦ ,110◦ ] [0◦ ,120◦ ] rknee bent
F22 ℓ Plane Π fixed at lhip, normal rhip→lhip. Test: rankle closer to Π than lankle? feet crossed over

F23 ℓ
Consider velocity v of rankle relative to lankle in rankle→lankle direction.
Test: projection of v onto rhip→lhip line large?

feet moving towards each other,
sideways

F24 ℓ Same as above, but use lankle→rankle instead of rankle→lankle direction. feet moving apart, sideways
F25/F26 ℓ Ffast rankle 2.5 hl/s 2 hl/s rfoot fast
F27/F28 m Fangle neck root rshoulder relbow [25◦ ,180◦ ] [20◦ ,180◦ ] rhumerus abducted
F29/F30 m Fangle neck root rhip rknee [50◦ ,180◦ ] [45◦ ,180◦ ] rfemur abducted

F31 m Fplane rankle neck lankle root 0.5 hl 0.35 hl root behind frontal plane

F32 m Fangle neck root (0,0,0)⊤ (0,1,0)⊤ [70◦ ,110◦ ] [60◦ ,120◦ ] spine horizontal

F33/F34 m Fnplane (0,0,0)⊤ (0,−1,0)⊤ (0,Ymin,0)⊤ rwrist -1.2 hl -1.4 hl rhand lowered
F35/F36 m Plane Π through rhip, lhip, neck. Test: rshoulder closer to Π than lshoulder? shoulders rotated right

F37 m Test: Ymin and Ymax close together? Y -extents of body small
F38 m Project all joints onto XZ-plane. Test: diameter of projected point set large? XZ-extents of body large
F39 m Ffast root 2.3 hl/s 2 hl/s root fast

(a) (b)

(c) (d)

F15
F20

F5

F3

headtop

head
neck

lclavicle rclavicle
lshoulder rshoulder

lelbow relbow

lwrist rwrist

lfingers rfingers

chest

belly

root

lhip rhip

lknee rknee

lankle
rankle

ltoes rtoes

Table 6: Left: the 39 relational features used in our experiments, divided into the sets “upper”, “lower”, and “mix”, which are abbreviated

as u, ℓ and m, respectively. Features with two entries in the ID column exist in two versions pertaining to the right/left half of the body but

are only described for the right half—the features for the left half can be easily derived by symmetry. The abbreviations “hl”, “sw” and “hw”

denote the relative length units “humerus length”, “shoulder width”, and “hip width”, respectively, which are used to handle differences in

absolute skeleton sizes. Absolute coordinates, as used in the definition of features such as F17, F32, or F33, stand for virtual joints at constant

3D positions w.r.t. an (X ,Y,Z)⊤ world system in which the Y axis points upwards. The symbols Ymin/Ymax denote the minimum/maximum Y

coordinates assumed by the joints of a pose that are not tested. Features such as F22 do not follow the same derivation scheme as the other

features and are therefore described in words. Right, lower: skeletal kinematic chain model consisting of rigid body segments flexibly connected

by joints, which are highlighted by circular markers and labeled with joint names. Right, upper: illustration of selected relational features. The

relevant joints are indicated by enlarged markers.
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