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The aim of the paper is to get insight into flow patterns visualized by suspended anisotropic
reflective particles. The motion of triaxial ellipsoids embedded in a three-dimensional flow, i.e.,
which cannot be reduced to a local plane Couette flow, is calculated. Both the asymptotic trajectory
and the transient time to reach it are discussed. These results are used to simulate laser sheet
visualizations of two classical three-dimensional flaWaylor—Couette vortices and flow between
rotating diskg where the particle history is shown to be negligible. The simulated visualizations are
well compared to experimental ones but the paper addresses the fact that the legitimate question of
what shows the visualization does not have a simple answer. Nevertheless, these results open the
way for quantitative comparisons between computational fluid dynamics and experimental
visualizations. ©1998 American Institute of Physid$$1070-663(98)01409-3

I. INTRODUCTION selves onto the “stream surfaces” in the case of plane Cou-

) i icles h b ette flow. He then calculates the reflected light intensity in
For many years, nonaxisymmetric particles have beefyo 4, existing far above a rotating disk, where it can be

used at Io'w conceqtrations to visualize liquid .flows. Theseapproximated locally by an unidirectional flow. Under this
small particles, having almost the same density as the sug;,

ing flui . he fl i ssumption, it is possible to follow the orientation of a par-
r°“”d"?9 .u'd’ are 0r|§nted by the flow and can transmit Olticle along a streamline. Subsequently, most authors dealing
reflect incident light differently from place to place thus re-

, . .~ with other flow visualizations just mention that the flakes are
vealing the structure of the flow. Classically used particles,;ontad in the “stream surface&™!Lalthough this notion is

are aluminum, coated mica flakes, or commercial producty s yefined for nonunidirectional flow. Indeed, in general
S!JCh as .Ir'Od'h or Kallwoscqpez. Nice examples of Sl_JCh three-dimensiona(3-D) flows, the flow cannot be reduced
v!sual!zat!ons can t_)e found in the book of Van Dﬁ@_h's, . locally to a plane Couette flow. Even if the orientation mo-
visualization technique presents the advantage of giving,, of anisotropic particles in a viscous fluid has been ex-
strongly contrast'e.d Images in closed geometrlgs and und'teénsively studied, most of the authors were concerned on the
permanent conditions even with very small particle conceny | h4nq by the possible effect on suspension rheology at

tration.. It ha§ been extensively used, e.g., for the study of thf‘arger concentratiof? and on the other hand by the charac-
dynamic regimes of Taylor—Couette flﬁé\/n%%more recently yerization of the particles by birefringence properfiéThe
for the study of small scales of turbulenteindeed, when 4y of this paper is to compute the orientation motion of

the density of the particles is comparable to that of the ﬂu'disolated nonaxisymmetric particles in a general 3-D flow in

the particles are advected at the fluid velocity. The particle, oy 1o point out the link between the visualizations and the
Reynolds number, i.e., the one built with the particle size an elocity fields

shear rate, is then small even if the flow Reynolds number is |, ‘sec || we briefly recall the analytical results for the
and reflective index of, 4o of axisymmetric particles. Section Il is devoted to

large. Details about the size, density,
the particles can be found in various textbooks or for Kal'the numerical simulation of the motion of a triaxial particle
in a general 3-D flow. Section IV deals with the simulation

liroscope in the article of Matisse and Gornfafihe possible
Sf the flow visualization with anisotropic particles and its

unwanted effects of adding such particles have been di
cussed by Dominguez-Lerned al” If one takes into account 5 arison with experimental visualization for two classical
this broad utilization and the number of nice works based ogtationary axisymmetric 3-D flowdaylor—Couette flow and

this technique, it is surprising that very few authors Wereyq f5,; hetween rotating disks with separated boundary lay-
concerned by one essential question: “What do these anis i

tropic particles show exactly?” To our knowledge the only
study trying to answer this question is the one of Sd%as,
who assumes that thin axisymmetric particles align themi|. MOTION OF AXISYMMETRIC ELLIPSOIDS

The first and fundamental work was done by Jeffery in

3Electronic mail: gauthier@fast.u-psud.fr; Telephone: 33-1 69 15 80 88;192214 who analyzed the motion of one I’igid isodensity el-
Fax: 33-1 69 15 80 60. R N . - . .
bAssociated with Universities Pierre & Marie Curie and Paris-Sud and withliPs0id in @ general viscous flow. The particle is considered

CNRS(UMR 7608. to be small enough so that the Reynolds number based on its
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length and on the typical shear remains small. Brownian mo- C=0.1
tion is neglected as any body forces. The first result of Jef-
fery is that, to the leading order, it is not necessary to take
into account the flow modification around a particle and so
the torques undergone by any isolated triaxial ellipsoid are
the same as those given by the unperturbed velocity field. At
each time, the motion of the particle is the sum of a transla- x y X y
tion and of an instantaneous rotation veatowhich governs

the orientation of the particle. The components of this vectofF!C- 1. A set of Jeffery orbitdtrajectories of the extremity of for an

. . . axisymmetric particle rotating in a plane Couette flow € yy) for C
w in the frame of the partlclelre. =0.1, 1, and 10, andspect ratiac =10 (a) and forC=1, andr=0.1, 1,
and 10(b). Analytical results and simulatiofSec. Ill A) are superimposed
on these curves but cannot be distinguished.

_ bZG?,YZ— C2G 2.3

“1 b2+c2
0261'3— a2G3,1 axis (z axis) as follows: close to this axis i€ is small orr
wzzw (1) large, and close to the shear plar®yplane if Cis large or
r small(Fig. 1). A disk-like particle(r small spends most of
aG,,— b2G, , its time with p along the shear axi§/ axis) whereas for a
3=, rod-like particle(r large it is along the flow axigx axis). In
a‘+b both cases, the particles flip rapidly, with the time scale

where the indices 1, 2, and 3 refer to an orthonormed fram@&7/7, in the shear plane. These motions have been checked
of reference, calledZ, built on the axes, b, andc of the  quantitatively in the experiments of Goldsmith and Masdn.
ellipsoid. The ternG; ;= gV, /3x; is one of the nine terms of The effect of Brownian motion on these orbits was in-
the velocity gradient tensaB which characterizes the flow Vestigated theoretically by Leal and Hirfctior such a plane

in that frame. For a general 3-D flow this tensor has thre€couette flow acting on spheroidwith r close to 1. For a
nonzero eigenvalues. diffusion constant of the orientatiGhlow compared to the

To go further, Jeffery focuses on axisymmetric e||ipsoidsShear rate, these authors show that there exists a smooth

(b=c). In that case only one geometrical parameter, the asselection process that S|OW|y orients the particles in the vi-
pect ratior =a/b, is necessary to describe the particle. TheCinity of one particular Jeffery orbit selected by the value of
caser>1 Corresponds to pr0|ate spheroids ardl to ob- the aspect ratia. ThUS, because of the Brownian fOfCGS,
late spheroids. Later, Leal and Hiﬁélexpressed the work of every particle slowly lose the memory of their initial orien-
Jeffery in a more compact form. The orientation of the par-tation.

ticle is then given by the time evolution of a unit vecr These Jeffery orbits are quite specific to the plane Cou-
parallel to the particle symmetry axis ette flow. In 1962, Bretherton addressed the motion of an
, axisymmetric body in any three-dimensional flo6WAs all
dp re—=1 the dynamics in the frame of the particle is contained in the
ar Pt r2+1[E-p—p-(p-E-p)], @ evolution tensok [Eq. (3)], it is sufficient to study the evo-

lution of a vectorp which is parallel top but does not con-
serve its norm. Being interested in the stationary orientation

motion of the ellipsoid, Bretherton looks for tiﬁleeigenvec—

where() andE are, respectively, the vorticity tensor and the
rate-of-strain tensofrespectively, antisymmetric and sym-

metric parts of the velocity gradient teng®j. Note that Eq. . St .
b Y9 ' d tor of & For any velocity field, the characteristic polynomial

2) is only valid in the frame% of the ellipsoid. The first . . . - :
'Eeim on t)rlle right-hand side is the usual rztation due to vor!S Of third order with real coefficients. Thus, there are either

ticity, the first term in brackets is the rotation induced by thethree real eigenvalues or a real and wo complex conjugate

elongational nature of the flow for a nonspherical particleOneS and as the fluid is incompressible, the sum of the eigen-

(r+1), whereas the last term just ensures the norm conseyalues is zero. The nature of the eigenvalues determines the

vation of p. So in Eq.(2), all the orientation dynamics is ?symtptotlc t;gjtecto(rjytﬁf the _a>(<j|s ]?f rte\:_o Iutls\l;r,] the transf'fr? t
contained in the evolution tensgr ime to reach it, and the period of rotation. When one of the

real parts of the eigenvalues is larger than the two others, the
r2—1 vector p aligns in the direction of the corresponding eigen-
E. 3 vector. Thus the particle will keep a constant orientation
which depends on its aspect ratioIf the two larger real

In the case of a simple stationary shear flow of shear ratparts of the eigenvalues are equal the dynamics depends on
v, Jeffery has shown that equations of motion can be intethe imaginary parts. First, if they are zero the particle also
grated and that the particles experience periodic closed orbisvolves into a fixed direction which depends here on its ini-
with a periodT=(2#/y)(r+1/r). This family of orbits is tial orientation(this case has not been described by Brether-
parametrized by a constaBt(0<C=x) which comes from ton). Second, if the imaginary parts are nonzéttaus they
the initial orientation of the ellipsoid. Thus, a particle neverare equal and of opposite sigthe p axis rotates in a plane
forgets its initial orientation. For any initial orientation, the generated by the real and imaginary parts of the two corre-
extremity of p describes a closed orbit around the vorticity sponding complex conjugate eigenvectors. Finally, if the

£=Q+

r+1
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three real parts of the eigen values are zero, the axis of revo- 0.020F : : ' T A
lution p describes a nonplanar closed curve that depends on
its initial orientation. This case occurs only for purely rota- 0.015F 4

tional flow or plane Couette one. The case of Jeffery’s orbits

is just a particular case of this last category. In all cases the

transient timeris given by the inverse of the largest real part

of the eigenvalues, whereas the period of rotation T is given >

by the inverse of the imaginary part. 0.005
Since these pioneering works, other effects have been

taken into account: the time dependence of the flow?

large particle concentratici;?* deformable particle$>2°

and inertig?’ To our knowledge, the only papers dealing

with nonaxisymmetric particles correspond to plane Couette -0.005

flow.?82°These authors showed that this motion is composed

of a rapid rotation around Jeffery orbits, and a slower peri-

odic drift leading to a change of orbit. Recently it has been

shown that chaotic drifts could exist in that ca2e. FIG. 2. Projection in thexOy plane of the extremity of the unit vectprfor
a nonaxisymmetric ellipsoid with various aspect ratip and fixed r,
=0.1 in a generic three directional flow. Foy=0.1 (long prolate spher-
oid), the p direction is fixed(large point inx=y=0). For anyr, value
between 0.1 and 0.9(=0.3, 0.5, 0.7, 0.8) therojection corresponds
to a unique closed curve—) including the previous fixed point. The am-

lil. MOTION OF TRIAXIAL ELLIPSOIDS plitude of the precession increases but remains stnalle the magnified

L . . . . scale compared to unityForr,=0.95, thetrajectory is biperiodid---).
For a general triaxial ellipsoid, there is no theoretical

prediction for its motion in a general 3-D flow. We then

calculate this motion by using Jeffery’s equati¢is. (1)] in

order to shed some light on trends that are useful for visualB. Behavior of nonaxisymmetric ellipsoids

ization.
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For a non-axisymmetric ellipsoid, one can define two

A. Outline and validation of the calculation aspect ratiog;=b/a andr,=c/a. Then Eqg.(1) may be

written as
In this section we assume a constant velocity gradient

tensorGy in the laboratory framez,. As Eq. (1) gives the ( r
instantaneous rotation vecter in the frame of referencé” 3ot 5—
of the particle, we first comput@ in £. At time t, knowing

i3

2

1
G, we calculataw by Eq.(1). We compute by Euler stepping ro—

2

2

2
rs

E3,2

1
the new orientation of the particle using the rotation matrix w={ Qi+ —1E1,3 (4)
R based onw and the time stept. From this new orienta-
tion at timet + At we then compute the new tengdf by the 1-r2
relation G'=R™!GR and the process is repeated for each Qoat F
time step. The time steft is small enough iAt<1/|w|. In \ 1
a Couette flow, a constant time step can be used and we We choosea=b=c, for whichr,<r,=<1. All the simu-
chooseAt=0.01/y in order to describe well the rapid flips. lations computed with different aspect ratios and different
In a general 3-D flow, sinc& and hencd w|| depend on the tensorsG, point out that even nonaxisymmetric ellipsoids
orientation, we must calculate at each instant the time stepach an asymptotic trajectory after a transient time
At=0.01/ o] We first study the asymptotic trajectories of an ellipsoid
We have first checked the computation for axisymmetricwhich is gradually deformed from a long prolate spheroid to
particles in a plane Couette flow: For various initial orienta-a thin oblate one. We thus vabyfrom c to a (r, is constant
tions of the particle and any tested aspect rdfial<<r andr, varies betweem, and 1. We study the trajectory of
<10), the agreement is perfect with the theoretical Jeffery’she extremity of a unit vectop parallel to thea axis (the
orbits (Fig. 1). We have also checked that the calculation forlargest ong which is the axis of revolution wherny=r,. In
an axisymmetric ellipsoid in a general 3-D flow is in agree-Fig. 2, we present the projection of these trajectories in the
ment with Bretherton predictions: For various random ten-plane xOy for a given tensorG,.>° For each aspect ratio
sorsGg, we observe that eithgrevolves in a fixed direction, betweenr;=0.1 and 0.9, the extremity qf precesses, but
or this vector rotates in a plane. Note that these two behawall the curves pass through one point and remain close to it
iors can also be obtained with the same flghe sameG,) (Fig. 2). The amplitude of the precessigmeasured as the
but by varying the particle aspect ratio. In most cases longquare root of the argancreases linearly with the aspect
particles align themselves along fixed directions whereasatio r; although the period’, remains constant. Note that
disks rotate. In each case we checked that the eigenvaluéise precession amplitude is very small compared to unity
indeed govern the corresponding asymptotic trajectory andheaning that the motionf the greatest axiss almost the
the transient time to reach it. same as for a prolate spheroid even when the ellipsoid is

E21
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0.08f T ' b On the other hand, the motion of anisotropic particles in
0.07 a general flow involves different time scales which have to
be compared. Let us first present or recall these different
0.06 time scales.
o 0.05 We have already introduced the period of rotatibof
S 0.04 the particle on its asymptotic trajectory, and the transient
e time 7 necessary for the particle to reach this asymptotic
0.03 trajectory. When particles are advected in a real flow, they
0.02 are submitted in their Lagrangian frame to a velocity gradi-
0.01F ent tensoiG which is, in general, time dependent. This time
N dependence oG i§ due either to a time depe_nden(_:e_of the
0.001 0.01 o1 ] Eulerian velocity fieldunsteady flowor to spatial variations

of the steady velocity field, and one can so define a time
I, scale of evolution ofG in the frame of the particle and de-

note this timetg. Since the anisotropic particles used in
FIG. 3. For nonaxisymmetric ellipsoids of various aspect refi€0.2, 0.4, vjsualization are generally rather small, Brownian motion
0.6, 0.9, evolution o_f the tranS|_ent t_|meto reach the asymptotic t_rajectory, must be taken into account. Following Peﬂ’ﬁ’one can de-
vs the aspect ratior, (logarithmic scale The same generic three- . . . . . .
dimensional velocity gradier®, (Ref. 30 and the same initial orientation fine the time scalég for the particles to lose their orientation
have been used. The timds made dimensionless by the asymptotic period by diffusive process.
of precession Jof such particle irG,. The continuous lines are a guide for When the Brownian timég is much larger than the tran-
the eyes. sient time = of orientation, the fading effect of Brownian
motion can be reasonably neglected; the particle motion is
then deterministic and the particle history should in principle
be taken into account as noted by Satfaslowever, when
the transient timer necessary for the particle to reach its
asymptotic trajectory is sufficiently small compared to the
time scaletg of evolution of G in the frame of the particle,
description presented forb=0.1 remains true for other val- an “adliabatlc” .appro?qmatlo.n. can ,be used. As shown n t.he

preceding section, this condition will be all the more satisfied

ues ofr,. X . ; ;
An izmportant result for the particle dynamics and thusSince particles are thin. Nevertheless the relevance of visual-

for visualization purposes is the time necessary to reach jggations W'_th anisotropic particles n turbulent ﬂoWsmhere
asymptotic trajectory. Such information for axisymmetrictG IS certf:_unly small may be questionable, especially for the
particles is given by the eigenvalues fEq. (3)] and was characterization of the small scale structures of the flow.
also estimated by Weidm#hin a plane Couette flow. We

study the transient for nonaxisymmetric particlgs by .varying|v_ VISUALIZATION USING ANISOTROPIC

r; andr,. The evolution toward the asymptotic trajectory pARTICLES

appears as exponential and we determine the characteristic ) _ _
time 7 for one flow G, and one initial particle orientation ~ We will now use the results of the dynamics of nonaxi-
(Fig. 3. The main conclusion is thatdecreases for smaly ~ Symmetric particles previously presented in order to simulate
or smallr,. Thus thin or long particles more rapidly reach the light reflected by the particles in a real flow. In the simu-
their asymptotic trajectories. The transient time is short, typiJation we consider monodisperse triaxial ellipsoids which do

cally of the order of a few percent of the period of rotation, N0t interact and we neglect inertia, gravity, and Brownian
motion as well as particle history. We will compare the re-

flected light computed from numerically simulated velocity

fields with experimental visualizations. We choose to focus
We will now focus on general remarks useful for visu- on two particular flows, which are three dimensional but axi-

alization with anisotropic particles. symmetric and stationary, lighted by a radial laser sheet: the
On the one hand, the often encountered idea that thifaylor vortex flow and flow between rotating disks. How-

particles are oriented in the “stream surfac$™ only  ever, the method presented here could be extended to any

holds for, at least locally, plane Couette flow. Indeed, staflow and any light disposition.

tionary orientation is only one of the possible asymptotic ~ We first describe the experimental visualizatidig®ec.

trajectories, and the others are time dependent trajectorieBs A), then the simulated ondgSec. IV B), and then a com-

no stationary orientation is reached and the particles rotatparison between the two is madgec. IV Q.

with more or less complicated trajectories. The relation be—A E _ [ visualizati

tween visualizations and underlying velocity fields is thus' ™ Xperimental visualizations

not straightforward. In particular, since the particle orienta-  Flow visualization using reflective flakes are commonly

tion just gives access to one of the three eigenvectors of thesed in experiments. We performed experiments with Iriodin

velocity gradient tensor, it is not possible to reconstruct compigments$ and Kalliroscope flakésembedded in a water—

pletely the velocity field from the observed light. glycerol mixture. Kalliroscope particles are platelets made of

closer to an oblate one. Foy=0.95, thetrajectory becomes
biperiodic and as, approaches 1, the trajectory is more and
more complicated. Far;=1, we have checked that the tra-
jectory of axisc is a circle in a particular plane: this agrees
with Bretherton’s predictions for an oblate spheroid. This

C. Concluding remarks for visualization purposes
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FIG. 4. Photograph under microscoff00 um X 100 um) of a concen-
trated solution of Kalliroscope particles. Note the strong polydispersity and
the low contrast due to the low relative reflective index in a water—glycerol
mixture.

FIG. 5. Visualization of a radial laser sheet in a Taylor vortex flow: experi-
ment(a) and simulationb). The inner cylinderto the lef) rotates whereas
the outer ondto the righ} is fixed. The Taylor number of the flow is quite

. 3 . . . above the critical one corresponding to the appearance of Taylor vortices. In
guanine(1.66 gcm* in density. A mean size of 386 . experimentR, =34 mm, R,=36 mm, 0,=0, 0,=11.6 rads*, Ta

X0.07 um can be found in the literature as well as their =9100. In the simulationR,=34 mm,R,=35 mm, Q,=0, Q,=13.4
reflective index of 1.85: We have checked under a micro- rad s, Ta=6100.
scope that they are indeed very thin but they are also very
polydispers€Fig. 4). Iriodin pigments are platelets made of
the natural mineral mica coated with a metallic oxi@g
cm 2 in density with a typical length less than 15m. Due
to their small sizes, the sedimentation time in water is larg
(typically a few hours for 1 cm We obtained similar images
with both products but more contrasted ones with Kalliro-
scope. This may be related to our conclusion in Sec. llI CB Simulated visualizations
since Kalliroscope flakes are much thinner than Iriodin ones.™
In the following, we focus on Kalliroscope visualizations. Both flows were simulated by aFD code in a radial
The particle concentration of the manufactured solution iplane. For the Taylor—Couette cell, the lattice is<3W for
not known. By an observation under microscope after dilutwo wavelengths and a periodic boundary condition has been
tion (Fig. 4) and also by weighting the dried part, we esti- applied. Only the inner cylinder rotates and the Taylor num-
mate the initial concentration to be 8l@akes/mni. Well ber is Ta=6100, roughly three times the onset for the appear-
contrasted visualizations are obtained for a volume fractiorance of Taylor vortices For the rotating disks geometry, the
of 10°°, leading to an averaged distance between the pasimulation has been made with a 10284 lattice and under
ticles ten times greater than their largest size. The interadhe same conditions as in the experiments: an aspect ratio
tions between particles can then be negledted. R/e=10 and a Reynolds number Ré&e?/»=300, below

In both experimental setugsoncentric cylinders or par- the onset of propagative circles or spirals but corresponding
allel disks the flow is mainly orthoradial and we use a radial to separated boundary layers.
laser sheet, of thickness 1 mm, transverse to the gap. Thus, In both cases, the velocity gradient tengay is calcu-
the streamlines are almost perpendicular to the laser shedated at each lattice node. During the particle advection
Figures %a) and 7a) exhibit two typical experimental visu- across the laser sheet, we check that the particle remains at
alizations of such flows. Brighter domains are due to parthe same node since the velocity is mainly orthoradial. Thus,
ticles which are conveniently oriented or rotating whenwithin our resolution, the particle is submitted to a constant
crossing the laser sheet in order to reflect light in the camertensor G, during its crossing. We also check that we can
direction. The camera is oriented at 45° with respect to theeglect particle history. In any node, we compute the tran-
normal to the sheet, in a plane generated by the normal to the&ent timer necessary for the particle to reach its asymptotic
sheet and a direction parallgespectively, orthogongpto the  trajectory and compare this time to the advection titpe
axis of rotation in the case of parallel diskespectively, across the sheet. The ratiét, is found to be small almost
concentric cylinders The angular aperture of the camera is everywhere. Finally, we check that, since the particles are
of the order of 5°, and the exposure time is 1/25 s. Such lasarery thin, the real size is not a sensitive parameter for the
sheet visualization is not classical in a closed geometry. Usutasymptotic trajectory. We thus neglect polydispersity and as-
ally, this technique is used in open flows in order to observesume monodisperse ellipsoids of ax@s b, ¢) = (30, 6,

the advection of a passive scafarin our flow configura-
tions, information is only given by the orientation of the
er)articles. Indeed, we checked that the reflected light intensity
Is homogeneous and no structures are observed when using
isotropic particles such as Estapfr.
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0.07 um. For such thin particles the timg to lose their R 2.0

orientation with an angle equal to the camera aperture is, fo
our viscous fluid, of the order of 13 s. Thus, &g 7 and
tg>t, , the Brownian motion has been also neglected.

At each node, we draw the orientation of one particle at
random and we apply to it the torques it experiences during
its advection time, across the laser sheet. We compute the™
proportion of time where the patrticle is well oriented in order ™
to reflect light in the camera direction within the angular
resolution of the camera. As we assume the flakes act &
small mirrors, it is the orientation of the smallest agithat
we test. The light intensity at the corresponding nd¢de
pixel) is then rescaled with the exposure time of the camera
However, when the period of rotatidhof the particle on its 0.0 =+ 0.0
asymptotic trajectory is not small compared to the advectior 0002040608 1.0 12 05 00 05 10
time t;, across the laser sheet, the fraction of reflected light VL Vi / 'V, max
depends on the initial particle orientation When it e_nters th%IG. 6. (a) Normalized light intensityt/I ., @s a function ofz/\ (wherex
laser sheet. Thus, at each node corresponding to this case, Wenhe wavelengthcorresponding to a vertical profile at the radius (R,
choose to draw several randomly oriented particles mapping R;)/2 of Fig. 5: experiment—) and simulation(l). (b) Numerical nor-
the sphere unity and let them reach their asymptotic trajecnalized radial velocity,/Vimz, (—) as a function of the depte/A for a
tory during a given time. In our simulation we draw at |eastvertlcal profile at the same radius. Courtesy of H. Bellili.

400 particles, this number corresponding to a mapping of the

sphere of unit radius with the resolution given by the aper'depthz due to the light attenuation. The two curves are in
ture angle of the camei@: 5°).

Einall truct a two-di ional i b | good agreement. A thin bright strip is localized close to each
lecti metlhy, :{vitrgc?ns .rtuc ? 0;1 |men§|or|1)a Ilmagde 3:00 “disk and a large bright band lies in the middle of the gap.
ecting the fignt Intensity at eac nqc{plxe -norderto oo comparison between the visualization and the numerical
compare quanhtatwe]y 'the resulits with thg experlments, W‘?/eloc:ity field [Fig. 8b)] allows us to interpret each of the
mtroduce ana posteriori a}ttenuatlon of the |nten5|tyhdue to bright regions we observed. The bright strips close to the
light _ab_sorptlon of the flwc_i. We use a Bee_r—Lambé law disks [Figs. 7 and 8)] correspond to the boundary layers
consisting in an exponential attenuanon_wnh a constant _Scalﬁ/here the azimuthal velocity varies rapidly along the depth
Zo, ne_glectmg here any effe_ct of the orientation. The S|mu-[Fig_ 8b)]. These boundary layers, called Ekman and
!ated 'mages are presented in Flgél?)Eﬂnd 1b). These two Bodewadt layers, are classical in such a flow configuratfon.
images are in good agreement with the experimental on

: : ®Phe thick bright center tongUéigs. 7 and 8)] corresponds
[Flgs. %a) and 7a)] when the Beer—Lambert length is to a fluid core rotating nearly as a solid body, i.e., to a region
adjusted to 17 mm.

where the azimuthal velocity is almost constfiaig. 8(b)].
Note that the center large bright band between the disks is
C. Comparison between simulation and experiment generated by particles having fixed orientation whereas the

z/ A

1.0

0.5

For the Taylor—Couette flow, even if the simulation and
the experiment are not at the same Taylor number, the same

general features can be observed in Fig&) &nd Fb): [(@)

There is no reflected light in the core of the vortices and only
the vortices of a given sign reflect light at their periphery.
This simple visualization demonstrates clearly that the flakes
are not “pasted” on the vorticity tubes contrary to the often
encountered idea. Indeed, we have checked in the simulation
that the light reflected for the Taylor vortices is generated by
rotating Kalliroscope particles. The light intensity profiles
corresponding to a vertical line in the middle of the gap are
compared in Fig. @. Although the brighter experimental
domains are larger, the agreement between the two curves i
rather good. The corresponding numerical radial velocity is

. : . . . FIG. 7. Visualizations of radial laser sheet in the flow between two rotating
given, in Fig. &), for a comparison with the phase of the disks: experimenta) and simulationb). In both cases, the axis of rotation

pattern. . ' S is at the left and the top diskogether with the external walls rotating

For the flow between rotating disks, we distinguish threecounterclockwise, when seen from above and the bottom disk is at rest. The
bright bands in both experimental and simulation visualizafadius of the disks i®=140 mm and the gap thicknessds 14 mm. Only
tions (Fig. 7). For a more quantitative comparison, a vertical 2 P2t of the cavity is presentedif=0.4 R, rg,=0.6 R. For both pic-

. . . . . . . tures the Reynolds number based on the gap thickness isQR& v
section of both pictures Is shown in F'g(aB The “ghtmg ~300. The experimental picture corresponds to an average over 20 pictures

being from above the light intensity decreases along then order to increase contrast.
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14 L e S e flow between rotating disks, the thickness of the two bound-
P ary layers is correctly described in our simulated visualiza-
12 12F 7 tion. This shows clearly that the boundary layers can be
0 ok u | tracked and Fhat one can have_ con_fide_nce in _thickn_ess mea-
l surements with experimental visualizations using anisotropic
~ g ~ el | flakes.
g g i We believe that such simulations will allow a validation
N o6 N 6l i i of a large number of experimental measurements, e.g., for
‘ the wavelength, the spatial or temporal growth rate of the
4 a4l : - structures, and the co- or contrarotating nature of vortices. In
; ; the near future, this simulation will allow us to determine
2 2F . quantitatively the relation between the light intensity and the
. () amplitude of 3-D hydrodynamic instabilities.
kY 1 1 I 1
0 0246 81
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