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Summary 

The displacement of the surface of a half space near a shallow rupturing 
fault is, generally, approximated poorly by doubling the amplitude 
calculated for the same source in an infinite space. To obtain this result, 
the motions of a half space were calculated using a Green’s function 
which is a solution to Lamb’s problem, and the motions of an infinite space 
were calculated using the formulae of Haskell. A good approximation 
to the half-space displacement caused by a P- or S-wave incident at most 
angles from a point source is numerical correction of the displacement 
resulting from the point source in an infinite space for the amplification 
and phase shift of a plane-wave incident at  a free surface. This correction 
approximately doubles the amplitude of the infinite space displacement 
for SV-waves with angles of incidence within 30 degrees of vertical, for 
P-waves within 70 degrees of vertical, and for all SH-waves. The static 
offset of the free surface from a point source is not, in general, twice the 
offset calculated in the corresponding infinite space case. The displacement 
from an extended fault is calculated by superposition of point sources on 
the fault plane; when the infinite space amplitudes may be doubled for all 
(or most) of these point sources, it may also be doubled for the extended 
source. 

Introduction 

The surface motions resulting from a point source in a half space include four 
major effects which are absent in an infinite space: The amplification of all waves; the 
phase shift of SV-waves incident at angles greater than critical; the SP-phase, which 
travels to the surface as an SV-wave at  the critical angle and is then refracted hori- 
zontally as a P-wave; and Rayleigh wates. These effects have all been studied before 
from a point source (e.g. Knopoff et al. 1957; Pekeris & Lifson 1957; Kawasaki, 
Suzuki & Sato 1973); the present objective is to evaluate the effect of including the 
free surface when the source is a spatially-extended rupture. This allows a critical 
evaluation of the assumption, used frequently in dislocation modelling, that the free 
surface may be reasonably accounted for by doubling the amplitude of motions in an 
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576 J. G. Anderson 

infinite space (e.g. Kanamori 1972; Trifunac 1974; Trifunac & Udwadia 1974; 
Anderson 1974). 

Method 

representation theorem (Burridge & Knopoff 1964): 
The displacements of the surface of a half space are calculated by applying the 

m 

ui(x,  t>  = 1 d t ’ / / p n k ( c ) t u j ( t ,  t ’ ) l ( g i j , k ’ ( x 9  t-t’; 6,  0) 
- m  s 

+ g i k ,  j * ( x ,  t - - t ’ ;  t,O))dt, dt3. (1) 

Here U i  is the ith component of displacement of the surface, p the shear modulus, ??k 

the kth component of the normal to the fault, and [uj] the amplitude of the dislocation 
on the fault. The integration is over time and the fault surface. The Green’s function 
is 

d 

dtk 
gij, v = - gij, 

where g i j  is the displacement in the i direction at location x, time t due to an impulse 
force in the j direction at location 5, time t ‘ .  Thus, g i j ,  k r  is the displacement due to a 

XI 

X 

FIG. 1 .  Co-ordinate system and faulting parameters. The plane x3 :- 0 is the frec 
surface. The fault strikes in the xi direction, and the dip 6 is measured from the 
horizontal plane. The point (xi, x2,  XJ = (0, 0,d) is the geometrical centre of the 
fault, and the origin of the ( f l ,  f3) co-ordinates (not shown) which describe. a 
point on the fault plane. The direction of slip on the fault is given by the unit 
vector s, with components S1 (in the f, direction) and S3 (in the t3 direction) 
giving respectively the relative amplitudes of strike-slip and dip-slip motion. 
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Motions near a shallow rupturing fault 577 

point couple, and the sum (gi j ,  k‘ +gik ,  j , )  is the displacement due to a double-couple 
force, or, equivalently, due to a point dislocation. It is of the form 

d Z  
Rij. k‘ xz llij, k‘ 

where hi,, k’ is evaluated by an integral in the complex plane given by Johnson (1974). 
The differentiation must be done numerically. As a function of time to = t- t’ ,  
hij,  k’ is a Green’s function for a force which is zero for to < 0 and has magnitude to 
for to > 0. 

This series of integrations and differentiations was handled as follows: 

Step 1. The Green’s functions are computed (using a Romberg integration 
subroutine) and stored for an array of points on the fault. The differentiation with 
respect to time is deferred until the second step. These are computed only once for each 
fault-station geometry. 

Step 2. The source time function for each grid point is convolved with the corres- 
ponding Green’s function to perform the time integral. The results from all the points 
on the fault plane are weighted and summed to perform the spatial integration. The 
weight of a grid point is the area of the fault inside a rectangle, centred on the grid 
point, with sides equal to the grid spacing. Thus, the sum of the weights is equal to 
the fault area. The sum of the convolved functions is differentiated numerically to 
obtain the desired displacement at the station. 

Because the spatial limits of integration are a function of time, it is necessary to 
justify taking the time differentiation outside the spatial integral. This is allowable 
because the integration is approximated numerically by a sum, where the weight of the 
Green’s function for each grid point is independent of time. The errors due to this 
approximation are discussed below. Because the weights are constants, it docs not 
matter whether the sum or the numerical differentiation is done first. 

In finding a dislocation model for an earthquake, the fault-station geometry is 
known, and displacements at  the station are typically calculated for several trial 
models of rupture. The two-step method is excellent in this situation, because storing 
the Green’s functions as in step 1 is more economical than recomputing them. 

The displacements from a dislocation in an infinite space are calculated as described 
in Anderson & Richards (1975). The co-ordinate system for all models is shown in 
Fig. 1. The P-wave velocity c( = 6.0 km s-’ and the S-wave velocity f i  = 3.4 km s-’ 
was used throughout. 

A propagating ramp dislocation time function is used here, but any other time 
function could have been used. In this model, 

t < t -  t ,  

where L,, L ,  are the fault dimensions, u is the rupture velocity, z is the rise time, Dm 
is the final displacement on the fault, and r, is (tl +L,/2) /v .  
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578 J. G. Anderson 

Four integrals must be approximated by sums to compute displacement at a 
station on a half space. These approximations are sources of errors in the final 
waveform because only a finite number of sums can be done on a computer. Approxi- 
mating the three integrations shown explicitly in equation (1) gives rise to an upper 
limit (f,, say) to the frequencies which are meaningfully represented in the computed 
displacements. A method of evaluatingf, is presented next. Then the effect of errors 
from approximating the integration to obtain the Green's function is considered. 

To estimate f,, consider a source with an impulse time function travelling with 
velocity v along a short line of length L. The radiation at a distant station is a square 
wave, with duration To and amplitude 1, say. The Fourier amplitude spectrum is 

sin X 
X 

F,(o) = To- 

where X = oT0/2. A model for this source by summing the radiation from two 
stationary points at the ends gives an approximate waveform 

fa(t) = -5 2 6 ( t+  $) + $6 (f- $) . 
The Fourier amplitude spectrum for this approximation is 

F,(o) = To cos X .  

At zero frequency both the approximate and the exact spectra have amplitude To and 
zero slope, but as 1x1 increases they diverge. We introduce X ,  as the upper limit on 
values of 1x1 for which Fa is a satisfactory approximation to F,. X ,  should almost 
certainly be given a value less than 1, for at X = 1, Fa is only about two-thirds of 
F,. For a propagating fault, Ben-Menahem (1961) showed 

OL 

where c is the wave propagation speed and 8 is the angle between the direction of 

5.0 T 
TIME GRID TOTAL 

fS PTS. PTS. PTS.  

-. - ~ ~ -  , 
L- . . . . .  - ... I 

. . . . .  . . . .  , , . . . . . .  I . .  ........ 

FIG. 2. A model evaluated using three. values of L, with the Green's function in 
step 1 replaced by the non-physical function h = (l /R)H(t--R/m) (see text). The 
table gives the values offs (in Hz), and the corresponding number of time points, 
grid points, and total points at which the function h was evaluated. For each 
calculation, the line beneath the time axis has a length T, =fS-l. For this calcu- 
lation (xi, x,) = (0.866 km, 0.5 km), d = 0.5 km, 6 = 90". The rupture model is 
a propagating ramp with L = 1 .O km, L = 1.0 km, v = 3.0 km s- l, T = 0.2s. 
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Motions near a shallow rupturing fault 

rupture propagation and the direction to the receiver. 
frequencies f which are adequately represented are given by 

579 

If 1x1 < X,, then the 

Thus, a more dense grid spacing is needed to obtain displacements at backward angles 
from the direction of rupture propagation. For the cases of this paper, we use the 
simplified estimate f, = P/nL, which can be derived using X ,  less than 0.8 for our 
source receiver geometries. For other cases, particularly where 6' > n/2 or for small 
rupture velocities, the exact formula should be used. 

Computer time is in general proportional tofS3. Two powers off, arise because the 
distance L is used as the spacing of Green's functions on the fault in both co-ordinate 
directions. The third power arises because for a largerf, the Green's function must be 
calculated at a greater number of points in time. Here, waves at frequencyf, are 
sampled at a rate of six times per cycle. 

The effect off, may be illustrated by replacing the Green's function in step 1 with 
the nonphysical function 

1 
R 

h = - H ( t -  R/ct), 

where H is the Heaviside step function and R is the distance between the grid point 
on the fault and the receiver. The discontinuity in h is typical of realistic Green's 
functions. A model is shown in Fig. 2, using this function h, for three values off,. 
These values required, respectively, 7, 180 and 2303 total evaluations of h in space and 
time. Thus, each successively greater value off, caused over an order of magnitude 
increase in computer time. The lines beneath the time axis in Fig. 2 show the time 
interval T,  = fS-' for each value off,. One obvious inaccuracy is that the computed 
waves do not begin at the theoretical arrival time shown by the arrow. This dis- 
crepancy is inevitable for the case with only one grid point, as that point is not at the 
origin of rupture. For the other two cases, where a grid point is at the origin of 
rupture, the discrepancy originates in the numerical second derivative. In all cases, the 
difference between the time when the computed wave becomes non-zero and the 
theoretical arrival time is considerably shorter than T,. The waveform would not be 
much different for values off, larger than the largest shown, where the duration of the 
wave is about four times T,. 

FIG. 3. The effect of introducing a 10 per cent random error to each of the 180 
evaluations of h (in space and time) in the second case of Fig. 2. 
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580 J. G. Anderson 

The integration to evaluate the Green’s function in step 1 is the final major source 
of errors in the computed waveform. This is done in a Romberg integration subroutine 
(Wilf 1967), which forms a series of estimates to the integral, doubling the number of 
points in the integrand for each successive estimate. It uses this series to predict 
the value of the integral, and returns an answer when two successive predictions differ 
by less than a specified relative error ( E ,  say). Tn computing the Green’s function for 
a series of times in step 1, the answer for each time could have a random error, or the 
answers may be systematically too large or too small. Fig. 3 shows the effect a large 
random error may have on the second waveform in Fig. 2. To obtain the waveform 
with errors in Fig. 3, each point in time of each of the nine Green’s functions was 
multiplied by a random value between 0.9 and 1.1. The result is quite similar to the 
answer without errors, indicating that random errors in step 1 have little effect upon 
the solution. 

Numerical evaluation of the integral given by Johnson (1974) to obtain the Green’s 
function often gives a result which is systematically slightly too large or too small. To 
be sure this systematic effect is negligible, it is necessary to repeat calculations 
changing only the relative error parameter E until the resultant waveform no longer 
changes when E is decreased further toward zero. Such trials indicated that E = low3 
is adequate to reliably calculate displacements, but throughout this paper we use 
E = or smaller. 

The half space Green’s functions were subjected to several tests, to be sure they 
are computed correctly. These will now be mentioned briefly before proceeding to some 
comparisons of half space and infinite space displacements. 

I .  Displacements agreed with Figs 7, 8 and 9 of Johnson (1 974). 

2. First motions were in the proper directions. 

3. Rayleigh waves have retrograde elliptical particle motion. 

4. Symmetry properties: All components of radiation from several sources showed 
the expected behaviour of being either even or odd, depending on the source, in both 
s and 1’. 

5. The static offsets werc in accord with results of Sato & Matsuura (1974). 

6. Wave equation: Using reciprocity, a Green’s function g i j ,  k‘ will obey the wave 
equation for a receiver fixed on the free surface when the source location is varied to 
compute the spatial derivative. As programmed, the terms g i j ,  ,,, + g i k , / ’  in equation ( I )  
are summed algebraically. For P-waves, gij, k‘ = gik ,  /,, and computed displacements 
were shown to obey the wave equation. The S-component lacks this symmetry, and 
could not be subjected to this test. 

The comparison in the next section of half-space and infinite-space displacements 
from a point dislocation source may also be regarded as a mutual check of the half- 
space and infinite-space calculations. 

Numerical examples : point dislocation sources 

Dynamic displacements at a distance I‘ from a point dislocation source in an 
infinite space consist of five components: two far-field terms which decrease as I - - ‘ ,  
two intermediate field terms which decrease as r - * ,  and the near-field term which 
decreases as F4 (Haskell 1969). 

A comparison of motions from a point dislocation in a half-space and in an 
infinite space serves two purposes. First, it shows how well the far-field components 
from a point source in an infinite space (which can be quickly computed) can be 
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Motions- near a shallow rupturing fault 

P -WAVES 

VERTICAL 
COMPONENT 

58 1 

I , I I 4 
ANGLE OF INCIDENCE (DEGREES) 

FIG. 4. Theoretical ratios (solid lines) of the amplitude of vertical and horizontal 
components of P-waves on a free surface to the amplitudes of the same component 
of the incoming wave (see Appendix equations (Al) and (a)). The angle of 
incidence is measured from the normal to the surface. The data points are these 

ratios derived from computations with a point source Green's function. 

corrected using plane wave theory to obtain the corresponding coniponents in the half 
space. Second, it shows how the near and intermediate field displacements are 
affected by the free surface. 

Displacements were calculated at eight stations, chosen such that in the half-space 
direct rays have angles of incidence (measured from the normal to the surface) which 
varied from 10 to 80 degrees in 10-degree intervals. We used two sources, both on a 
vertical fault: one was strike slip and the other was dip slip. The stations are on the 
s2 axis, so that far field radiation is entirely SH from the strike-slip source, and entirely 
P-SV from the dip-slip source. Note that the displacements for the SH case cannot 
be calculated by the source-image method because the dislocation source causes 
P- and SV-far-field motions elsewhere in the .)is = 0 plane. 

From these calculations, the free surface amplification wa5 derived for a far-field 
hnrlxr w a w =  h x r  r l i w i r l ; m m  the  rfirnniitm-l Q r n n l i t i i A e  for the half Enare hv the rnrrecnniidino 
UYUJ I V L 4 . U  u y  U'*'U"'6 C l l r  r v l l l y u c r u  u"'y"cu"' &"I . I L V  11u.1 "yu" "J  C 1 1 V  VV1 ""y"".-..'~ 

amplitude for the infinite space case. For P-waves, the computed ratios are shown in 
Fig. 4, and for SV-waves, these ratios are shown in Fig. 5. 

The half space SH waves had the same wave shape as the whole space waves, and 
twice the amplitude, to within 3 per cent. This agrees well with theory, which predicts 
that exactly twice the amplitude should be expected at all angles of incidence. 

For P- and SV-waves, the theoretical amplification of waves by the free surface is 
given by equations in the Appendix. Corresponding theoretical curves are plotted 
in Fig. 4 for P-waves and Fig. 5 for SV-waves, together with the ratios of the COIII- 
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582 J. G. Anderson 

0 30 60 90 

ANGLE OF INCIDENCE (DEGREES) 

FIG. 5. Same as Fig. 4 for SV-waves (Appendix equations (A3)--(A6)). The 
computed waveforms for 30" to 80" are shown in Fig. 6. 

ponents of motions derived from the model calculations. For P-waves, as discussed 
by Kawasaki et al. (1973), the free surface does not greatly affect the wave shape, and 
the calculations agree well with the theory. 

Because the SV displacements are strongly modified by the free surface, they are 
shown for both the half space and the whole space in Fig. 6 for stations at 30-80 
degrees. The station at 30 degrees is not beyond the critical angle (34.7"), there is no 
phase shift, and the wave shapes are similar. For the other stations, we must actually 
apply the theoretical phase shift to determine how well the calculations agree with 
theory. To evaluate the effect of this phase shift, consider an incident waveform 
f ( t )  with Fourier transform F ( o ) .  The Fourier transform of the surface motion is, 
using formula (A5) or (A6), U(o) = R eidssn(w) F(o), where R is IRXSl or IRZSJ, and 
Gsgn(o) is the corresponding phase shift. Applying the inverse transform to obtain 
the surface motion gives: 

u( t )  = - Reidsgn(w)F(o)eiwfdw = R cossf(t)+R sinGH(f(t)) 
2.n ' s x  - 0 3  

where 

0 -03  

The function H ( f  ( t ) )  is the Hilbert transform off(t), discussed in more detail by Choy 
& Richards (1975). 

The phase shifted, amplitude corrected, whole space SV-waves are compared with 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/46/3/575/608311 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Motions near a shallow rupturing fault 583 

------- I 
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......... 800 -~~~ - ~ y* .... . .~ 

FIG. 6. Vertical (u3)  and horizontal (u2)  components of SV-waveforms for a half- 
space (solid) and an infinite-space (dotted) from a point source. For the source, 
d = 10.0 km, (Sl, S,) = (0, S), and 6 = 90". The stations are at (xl, x2) = (0 km, 

10 tan (angle of incidence) km). The source has a rise time = 0.1 s. 
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584 J. G. Anderson 

!.- .. . . ... . . 500 &-.-. . . . .. .. . - 

*....... ..... 70" 

800 . . . . . . . . 

.. .. . . . ... . ____- .. - * = =  . . . . . . . 

FIG. 7 .  Similar to Fig. 6 ,  but the free surftdce amplitude and phase corrections 
for plane SV-waves (equations (A5) and (A6)) have been applied to the infinite 
space waveforms. In some cases, the infinite space waveform has also been 
arbitrarily shifted up or down. This is justified because near-field components 
are not amplified the same as the far-field SV-waves compared here. Where 
shifted, the dotted lines which are disconnected from the S-wave (as at 80") show 

the zero for the whole space waveform. 
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Motions near a shallow rupturing fault 585 

the half-space waves in Fig. 7. Except at  40" and 50" the exact wave shapes and 
amplitudes agree well with those found by applying the plane wave correction. At 40" 
the displacements show practically no resemblance to each other. At 50" there are 
lesser differences, and another phase arrives before the SV-wave. This is the SP-phase. 
At 40", this phase is superimposed on the S-wave, and is perhaps the sole cause of the 
disagreement. Although for angles greater than 50" the SP-phase has moved out of 
the time window in Fig. 7, it appears out to 80", with a shape similar to the SP-phase 
at 50°, but decreasing amplitudes relative to the S-wave. As at 40" and 50", amplitudes 
of the SP-phase may be larger than the S-wave, but in Fig. 7 it appears to be depleted 
in high frequencies relative to the S-wave. 

The second objective of coinparing displacements from a point dislocation in a half 
and an infinite space was to study the amplification of near and intermediate field 
components. These displacements cannot be separated for individual study as were 
the far-field terms. But at timcs when far-field terms are absent, the ratios of the half 
space to the infinite space displacements reveal the net effect of the free surface upon 
any near field or intermediate field terms which are present. This net effect is complex, 
and in general is not well described by the approximation that the free surface causes 
the amplitudes to double. 

Because the stations are on the x, axis (Fig. 1, Fig. 6 caption), the SH case causes 
only U ,  displacements and the P-SV case causes only U ,  (horizontal) and U ,  
(vertical) displacements. In speaking of the near and intermediate field terms, it is 
better to refer only to the U, ,  U ,  and U ,  components to remove the connotation of 
phases travelling only with the P- and S-velocities. 

STATIC OFFSETS 

"I ' 
"2 A 

"3 . 

0 30 60 90 

ANGLE OF INCIDENCE (DEGREES) 

FIG. 8. Ratio of static offsets in a half-space to those in a whole-space for a point 
source with depth d = 10 km, and at stations (xi, XJ = (0 km, 10 tan (angle of 
incidence) km). The u1 component is derived for the source (Sl, S,) = (S,O); 
the u2 and u3 components are derived for the source (Sl, S,) = (0, S). The lines 

only connect points derived from the models. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/46/3/575/608311 by U

.S. D
epartm

ent of Justice user on 17 August 2022



586 J. G. Anderson 

L I I I 1 
I .o 3.0 5.0 
FIG. 9. Comparison of half-space (solid line) and doubled whole-space (dotted line) 
displacements for the dip-slip fault with d =- 3.8 kin, (xl, xJ = (5.0 km, 1.5  kni), 
6 = 90.0", (Sl, S3) = (0,S). Rupture parameters areL = 5.0 kin, L = 3.3 km, 
u = 3.0 kms-', and T == 1.0s. The vertical scale is in units of Do and the time 

scale is in seconds. 

L I I I I 
1.0 3.0 5.0 

FIG. 10. Cornparison of half-space (solid line) and doubled whole-space (dotted 
line) displacements for the dip-slip fault with d = 1.1 km, (xl, x2) = (5.0 km, 
1.5 km), 6 = 90.0". (S,, S,) = (0, S). Rupture parameters are L = 5.0 km, 
L = 1.2 km, u = 3.0 km s - l ,  T = 1.0 s. The vertical scale is in units of Do and 

the time scale is in seconds. 
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Motions near a shallow rupturing fault 587 

Immediately after the P-wave, the amplitude ratio for each component resembles 
the amplitude ratio for the horizontal component of the P-wave (Fig. 4). Just before 
the S-wave, the ratio for each component, where it could be measured, had increased to 
a value generally in the range of 2-5-2-8. This ratio could not be measured for the U ,  
and U3 components incident at angles greater than 30 degrees because in these cases 
the SP-wave and the phase shift of the S-wave also cause displacements in the half- 
space before the theoretical S-wave arrival time. 

The static offset ratios for all these components, shown in Fig. 8, generally differ 
from 2.0. These ratios, like the ratios of far-field components, are independent of the 
distance between the source and the station. For angles of incidence less than 30 
degrees these ratios differ considerably from the amplification ratios of far-field body 
waves. Thus, it appears that even when the dynamic displacements of the surface of a 
half-space can be approximated by twice the infinite-space displacements, the static 
displacements cannot be reliably approximated in this way. 

In summary, the amplification and phase shift of the far-field components of 
displacement close to a point dislocation can be understood well by applying plane 
wave theory. The theoretical amplification of plane waves does not apply to the static 
offset or to the amplification of near-field components of dynamic displacements, and 
it cannot, of course, explain the SP-phase or the Rayleigh wave. 

Numerical examples: extended dislocation sources 
For a small earthquake (resembling a point source), Figs 4-7 show that doubling 

infinite space motions is inadequate for stations with an angle of incidence of over 
30 degrees if there is any SV motion, and nearly always inadequate if the angle of 
incidence is greater than 70 degrees. For an extended source, however, the contribution 
from each Green's function is only a small part of the total motion at the station. 

Therefore Figs 9-13 were drawn to study half-space and whole-space motions for 
extended vertical faults. The fault motion is dip slip for the models in Figs 9 and 10, so 
that SV motion dominates, and strike slip for the models in Figs 11-13, so that SH 
motion dominates. The angles of incidence from the major fraction of fault planes are 
in three ranges: 30-60" (Figs 9 and 1 I), 60-80" (Figs 10 and 12), and over 80" (Fig. 13). 
In these cases, waveforms are low pass filtered with a corner at f, to diminish higher 
frequency noise such as shown in Fig. 2. 

Half-space motions are different from the doubled whole space motions for the 
dip-slip fault (Figs 9 and 10). In going to higher angles of incidence, the relative 
amount of SV motion increases and the whole space motions agree less with the 
half-space motions. The static offsets, determined by the last value each component 
attains, generally differ between the models. A dislocation in an infinite space to 
model the motions in the half space would probably not have rupture parameters 
similar to those used to calculate the half-space motions. 

For the strike-slip faults (Figs 11-13), the horizontal displacements (including the 
static offset) derived from the whole space model resemble fairly well the half-space 
motions, with the exception of the clear Rayleigh wave on the u1 component in 
Fig. 13. At 60-80 degrees, which contains less P-SV motions than 30-60 degrees, the 
doubled whole space motions approximate the half-space motions better than at 
30-60 degrees. Above 80 degrees, the Rayleigh wave causes the agreement to worsen. 
The vertical (u3)  components are similar in Fig. 11, but in Figs 12 and 13 they are not. 
The horizontal static offsets from the whole space models match the static offsets of the 
half-space models. This is not expected considering the offsets for point sources 
shown in Fig. 8. A dislocation model in an infinite space would have similar rupture 
parameters to those used to calculate the half-space motions, providing the vertical 
component was ignored where appropriate. 
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FIG. 13. Half-space (solid line) and doubled whole-space (dotted line) displacements 
for the strike slip fault with d = 0.5 km, (xl, XJ = (10.0 km, 5.45 km), 6 = 90". 
(Sl, S,) = (S, 0). Propagating ramp model parameters are L = 10.0 km, 
L = 0.5 km, u = 3.0 km s - l ,  I = 1.0 s. The vertical scale is units of Do and 

the time scale is in seconds. 

The u1 and u3 components in Fig. 13 show a strong Rayleigh wave, clearly identified 
by comparison with the whole space model. Pekeris & Lifson (1957) showed that for 
distances r and source depths z,  the Rayleigh wave is emerging for r/z = 5 and clearly 
seen for r/z = 10. These ratios correspond to angles of incidence of about 79 and 
84 degrees respectively. Thus, Figs 9-12 do not show a Rayleigh wave. 

The Parkfield and San Fernando earthquakes have been studied extensively using 
high quality, close distance accelerograms to derive source dislocation models. Table 1 
presents the fraction of the faults for these two cases which give direct ray angles to the 
accelerograph in the ranges 0-30,30-60,60-80 and 80-90 degrees. These percentages 
are estimated for a fault in a homogeneous half-space using the geometry of Trifunac 
(1974) for the San Fernando earthquake and of Anderson (1974) for the Parkfield 
earthquake. Even at the closest stations to the fault, at most about 20 per cent of the 
fault is in the 0-30 degree range. The remaining 80 per cent of the fault, including the 
epicentres, is in the range where the free surface may significantly distort the waveform 
derived from the whole space approximation. The San Fernando earthquake had a 
thrusting mechanism while the Parkfield earthquake had a strike-slip mechanism, 
and thus S-waves from the San Fernando earthquake at nearby stations would in 
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590 J. G. Anderson 

general have a greater component of SV-type motion. Therefore, when the infinite 
space method is used, rupture parameters derived for the San Fernando earthquake 
are more likely to be incorrect than rupture parameters derived for the Parkfield 
earthquake. 

Table 1 indicates that even at the best-placed instruments, angles of incidence are 
likely to be high for most of the fault plane. This is especially indicated by the angles of 
incidence of the Pacoima Dam accelerograph. In this case, the instrument was located 
directly above the fault, and yet SV-types wave from only about 20 per cent of the 
fault plane would be relatively undistorted by the free surface. 

Conclusions 
A practical way of computing displacements on the surface of a half-space is by a 

two step process. The first step is calculating and storing the Green's function for 
a given station for a grid of points on the fault; and the second step is convolving with 
the source-time function. In studying a particular accelerogram record, this method is 
far more economical than it would be to recompute the Green's functions for each 
trial source function. This two step method also gives a clear idea of what frequencies 
are significant in the calculated displacement record. 

The dynamic displacement of the surface of a half-space caused by an extended 
dislocation souce generally differs from two times the displacement which would result 
from the same source in an infinite space. There are two exceptions. 

The first exception is a fault located such that angles of incidence at the station are 
less than 30 degrees from vertical. For a large fault, however, even at the best-placed 
instruments, the angles of incidence will be this small from only a small fraction of the 
fault. This case is therefore most useful for studying small earthquakes. The static 
offset estimated from the infinite space method may be wrong in this case, but this is 
not of practical importance as most data cannot resolve such offsets. 

The second exception occurs when the motion at the source is predominantly strike 
slip. Then the horizontal components may be modelled by the infinite space motion 
when the Rayleigh wave is not important (e.g. for angles of incidence less than 80"). 
The vertical component in this case may also be used for angles of incidence less than 
about 60 degrees. This case will be most useful for studying strike-slip earthquakes. 

Table 1 

Estimated fraction (nearest 5 per cent) of fault area within each range of angle of 
incidence 

Angle of Incidence (degrees) 
Earthquake/Station 0"-30" 30"-60" 60"-80" 80"-90" 

Parkfield 
Cholame-Shandon #2 10 20 so* 20 
Cholame-Shandon # 5 0 25 55 * 20 
Cholame-Shandon # 8 0 15 65 * 20 
Cholame-Shandon # 12 0 5 65 * 30 
Temblor 0 10 60* 30 

Pacoima Dam 20 45 * 25 10 
Castaic Old Ridge Route 0 0 IS* 85 
Palmdale Fire Station 0 0 20* 80 
Jet Propulsion Laboratory 0 0 45 * 55 
8244 Orion Blvd 0 0 75 * 25 

San Fernando 

* The epicentre is in this range. 
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In many cases, a small earthquake recorded at a large angle of incidence can be 
modelled using the infinite space method. When the observed S-wave is separated from 
other phases, and near-field terms are small, it can be separated into SV- and SH- 
components. Then the phase shift and amplitude correction can be applied to each 
component separately to obtain the incident waveforms, for comparison with infinite 
space models. 
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Appendix 1 

Derivation of amplification coeficients for body waves incident on a free surface 

The ratio of the amplitude of each component of the free surface motion to the 
Amplitude of the same component of an incident body wave is derived here. Knopoff 
et al. (1957), who derive the ratio of each component to the total amplitude of the 
incident wave, have some misprints which make this derivation necessary. In equation 
(6),  a quantity they refer to as tanh 8' is always greater than 1; in equation (7), the 
phase is incorrect in the centre of the three equalities because tan 24 changes sign at 
45"; and in equation (9) (substituting ' tanh 8' ' as defined), the phase does not agree 
with Fig. 3. The figures in Knopoff et al. are correct. The closely-related equations 
for reflection and transmission coefficients at a boundary between two layers have a 
long history of published errors (Hales & Roberts 1974). 

We first discuss the problem of a plane P-wave incident with angle i and a plane 
SV-wave incident at angle j; both incident from z < 0 on a free surface z = 0; and 
both waves having horizontal slowness s. Later, we will specialize to the case where 
only one of these waves is incident. 

The total wave field is described by displacement 

N a4 
u = grad 6, -I- curl (0, Y, 0) = (3 - - , 0, + ") ax aZ ax 

where 
cos i cos i 
a 

= 6,i + 4 r  
cos j 

Here the first term on the right represents the incoming wave in each case, and the 
second term represents the outgoing reflected wave. In these equations f ( t )  denotes the 
time dependence of the potentials, 

sin i sinj 
c1 P 

is the horizontal slowness, a is the P-wave velocity, and /? is the S-wave velocity. The 
terms Pi and Si are constants, and Pr and Sr are unknowns to be derived from the free 
surface boundary conditions of zero traction on z = 0. 

These boundary conditions yield the equations: 

s = - -  -- 

sin 2i cos 2j 
- ( S i + S r ) y  = 0 

( P i - P r ) T  P 
(Pi + P,) cos 2j + (Si - S,) sin 2j = 0, 

which have the solution 

1 pr = pi (+) ( a2 - i-) eS,z ( - 2  P2 
sin 2i sin 2j cos2 2j 1 sin 2j cos 2j 

-9) s r  = pi (k) ( 2  c12 ) +~ iz  ( az 
sin 2i cos 2j 1 sin2isin2j 
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Motions near a shallow rupturing fault 593 

where 
cos i 1 D = 2s - sin 2j+  - cos2 2j. 

a P2 
The desired ratios are the amplitude of a component of the motion of the free surface 
(z = 0) due to either an incident P-wave (Si = 0) or SV-wave (Pi = 0) divided by the 
same component of motion which would take place if the surface were absent. For 
example, 

Here uxp refers to the horizontal ( x )  component of P-wave motion, and the (3) or (co) 
refer to the case of a half space and of an infinite space respectively. 

For incident P-waves, the ratios are: 

2 sin 2i cot j 
a2 D 

R X P  = 

2 cos 2j R Z P = - .  
P2 D 

For S-waves incident at angles less than the critical angle j ,  (sin j ,  = j / a ) ,  the ratios 
are: 

2 cos 2j 
R X S  = ~ 

P2 0 
4s cos i cot j 

KD 
R Z S  = 

For S-waves incident at angles greater than critical, a phase shift is introduced. At this 
point, it is necessary to consider a specific frequency component: f ( t )  = el"'. Then 
for j > j ,  the quantity cos i/a is replaced by an imaginary quantity - ib sgn(o), where 
the sign is chosen so that the potential $r will decrease with increasing distance from 
the free surface. Here sgn(o) = 1 if o > 0 and - 1 if o < 0, and b = J(s2  -a-2). 
Then the ratios for j > j ,  are: 

(A51 

where 
cos2j 4 

D' = [ (8) + (2 sb sin 2j)2] * 
2p2 sb sin 2j 

tanp = sgn(w) cos2 2j 

0 j ,  < j < n/4 
n n/4 < j -= 4 2  

and0 = 
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