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Motionless volumetric photoacoustic microscopy
with spatially invariant resolution
Jiamiao Yang1,2, Lei Gong2,3, Xiao Xu2, Pengfei Hai1,2, Yuecheng Shen 1,2, Yuta Suzuki2 & Lihong V. Wang1

Photoacoustic microscopy (PAM) is uniquely positioned for biomedical applications because

of its ability to visualize optical absorption contrast in vivo in three dimensions. Here we

propose motionless volumetric spatially invariant resolution photoacoustic microscopy (SIR-

PAM). To realize motionless volumetric imaging, SIR-PAM combines two-dimensional

Fourier-spectrum optical excitation with single-element depth-resolved photoacoustic

detection. To achieve spatially invariant lateral resolution, propagation-invariant sinusoidal

fringes are generated by a digital micromirror device. Further, SIR-PAM achieves 1.5 times

finer lateral resolution than conventional PAM. The superior performance was demonstrated

in imaging both inanimate objects and animals in vivo with a resolution-invariant axial range

of 1.8 mm, 33 times the depth of field of the conventional PAM counterpart. Our work opens

new perspectives for PAM in biomedical sciences.
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T
hree-dimensional (3D) optical imaging technologies, such
as confocal microscopy1, multiphoton microscopy2, 3, and
optical coherence tomography4, 5, play fundamental roles

in biomedical research. Distinct from these technologies, photo-
acoustic (PA) microscopy (PAM), as an emerging technology, has
drawn increasing interest because of its capability to directly sense
optical absorption in vivo and to facilitate either label-free or
labeled 3D visualization of tissue6–10. PAM has an inherent depth
resolving ability, thanks to the time-of-flight information carried
by the PA signals, which enables volumetric imaging with only
two-dimensional (2D) raster scanning8. However, conventional
PAM suffers a rapidly degrading lateral resolution with the dis-
tance from the focal plane: For a given wavelength, the focusing
objective lens has a limited depth of field (DOF), which inevitably
deteriorates the volumetric image quality. Besides, the mechanical
raster scanning involved in conventional PAM requires com-
promises between imaging speed and stability, restricting its
performance. In fact, many other 3D imaging modalities, such as
interferometric microscopy11, optical frequency-domain ima-
ging12, and optical coherence tomography5, 13, suffer from the
same problems.

Recently, 2D single-pixel Fourier-spectrum acquisition imaging
has been proposed (Supplementary Note 1 and Supplementary
Fig. 1), which is achieved by using sinusoidal fringes with varying
frequencies and phases to acquire the spectrum of a 2D scene14.
This imaging method improves the signal-to-noise ratio sig-
nificantly through a multiplexed illumination by delivering more
energy to the bucket detector. However, it has no depth resolving
ability; further, its fringes suffer from a limited DOF15 which is
undesirable for volumetric imaging.

Here we propose motionless volumetric spatially invariant
resolution photoacoustic microscopy (SIR-PAM), achieved
through Fourier-spectrum optical excitation with simultaneous
single-element photoacoustic detection at all depths. SIR-PAM
further develops 2D single-pixel Fourier-spectrum acquisition
imaging by overcoming the above-mentioned limitations.
Propagation-invariant sinusoidal fringes (PISFs) are generated by

wavefront engineering to produce in-focus fringes at any depth.
Further, the time-of-flight information of the PA signal enables
resolving the spectra of the object’s cross-sections at different
depths with a spatially invariant resolution. By using a digital
micromirror device (DMD) to digitally generate the PISFs, we
built a motionless SIR-PAM prototype with a resolution-invariant
axial range (RIAR) of 1.8 mm, which is 33 times the DOF of the
conventional PAM counterpart. Additionally, the lateral resolu-
tion of our system is 1.5-fold finer than that of conventional
PAM. Our SIR-PAM prototype’s performance was demonstrated
by 3D imaging of both non-biological and biological objects. The
spatially invariant high resolution and motionless 3D image
acquisition is expected to open up new opportunities for PAM in
biomedical applications.

Results
Principle of SIR-PAM. As illustrated in Fig. 1a, SIR-PAM uses a
series of PISFs with different spatial frequencies and phases to
stimulate PA signals within an object. By using the phase-shifting
method and resolving the depth based on time-of-flight infor-
mation carried by PA signals, we can extract the Fourier spectrum
of the optical absorption distribution at each depth with a single-
element ultrasonic transducer. Then, a volumetric PA image with
SIR is reconstructed. To realize motionless volumetric imaging, a
DMD-based complex field modulation method is proposed to
generate the PISFs digitally (see Methods section and Supple-
mentary Movie 1).

The normalized 3D intensity profile of a PISF can be expressed
as: Iφ x; y; zð Þ¼ 1

2
cos 2πfxx þ 2πfyy þ φ

� �

þ 1
� �

, where fx and fy
are spatial frequencies, and φ is a shifting phase. To obtain such
an intensity distribution, we modulate the optical field on the
focal plane of an objective as

Emod x; y;φð Þ¼ cos πfxx þ πfyy þ φ=2
� �

: ð1Þ

In angular spectrum representation, Emod(x, y, φ) can be
decomposed into two symmetrical plane waves E1 and E2 with
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Fig. 1 Principle of motionless SIR-PAM. a Principle of spatially invariant resolution photoacoustic microscopy (SIR-PAM). To achieve spatially invariant

resolution volumetric imaging, SIR-PAM uses PISFs to stimulate PA signals within an object and extract its Fourier spectra, and uses an ultrasonic

transducer to resolve the depth of the PA signals. b Principle of conventional PAM. A focused Gaussian beam is utilized in conventional PAM to stimulate

PA signals, restricting its DOF. Besides, conventional PAM uses raster scanning to realize volumetric imaging. An object with uniformly distributed

microparticles was simulated to compare the image qualities of two methods. c PSFs of SIR-PAM (red curve) and conventional PAM (blue curve), which

indicate that SIR-PAM achieves 1.5 times finer lateral resolution than conventional PAM. Scale bars, 100 µm

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00856-2

2 NATURE COMMUNICATIONS | 8:  780 |DOI: 10.1038/s41467-017-00856-2 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


expressions of 1
2
exp i πfxx þ πfxy þ φ=2ð Þ½ � and 1

2
exp i �πfxxð½

�πfxy � φ=2Þ�: Limited by the numerical aperture (NA) of the

objective, πfxð Þ2 þ πfy
� �2

< NA´ 2π=λð Þ2; where λ is the wave-
length. In free space, the optical field formed by the propagation of
Emod(x, y,φ) is Epro x; y; z;φð Þ¼ exp ikzzð Þ cos πfxx þ πfyy þ φ=2

� �

;
where kz is the axial wave vector of E1 and E2. Thus,
the corresponding intensity Iφ x; y; zð Þ; which equals
1
2
cos 2πfxx þ 2πfyy þ φ

� �

þ 1
� �

; is propagation invariant, that is,
independent of z.

When a PISF with spatial frequencies of fx and fy illuminates an
object, the modulated PA signals stimulated from each depth of
the illumination volume are proportional to

Sφ fx; fy; z
� �

¼
RR

R zð Þ

μa x; y; zð Þ ´ Iφ x; y; zð Þdxdy

¼ 1
2

RR

R zð Þ

μa x; y; zð Þ ´ cos 2πfxx þ 2πfyy þ φ
� �

þ 1
� �

dxdy;
ð2Þ

where R(z) represents the illuminated area with intensity
modulation at depth z, and μa(x, y, z) is the optical absorption
distribution of the object. Thanks to the time-of-flight informa-
tion carried by the received PA signals, the signal Sφ(fx,fy,z) from
each depth z can be resolved. Then the corresponding Fourier

coefficient at z is extracted by using the phase-shifting method
(Supplementary Note 2). Therefore, with the illumination of a
certain frequency PISF, the corresponding Fourier coefficients of
all of the cross-sections can be derived from the received PA
signals. Combining the PISFs with all frequencies (fx, fy) in the
Fourier domain allows us to retrieve accurately the Fourier
coefficients of each cross-section. Finally, the volumetric PA
image of the object is reconstructed layer-by-layer using inverse
Fourier transformation of the Fourier coefficients. Benefiting
from the PISFs, the modulation transfer functions at each depth
are the same, enabling SIR-PAM spatially invariant resolution.

In practice, because the generated fringe has a size limited by
the DMD and relay system16, the fringe field can be regarded as
the composition of two symmetrically collimated beams with a
limited size. The RIAR of the SIR-PAM system is determined by
the overlap of the two collimated beams, as illustrated in Fig. 1a.
Besides, due to the limited range of PISFs, the resolution-
invariant region in a transverse plane perpendicular to the optical
axis decreases with the distance from the focal plane. Never-
theless, the achievable RIAR of SIR-PAM is much greater than
the DOF of conventional PAM (Fig. 1b).

To compare quantitatively the lateral resolution of SIR-PAM
with conventional PAM, we calculated its point spread function
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Fig. 2 Experimental set-up and characterization of SIR-PAM system. a Schematic illustration of the SIR-PAM system. DAQ data acquisition system;

DMD digital micromirror device; T1 DMD trigger; T2 pulsed laser trigger; T3 DAQ trigger. b Normalized (Norm.) edge spread functions of conventional

PAM and SIR-PAM, measured at the focal plane using a sharp edge made of deposited chromium. The corresponding line spread functions were fitted to

compute the lateral resolutions defined by the full-width at half-maximum (inset). c Theoretical and experimental lateral resolutions of the two PAM

systems versus depth. DOF depth of field; RIAR resolution-invariant axial range
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(PSF), which has the form of 2π2NA
λr

J1
4πrNA

λ

� �

in polar coordinates
(r, θ) (Supplementary Note 3). The full-width at half-maximum
(FWHM) of SIR-PAM’s PSF is given by 0.35λ/NA, 1.5 times less
than the FWHM of conventional PAM’s PSF, given by 0.51λ/NA
(Fig. 1c and Supplementary Note 3). Therefore, SIR-PAM
achieves a 1.5-fold finer lateral resolution than conventional
PAM.

Experimental set-up and characterization. To realize motionless
volumetric imaging, we introduce a technique based on wavefront
engineering to generate the PISFs. By exploiting the ability of
complex field modulation17, 18 and the advantage of high
switching rate19, a single DMD enables high fidelity PISF gen-
eration and rapid switching among fringes with various fre-
quencies (see Methods section and Supplementary Movie 1).
Employing the flexible DMD-based scheme, we built an SIR-
PAM prototype that is schematically illustrated in Fig. 2a (for a
detailed description, see Methods section). The SIR-PAM system
was characterized by imaging a sharp edge made of deposited
chromium placed at different depths in water. As presented in
Fig. 2b, the edge spread function was first measured at the focal
plane, and its corresponding line spread function (LSF) was fitted
to compute the lateral resolution. The lateral resolution, defined
by the FWHM of the LSF, was 1.89 µm. In contrast, with the same
objective, the conventional PAM system (Supplementary Note 4
and Supplementary Fig. 2) could achieve a lateral resolution of
only 2.86 µm. In particular, the resolution of SIR-PAM system
remains essentially unchanged (within 8% degradation) within an
RIAR of 1800 µm (Fig. 2c), whereas the conventional PAM
counterpart has a DOF of only 55 µm. Note that the axial reso-
lutions of both systems are 19 µm, dictated by the bandwidth of
the ultrasonic transducer20.
The improved lateral resolution and spatially invariant

resolution of SIR-PAM were directly verified by imaging a USAF
resolution target placed at different depths. Figure 3a, b shows the
reconstructed images acquired by SIR-PAM and conventional
PAM at the focal plane (z= 0 mm), respectively. Sections of
groups 8 and 9 resolved by the two imaging methods are enlarged
for further examination. With SIR-PAM, the features of group 8,
element 5 can be clearly resolved with a resolution of 406.4 line
pairs per mm, whereas the smallest features that can be resolved

by conventional PAM are 256.0 line pairs per mm in resolution
(in group 8, element 1).

Figure 3c, d shows images acquired at different imaging depths.
For conventional PAM, the features of element 3 in group 6
(resolution of 80.6 line pairs per mm) are hardly resolved
at an imaging depth of ± 0.4 mm; when the imaging depth
reaches± 0.9 mm, all the patterns in groups 6 and 7 (lowest
resolution of 64.0 line pairs per mm) become blurred beyond
recognition (Fig. 3d). In contrast, SIR-PAM can resolve the
features of element 5 in group 8 (resolution of 406.4 line pairs per
mm) wherever the resolution target is located in the range from
–0.9 to 0.9 mm, as shown in Fig. 3c. Thus, SIR-PAM has a much
larger RIAR with finer resolution than conventional PAM.

Volumetric imaging of an inanimate object. To demonstrate the
volumetric imaging performance of our SIR-PAM system in
comparison with a conventional PAM system, we imaged a
sharp-featured 3D object using both systems over a volume of 1.2
mm × 0.9 mm (lateral) × 1.8 mm (axial). The 3D object was made
of spatially distributed carbon fibers (about 7 µm diameter) fixed
in gelatin. Figure 4a, b and the animation in Supplementary
Movie 2 show the volume-rendered images. As expected, SIR-
PAM provides high-resolution imaging throughout the entire
volume, whereas conventional PAM provides high resolution
only in the limited focal region. Three en face image slices were
taken at different depths to compare the two systems in image
quality. The corresponding line profiles across the carbon fibers
are shown in Fig. 4c−e. Toward the two ends of the depth range,
the crossed fibers remain clearly resolvable in the SIR-PAM
images but become grossly blurred in the conventional PAM
images. Even on the focal plane, SIR-PAM yields a sharper image.

SIR-PAM imaging of zebrafish larvae in vivo. We further
applied SIR-PAM to noninvasively image zebrafish larvae in vivo.
Several 3-day-old wild-type zebrafish embryos were carefully
mounted on angled slide glasses and placed in a water tank to
keep them alive. The tilted mount allowed imaging over a depth
range of 1.8 mm (see Methods section). Whole-body imaging of
living zebrafish larvae was performed with SIR-PAM and con-
ventional PAM. Figure 5a, b depicts the reconstructed images of

a c

b d

SIR-PAM

Conventional PAM

SIR-PAM

Conventional PAM

z = 0.9 mm

z = 0.9 mm

z = 0.4 mm

z = 0.4 mm

z = 0.0 mm

z = 0.0 mm

z = –0.4 mm

z = –0.4 mm

z = –0.9 mm

z = –0.9 mm

Fig. 3 SIR-PAM imaging of a USAF resolution target with spatially invariant resolution and improved lateral resolution. Images of a resolution target (1951

USAF) acquired with SIR-PAM a and conventional PAM b at the focal plane, respectively. c Images of groups 8 and 9 acquired by SIR-PAM at different

imaging depths. The focal plane is located at z= 0.0mm. d Images of groups 6 and 7 acquired by conventional PAM at depths corresponding to c. The

results show that SIR-PAM is capable of achieving spatially invariant resolution and improved lateral resolution
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the whole zebrafish larva, with imaging depths encoded in color.
An animation (Supplementary Movie 3) shows all the image
slices taken at different depths and the corresponding enlarged
view of the localized structures. It is obvious that the SIR-PAM
images are much superior in resolution at all depths. Using this
technique, structures throughout the whole fish can be clearly
resolved. In contrast, the images obtained by conventional PAM
blur quickly away from the focal plane and become much blurred
toward the two ends of the depth range.

In addition, fine structures of the fish at different imaging
depths were examined and the corresponding line profiles across
these structures are presented in Fig. 5c−e. SIR-PAM resolves
more fine structures than conventional PAM within the fish’s eye,
0.7 mm above the focal plane (Fig. 5c), and within the fish’s tail,
0.8 mm below the focal plane (Fig. 5e). Even on the focal plane,
the edges of the imaged structures acquired by SIR-PAM are
sharper (Fig. 5d).

Note that, during the imaging experiments, the averaged laser
intensity on the fish surface was about 189 mW cm−2, below the
200 mW cm−2 safety limit set by the American National
Standards Institute. Thus, our observations confirm that non-
invasive, whole-body, and in vivo 3D imaging of zebrafish larvae
with a spatially invariant resolution over a large depth range has
been achieved by SIR-PAM. This technique paves the way to
study various embryos or larvae of other animal models in vivo.

Discussion
In conclusion, we have proposed and implemented SIR-PAM by
adopting PISFs and Fourier-spectrum acquisition at all photo-
acoustically resolved depths. In particular, SIR-PAM is capable of
direct 3D imaging of an object without mechanical scanning. A
versatile SIR-PAM system based on a DMD was built. For both
inanimate objects and in vivo animals, our system demonstrated a
1.8 mm RIAR, which is 33 times the DOF of the conventional
PAM counterpart, as well as a 1.5-fold enhancement in lateral
resolution.

SIR-PAM can be further improved. With the current system,
the field of view (FOV) is limited, and a larger image is obtained
via montage. According to Supplementary Note 5 and Supple-
mentary Fig. 3, the product of the FOV and effective numerical
aperture is restricted by the pixel count of the DMD (Supple-
mentary Eq. 7). Therefore, there is a tradeoff between the FOV
and the lateral resolution, which is determined by the numerical
aperture. However, we can improve them simultaneously with a
higher-resolution DMD. Increasing the pixel count also extends
the RIAR (Supplementary Eq. 8). In addition, because the axial
resolution of SIR-PAM is determined by the bandwidth of the
ultrasonic transducer, a wider bandwidth can be utilized to
achieve a higher axial resolution. With the same pulse repetition
rate, the scan time of SIR-PAM is about 1.2 times longer than
conventional PAM for the same imaged region. Currently,
the imaging speed is mainly limited by the pulse repetition rate
(1 kHz) of the laser, at which rate it took about 21 s to acquire a
volumetric image within the DMD-defined FOV. The acquisition
time can be shortened to 1 s by increasing the laser pulse repe-
tition rate to the full switching rate (22.7 kHz) of the DMD. The
speed can be further improved by compressed sensing21, 22 for
potentially video-rate volumetric imaging. Moreover, the broad
operational spectrum (λ= 400–2500 nm) of the DMD could
facilitate wide spectral imaging of the optical absorption of bio-
logical tissues in vivo6, 23 with the same set-up.

In the experiments described above, only slightly scattering
media, such as scattering gel or zebrafish embryos, were imaged.
Strong scattering adversely affects the performance of SIR-PAM.
To investigate the effect of scattering on SIR-PAM, we imaged

tissue-mimicking phantoms with different scattering coefficients
(Supplementary Note 6 and Supplementary Figs. 4 and 5).
SIR-PAM was found to be more susceptible to scattering than
conventional PAM. To advance the penetration of SIR-PAM,
one could consider optical clearing24, 25 (Supplementary Note 7
and Supplementary Fig. 6), which could be suited for selected
applications.

Overall, our work brings a new step change to PAM technol-
ogies and will motivate studies in biology and medicine where
in vivo 3D imaging with spatially invariant resolution is desirable.
For instance, SIR-PAM can enable high-resolution functional
imaging of angiogenesis, melanoma, and hemoglobin oxygen
saturation (sO2) within the skin and other superficial organs by
measuring optical absorption contrasts. Its motionless volumetric
imaging ability paves the way to whole-body study of animal
embryos in vivo. Furthermore, in combination with optical
clearing25, SIR-PAM can provide deeper imaging. Apart from
providing the new perspective for PAM, the DMD-based
PISF illumination method may be further exploited for
structured-illumination optical microscopy26, 27 and 3D single-
pixel imaging28, 29.

Methods
Propagation-invariant sinusoidal fringes generated by a DMD. A binary
DMD was used to generate the PISFs, which required spatially encoding the
complex field (including the amplitude and phase) of a light beam with binary
holograms. Here we employed a super-pixel encoding method17, 18 to design
the required holograms. In this method, the square regions of nearby pixels
(4 × 4 pixels within 768 × 768 pixels in our case) were grouped into various super-
pixels to define a complex field in the imaging plane, using the first-order dif-
fraction beam. Practically, encoding was achieved by applying a sequence of ON
and OFF states to the micromirrors of the DMD that were in the optical path of
each user-defined region of interest. The high fidelity of this method allows
accurate generation of the desired fields. Experimentally, super-pixel based
field modulation was realized by a 4f configuration with the DMD and a low-pass
filter14, 17 (Fig. 2a).

First, a binary DMD hologram was calculated with the super-pixel encoding
method, according to the phase pattern and normalized amplitude of each PISF’s
optical field (Supplementary Fig. 7a−c). Then the special optical field was produced
in the imaging plane when the hologram was loaded onto the DMD.
Supplementary Fig. 7d presents the intensity distribution of the generated field on a
given plane, which agrees with the theoretical distribution. In the same way, other
PISF’s optical field could be created with their corresponding holograms projected.
Finally, the high-speed switching ability of the DMD enabled us to vary PISFs
rapidly with different spatial frequencies. During this process, we could directly
observe two scanning collimated beams, which are vividly displayed in
Supplementary Movie 1. Our DMD-based scheme enables generation and high-
speed switching of PISFs, enabling motionless volumetric imaging.

Details of the experimental set-up. As shown in Fig. 2a, a laser (532 nm
wavelength; Elforlight, Ltd.) with a 1 kHz pulse repetition rate and a 5 ns pulse
duration was used as the excitation light source. The pulse energy was monitored
by a photodiode detector (SM05PD1A, Thorlabs, Inc.) to compensate for energy
fluctuations. A beam expander with a 20 times magnification was used to enlarge
the laser beam. A DMD (1024 × 768 pixel resolution; Texas Instruments, Inc.) was
used to generate PISFs by complex field encoding. Here, 21303 PISFs were
examined to acquire the Fourier coefficients (Supplementary Note 8), then the
generated fringes were relayed by a converging lens (f= 60 mm) and an objective
lens (NA = 0.1; Olympus, Corp.) to stimulate PA waves within an object. To detect
the PA signals, a focused ultrasonic transducer (50 MHz central frequency, 70%
bandwidth, 6 mm element diameter, 48 mm focal length, and 3.8 mm DOF; V358-
SU, Olympus, Corp.) was placed on the other side of the object confocally with the
objective lens and then coupled by water. The PA signals were amplified by two
electronic amplifiers with gains of 24 and 30 dB, respectively. The amplified signals
were acquired by a data acquisition system (DAQ, Razor 14, GaGe, Corp.) con-
trolled by a computer. The computer was also used to synchronize the pulsed laser,
the DMD, and the DAQ via a delay generator (see the time sequence diagram in
Supplementary Fig. 8). The FOV dictated by the effective illumination area was
180 × 180 µm2, which was covered by the focal diameter of the focused transducer.
To obtain a larger image, a montage strategy based on movement of the object with
a step size of 170 µm was adopted.

Zebrafish preparation for imaging experiments. The wild-type zebrafish
embryos were raised and cared for by the zebrafish facility at Washington
University in St. Louis. We were authorized to handle the living fish under a
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recently developed protocol (Protocol Number: 20160109). All experimental ani-
mal procedures were carried out in conformity with the laboratory animal protocol
approved by the Animal Studies Committee of Washington University in St. Louis.
Several 3-day-old embryos were imaged in our experiments. Before the experi-
ments, the zebrafish larvae were kept in saline water at 28.5 °C and anaesthetized
using (0.5–2.0 mgml−1) tricaine (MS-222, Western Chemical, Inc.)30. Next, they
were carefully moved and placed on angled slide glasses using a pipette, so that
tilted fish with an extended depth range were prepared for imaging. The fish were
immobilized with melted agarose (2%; Sigma-Aldrich, Corp.). Then the slide glass
was moved into a plastic culture dish that served as a water tank for acoustic
coupling. This preparation minimized the movement of the zebrafish larvae during
the experiments, while keeping them alive.

Data availability. The data that support the findings of this study are available
from the authors on reasonable request, see author contributions for specifics.
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