

Centimeter

MANUFACTURED TO AIIM STANDARDS BY APPLIED IMAGE, INC.

$\operatorname{Cov} .940552--8$

UCRL-JC-116269
PREPRINT

Motional Stark Effect Upgrades on DIII-D

B.W. Rice, D.G. Nilson, and D. Wroblewski

This paper was prepared for submittal to the 10th Topical Conference on High-Temperature Plasma Diagnostics

Rochester, NY
May 8-12, 1994

April 1994

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of Califormia nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Govermment or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Motional Stark Effect Upgrades on DIII-D*

B.W. Rice. D.G. Nilson, D. Wróblewski
Lawrence Livermore . National Laboratory Prepared for Submission to
Proceedings of the Tenth Topical Conference
on High-Temperature Plasma Diagnostics

May 1994

1 Abstract

The measurement and control of the plasma current density profile (or q profile) is critical to the advanced tokamak program on DIII-D. A complete understanding of the stability and transport properties of advanced operating regimes requires detail poloidal field measurements over the entire plasma radius from the core to the edge. In support of this effort, we have recently completed an upgrade of the existing MSE diagnostic, increasing the number of chamels from 8 to 16. A new viewing geometry has been added to the outer edge of the plasma which improves the radial resolution in this region from 10 cm to $<4 \mathrm{~cm}$. This view requires the use of a reflector that has been designed to minimize polarization amplitude and phase effects. Vacuum-compatible polarizers have also been added to the instrument for in-situ calibration. Future use of the MSE diagnostic for feedback control of the q profile will also be discussed.

2 Introduction

The measurement of poloidal fields using the motional Stark effect is a well established diagnostic technique that has been implemented on several tokamaks [1, 2, 3]. In brief, the measurement relies upon the splitting of the neutral beam Balmer- α line (D_{a}) into orthogonally polarized components (σ, π) due to the motional $\mathbf{E}=\mathbf{v} \times \mathbf{B}$ electric field. When viewed
components are polarized perpendicular and parallel to the direction of the electric field respectively. By measuring the polarization of the Stark σ component, the local pitch angle of the magnetic field B_{v} / B_{ι} can be deduced.

An 8 channel Motional Stark Effect (MSE) diagnostic has been operational for two years now on DIIID [1]. The instrument was originally designed for op-
timum radial resolution of $\sim 2 \mathrm{~cm}$ in the core, but has poor resolution of $\sim 10 \mathrm{~cm}$ near the edge. After examining the equilibrium reconstructions for several different J profile shapes relevant to the advanced tokamak program on DIII-D, and performing error analysis using MSE data. we concluded that several improvements to the MSF. diagnestic conald be made which would benefit our program. These include: 1) improving the radial resolution near the outer edge: 2) increasing the number of measurement chords; and 3) reducing systematic errors throngh improved calibration techniques. To address these concerns, we have added an additional 8 MSE chords (called edge MSE) to the outside 30 cm of the plasma. using a new viewing geometry that improves the radial resolution in this region.

3 Measurement Geometry

The performance of the MSE diagnustic depends sensitively on the intersection angles between the collection optics line-of-sight. the neutral beam. and the toroidal field. Three criteria must be satisfied for erery MSE chord: 1) the optical line-of-sight must be nearly tangent to the toroidal field for optimum radial resolution: 2) the angle between the optics line-of-sight and the neutral beam must be sufficient to give a large enough Doppler shift to clearly separate the full beam energy Stark spectrum from thermal D_{a}, impurity lines, and the $1 / 2$ and $1 / 3$ beam energy spectra: and 3) the induced $v \times B$ alectric field must be large enough to provide sulficient separatom between the σ and π lines.

The original multichord MSE system on DIII-D had 8 chords ranging from near the vessel center at $\mathrm{R}=155 \mathrm{~cm}$ to near the plasma edge at $\mathrm{R}=228 \mathrm{~cm}$. Referring to the geometry shown in Fig. 1, the radial resolution is given approximately by δR $(d+w \sin S 2 / / \sin (\Omega \Omega+\alpha)$ where d is the upucal spot
size, and w is the beam width. This function is plotted in Fig. 2 for the existing MSE system (solid line), which shows poor resolution outside of $R \sim 195 \mathrm{~cm}$. To improve this situation we have added 8 additional chords viewing from a midplane port at a toroidal angle of 45° as shown in Fig. 1. The view from this port is nearly tangent to B_{t} at the plasma edge, thus giving good radial resolution as shown by the dotted line in Fig. 2. The original MSE chords (now called central) have been realigned towards the plasma core cover the radial range $155 \mathrm{~cm}<R<200 \mathrm{~cm}$, while the edge system covers $200 \mathrm{~cm}<R<230 \mathrm{~cm}$. This gives a channel spacing of about $4-5 \mathrm{~cm}$, with a resolution for each channel better than 5 cm over the entire measurement range. No chords are located inside of $R=155 \mathrm{~cm}$ due to excessive beam attenuation.

The maximum angle o between the optical sightline and the neutral beam is 60° for this view, which is sufficient to separate the 75 keV full-energy Stark spectrum from the $1 / 2$ and $1 / 3$ beam energy spectra. However, there are two strong carbon impurity lines located at 6578 A and 6583 A which interfere with the 'red-shifted' D_{a} line (there are no impurity lines in the 'blue-shifted' direction of the central MSE chords). A typical plasma spectrum obtained using the CER spectrometer is shown in Fig. 3 for a deuterium beam energy of 75 keV . This spectra would simulate that of an MSE chord viewing the edge at $R=228 \mathrm{~cm}$ from the 45° port. Under these conditions, the full-energy Stark σ line is clearly separated from the CII impurity lines. These impurity lines would, however, interfere with the MSE measurement at beam energies of 65 keV or lower.

The separation of the σ and π components (proportional to $\mathbf{v} \times \mathbf{B}$) has also been calculated for the edge MSE geometry and is found to be sufficient for toroidal fields of 0.8 T or greater.

4 Edge MSE Design

Details of the light collection optics for the edge MSE instrument are shown in Fig. 4. The design is complicated by the need to have a reflector located close to the plasma surface. A similar problem was encountered on TFTR [3]. A property of all metal reflectors is that the s and p polarizations reflect with different amplitude and phase depending on the angle of incidence [4]. This effect is a serious problem because it can lead to a rotation of the incoming polarization and also polarizes the background plasma light. In principle, if the reflection amplitudes and phase are measured for a given reflector. and the background light level is monitored, then these effects can be cor-
rected $|3|$ However these corrections are quite semsitive to reflector surface coatmos and may vary during plasma operation.

Two options were investigated for eliminating polarization effects upon reflection: an internally reflecting prism and a mululayer diefectric reflector The prism has the advantage that the reflectance for the s and p polarizations is 100 percent for all internal reflection angles |f Athongh there is a phase shift. this call be correcied with a coatho on the reflecting surface is: Becalise of the large path lengeth through glass, the prism must be manufactured from a zero Verdet constant glass such as Schott SFL6 or SFL56 [6]. Linfortunately: these glasses all exhibit a large thermal expansion coefficient and thermal stress calculations indicate that the prism would be susceptible to stress fractures during baking. Instead we opted for a multilayer dielectric coated reffector $|\overline{7}|$. consisting of alternating lavers of fused silicatand talltalum pentoxide deposited on a fused silica substrate. The fused silica substrate offers excellemt stabilits during thermal cycling. Design calculations for angles of incidence between $4 x^{\circ}$ and $6 x^{\circ}$ indicate that the s and p reflection amplitudes are equal to within 1%, with the phase shift between the two polarizations being held to less than 15 degrees. Bench tests of the actual reflector confirmed these specifications. As illustrated in Fig. 4. the reflector is protected from coatings and plasma damage by a carbon tile on one side and a 2 mm thick fused silica shield on the viewing side. Thin coatmgs on the finsed silica shield should not affere the polatization lactanse of the near normal angle of moidence.

There are two shutters incorporated into the design. The outer shutter is a carbon sheld designed to protect the optics during helium glow wall conditioning between shots. The inside shutter has been fitted with four $2.4 \times 3 \mathrm{~cm}$ polarizers $|8|$ to be used for calibration. These polarizers are vacuum compatible, consisting of a BKT substrate with imbedded silver wires. The polarizer shutter can be inserted during plasma operations to provide an m-stlu offset calibration.

The vacuum window is quite large at 5.5 inches in diameter. Bench measurements indicate that there is a small level of stress birefringence present in the window, but this can be accounted for in the instrument calibration. The three lenses are 11 cm in diameter and combine to give a demagnification of 10 . To avoid Faraday rotation effects they are manufactured from Schout SFL6 glass. For each chammel. the lenses innage onto an array of six 1 mm diameter fibers stacked vertically: corresponding to a 1 cm wide be R con high image in the plasima.

The remainder of the edge MSE instrument design external to the vessel Fig $\overline{\%}$, is is quite similar to the original system describrd in Ref. |1|. The lenses focus light through two photoelastic modnlators (PEMI) and a sheet polarizer onto the array of fiber optics. The modulators operate at 20 kHz and 23 kHz . At the fiber output. the light is collimated, passed through a 3 A bandpass filter, and focused onto a Hamamatsu R636 photomultiplier tube. Two lock-in amplifiers detect the 2nd harmonic of each PEM frequency, which are approximately proportional to the sine and cosine of the polarization pitch angle 9 . One notable difference in design compared with the original MSE instrument is that the Wollaston prism used to collect both polarizations as described in [1] has been replaced with a simple sheet polarizer. This reduces the number of photomultipliers to one per channel rather than two and simplifies the entire design. The signal level is maintained by using a total of six fibers to collect a single polarization, rather than three fibers for each polarization as used previously.

5 Future Work

During the next experimental campaign on DIII-D. we will make the first attempts at feedback control of the on-axis safety factor q_{0} using MSE. In preparation for this, we have installed analog fiber optic links to transmit both the $\sin \gamma$ and $\cos \%$ lock-in signals to an HP workstation dedicated for feedback control. The workstation will digitize all of the magnetic loop and MSE signals real-time and provide feedback signals to non-inductive current drive sources such as neutral beams or fast wave. Algorithms for calculating parameters such as q_{0} directly from the MSE data are being developed.

6 Acknowledgement

*Work supported under US DOE by LLNL Contract W-7405-ENG-48 and General Atomics Contract DE-AC03-84ER51044.

References

(1) D. Wroblewski and L.L. Lao. Rev. Sci. Instrum. 63, 5140 (1992).
[2] F.M. Levinton, et al, Rev. Sci. Instrum. 61, 2914 (1990).
 (1992)
|4| F.A. Jenkms and HE White. Fandamental. of Optics. McGraw-Hill. Inc . Tow York. 1976
(5) P. Mauer. J. Opt Soc Am. 56. 1219 : 1906;
|6| Schott Class Technical Information Bulletin Nis 17 (198.5).
17) Reflector manufactured by Optical (Oating Labloratory Inc., Santa Rosa. CA
$|8|$ Polarizers manufactured by Comme lncorpor rated. Corning. λY

7 Figure Captions

1. Overview of the upgraded 16 chord MSE system viewing geometry on DIII-D
2. Radial resolution versus radial position for the central and edge MSE viewing geometry
3. Red-shifted Stark spectra and CII impurity lines at a beam energy of 75 keV
4. Edge MSE collection optics.
5. Overview of the edge MSE detection system

MSE Angle Calc Chart 1

$$
F,=
$$

1,4

DATE

 $7 / 7 / 94$

