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MOTIONS WITH FINITE VELOCITY ANALYZED
WITH ORDER STATISTICS AND DIFFERENTIAL EQUATIONS

UDC 519.21

A. DE GREGORIO, E. ORSINGHER, AND L. SAKHNO

Abstract. The aim of this paper is to derive the explicit distribution of the position
of randomly moving particles on the line and in the plane (with different velocities
taken cyclically) by means of order statistics and by studying suitable problems of
differential equations. The two approaches are compared when both are applicable
(case of the telegraph process). In some specific cases (alternating motions with
skipping) it is possible to use the order statistics approach also to solve the equations
governing the distribution. Finally, the approach based on order statistics is also
applied in order to obtain the distribution of the position in the case of planar motion
with three velocities conditioned on the number of changes of directions recorded.

1. Introduction

The analysis of random motions with finite velocity can be performed either by re-
solving initial-value problems for the equation governing the probability distribution or
by exploiting the order statistics.

The prototype of processes related to this type of motions is the telegraph process
T = T (t), t > 0, introduced by Goldstein in [2] and examined over the years by different
authors (see, for example, [1]). The approach used in studying the

P{T (t) ∈ dx} = p(x, t) dx

is based on the solution to the following Cauchy problem:

(1.1)

⎧⎪⎨
⎪⎩

∂2p
∂t2 + 2λ∂p

∂t = c2 ∂2p
∂x2 ,

p (x, 0) = δ(x),
pt (x, 0) = 0.

In this special case it is easy to obtain p = p(x, t) also by means of order statistics.
This approach permits us to derive also

(1.2) pk(x, t) dx = P {T (t) ∈ dx, N(t) = k} ,

where N(t) is the number of changes of direction of motion occurring up to time t.
We will show below that the joint distributions (1.2) can also be calculated analytically

by establishing that the function

(1.3) G (u, x, t) =
∞∑

k=0

ukpk(x, t)
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is a solution to

(1.4)

⎧⎪⎪⎨
⎪⎪⎩

∂2G

∂t2
+ 2λ

∂G

∂t
= c2u2 ∂2G

∂x2
,

G(u, x, 0) = δ(x),
Gt(u, x, 0) = 0.

In some cases the approach based on order statistics seems to be the only possible
instrument for obtaining the distribution

(1.5) p(x, t) dx = P {X(t) ∈ dx}
where X(t), t > 0, is one-dimensional random motion with finite velocities. If the
possible velocities are ck, k = 1, 2, . . . , n, and the changes of motion are paced by a
Poisson process, then the distributions

(1.6)
pj

k(x, t) dx = P{X(t) ∈ dx, N(t) = k, V (t) = cj},
k ≥ 0, j = 1, 2, . . . , n,

with V (t) being the current velocity, can be explicitly obtained (at least for a small
number n of possible velocities) for any j by means of order statistics.

In the case where n = 4, c1 = c, c2 = 0, c3 = −c, and c4 = 0 this has been done
in [4]. This type of motion (alternating with randomly distributed stops) emerges in
the analysis of cyclic planar motions with orthogonal directions because a particle while
moving horizontally does not change its vertical coordinate. We here consider the case
where n = 4, c1 = c2 = c, and c3 = c4 = −c, which resembles somehow the telegraph
process. This is a four-state motion, symmetrically distributed around the starting point.
Its probability distribution p is a solution to the fourth-order equation:

(1.7)

[(
∂

∂t
+ λ

)2

− c2 ∂2

∂x2
− λ2

] [(
∂

∂t
+ λ

)2

− c2 ∂2

∂x2
+ λ2

]
p = 0.

Equation (1.7) must be compared with

(1.8)
(

∂

∂t
+ λ

)2
[(

∂

∂t
+ λ

)2

− c2 ∂2

∂x2

]
p − λ4p = 0,

which is satisfied by the law of process with two steps interrupted by stops.
It is remarkable that for a process with n − 2 stops, one step forward and one step

backward, the equation satisfied by p reads

(1.9)

[(
∂

∂t
+ λ

)n

− λn − c2

(
∂

∂t
+ λ

)n−2
∂2

∂x2

]
p = 0

and can be reduced, by means of the exponential transformation w = e−λtp, to the simple
form:

(1.10)
∂n−2

∂tn−2

[
∂2

∂t2
− c2 ∂2

∂x2

]
p − λnp = 0.

The reader can ascertain that for n = 2, (1.9) coincides with the telegraph equation (1.1).
We have obtained, at least in the one-dimensional cases mentioned above, explicit dis-

tributions. Let us list the explicit expressions for the absolutely continuous components
of the distribution of the process (with stops) which have been derived so far. We denote
by

pl(x, t) = pl

the density of the process with l states (l− 2 stops). Therefore p2 = p2(x, t) is the law of
the telegraph process, p3(x, t) is a three-state motion with one stop and p4(x, t) is related
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MOTIONS WITH FINITE VELOCITY 65

to the case of forward and backward displacements interrupted by stops. We have the
following formulas:

p2(x, t) = e−λt
∞∑

k=1

(
λt

2k
+ 1

) (
λ

2c

)2k−1 (
c2t2 − x2

)k−1

(k − 1)!2
, |x| < ct,(1.11a)

p3(x, t) = e−λt
∞∑

k=1

(
λt

3k
+ 1 +

1
λ

∂

∂t

) (
λ

c

)3k−1 1
22k−1(k − 1)!3

×
∫ ct

max(−x,x)

(ct − w)k−1 (
w2 − x2

)k−1
dw, |x| < ct,

(1.11b)

p4(x, t) = e−λt
∞∑

k=1

(
λt

4k
+ 1 +

1
λ

∂

∂t
+

1
λ2

∂2

∂t2

) (
λ

c

)4k−1

× 1
22k−1(k − 1)!2(2k − 1)!

×
∫ ct

max(−x,x)

(ct − w)2k−1
(
w2 − x2

)k−1
dw, |x| < ct.

(1.11c)

Formula (1.11a) has been obtained by many different authors and by different methods
and is usually represented in terms of Bessel functions as follows:

(1.12)
p2(x, t) =

e−λt

2c

[
λI0

(
λ

c

√
c2t2 − x2

)
+

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
,

|x| < ct.

Result (1.11c) appears explicitly in [4]. In this paper we obtain the distribution
p̂4 = p̂4(x, t) for the process with velocities c1 = c2 = c and c3 = c4 = −c and this reads:

(1.13)
p̂4(x, t) = e−λt

∞∑
k=1

(
λt

4k
+ 1 +

1
λ

∂

∂t
+

1
λ2

∂2

∂t2

)(
λ

2c

)4k−1 (c2t2 − x2)2k−1

(2k − 1)!2
,

|x| < ct.

The last section of the paper is devoted to the analysis of the joint distributions

(1.14)
p3n−j(x, y, t) dx dy = P {X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − j}

for n ≥ 1, j = 1, 2, and n ≥ 2, j = 3,

of a planar cyclic motion with three directions. The conditional distributions have been
obtained by means of order statistics and from them the unconditional distribution,
expressed in terms of Bessel functions of order three, has been derived.

2. The telegraph process and the approach based on order statistics

The telegraph process is defined by

(2.1) T (t) = V (0)
∫ t

0

(−1)N(s) ds,

where V (0) is a two-valued r.v. (with values ±c taken with probability 1/2) and N(t),
t > 0, is the number of events of a Poisson process in [0, t]. The r.v.’s N(t) and V (0) are
independent, and we can explicitly obtain the distributions

(2.2) pk(x, t) dx = P {T (t) ∈ dx, N(t) = k} , k ≥ 0,

with x ∈ (−ct, ct), in two different ways.
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Our first approach is analytical and profits from the fact that the distribution of (2.1)
is well known and reads:

p(x, t) =
e−λt

2c

[
λI0

(
λ

c

√
c2t2 − x2

)
+

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
I{|x|<ct}

+
e−λt

2
[δ (x − ct) + δ (x + ct)] ,

(2.3)

where I0 is the zero-order modified Bessel function.
We introduce the distributions

(2.4)

{
fk(x, t) dx = P{T (t) ∈ dx, V (t) = c, N(t) = k},
bk(x, t) dx = P{T (t) ∈ dx, V (t) = −c, N(t) = k},

where k ≥ 1 and

(2.5) V (t) = V (0)(−1)N(t), t > 0,

represents the current velocity of the particle performing the motion (2.1).
The distributions (2.4) are solutions to the following difference-differential system:

(2.6)

⎧⎪⎪⎨
⎪⎪⎩

∂fk

∂t
= −c

∂fk

∂x
+ λ (bk−1 − fk) ,

∂bk

∂t
= c

∂bk

∂x
+ λ (fk−1 − bk) .

In terms of the function wk = fk − bk and pk = fk + bk the system (2.6) can be
rewritten in the following manner:

(2.7)

⎧⎪⎪⎨
⎪⎪⎩

∂pk

∂t
= −c

∂wk

∂x
+ λpk−1 − λpk,

∂wk

∂t
= −c

∂pk

∂x
− λwk−1 − λwk.

From (2.7), by successive derivations, we obtain the following second-order partial
difference-differential equation:

(2.8)
∂2pk

∂t2
= c2 ∂2pk

∂x2
− 2λ

∂pk

∂t
− λ2pk + λ2pk−2, k ≥ 0,

with p−1 = p−2 = 0.
An alternative form of equation (2.8) is

(2.9)
(

∂

∂t
+ λ

)2

pk = c2 ∂2pk

∂x2
+ λ2pk−2

and can easily be reduced, by means of the exponential transformation pk = e−λtwk to
the following one:

(2.10)
∂2wk

∂t2
= c2 ∂2wk

∂x2
+ λ2wk−2.

Now we have our first theorem.

Theorem 2.1. The generating function

(2.11) G (u, x, t) =
∞∑

k=0

ukpk(x, t)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MOTIONS WITH FINITE VELOCITY 67

is the solution to the initial value problem:

(2.12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
∂

∂t
+ λ

)2

G = c2 ∂2G

∂x2
+ λ2u2G,

G(u, x, 0) = δ(x),
∂

∂t
G (u, x, t)

∣∣∣
t=0

= 0.

Proof. It suffices to multiply both terms of (2.9) by uk and sum up with respect to k.
From (2.11) it is clear that G satisfies the initial conditions in (2.12) because p0(x, 0) =
δ(x) and pk(x, 0) = 0, k ≥ 1. �

Corollary 2.1. By performing the same steps as in the derivation of (2.3) it is immediate
that the generating function G has the form

G (u, x, t) =
e−λt

2c

[
λuI0

(
λu

c

√
c2t2 − x2

)
+

∂

∂t
I0

(
λu

c

√
c2t2 − x2

)]
I{|x|<ct}

+
e−λt

2
[δ (x − ct) + δ (x + ct)] .

(2.13)

By expanding both members of (2.13) we obtain

G (u, x, t) =
∞∑

k=0

ukpk(x, t)

=
e−λt

2c

[
λu

∞∑
k=0

(
λu

2c

)2k 1
k!2

(
c2t2 − x2

)k

+
∞∑

k=1

(
λu

2c

)2k 1
k!2

∂

∂t

(
c2t2 − x2

)k

]

+
e−λt

2
[δ(x − ct) + δ(x + ct)].

(2.14)

The second sum in (2.14) begins with k = 1 because the derivation causes the term
(−1)! to appear.

Corollary 2.2. From (2.14) we extract the following explicit formulas:

(2.15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p2k+1(x, t) = e−λt

(
λ

2c

)2k+1 1
k!2

(
c2t2 − x2

)k
, |x| < ct, k ≥ 0,

p2k(x, t) = e−λt λ2k

(2c)2k+1

1
k!2

∂

∂t

(
c2t2 − x2

)k
, |x| < ct, k ≥ 1.

It can be checked that

(2.16)
∫ +ct

−ct

p2k+j(x, t) dx = P{N(t) = 2k + j}, j = 0, 1, . . . .

From (2.15) we also have that

(2.17)
P{T (t) ∈ dx | N(t) = 2k + 1} = dx

(2k + 1)!
k!2

(
c2t2 − x2

)k

(2ct)2k+1
,

|x| < ct, k ≥ 0,
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and

(2.18)
P{T (t) ∈ dx | N(t) = 2k} = dx

(2k)!
k! (k − 1)!

ct
(
c2t2 − x2

)k−1

(2ct)2k
,

|x| < ct, k ≥ 1.

The reader can also note a somewhat surprising fact that

(2.19) P{T (t) ∈ dx | N(t) = 2k + 1} = P{T (t) ∈ dx | N(t) = 2k + 2}.

We now show that (2.15) can also be obtained in a completely different way by means
of order statistics. Let N(t) = n and consider the motion up to the time moment t. We
first remark that the particle performing the process T makes steps of the form

±ct
(
T(j) − T(j−1)

)
where tT(j) is the time of the j-th Poisson event. T(j), 1 ≤ j ≤ n, can also be viewed as
the j-th order statistics from the uniform law in [0, 1]. Because of the exchangeability of
the r.v.’s T(j) − T(j−1) we can reorder the n+ forward steps and put them together (as
well as the backward ones).

In this way the displacement, when n changes of direction occur, is equivalent in
distribution to

(2.20) T (t) = ct
[
T(n+) −

(
1 − T(n+)

)]
,

where T(n+) is the n+-th order statistic. From (2.20) we clearly have

P{T (t) < x | N(t) = n, V (0) = ±c}

= P

{
T(n+) <

1
2

(
1 +

x

ct

) ∣∣∣∣ N(t) = n, V (0) = ±c

}
.

(2.21)

The distribution of the order statistic T(n+) has the density

(2.22) fT(n+)
(w) =

n!
(n+ − 1)! (n − n+)!

wn+−1(1 − w)n−n+
, 0 < w < 1,

where the connection between n and n+ depends on the sign of the initial velocity. By
combining (2.21) and (2.22) we have

P{T (t) ∈ dx | N(t) = n, V (0) = ±c}

= dx
n!

(2ct) (n+ − 1)! (n − n+)!

[
1
2

(
1 +

x

ct

)]n+−1 [
1 − 1

2

(
1 +

x

ct

)]n−n+

= dx
n!

(2ct)n(n+ − 1)! (n − n+)!
(ct + x)n+−1(ct − x)n−n+

.

(2.23)

In particular, if n = 2k + 1, and V (0) = c, n+ = k + 1, then we obtain

(2.24)

P{T (t) ∈ dx | N(t) = 2k + 1, V (0) = ±c}

= dx
(2k + 1)!

(2ct)2k+1
k!2

(
c2t2 − x2

)k
.

Therefore from (2.24) we again obtain formula (2.17).
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Analogously,

P{T (t) ∈ dx | N(t) = 2k + 2, V (0) = c}

= dx
(2k + 2)!

(2ct)2k+2
k! (k + 1)!

(ct + x)k+1 (ct − x)k
,

(2.25a)

P{T (t) ∈ dx | N(t) = 2k + 2, V (0) = −c}

= dx
(2k + 2)!

(2ct)2k+2 k! (k + 1)!
(ct + x)k (ct − x)k+1

.
(2.25b)

From (2.25a) and (2.25b) we obtain

(2.26)

P{T (t) ∈ dx | N(t) = 2k + 2}

= dx
(2k + 2)!

2 (2ct)2k+1 k! (k + 1)!

(
c2t2 − x2

)k
.

The conditional densities above can thus be obtained by means of two different ap-
proaches whose degrees of difficulty are equivalent.

3. Reinforced alternating process

Here we consider a particle which can move forward and backward with velocity c.
However we assume that, in general, it can reverse the direction of motion only after two
Poisson events. In other words we suppose therefore that the motion has four possible
states sj , j = 1, . . . , 4, defined as follows:

(3.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1 = (c, c,−c,−c),
s2 = (c,−c,−c, c),
s3 = (−c,−c, c, c),
s4 = (−c, c, c,−c).

For example, if the state s1 is initially chosen, then the particle moves forward for two
consecutive intervals and then backwards for the next two intervals.

At time t the particle lies in the set

{−ct ≤ x ≤ ct}
and can be located at the endpoints x = ±ct with probability equal to

e−λt +
1
2
λte−λt.

We denote by X = X(t) the process describing the position of the moving particle at
time t. If the number of Poisson events occurring in [0, t] is N(t) = n, then we have nj

steps of type sj with
n + 1 = n1 + n2 + n3 + n4.

By applying the same considerations on exchangeability as in section 2 we can repre-
sent the process X(t), (when N(t) = n) as

(3.2) X(t) = ct
{
T(n1+n2) −

(
1 − T(n1+n2)

)}
,

where T(n1+n2) is the (n1 + n2)-th order statistic from the uniform law in [0, 1].
From (3.2) we readily have

P{X(t) < x | N(t) = n, V (0) = sj}

= P

{
T(n1+n2) <

1
2

(
1 +

x

ct

) ∣∣∣∣ N (t) = n, V (0) = sj

}
.

(3.3)
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The conditional density of X(t) is therefore

(3.4) P{X(t) ∈ dx | N(t) = n, V (0) = sj} =
dx

2ct
fT(n1+n2)

(
1
2

(
1 +

x

ct

))
,

where fT(n1+n2) is the density of the order statistic (2.22) with n+ replaced by n1 + n2.
We can write down explicitly the density as follows:

P{X(t) ∈ dx | N(t) = n, V (0) = sj}

=
dx

2ct

n!
(n1 + n2 − 1)! (n − (n1 + n2))!

[
1
2

(
1 +

x

ct

)]n1+n2−1

×
[
1
2

(
1 − x

ct

)]n−(n1+n2)

=
dx

(2ct)n
n!

(n1 + n2 − 1)! (n − (n1 + n2))!
(ct + x)n1+n2−1 (ct − x)n−n1−n2 .

(3.5)

By specifying

N(t) = 4k − j, j = 0, . . . , 3, k ≥ 1,

and by taking the four possible initial states we have 16 conditional distributions. How-
ever only 8 are different and for the convenience of the reader we write them down in
the following table:

P{X(t) ∈ dx | N(t) = 4k, V (0) = s1}
P{X(t) ∈ dx | N(t) = 4k, V (0) = s2}

}

=
dx

(2ct)4k

(4k)!
(2k)! (2k − 1)!

(ct + x)2k (ct − x)2k−1 , k ≥ 1,

(3.6a)

P{X(t) ∈ dx | N(t) = 4k, V (0) = s3}
P{X(t) ∈ dx | N(t) = 4k, V (0) = s4}

}

=
dx

(2ct)4k

(4k)!
(2k)! (2k − 1)!

(ct + x)2k−1 (ct − x)2k , k ≥ 1,

(3.6b)

P{X(t) ∈ dx | N(t) = 4k − 1, V (0) = sj}

=
dx

(2ct)4k−1

(4k − 1)!
(2k − 1)!2

(
c2t2 − x2

)2k−1
, k ≥ 1, j = 1, 2, 3, 4,

(3.7)

P{X(t) ∈ dx | N(t) = 4k − 2, V (0) = s1}
P{X(t) ∈ dx | N(t) = 4k − 2, V (0) = s4}

}

=
dx

(2ct)4k−2

(4k − 2)!
(2k − 1)! (2k − 2)!

(ct + x)2k−1 (ct − x)2k−2 , k ≥ 1,

(3.8a)

P{X(t) ∈ dx | N(t) = 4k − 2, V (0) = s2}
P{X(t) ∈ dx | N(t) = 4k − 2, V (0) = s3}

}

=
dx

(2ct)4k−2

(4k − 2)!
(2k − 1)! (2k − 2)!

(ct + x)2k−2 (ct − x)2k−1
, k ≥ 1,

(3.8b)
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P{X(t) ∈ dx | N(t) = 4k − 3, V (0) = s1}

=
dx

(2ct)4k−3

(4k − 3)!
(2k − 1)! (2k − 3)!

(ct + x)2k−1 (ct − x)2k−3 , k ≥ 2,
(3.9a)

P{X(t) ∈ dx | N(t) = 4k − 3, V (0) = s3}

=
dx

(2ct)4k−3

(4k − 3)!
(2k − 1)! (2k − 3)!

(ct + x)2k−3 (ct − x)2k−1 , k ≥ 2,
(3.9b)

P{X(t) ∈ dx | N(t) = 4k − 3, V (0) = s2}
P{X(t) ∈ dx | N(t) = 4k − 3, V (0) = s4}

}

=
dx

(2ct)4k−3

(4k − 3)!
(2k − 2)!2

(
c2t2 − x2

)2k−2
, k ≥ 1.

(3.9c)

The reason that four probabilities (3.7) coincide is that with N(t) = 4k − 1 there are
4k intervals and thus all states sj are occupied exactly k times. If N(t) �= 4k − 1, the
states sj are occupied a different number of times because the last cycle of motion is, in
this case, incomplete. Another feature emerging from the formulas above is that some
distributions are asymmetric (10 out of 16) because the number of steps forward and
backward, in general, do not coincide. By summing up the above distributions we get
the four important conditional densities of the following table:

P {X(t) ∈ dx |N(t) = 4k } = P {X(t) ∈ dx |N(t) = 4k − 1}

=
dx

(2ct)4k−1

(4k − 1)!
(2k − 1)!2

(
c2t2 − x2

)2k−1
,

(3.10a)

k ≥ 1, |x| < ct,

P {X(t) ∈ dx |N(t) = 4k − 2}

=
dx

2(2ct)4k−3

(4k − 2)!
(2k − 1)! (2k − 2)!

(
c2t2 − x2

)2k−2
,

(3.10b)

k ≥ 1, |x| < ct,

P {X(t) ∈ dx |N(t) = 4k − 3}

=
dx

(2ct)4k−3

(4k − 3)!
(2k − 1)!

{(
c2t2 − x2

)2k−2

2 (2k − 2)!
+

c2t2
(
c2t2 − x2

)2k−3

(2k − 3)!

}
,

(3.10c)

k ≥ 1, |x| < ct.

The last distribution necessitates some manipulations in order to be obtained. It
is clear that by eliminating the condition V (0) = sj , we get symmetric densities. The
reader can be surprised that the probabilities (3.10a) coincide. This coincidence has been
noted also for the telegraph process (see formula (2.19)) as well as in the case of motion
with two stops (see [4], formula (3.4)).
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Remark 3.1. The distributions (3.10) integrate to one as can be checked by taking into
account the following formulas:∫ ct

−ct

(
c2t2 − x2

)2k−2
dx = (ct)4k−3

∫ 1

0

(1 − y)2k−2
y1/2−1 dy

= (ct)4k−3 Γ (2k − 1)
2

Γ (1/2) (4k − 1)
Γ (2k + 1/2)

= (ct)4k−3 Γ (2k − 1)
2

Γ (2k) (4k − 1)
Γ (4k) 21−4k

.

(3.11)

Analogously we have

(3.12)
∫ ct

−ct

(
c2t2 − x2

)2k−3
dx = (ct)4k−5 Γ2 (2k − 2)

25−4kΓ (4k − 4)
.

Theorem 3.1. The absolutely continuous part of the distribution of the process X = X(t)
is

P {X(t) ∈ dx}

= e−λtdx
∞∑

k=1

{
λt

4k
+ 1 +

1
λ

∂

∂t
+

1
λ2

∂2

∂t2

}(
λ

2c

)4k−1 (
c2t2 − x2

)2k−1

(2k − 1)!2

= e−λtdx

[ ∞∑
k=1

λt

4k

(
λ

2c

)4k−1 (
c2t2 − x2

)2k−1

(2k − 1)!2

+
∞∑

k=1

(
λ

2c

)4k−1 (
c2t2 − x2

)2k−1

(2k − 1)!2

+
λt

2

∞∑
k=1

(
λ

2c

)4k−3 (
c2t2 − x2

)2k−2

(2k − 1)! (2k − 2)!

+
1
2

∞∑
k=1

(
λ

2c

)4k−3 (
c2t2 − x2

)2k−2

(2k − 1)! (2k − 2)!

+ c2t2
∞∑

k=2

(
λ

2c

)4k−3 (
c2t2 − x2

)2k−3

(2k − 3)! (2k − 1)!

]
.

(3.13)

Furthermore,

(3.14)
∫ ct

−ct

P {X(t) ∈ dx} = 1 − e−λt − λt

2
e−λt.

Proof. It suffices to sum up the conditional densities (3.10) multiplied by

P {N(t) = 4k − j} = e−λt (λt)4k−j

(4k − j)!
, j = 0, . . . , 3.

In order to check the boundary condition (3.14), we must take into account, in addition
to (3.11) and (3.12), that

(3.15)
∫ ct

−ct

(
c2t2 − x2

)2k−1
dx = (ct)4k−1 (2k − 1)!224k−1

(4k − 1)!
.
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Therefore it is clear:∫ ct

−ct

P {X(t) ∈ dx}

= e−λt

[ ∞∑
k=1

(λt)4k

(4k)!
+

∞∑
k=1

(λt)4k−1

(4k − 1)!
+

∞∑
k=1

(λt)4k−2

(4k − 2)!

+
∞∑

k=1

(λt)4k−3

(4k − 2)!
+

1
2

∞∑
k=2

(λt)4k−3

(2k − 1) (4k − 4)!

]

= e−λt

[ ∞∑
k=1

(λt)4k

(4k)!
+

∞∑
k=1

(λt)4k−1

(4k − 1)!
+

∞∑
k=1

(λt)4k−2

(4k − 2)!

+
∞∑

k=1

(λt)4k−3

(4k − 2) (4k − 4)!

{
1 +

1
4k − 3

}]
− λt

2
e−λt

= e−λt

[ ∞∑
k=1

(λt)4k

(4k)!
+

∞∑
k=1

(λt)4k−1

(4k − 1)!
+

∞∑
k=1

(λt)4k−2

(4k − 2)!
+

∞∑
k=1

(λt)4k−3

(4k − 3)!

]
− λt

2
e−λt

= 1 − e−λt − λt

2
e−λt.

We point out that the endpoint x = ct is reached with probability equal to

1
4
e−λt +

λt

4
e−λt

if the initial state is s1. However if the initial state is s2, the endpoint x = ct can be
reached only if no Poisson event occurs, that is, with probability 1

4e−λt. �

Remark 3.2. The distribution (3.13) is a solution to the fourth-order equation

(3.16)
(

∂2

∂t2
+ 2λ

∂

∂t
− c2 ∂2

∂x2

) (
∂2

∂t2
+ 2λ

∂

∂t
− c2 ∂2

∂x2
+ 2λ2

)
p = 0,

which, after the usual exponential transformation p = e−λtw, takes the form

(3.17)
(

∂2

∂t2
− c2 ∂2

∂x2
− λ2

) (
∂2

∂t2
− c2 ∂2

∂x2
+ λ2

)
w = 0.

By means of the transformation s =
√

c2t2 − x2 equation (3.17) can be converted into
the biquadratic Bessel equation

(3.18)
(

∂2

∂s2
+

1
s

∂

∂s
− λ2

c2

) (
∂2

∂s2
+

1
s

∂

∂s
+

λ2

c2

)
w = 0.

4. Cyclic planar motion with three directions

A planar motion with three directions (represented by the vectors d1 = (1, 0), d2 =
(−1/2,

√
3/2), d3 = (−1/2,−

√
3/2)) taken cyclically at Poisson paced times is described

and analyzed in [5]. In [3] the general planar motion with three directions is examined
by using order statistics.
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The following decomposition of the continuous part of the distribution holds true:

P{X(t) ∈ dx, Y (t) ∈ dy}

=
∞∑

k=2

P{N(t) = k}

×
k−1∑
n0=1

k−n0∑
n1=1

P{N0 = n0, N1 = n1, N2 = k + 1 − n0 − n1 | N(t) = k}

× P
{
X(t) ∈ dx, Y (t) ∈ dy |

N(t) = k, N0 = n0, N1 = n1, N2 = k + 1 − n0 − n1

}
,

(4.1)

where (N0, N1, N2) is the number of times the directions d0, d1, and d2 are taken (with
N(t) + 1 = N0 + N1 + N2).

For the cyclic case, formula (4.1) considerably simplifies because the random content
of motion reduces to the time spent moving in each direction, which reflects into the last
factor of (4.1).

By means of order statistics it can be seen that

P {X(t) ∈ dx, Y (t) ∈ dy | N(t) = k, N0 = n0, N1 = n1, N2 = k + 1 − n0 − n1}

= dx dy
2 · 3√

3

× k!
(3ct)k

(ct + 2x)n0−1 (
ct − x + y

√
3
)n1−1 (

ct − x − y
√

3
)k−n0−n1

(n0 − 1)! (n1 − 1)! (k − n0 − n1)!

(4.2)

for (x, y) ∈ int{Tct}, where

Tct =
{

x, y : − ct

2
≤ x ≤ ct

2
,−ct − x√

3
≤ y ≤ ct − x√

3

}
,

n0 ≥ 1, n1 ≥ 1, k ≥ 2. The proof of this result is in [3].
In the special case of cyclic motion, formula (4.2) specializes in the cases reported in

the next theorem.

Theorem 4.1. For (x, y) ∈ int{Tct},

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 1}

= dx dy
(3n − 1)!
(3ct)3n−1

2 · 3√
3

[
(ct + 2x)

(
(ct − x)2 − 3y2

)]n−1

[(n − 1)!]3
, n ≥ 1,

(4.3a)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 2, D(0) = d0}

= dx dy
(3n − 2)!
(3ct)3n−2

2 · 3√
3

(ct + 2x)n−1(ct − x + y
√

3)n−1(ct − x − y
√

3)n−2

[(n − 1)!]2 (n − 2)!
,

n ≥ 2,

(4.3b)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 2, D(0) = d1}

= dx dy
(3n − 2)!
(3ct)3n−2

2 · 3√
3

(ct + 2x)n−2(ct − x + y
√

3)n−1(ct − x − y
√

3)n−1

[(n − 1)!]2(n − 2)!
,

n ≥ 2,

(4.3c)
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P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 2, D(0) = d2}

= dx dy
(3n − 2)!
(3ct)3n−2

2 · 3√
3

(ct + 2x)n−1(ct − x + y
√

3)n−2(ct − x − y
√

3)n−1

[(n − 1)!]2 (n − 2)!
,

n ≥ 2,

(4.3d)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 3, D(0) = d0}

= dx dy
(3n − 3)!
(3ct)3n−3

2 · 3√
3

(ct + 2x)n−1(ct − x + y
√

3)n−2(ct − x − y
√

3)n−2

[(n − 2)!]2 (n − 1)!
,

n ≥ 2,

(4.3e)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 3, D(0) = d1}

= dx dy
(3n − 3)!
(3ct)3n−3

2 · 3√
3

(ct + 2x)n−2(ct − x + y
√

3)n−1(ct − x − y
√

3)n−2

[(n − 2)!]2(n − 1)!
,

n ≥ 2,

(4.3f)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 3, D(0) = d2}

= dx dy
(3n − 3)!
(3ct)3n−3

2 · 3√
3

(ct + 2x)n−2(ct − x + y
√

3)n−2(ct − x − y
√

3)n−1

[(n − 2)!]2 (n − 1)!
,

n ≥ 2.

(4.3g)

Proof. The case of (4.3a) corresponds to the complete cycle where each direction is
taken n times and thus the initial direction D(0) plays no role. Formulas (4.3b), (4.3c)
and (4.3d) concern the case where the incomplete cycles differ because two directions are
taken n times and one n − 1 times according to the initial direction. The other three
formulas refer to the case where two directions are taken n − 1 times and one n times.

The distributions follow from (4.2) by specializing the numbers n0, n1, and n2 accord-
ingly. �

From Theorem 4.1 we easily infer the conditional distributions, independent from the
initial directions.

Theorem 4.2. For (x, y) ∈ int{Tct},

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 1}

= dx dy
(3n − 1)!
(3ct)3n−1

2 · 3√
3

[
(ct + 2x)

(
(ct − x)2 − 3y2

)]n−1

[(n − 1)!]3
, n ≥ 1,

(4.4a)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 2}

= dx dy
(3n − 2)!
(3ct)3n−2

2 · 3√
3

(
c2t2 − x2 − y2

) [
(ct + 2x)

(
(ct − x)2 − 3y2

)]n−2

[(n − 1)!]2 (n − 2)!
,

n ≥ 2,

(4.4b)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3n − 3}

= dx dy
(3n − 3)!
(3ct)3n−3

2 · 3√
3

ct

[
(ct + 2x)

(
(ct − x)2 − 3y2

)]n−2

[(n − 2)!]2 (n − 1)!
, n ≥ 2.

(4.4c)

Proof. It is sufficient to consider that each initial direction is taken with probability 1
3

and then use the formulas of Theorem 4.1. �
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Remark 4.1. We now examine some special cases of the conditional distributions appear-
ing in Theorem 4.2:

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 2} =
4 dx dy

3
√

3c2t2
, (x, y) ∈ Tct,(4.5a)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 3} =
4 dx dy

3
√

3c2t2
, (x, y) ∈ Tct,(4.5b)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 4} =
2 · 3√

3
4!

(3ct)4
(
c2t2 − x2 − y2

)
dx dy,

=
2√
3

4!
(3ct)4

[
(ct − x)2 − 3y2 + 2(ct − x)(ct + 2x)

]
dx dy, (x, y) ∈ Tct,

(4.5c)

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 5}

=
2 · 3√

3
5!

(3ct)5
[
(ct + 2x)

(
(ct − x)2 − 3y2

)]
.

(4.5d)

The first two distributions are uniform in the triangle Tct. Perhaps it is worthwhile to note
that when N(t) = 3 and the initial direction D(0) is fixed, the conditional distribution
is not uniform because the direction D(0) gives an initial advantage to some part of the
set Tct which is compensated when taking the average.

When N(t) = 4 (incomplete cycle with one direction taken one time less than the
others) we see that the distribution does not vanish on the border ∂Tct.

For N(t) = 5 the density is tied down to zero all along the border because the sample
paths coil up so that the particle hardly leaves the starting point.

The distribution (4.5d) coincides with

P{X(t) ∈ dx, Y (t) ∈ dy | N(t) = 6}

as can be easily checked from (4.4c) for n = 3. The same coincidence is repeated for the
conditional probabilities where N(t) = 3n − 1 and N(t) = 3n.

Theorem 4.3. We have the following probabilities for (x, y) ∈ int{Tct}:
∞∑

n=1

P {X(t) ∈ dx, Y (t) ∈ dy, N(t) = 3n − 1}

= P {(X(t) ∈ dx, Y (t) ∈ dy) ∩ (the cycle is complete)}

= e−λt 2λ2

3
√

3c2
I0,3

(
λ

c
3
√

(ct + 2x)((ct − x)2 − 3y2)
)

dx dy,

(4.6a)

∞∑
n=2

P{X(t) ∈ dx, Y (t) ∈ dy, N(t) = 3n − 2}

= e−λt 2λ

3
√

3c2

∂

∂t
I0,3

(
λ

c
3
√

(ct + 2x)((ct − x)2 − 3y2)
)

dx dy,

(4.6b)

∞∑
n=2

P {X(t) ∈ dx, Y (t) ∈ dy, N(t) = 3n − 3}

= e−λt 6ct√
3

(
λ

3c

)2 I1,0
0,3

(
λ
c

3
√

(ct + 2x)((ct − x)2 − 3y2)
)

3
√

(ct + 2x)((ct − x)2 − 3y2)
dx dy,

(4.6c)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MOTIONS WITH FINITE VELOCITY 77

where

I0,3(x) =
∞∑

k=0

(x

3

)3k 1
(k!)3

and I1,0
0,3 (x) =

∞∑
k=0

(x

3

)3k+1 1
(k!)2(k + 1)!

are Bessel functions of order three.

Proof. Since the derivation of (4.6a) appears also in [3], we give some details of the other
two distributions.

From the formulas of Theorem 4.1 we have
∞∑

n=2

P {X(t) ∈ dx, Y (t) ∈ dy, N(t) = 3n − 2}

= dx dy
e−λt

3

×
∞∑

n=2

(λt)3n−2

(3n − 2)!

{
2 · 3√

3
(3n − 2)!
(3ct)3n−2

1
[(n − 1)!]2(n − 2)!

×
[
(ct + 2x)n−1(ct − x + y

√
3)n−1(ct − x − y

√
3)n−2

+ (ct + 2x)n−2(ct − x + y
√

3)n−1(ct − x − y
√

3)n−1

+ (ct + 2x)n−1(ct − x + y
√

3)n−2(ct − x − y
√

3)n−1
]}

= dx dy
e−λt

√
3

2
∞∑

r=1

(
λ

3c

)3r+1 1
(r!)2(r − 1)!

×
[
(ct + 2x)r(ct − x + y

√
3)r(ct − x − y

√
3)r−1

+ (ct + 2x)r−1(ct − x + y
√

3)r(ct − x − y
√

3)r

+ (ct + 2x)r(ct − x + y
√

3)r−1(ct − x − y
√

3)r
]

=
dx dy 2e−λt

c
√

3
λ

3c

∞∑
r=0

(
λ

3c

)3r 1
(r!)3

∂

∂t
(ct + 2x)r(ct − x + y

√
3)r(ct − x − y

√
3)r

=
dx dy 2λ e−λt

3
√

3c2

∂

∂t
I0,3

(
λ

c
3
√

(ct + 2x)((ct − x)2 − 3y2)
)

.

As far as the last formula of this theorem is concerned we have
∞∑

n=2

P {X(t) ∈ x, Y (t) ∈ dy, N(t) = 3n − 3}

=
dx dy

3
e−λt

∞∑
n=2

(λt)3n−3

(3n − 3)!

{
2 · 3√

3
(3n − 3)!
(3ct)3n−3

1
[(n − 2)!]2(n − 1)!

×
[
(ct + 2x)n−1(ct − x + y

√
3)n−2(ct − x − y

√
3)n−2

+ (ct + 2x)n−2(ct − x + y
√

3)n−1(ct − x − y
√

3)n−2

+ (ct + 2x)n−2(ct − x + y
√

3)n−2(ct − x − y
√

3)n−1
]}
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= dx dy
2√
3

(
λ

3c

)3

e−λt
∞∑

r=0

(
λ

3c

)3r 1
(r!)2(r + 1)!

×
[
(ct + 2x)r+1(ct − x + y

√
3)r(ct − x − y

√
3)r

+ (ct + 2x)r(ct − x + y
√

3)r+1(ct − x − y
√

3)r

+ (ct + 2x)r(ct − x + y
√

3)r(ct − x − y
√

3)r+1
]

= dx dy
2√
3

(
λ

3c

)3

e−λt
∞∑

k=0

(
λ

3c

)3k 3ct

(k!)2(k + 1)!
[
(ct + 2x)((ct − x)2 − 3y2)

]k

= dx dy
6ct√

3

(
λ

3c

)2

e−λt
I1,0
0,3

(
λ
c

3
√

(ct + 2x)((ct − x)2 − 3y2)
)

3
√

(ct + 2x)((ct − x)2 − 3y2)
. �

Remark 4.2. Since all the conditional distributions integrate to 1 it can be easily seen
that ∫∫

Tct

3∑
j=2

∞∑
n=2

P {X(t) ∈ dx, Y (t) ∈ dy, N(t) = 3n − j}

+
∫∫

Tct

∞∑
n=1

P {X(t) ∈ dx, Y (t) ∈ dy, N(t) = 3n − 1}

=
3∑

j=2

∞∑
n=2

P {N(t) = 3n − j} +
∞∑

n=1

P {N(t) = 3n − 1}

= P

{ ∞⋃
k=2

(N(t) = k)

}
= 1 − e−λt − λte−λt.

(4.7)

The missing probability pertains to the singular component of the distribution and is
concentrated on ∂Tct.

We also note that while the two terms (4.6a) and (4.6b) coincide with the first and
second term of formula (3.1) of [5], the third term differs. Although (4.6c) can be ex-
pressed in terms of the Bessel function I0,3 it does not coincide with the second derivative
there. The first two formulas were obtained in [5] by means of an analytical approach
which proved to be successful only partially.
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