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Motional Fock states for quantum-enhanced
amplitude and phase measurements with
trapped ions
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Marius Schulte3, Klemens Hammerer 3 & Piet O. Schmidt 1,4

The quantum noise of the vacuum limits the achievable sensitivity of quantum sensors. In

non-classical measurement schemes the noise can be reduced to overcome this limitation.

However, schemes based on squeezed or Schrödinger cat states require alignment of the

relative phase between the measured interaction and the non-classical quantum state. Here

we present two measurement schemes on a trapped ion prepared in a motional Fock state for

displacement and frequency metrology that are insensitive to this phase. The achieved sta-

tistical uncertainty is below the standard quantum limit set by quantum vacuum fluctuations,

enabling applications in spectroscopy and mass measurements.
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Non-vanishing fluctuations of the vacuum state are a salient
feature of quantum theory. These fluctuations funda-
mentally limit the precision of quantum sensors.

Advances in the ability to control quantum systems together with
the suppression of classical noise originating from technical
imperfections, has led to the emergence of sensors, such as optical
clocks1, gravitational wave detectors2, matter-wave inter-
ferometers, magnetometers3, and optomechanical systems4, that
approach measurement sensitivities where the effect of quantum
fluctuations sets a fundamental limit, the so called standard
quantum limit (SQL). For more than 30 years it has been known
that certain types of non-classical states can reduce the effect of
quantum noise and thus enhance the sensitivity of measurement
devices beyond the classical limit5. Taking advantage of this sub-
SQL sensitivity requires not only the preparation of the non-
classical state with high fidelity, but also the prevention of signal
loss in the entire measurement protocol. This has been achieved
e.g., with squeezed states and Schrödinger-cat or N00N states in
interferometric settings6–9. A common restriction of these types
of non-classical states is the need for control over the relative
phase between the state creation and the measurement
interaction10,11. Lack of control can lead to an amplification of
noise and reduces the sensitivity of the device. In a phase-space
picture, squeezing along the displacement direction enhances the
sensitivity for amplitude measurements, but weakens the sensi-
tivity for phase measurements.

Here we experimentally demonstrate a quantum metrological
paradigm based on phase-insensitive motional Fock states12 of a
trapped ion, with applications in frequency metrology and dis-
placement detection. More specifically, we present sub-SQL
measurements of amplitude and phase of the motional state of
a trapped ion using the same motional Fock state. This is enabled
by the implementation of a measurement scheme that allows
direct detection of individual Fock state populations (see Meth-
ods). The measurement apparatus is operated in two different
experimental settings, each probing displacements in one of two
orthogonal quadrature components with sensitivities beyond the
SQL using the same initial quantum state. Firstly, the amplitude
of the ion’s oscillation is varied and the phase is kept constant,
which realizes a displacement or force sensor13–15. Secondly, the
Fock state is displaced with a fixed amplitude in a Ramsey-like
interferometry sequence to measure the phase of the ion’s oscil-
lation, which implements a measurement of the oscillation fre-
quency of the ion in the trap. In both measurements, classical
preparation and detection noise are sufficiently small to preserve
the quantum gain in a full metrological protocol. Furthermore, we
prove that Fock states are optimal for sensing displacements with
unknown phase.

Results
Experimental apparatus. The experiments are performed with a
single 25Mg+ ion confined in a linear Paul trap. Excited motional
Fock states are created starting from the motional and electronic
ground state16, through a sequence of laser-driven blue and red
sideband pulses that each add a quantum of motion while
changing the internal state of the ion17,18. A calibrated dis-
placement D̂ðαÞ ¼ exp αây � α�â

� �
is implemented by exposing

the ion to an electric field oscillating at the trapping frequency of
ωz= 2π × 1.89MHz. The displacement amplitude |α| can be
controlled through the modulation time tF (see Methods for more
details). It is measured by mapping the overlap between initial
and displaced state onto the atomic qubit (|↑〉, |↓〉, encoded
in two hyperfine states of the 2S1/2 electronic ground state of
25Mg+), where state-readout is performed using state dependent
fluorescence19. The mapping process is implemented by a

sequence of sideband rapid adiabatic passage (RAP)20 and
microwave pulses and is described in more detail in the Methods
section.

Displacement amplitude measurement. Figure 1a shows
the principle and Fig. 1e the result of the displacement
amplitude measurement for three different initial Fock states
(n= 0, 1, and 2). The expected state overlap is given by

hnjDðαÞjnij j2¼ exp �jαj2� � Ln jαj2� �� �2
, with the Laguerre poly-

nomials Ln
21. The measurement suffers from reduced contrast

due to imperfections in state preparation and the detection
process, which are of technical nature and pose no fundamental
limitation. To account for these imperfections the fitting

function depicted by the solid line in Fig. 1c is Pfit ¼ C1 þ
C2 exp �j _αtFj2

� � Ln j _αtFj2
� �� �2

; with free parameters C1, C2, and _α.
The fitted value of _α for the n= 0 data is used to calibrate the
displacement strength shown on the upper x-axis. The offset and
reduced contrast, described by the parameters C1 and C1,
respectively, are mainly caused by off-resonant Raman scattering
during the detection pulses (see Methods).

In contrast to the monotonous behavior of the n= 0
measurement outcome, the data for the excited Fock states
exhibit fringes due to interference in phase space22. The
interference fringes and the resulting metrological gain of Fock
states can be intuitively understood as a consequence of the
negative regions of the Wigner function as shown in Fig.1d. In
phase space the overlap of two quantum states is represented
by the integral over the product of the Wigner functions

hψijψf i
�� ��2¼ ZZ dβWðβÞjψiiWðβÞjψf i: ð1Þ

In consequence the overlap between a classical state (with
positive Wigner function) and its displaced counterpart only
vanishes for vanishing overlap of the phase-space contours of
the involved states (see Fig. 1c). However, if the quantum state
reveals negative values in the Wigner function, as is the case
for Fock states, the negative parts in the product can cancel
the positive parts and lead to vanishing overlap before the
wave packets are spatially separated (see Fig. 1d). The
metrological gain is quantified by the Fisher information F for
the displacement measurement, which can be extracted from the
data shown in Fig. 1 (see Methods for details). The result is shown
in Fig. 2a. For a displacement of α= 0.59 the measured Fisher
information for the n= 1 Fock state measurement is F n¼1 ¼
5:37ð63Þ (error is standard deviation (s.d)), which implies a
metrological gain of gSQL ¼ F n¼1ðα¼0:59Þ

F SQL
¼ 1:3 dB compared to

the theoretical SQL, F SQL ¼ 4, and g ¼ F n¼1ðα¼0:59Þ
maxαðF n¼0Þ ¼ 3:6 dB

compared to the achieved performance for the n= 0 state
(F n¼0ðα ¼ 0:59Þ ¼ 2:36ð30Þ). This corresponds to a reduction in
averaging time by more than a factor of two for the same
displacement resolution. The Fisher information is directly linked
to the achievable measurement uncertainty by the Cramér-Rao
bound

Δα � ΔαCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NFðαÞp ; ð2Þ

where N is the number of independent experimental cycles.
In agreement with the Cramér–Rao bound, the uncertainty for
the displacement measurement shown in Fig. 2b in the form
of an Allan deviation σα averages down faster for the n= 1
Fock state (red circles) compared to the ground state (blue
circles). The Allan deviation has been calculated from the
measured state overlap jhnjDðαÞjnij2 and the pre-determined
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Fig. 1 Measuring displacement amplitudes. a Schematic of the experimental setup: a magnesium ion is trapped in a linear Paul trap and an additional ac
voltage on the end electrodes implements the motional displacement (coherent excitation of motion). b Illustration of the wave function overlap. Initial
motional state wave functions are shown as dashed lines (n= 0 blue, n= 1 red). After applying a resonant oscillating force, the ion’s motion is in a
displaced Fock state whose wave function is depicted by the solid colored lines. To infer the displacement, the wave function overlap is measured as
sketched by the colored areas. c, d Illustration of the mechanism behind enhanced sensitivity of Fock states to displacements. c and d show the
theoretically calculated product of the initial and final Wigner function for three different displacements for the Fock states n= 1 and n= 0, respectively. By
integrating over the whole phase space it is possible to infer the state overlap shown in e. The negative parts of the n= 1 Fock states lead to a vanishing
integral for α= 1, before the contours of the Wigner functions are fully separated. For states without negative regions in the Wigner function, such as
Gaussian states, the integral can only vanish when the product of Wigner functions vanishes over the whole phase space. e The graph shows the outcome
of the state overlap measurement for three different initial Fock states (blue: n= 0, red: n= 1, green: n= 2). The oscillating force is applied for different
duration tF. The solid curves are fits of the equation given in the main text to the data and the dashed lines are the corresponding theoretical curves
assuming full contrast. The fit for the motional ground state is used to calibrate the upper x-axis, denoting the displacement amplitude |α|. Error bars for the
standard error of the mean (s.e.m.) due to quantum projection noise are too small to be seen. Each point is an average of approximately 10000 (n= 0) or
3000 (n= 1, n= 2) experiments
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Fig. 2 Evaluation of displacement measurement. a Fisher information extracted from the amplitude measurement for three different initial Fock states
(blue: n= 0, red: n= 1, green: n= 2). The dashed lines show the theoretically expected value for full contrast, whereas the solid lines show the expected
values considering the reduced contrast and offset (extracted from fit, see Fig. 1). The additional dips in the Fisher information arise from a vanishing signal
slope in the presence of finite technical noise. The standard quantum limit is depicted by the red line. The Fock states with n > 0 significantly surpass this
limit. The error bars indicate the standard deviation (see Supplementary Note 2 for more details). b Allan deviation for an amplitude measurement around
α= 0.59 with a coherent state (blue circles) and with a n= 1 displaced Fock state (red circles). The solid line shows the quantum projection noise limit
from Eq. 2 with the classical theoretical optimum F n¼0 ¼ 4
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slope of the signal from Fig. 1e. Note that for white noise,
the Allan deviation σα and standard deviation Δα are identical.
The achieved resolution for displacement of σA N ¼ 216ð Þ ¼
65ð23Þ pm for n= 0 and σA N ¼ 216ð Þ ¼ 32ð18Þ pm for n= 1
can be translated into force measurement resolution (see
Supplementary Note 1) of 1.8(0.6) yN for n= 0 and 0.9(0.5)
yN for n= 1 after N= 216= 65536 independent experiments,
where an experimental cycle takes 8.1 ms and 9.5 ms for the n= 0
and n= 1 measurement, respectively.

For displacements generated by R̂ðϕLOÞ ¼ sin ϕLO
� �

X̂þ�
cos ϕLO
� �

P̂Þ= ffiffiffi
2

p
with a fixed phase ϕLO the required resource

for the quantum enhancement can be identified as non-
classicality in terms of the Glauber–Sudarshan P-distribution23.
Here, however, we consider the more challenging scenario of
displacement sensing with an unknown phase. A suitable figure of
merit in this case is the sensitivity minimized over all phases. We
show in Supplementary Note 4 that this quantity is maximized by
pure non-Gaussian states, which necessarily have a negative
Wigner function24. Furthermore, we show that Fock states are
optimal for phase-insensitive displacement sensing. The quantum
gain provided by Fock states of n > 0 is independent of the phase
as their quantum Fisher information FQ= 8n+ 4 does not
depend on ϕLO. It is an interesting open question if phase-
insensitive displacement sensing beyond the SQL can in general
be linked to negativity of the Wigner function.

Phase measurement. As a consequence of the insensitivity of the
Fock state to the displacement direction, the same state can be
employed for quantum-enhanced sensing of displacement
amplitude and phase changes. We demonstrate this feature by
measuring the oscillation frequency of the trapped ion with sub-
SQL resolution in a Ramsey-like experiment as sketched in
Fig. 3b. The Ramsey sequence starts with the initialization of the
ion’s motion in a Fock state (I) and a subsequent displacement in
phase space (II). If the drive for the displacement was detuned by
δ from the trap frequency, the displaced state will evolve in phase
space on a circle around the origin and accumulate a phase ϕ=
δ × T compared to the driving field during the waiting time T
(III). Undoing the displacement (IV) maps this phase onto a
residual displacement ~α that can be detected with the overlap
detection method introduced above. The center fringe of the

Ramsey pattern for waiting time T= 50 μs and initial displace-
ment α= 1.6 is shown in Fig. 3a. As illustrated by the data
shown in Fig. 3c, the width of the center fringe decreases with
increasing Fock state order. The full-width-half-maximum
(FWHM) is extracted from a Gaussian fit to the center peaks.
Note that a narrower width does not necessarily imply a metro-
logical gain. For an increase in Fisher information the slope of
the line feature has to increase. For n= 2 the reduction in line-
width is fully compensated by the reduced contrast. The whole
Ramsey pattern for the different initial Fock states is shown in
Supplementary Fig. 1 and the theoretical lineshape is derived
in Supplementary Note 3.

To evaluate the performance of the quantum sensing
techniques, we have performed a trapping frequency measure-
ment by two-point sampling and analyzed the data in terms of an
Allan deviation (see Fig. 4). Since the n= 2 Fock state in our case
does not provide an additional metrological advantage (see Fig. 2)
as a consequence of the reduced contrast caused by technical
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limitations of the implementation, we have performed the Allan
deviation analysis for the n= 0 and n= 1 Fock state only. The
measurement has been performed in an interleaved pattern with
an average cycle time of 6.6 ms and 7.8 ms for the n= 0 and n= 1
measurement, respectively. The Allan deviation for the n= 0
protocol averages down to σn¼0

δ ¼ 2π ´ 5:8ð3ÞHz. The achievable
resolution is limited by a linear drift of the trapping frequency,
which leads to an increase in the Allan deviation for long
averaging times. The red line in Fig. 4 is the SQL given by

σSQLδ ¼ 1
2 T þ tFð Þ

1

jαj ffiffiffiffiNp ; ð3Þ

which is the lowest statistical uncertainty achievable with a
classical state (Supplementary Note 5). For the quantum-
enhanced technique with n= 1, the overlapping Allan deviation
reaches σn¼1

δ ¼ 2π ´ 3:6ð2ÞHz before it increases due to the linear
drift. Using the n= 1 Fock state improves the frequency
resolution by more than 60% compared to the vacuum state.
This is a direct consequence of the quantum-enhanced reduction
in averaging time, which allows measuring the trapping frequency
with high accuracy before it starts drifting.

Discussion
In summary, we have demonstrated a quantum-enhanced sensing
scheme based on motional Fock states to measure the amplitude
and the phase of an oscillating force with resolution below the
standard quantum limit. The demonstrated sensing scheme is
conceptually different from a previously demonstrated quantum-
enhanced method to measure motional frequencies based on
phase-sensitive superpositions of Fock states25 that has recently
been improved26. In contrast to the scheme presented here,
amplitude measurements are not accessible with this technique.
The Fock state sensing scheme does not require any phase rela-
tion between the displacement and the quantum state of the
detector, which is an important feature when measuring arbitrary
interactions without prior phase information (see Supplementary
Fig. 2). Previously implemented phase-insensitive schemes
exploited correlated modes of atomic ensembles3,27, while our
scheme requires no mode entanglement.

A technological application of this technique is the measure-
ment of small rf signals applied to a suitable electrode of the ion
trap28 with enhanced signal-to-noise ratio. Quantum logic spec-
troscopy29 based on motional displacements30,31 will benefit from
the presented amplitude detection technique, in particular for
state detection and spectroscopy of non-closed transitions32,
where scattering on the spectroscopy ion has to be reduced to a
minimum. Specifically, this approach may help to find narrow
transitions in highly-charged ions (HCI) that are typically only
known with large uncertainty33. The small displacement exerted
by an optical standing wave tuned near a narrow resonance of a
HCI can be detected for larger detunings using the demonstrated
Fock state metrology scheme, thus reducing the time to find the
transition. Further, these schemes benefit from the phase insen-
sitivity, because the initial motional state is in general produced
by manipulating the logic ion with a laser that is independent
from the spectroscopy laser. Applications of quantum-enhanced
spectroscopy are tests for variation of fundamental constants
using molecular ions34,35, highly-charged ions33, and optical
clocks1,31. Isotope shift measurements36,37 based on photon recoil
spectroscopy profit from an improved detection of the small
displacement of scattered photons10,30 and probe nuclear struc-
ture and new physics effects38–41.

The presented quantum-enhanced frequency measurement can
help to further improve high precision mass measurements of
atoms in Paul traps42 and g-factor measurements of subatomic

particles, such as (anti-)protons in Penning traps43,44. Both cases
will benefit from a quantum logic approach, in which a mass or
spin-dependent force on the particle of interest is probed with
quantum-enhanced sensitivity by a nearby well-controllable logic
ion using motional Fock states.

In Supplementary Note 6, the analogy to a general two mode
interferometer is drawn, which shows that the presented scheme
can in principle also be applied to optical and atomic inter-
ferometers that have widespread applications from gravitational
wave detection2 to inertial sensing45.

Further improvements in sensitivity can be achieved by
employing techniques that allow the generation and overlap
detection of larger Fock states with high fidelity. Scalable overlap
measurements for Fock states up to n= 10 have been reported46,
allowing phase-insensitive suppression of quantum projection
noise of up to 13.2 dB.

Methods
Trap modulation to implement displacement operator. Applying a resonantly
oscillating electric field at the position of the ion leads to a displacement of the ion’s
motional state in phase space47. The interaction Hamiltonian for a trapped ion
with an additional time-dependent potential Vðt; zÞ ¼ �qEðtÞẑ, where q and ẑ are
the charge and the position of the ion, respectively, and E(t) is the time-dependent
electric field, that is assumed to be spatially constant over the extent of the ion’s
wave function, can be written as

Ĥ ¼ �qEðtÞz0 âe�iωz t þ âyeiωz t
� �

; ð4Þ
in an interaction picture with respect to the free harmonic oscillation Hamiltonian
ĤHO ¼ �hωz â

yâ and ẑ is the position operator ẑ ¼ z0 âe�iωz t þ âyeiωz t
� �

with the
annihilation(creation) operator âðâyÞ and ground state wave function extent
z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2mωz

p
. For an electric field oscillating at the trapping frequency ωz, this

leads to the static Hamiltonian

Ĥ ¼ � qE0z0
2

âe�iϕLO þ âyeiϕLO
� �

; ð5Þ

where fast oscillating terms (at twice the trapping frequency) are neglected within
the rotating wave approximation. Here, ϕLO and E0 are the phase and amplitude of
the driving field, respectively. The unitary evolution according to this Hamiltonian
is

ÛðtÞ ¼ e�
i
hĤt ¼ D̂ðαÞ ð6Þ

and can be identified as the displacement D̂ðαÞ ¼ eαâ
y�α� â operator with dis-

placement amplitude α ¼ iqE0zo
2�h eiϕLO ´ t.

Overlap measurement. All measurements described in the manuscript rely on the
ability to measure the motional state population in a given Fock state. To achieve
this, we have implemented a sequence that transfers a selected initial population pn
to the motional and electronic ground state, while all other motional population is
in the |↑〉 state. State-selective fluorescence then provides the population pn. The
sequence for measuring p0, p1 and p2 is shown in Fig. 5. The ion is initialized in the
|↑〉-state. At the beginning of the detection sequence the motional population {pn}
is distributed over several motional Fock states n. (I). A blue sideband rapid
adiabatic passage pulse (RAP) transfers the internal state to |↓〉, while simulta-
neously taking out a quantum of motion, therefore keeping the ground state
population untouched20. Averaging the number of |↓〉 and |↑〉 detection events
after this mapping step provides the n= 0 population. For higher order Fock state
detection the protocol has to be extended as follows. The ground state population
can be hidden in a dark auxiliary state |aux〉 by radio frequency pulses (II). In
25Mg+ the Zeeman substates with mF= 1, 0, −1, −2 of the F= 2 dark hyperfine
state can be used for this purpose. A second sideband RAP pulse (III), this time on
the red sideband, flips the spin for all motional states except for the ground state,
which stores the information about the initial Fock state n= 1 population.
Fluorescence detection of the ion’s spin will give the initial n= 1 Fock state
population. To detect even higher Fock states, the spin is flipped independent of
the motional state to initialize the |↑〉-state again (IV). Now steps (II)–(IV) are
repeated until the desired Fock state population is isolated in the state |↓〉 from the
rest of motional population (e.g., see (V)–(VII) for n= 2). Reduced contrast due to
off-resonant scattering during the involved RAP pulses is the main limitation in
our experiments. We estimate single π-flop fidelities on sideband transitions to be
above 95%. However, the detection sequence in a protocol for Fock state n requires
n+ 1 RAP pulses with a pulse area of around 10 π-times resulting in a loss of
contrast of around 10% per RAP pulse. This limitation can be overcome by
operating the Raman laser with a larger detuning, which requires higher laser
power, or ion species providing an optical qubit such as Ca+ that do not suffer
from this limitation. The ultimate limitation for high n is the limited number of
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auxiliary states available in 25Mg+. However, other techniques for phonon
counting up to n= 10 by exploiting trap induced Kerr-nonlinearities have been
demonstrated46 and modifications using laser-induced Kerr-nonlinearities48

combined with continuous dynamic decoupling techniques49 might be an option
for future implementations.

Quantum metrology. The precision of an estimation is bounded by means of the
Cramér–Rao bound as

Δθest � ΔθCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NFðθÞp ; ð7Þ

where θest is an arbitrary estimator for θ, N is the number of repeated measure-
ments, and

FðθÞ ¼
X
μ

1
PðμjθÞ

∂PðμjθÞ
∂θ

� �2

ð8Þ

is the (classical) Fisher information. The probability distribution PðμjθÞ ¼
TrfΠ̂μρ̂ðθÞg is determined by the quantum state ρ̂ðθÞ and the choice of mea-

surement, described by the projectors fΠ̂μgμ . We consider scenarios in which the

unknown phase θ is imprinted by a unitary process, i.e. ρ̂ðθÞ ¼ ÛðθÞρ̂ÛðθÞy with
ÛðθÞ ¼ e�iĤθ .

The mean value hM̂iρ̂ðθÞ ¼ TrfM̂ρ̂ðθÞg and variance ΔM̂
� �2

ρ̂ðθÞ¼ M̂2
� 	

ρ̂ðθÞ�
M̂
� 	2

ρ̂ðθÞ of the measured observable M̂ ¼P
μ
μΠ̂μ can be used to derive a lower

bound for the Fisher information50

FðθÞ � 1

ðΔM̂Þ2ρ̂ðθÞ
dhM̂iρ̂ðθÞ

dθ

 !2

: ð9Þ

This bound is tight if there are only the two measurement outcomes μ= 1, 0
with Pð1jθÞ ¼ 1� Pð0jθÞ and ðΔM̂Þ2ρ̂ðθÞ ¼ Pð1jθÞð1� Pð0jθÞÞ.

Maximizing the Fisher information over all possible measurements leads to the
quantum Fisher information51

max

fΠ̂μg
FðθÞ ¼ FQ½ρ̂; Ĥ�; ð10Þ

which is a function of the initial state ρ̂ and the generator Ĥ of the unitary
evolution. We obtain the quantum Cramér–Rao bound as the general precision
limit for quantum parameter estimation52

Δθest � ΔθCR � ΔθQCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NFQ½ρ̂; Ĥ�

q : ð11Þ

Extracting the Fisher information from experimental data. We can use the data
shown in Fig. 1c to get a measured value for the Fisher information of our mea-
surement. As can be seen from Eq. 9, the Fisher information depends on the slope

and the noise properties of the measurement presented before. The slope sðαiÞ ¼
dhM̂iρ̂ðαÞ

dα is experimentally determined for each displacement amplitude αi by a
symmetric difference quotient

sðαiÞ ¼
Pj#iðαiþ1Þ � Pj#iðαi�1Þ

αiþ1 � αi�1
: ð12Þ

For the first and last measurement point is determined by an asymmetric
difference quotient

sðαiÞ ¼
Pj#iðαiþ1Þ � Pj#iðαiÞ

αiþ1 � αi
ð13Þ

As discussed before, the noise is dominated by quantum projection noise.
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Fig. 5 Experimental scheme to measure the motional state overlap with Fock state n. The reduced level scheme shows the spin states |↓〉, |↑〉 and the
manifold of auxiliary states |aux〉 (see text for details). The boxes indicate the current motional state within the sequence. The values pn denote the initial
population of the Fock state n. The sequence starts with the ion in the |↑〉 state and an unknown motional state distribution.(I) A blue sideband RAP pulse
flips the spin and removes a phonon from all excited Fock states, leaving the ground state population untouched. (II) The motional ground state population
is measured via spin state-selective fluorescence. To detect the population of higher order Fock states, the ground state population is hidden by a sequence
of rf-pulses in one of the auxiliary states |aux〉1. (III) A red sideband RAP pulse flips the spin and removes a phonon from all excited Fock states |↓〉.
Therefore only the population that was initially in the n= 1 Fock state remains in the bright spin state. (IV) Detection of the ions spin gives the n= 1 Fock
state population. Alternatively, step (II)–(IV) can be repeated after a rf carrier π-flop to detect higher order Fock states (see (V)–(VII)). However, only a
single selected Fock state population can be measured in a single experiment
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Oscillation amplitude. For a harmonic oscillator, the position observable x̂ is
related to the quadrature component X̂ ¼ 1ffiffi

2
p ây þ â
� �

by

ẑ ¼
ffiffiffiffiffiffiffiffiffi
�h

mωz

s
X̂ ð14Þ

From this relation the expectation value of the position operator for a coherent
state α can be evaluated to be

hẑiα ¼
ffiffiffiffiffiffiffiffiffiffiffi
�h

2mωz

s
2α cosωzt ¼ 2z0α cosωzt: ð15Þ

Therefore the oscillation amplitude for a given displacement is A= 2z0α.
Accordingly, the y-axis in Fig. 2b was scaled by ΔA= 2z0Δα.

Data availability
All data that support the findings presented in this manuscript are available from the
corresponding author upon reasonable request. The source data underlying Figs 1c, 2a,b,
3a, c and 4 are provided as a Source Data file.
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