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Endocrine glands communicate with remote target cells via
a mixture of continuous and intermittent signal exchange. Con-
tinuous signaling allows slowly varying control, whereas inter-
mittency permits large rapid adjustments. The control sys-
tems that mediate such homeostatic corrections operate in
a species-, gender-, age-, and context-selective fashion. Sig-
nificant progress has been made in understanding mecha-
nisms of adaptive interglandular signaling in vivo. Princi-
pal goals are to understand the physiological origins,

significance, and mechanisms of pulsatile hormone secre-
tion. Key analytical issues are: 1) to quantify the number,
size, shape, and uniformity of pulses, nonpulsatile (basal)
secretion, and elimination kinetics; 2) to evaluate regula-
tion of the axis as a whole; and 3) to reconstruct dose-re-
sponse interactions without disrupting hormone connec-
tions. This review will focus on the motivations driving and
themethodologiesusedforsuchanalyses.(EndocrineReviews

29: 823–864, 2008)
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C. Approximate entropy (ApEn) as an ensemble mea-
sure of regularity

D. Artificial neural networks
IX. Methods of Synchrony Appraisal

A. Rationale for assessing hormone synchrony
B. Cross-correlation analysis
C. Exact peak concordance
D. Cross-approximate entropy (cross-ApEn)

X. Summary

I. Overview of Origins of Pulsatile Hormone

Secretion

PULSATILITY IS A FUNDAMENTAL property of the
majority of hormone secretion patterns. Pulses reflect

the mechanistic design of the biological system on the one
hand and mediate selective target-tissue effects on the other
hand. Early investigators viewed hormone plots over time
and marked peaks by eye, concluding that pulses existed.
Later work introduced the notion that a peak should exceed
random assay variability by some objective amount, such as
two or three times the assay coefficient of variation. A sub-
sequent idea was to estimate underlying secretion using
information about hormone elimination, thereby gaining in-
sights into the secretion process. The evolution of earlier
strategies was reviewed in Refs. 1–4. Recent developments
are highlighted in the present review, along with their ad-
vantages, limitations, and complementarity.

A fundamental perspective is that complementary analyt-
ical methods are needed to achieve comprehensive insights
into complex regulatory mechanisms in biology (1, 2, 4–18).
Figure 1 illustrates this point by highlighting six hormone
concentration-time series obtained by frequent sampling
over 24 h in the same person. The profiles exhibit diversity
in all three of pulsatile (burst-like), nycthemeral (day-night),
and entropic (patterned) features. The primary goal of this
review is to explicate the biological rationale and review the
analytical techniques for quantifying mechanisms that reg-
ulate pulsatile hormone secretion. Pulsatility in turn influ-
ences 24-h rhythmic and entropic patterns of hormone out-
put (19, 20).

A. Definition of pulsatility

“Pulsatile” denotes the recurrence of individual punctu-
ated events (bursts, peaks, or pulses) interrupting a more or
less constant baseline process. A pulse is identified by an
abrupt increase and subsequent decrease in the intensity
(size or amplitude) of serially measured output. In principle,
the size, shape, and spacing of pulses may be regular or
variable, and the underlying baseline process may be fixed
or drift gradually (11, 12, 15, 16, 21–28).

Reproducibly spaced signals of similar shape and ampli-
tude with minimal associated noise superimposed upon a
low stable baseline process are readily quantified by con-
ventional methods developed in the physical sciences, such
as fitting the data to the sum of sine and cosine functions
(Fourier expansion series) (29, 30). However, hormonal se-
cretion patterns are not adequately represented by such rigid
formulations (12, 16, 31, 32) (Fig. 1). For example, to capture
biological irregularity typically requires a large number of

sinusoidal terms, which can result in inappropriate assess-
ments. Such variable pulse patterns are the rule rather than
the exception. In particular, random (stochastic) inputs arise
from multiple sources, such as: 1) procedural inconsistencies
(missing data, outliers) and measurement variability; 2) un-
explained trends or epochs related to the host; and 3) bio-
logical variability due to memoriless (uncorrelated) pulse
times, nonuniformity of successive secretory-burst ampli-
tudes, shapes, and inconsistent pulse-by-pulse stimulus de-
sensitization or facilitation (12, 16, 33–36) (Fig. 2). Estimation
of neurohormone pulsatility is thus obscured by observa-
tional uncertainties, host variables, and stochastic aspects of
biological processes. Nonetheless, a fundamentally pulsatile
structure underlies peptide, steroid, catecholamine, and neu-
rotransmitter secretion by the hypothalamus, anterior and
posterior pituitary gland, adrenal cortex and medulla, testis
and ovary, pancreatic islets, and parathyroid glands (21–23,
37–56). Apparent exceptions to pulsatile secretion are total
IGF-I, inhibin B, total ghrelin, and total T4, which exhibit
diurnal trends and periprandial epochs of variable hormone
release (4, 57, 58).

B. Time scales of pulsatility

The time scales of pulsatility extend over at least four
orders of magnitude. At one extreme, oscillations of ionized
calcium concentrations, �Ca2��i, exist within single endocrine
cells with periodicities of milliseconds to seconds (59). In-
direct evidence suggests that unstimulated cycles of �Ca2��i

may prime exocytosis and enhance basal gene transcription
in pancreatic �-cells, pituitary gonadotropes, and adrenal
chromaffin cells (59). Membrane capacitance measurements
indicate that relevant extracellular stimuli evoke rapid tran-
sient Ca2� influx, intracellular Ca2� mobilization, and exo-
cytosis of docked and primed secretory granules (60). At the
other extreme of the time continuum, large pulses of LH
secretion recur every 3 h (1.1 � 104 sec) in the late-luteal
phase of the human menstrual cycle (2). The majority of
hormones are secreted in an intermediate time frame of
pulses every 4–30 min �antidiuretic hormone (ADH), oxy-
tocin, insulin, glucagon, and PTH� or every 45–180 min (an-
terior pituitary proteins, melatonin, gonadal and adrenal
steroids) (23, 45, 46, 54, 61–63). The latter intervals are termed
“circhoral” (approximately hourly), and more generally “ul-
tradian” (two or more pulses per day). In summary, pulses
constitute brief episodes of hormone or effector release that
are often irregularly spaced in time and of nonuniform size,
thus making analysis a special challenge.

C. Concept of volleys comprising multiple bursts

When assessed by sampling blood every 0.5–5 min, the
pattern of hormone secretion may be complex (64, 65). For
example, large secretory episodes often comprise volleys of
small pulses (66–69). The degree to which prominent peaks
arise from an array of diminutive pulses is difficult to es-
tablish precisely. Patterns of intensively (30-sec) sampled
peripheral GH release in the human illustrate this point (64).
Selecting 2-, 5-, 10-, and 30-min subsets of the original data
progressively censors “pulses within pulses,” spuriously
lowers the absolute peak values, displaces peak times, and
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elevates interpulse nadir concentrations. An investigation
that combined 5-min sampling and deconvolution (secre-
tion-based) analysis suggested that the proestrous LH surge
in the rat arises from multiple nearly confluent LH pulses of
increasing amplitude and frequency (69). Other studies
based on 30-sec and 1-min sampling, high-precision peptide
assays, and deconvolution analyses have unveiled discrete
pulses of 1) insulin every 4–7 min in the human, dog, and rat
in vivo and by perifused human islets in vitro (42, 70, 71); and
2) GH every 35–60 min overnight in healthy young men (64).

Multifold patterns of pulsatility raise the technical ques-
tion of how analyses should be posed. The challenge is il-
lustrated by the wide range of reported dynamics of insulin
secretion monitored during fasting, viz., rapid pulses (every
4–7 min), slower sinusoidal cycles (12–40 min), longer ul-
tradian rhythms (1–3 h per cycle), and nycthemeral (24-h)
variations (72–74). Some alleged patterns may reflect under-
sampling of the primary high-frequency process (referred to

as aliasing) and others variable epochs of higher-amplitude
bursts (75–77). An unresolved challenge is finding which
blood-sampling schedules and mathematical models are op-
timal to obtain coherent insights into the unknown true dy-
namics. Viewing the data as summed wavelets is a possible
complementary means to reconstruct underlying patterns
across several time scales (78). Wavelets may be viewed
approximately as recurring shapes in the data that build up
an overall pattern. Further methodological developments
will be required to provide analytically sound and biologi-
cally useful models to represent volleys and clusters of hor-
mone pulses.

D. Amplitude- and frequency-dependent control of

pulsatility

1. Amplitude-selective control. The size of pituitary-hormone
pulses, defined by amplitude (height in concentration units)
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FIG. 1. Diversity of pulsatility patterns exem-
plified by six hormone-concentration profiles
obtained simultaneously in the same post-
menopausal individual. Numerical values
(above columns from left to right) are the num-
ber of pulses, the amplitude of the nycthem-
eral cosine rhythm (% of mean concentration),
and relative orderliness defined by the ApEn
z score (the absolute value denotes the number
of standard deviates that observed ApEn is
removed from mean ApEn of 1000 randomly
shuffled versions of the same series). Thus, the
prolactin pattern is highly regular (absolute
z � 26), whereas that of FSH is nearly mean
random (absolute z � 2.7). Hormone release
was monitored by sampling blood every 10 min
for 24 h. Cort, Cortisol; Con, concentration;
PRL, prolactin. Data provided by Dr. Ferdi-
nand Roelfsema, University of Leiden (Leiden,
The Netherlands).
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or mass (amount secreted per burst per unit distribution
volume) can vary by as much as 1000-fold in the same in-
dividual on the same day. For example, ultrasensitive im-
munochemiluminescence assays reveal awake daytime food-
suppressed plasma GH concentrations of 0.012–0.035 �g/liter
and nighttime sleep- and fasting-augmented concentrations of
8–20 �g/liter (79, 80). In addition, major variations (3- to
10-fold) in mean GH pulse size unfold in puberty, the men-
strual cycle, aging, and obesity and in response to aerobic
exercise, stress, sleep, and fasting (4). By current estimation
methods, GH secretory-burst frequency does not change con-
comitantly, except to increase slightly during the hours of
sleep.

Less profound amplitude-selective modulation applies to
insulin secretion. Pulse-size variations are 2- to 7-fold in

diverse pathophysiologies, such as aging, type II diabetes
mellitus, renal failure, obesity, and physical deconditioning
(81). Two- to 5-fold variations in secretory-burst mass typify
ACTH, PTH, aldosterone, and cortisol (45, 46, 54, 82).

The exact physiological implications of such marked
absolute excursions in pulse amplitude have not been
ascertained. A testable postulate is that different target
organs have different absolute pulse-amplitude dose-re-
sponse dependence. Amplitude-predominant regulation
permits rapid and marked increases in mean hormone
concentrations. Pulses allow preferential engagement of
rate-sensitive cellular signaling pathways, as inferred for
certain feedforward actions of GH and feedback actions of
cortisol as well as osmotic stimulation of ADH secretion
(4, 83– 86).

Fundamental Challenges of Pulsatility Estimation
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limitations, nonlinear signal interactions, and confounding stochastic (random) effects. B, Diptych showing the impact of sampling time interval
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In sum, significant amplitude-varying control of pulsatile
secretion is common to nearly all hormones.

2. Preferential frequency control. Primary frequency control has
been reported for oxytocin pulses in parturient and post-
partum women (63).

3. Combined amplitude and frequency control. Nycthemeral
(24-h) variations in hormone concentrations are determined
primarily by altering both the amplitude and frequency of
LH, FSH, TSH, prolactin, and gonadal sex-steroid pulses (15,
19, 34, 45–47, 62, 87–89). LH pulsatility is the prototype of
dual amplitude and frequency regulation (2). The latter is
achieved by way of negative feedback by gonadal sex ste-
roids on the amplitude and frequency of the GnRH pulses
and the amplitude of LH secretory bursts (89–92). The degree
to which basal (nonpulsatile) hormone secretion is regulated
is not known. Ignorance in part reflects earlier technical
uncertainty about the valid estimation of true basal secretion
(19, 93, 94).

4. Triple control of pulse number, size, and shape. The size (mass),
number (frequency), and shape (waveform) of ACTH and
TSH secretory bursts are regulated (15, 35). Cortisol deple-
tion augments ACTH secretory-burst mass by 9.6-fold, in-
creases ACTH pulse frequency by 1.25-fold, and abbreviates
ACTH secretory bursts by 1.5-fold. TSH secretory-burst size
and frequency increase by 2.0-fold and 1.2-fold, respectively,
overnight, whereas the time to maximal TSH release within
a burst decreases by 1.5-fold. These nycthemeral (night-day)
changes are selective because the quantifiable regularity of
the ACTH and TSH-pulsing mechanism does not vary over
24 h (15, 35). The generality of waveform changes over the
day and night is not known.

5. Target-tissue effects of pulse size and number. Quantifying
specific facets of regulated secretion is an important step
toward elucidating mechanisms of physiological control. A
corollary issue is what tissue effects are imparted by pulses.
Asked alternatively, what physiological effects are mediated
by changes in pulse size or pulse number as distinct from
differences in mean hormone concentrations? Documenting
amplitude- and frequency-specific hormonal effects in vivo
has been difficult. Although most experiments match total
hormone doses when comparing pulsatile and continuous
stimulation, none has documented that the two stimulus
modes confer identical integrated hormone concentrations at
the target cell in vivo (95–109). A corollary issue for valid
comparison is that hormone doses are chosen to include on
the one hand the efficacy range and on the other hand the
potency range to assess which is/are affected by pulsatile vs.
continuous stimulation.

E. Mechanisms of pulse generation

1. In vivo pulsatility of pituitary cells. Somatic cells of the liver
and kidney secrete protein products, such as IGF-I or IGF
binding proteins, in a constant nonpulsatile fashion (4). How-
ever, neuroectodermally derived cells release exocytotic
granules intermittently in response to Ca2� influx and mem-
brane depolarization (60). Pituitary tissue disconnected from
the hypothalamus can also generate small, frequent, and

irregular pulses (110–112). Whether these patterns are phys-
iological or artifactual is not clear. Tight junctions linking the
three-dimensional network of somatotrope cells and rhyth-
mic GHRH-inducible Ca2� oscillations in somatotropes are
potential physiological bases (59, 113). The question then
arises whether hypothalamic factors also synchronize or am-
plify pituitary microbursts, as distinct from inducing large
discrete secretory bursts.

Pituitary hormones are secreted in low basal (nonpulsa-
tile) amounts continuously and in prominent pulses of vary-
ing amplitude and timing. The precept that large pulses of
LH, GH, and ACTH reflect intermittent hypothalamic drive
has been verified unequivocally by administering selective
releasing-factor antagonists, transgenetically silencing the
expression of releasing factors and their receptors, hetero-
topically transplanting pituitary tissue, directly sampling hy-
pophyseal portal blood, and infusing pulses of synthetic
releasing factors (1, 2, 4, 114). Hypothalamic signals such as
GnRH, dopamine, and TRH putatively contribute to the gen-
esis of FSH, prolactin, and TSH pulses, respectively.

2. GnRH pulsatility. The neuronal mechanisms that generate
episodic hypothalamic signals are not fully understood. In
relation to GnRH neurons, multiple direct and indirect neu-
rotransmitter inputs jointly modulate pulse generation in
vivo (115). In addition, GnRH-secreting cells exhibit inter-
mittent depolarization, cyclic GnRH gene expression, and
recurrent exocytotic bursts in vitro (48). Although the precise
dynamic properties of the in vivo GnRH neuronal network
are not known, current models of episodic pulsatility require
functional coupling among automata (independently firing
units) and/or time-delayed negative feedback (116–120).

Synchrony within an interconnected ensemble can be
achieved in theoretical systems by deterministic and sto-
chastic feedback and feedforward controls. Feedback may be
enforced via direct cellular contacts, secreted substances
(autofeedback), diffusible metabolites, and/or downstream
products (45, 121–123). In relation to GnRH neurons, candi-
date signals include autofeedback by GnRH itself, inhibitory
(�-aminobutyric acid) and facilitative (glutamate) neuro-
transmitters, sex steroids, glia-derived peptides, soluble me-
tabolites (adenosine, glucose, lactate, ATP), pituitary LH,
and gonadal proteins (124–126). Hypothalamic kisspeptin
(metastin) is a strong peptidyl activator of GnRH neurons,
which could serve as an upstream organizer (115). Multiple
collateral factors putatively modulate the unknown primary
GnRH-pulsing mechanism depending upon species, gender,
developmental age, and pathophysiology (127, 128).

The primary objective of developing better models of
pulse-generating neurons is to elucidate how time-varying
feedback and feedforward by neurotransmitters, sex ste-
roids, and peptides modulate pathophysiology (16, 17, 129–
131). Formulations of hormone pulsatility should include
dynamic components to explain burst timing and analyt-
ical components to quantify regulatory mechanisms. By
reductio ad absurdum, comprehensive modeling of any
pulse-renewal process would require knowledge of the
strength and timing of all proximate feedforward and
feedback inputs. Although current models are primitive
when judged by this ideal, significant analytical capabil-
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ities have been achieved recently via simplified neuroen-
docrine constructs that allow estimation of pulse-gener-
ating dynamics (12, 16, 17, 34, 35, 131).

3. GH pulsatility. Both isolated and clustered neuroendocrine
cells are capable of maintaining pacemaker-like activity. On
a larger scale, constructs of time-delayed causal linkages
among clusters of somatostatin (SS) neurons in the periven-
tricular nucleus, GHRH neurons in the arcuate nucleus, and
somatotrope cells in the pituitary gland are capable of gen-
erating recurrent GH pulses (18, 132–135). One such dual-
oscillator model is illustrated in Fig. 3. In this formulation,
reciprocal interactions between GHRH and SS neurons in the
arcuate nucleus mediate rapid GHRH and SS pulses that are
out-of-phase, and episodic SS outflow evoked by pulsatile
GH feedback onto the periventricular nucleus quenches the
arcuate-nucleus oscillator reversibly (135). Ghrelin (GH-re-
leasing peptide) opposes the efforts of periventricular SS on
both the arcuate nucleus and pituitary gland (18). However,
major questions remain. For example, do separate autono-
mous SS or GHRH pulse-generating mechanisms exist (4, 18,
134)? Do reciprocal interactions between hypothalamic
GHRH and SS neurons actually mediate rapid GHRH pul-
satility (4, 133)? Does time-delayed feedback by GH onto SS
and/or GHRH neurons set the timing of volleys of
GHRH/GH pulses (136)? Do periventricular and arcuate-
nucleus SS neurons generate SS pulses via local autonega-
tive feedback (18)? And, do self-regenerating SS pulses
generate GH pulses by intermittently repressing arcuate-
nucleus GHRH neurons and pituitary somatotrope cells
(18, 132, 135)?

4. ACTH pulsatility. The locus of ACTH pulse generation
putatively includes parvocellular CRH and/or arginine-va-
sopressin (AVP) neurons in the paraventricular nuclei (37,
116). However, no definitive neuronal pulse-generator mech-
anism has been established (137). In addition, the degree to
which CRH and AVP secretory bursts are coupled and in-
dependent has not been elucidated and may vary among

species (37, 116). Multidisciplinary efforts that exploit elec-
trophysiological, molecular, cellular, and mathematical
models will be needed to elucidate the primary pulse-gen-
erating mechanisms in the corticotropic axis.

5. Oxytocin pulsatility. The magnocellular oxytocinergic sys-
tem exemplifies pulse generation via positive feedforward
by autoreceptors (39, 121). Positive-feedback mechanisms
elegantly inferred in this system may be instructive to mod-
eling other neuroendocrine systems (117).

6. Other hormonal pulses. Autonomic innervation of the para-
thyroid glands and pancreatic islets may contribute to co-
ordinating the in vivo generation of discrete pulses of PTH,
insulin, and glucagon (50, 138). However, no current models
explicate how innervating networks interact with an array of
putative autocrine, paracrine, and systemic signals. For ex-
ample, how does sympathetic innervation of parathyroid
tissue modulate feedback by Ca2� and vitamin D onto PTH
synthesis and secretion (139–141)? How does autonomic in-
nervation alter interactions among insulin, glucagon, and SS
within pancreatic islets (50, 62, 123, 142, 143)?

7. Implications. If multiple feedback and feedforward inputs
mediate the generation of coherent pulses, then a critical
need in the field is to reconstruct the mechanisms of mul-
tipathway regulation in more explicit and tractable terms. To
our knowledge, only two analytical models exist that permit
noninvasive estimation of unobserved pathways in vivo, viz.,
for the male GnRH 3 LH 3 testosterone (Te) axis and the
CRH/AVP 3 ACTH 3 cortisol axis (12, 16, 17).

F. Damping of secretory bursts in the circulation

1. Effect of dilution in sampling volume. Hormone molecules
sampled in the peripheral circulation are proximate in time
but substantially removed in space from the secretory gland.
The nominal time delay for blood-borne hormones to move
from the site of secretion to the point of sampling would be
less than the circulation time. This time latency (�30 sec) is

Dual-Oscillator Model of GH Pulsatility

SSArC

GHRH

GH

SSPeV

Primary

ArC SS

oscillator

(+)

(-)

Quench

pulses

Ghrelin

antagonizes

SS

(+)

Primary oscillator modulator
(-)

(-) Quench

volleys

GH feedback

Ghrelin

antagonizes
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Secondary

GH-PeV

oscillator

Ghrelin

(+)

FIG. 3. Interactive model postulated to account for
rapid SS, GHRH, and GH pulses within a volley
driven by a primary arcuate-nucleus (ArC) oscillator
(top). Resultant multipulse volleys of GH are
quenched by GH’s autofeedback on the periventricu-
lar nucleus (PeV), thus creating a secondary slower
oscillator (bottom right). The GH-releasing peptide,
ghrelin, amplifies the size of GH pulses by opposing
the inhibitory actions of SS on GHRH pulses within
ArC and on GH release by somatotropes in the pi-
tuitary gland. �Adapted with permission from L. S.
Farhy et al.: Am J Physiol Regul Integr Comp Physiol
292:R1577–R1593, 2007 (18).�
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relatively insignificant analytically compared with nominal
sampling intervals of 5–20 min and typical hormone half-
lives of 5–300 min. More challenging is multifold spatially
dependent dilution of secreted molecules within the systemic
circulation. For example, the volume of the adult human
pituitary gland is approximately 650 mm3 (0.65 ml), whereas
the initial plasma distribution volume of GH is about 65
ml/kg or 4550 ml in a 70-kg adult (144, 145). Thus, minimal
dilution of GH is 7000-fold between interstitial fluid bathing
somatotrope cells and recirculated blood in the forearm. The
analytical hurdle is that volumetric dispersion of secreted
hormone profoundly damps absolute peak concentrations,
which are reduced further by irreversible metabolism and
elimination. In the case of insulin pulses, the liver removes
up to 85% of portal-vein insulin by selectively clearing (ex-
tracting) high-amplitude pulses (40, 61, 71).

2. Influences of basal secretion and half-life. For any given pulse
number, shape, size, and variability, increasing basal (non-
pulsatile) secretion or hormone half-life elevates mean and
interpeak hormone concentrations linearly. Higher inter-
pulse concentrations in turn attenuate the signal-to-noise
ratio, if the pulse-detection methodology depends upon the
fractional (percentage) increment of the peak over the inter-
peak baseline concentration (27, 30, 146). In contradistinc-
tion, this is not a problem for pulse-detection methods that
use the absolute increment, defined by the amount of hor-
mone secreted per burst per unit distribution volume per
unit time (15, 147). The point is illustrated by comparing
10-min sampled 48-h LH and FSH concentration profiles, for
which approximate slow-phase half-lives are 1.5 and 10.2 h,
respectively (148, 149), and percentages of basal secretion are
10 and 50%, respectively. The longer half-life and higher
basal secretion rate of FSH than LH together elevate inter-
pulse concentrations. Computer-assisted simulations show
that, even if five times more LH than FSH were secreted per
burst, fractional peak increments would be 1.8-fold smaller
for FSH than LH because of the 6.8-fold longer half-life of
FSH. For this reason discriminating pulsatile secretion is
more difficult for FSH than for LH using methods that rely
on peak/baseline hormone ratios.

The half-life of human chorionic gonadotropin exceeds
36 h, compared with 1.5 h for LH (148, 150, 151), which
explains why quantifying putative pulsatility of the placental
glycoprotein remains difficult (152). Disparate elimination
kinetics also influence the relative sensitivity of detecting
hormone pulses in different species. For example, the half-
life of LH is nominally 15 min in the rat, 30 min in the sheep,
90 min in humans, and more than 720 min in the pig and
horse (1, 148, 153–156). Thus, sampling must be more fre-
quent in the rat to ensure identifying pulses accurately. A
plausible suggestion is to obtain a minimum of three to five
samples per half-life and per burst duration, whichever is
more intensive.

G. Distinction between bound and free hormone

concentrations in pulses

Uncertainty about the physiological role of free hormone
concentrations has been heightened by incomplete under-
standing of the time-varying kinetics of bound and unbound

moieties in vivo (1, 4). Only a few models embody the non-
equilibrium dynamics of unbound hormone concentrations
when secretion proceeds in discrete bursts, viz., for GH, Te,
and cortisol (16, 34, 35, 144, 157). On theoretical grounds,
rapid entry of hormone molecules into the bloodstream dur-
ing a secretory burst could transiently saturate plasma trans-
port proteins, thereby elevating free (unbound) hormone
concentrations disproportionately to total values (157–159).
This is illustrated schematically for an LH-stimulated Te
secretory burst in Fig. 4. The multipartite fate of Te includes
binding to albumin or SHBG, aqueous diffusion (random
molecular dispersion), linear advection (vectorial motion in
blood vessels), metabolism, and irreversible elimination (16,
34). Recent noninvasive analytical estimates give mean free
Te half-lives of 0.77 and 2.5 min (rapid and slow phases) and
a total Te half-life of 47 min in young men (34).

Whether transient marked elevations in free, bound, or
total Te concentrations are needed to engage membrane or
nuclear Te-signaling mechanisms is not known (128, 160). In
addition, which target-tissue effects of Te and estradiol (E2)
may be mediated by megalin or other cell-membrane recep-
tors for steroid-bound SHBG is not yet clear (161). However,
model-based estimates predict equal feedback repression of
LH pulses by free, bioavailable, and total Te concentrations
in healthy men (17). In the case of corticosteroid-binding
globulin (CBG), rare patients with truncational mutations of
CBG who exhibit more than 85% reduction in total cortisol
concentrations maintain normal free cortisol and ACTH
concentrations (162). This suggests that free cortisol me-
diates negative feedback. However, the presence of mild
hypotension and fatigue in certain kindreds raises the
question whether CBG or total cortisol concentrations me-
diate other tissue effects (162, 163). Other effects could be
indirect because CBG influences the total cortisol pool size
and half-life (164).

Analytical models of nonequilibrium dynamics should be
validated experimentally by combining highly frequent
blood sampling with precise direct in vivo quantitation of
total, bound, and free hormone concentrations. One inves-

Tetrapartite Fate of Secreted Testosterone

Leydig Cells Spermatic Vein

LH
Te

Secretion
Rate

TimeTime

Exchangeable Plasma Space

Te SHBG-Te + SHBG

k1

k2
k3 k4

k5 Elimination

Albumin-Te + Albumin

Diffusion

Advection

Binding

Metabolism

FIG. 4. Schema of tetrapartite fate of LH-stimulated Te in plasma.
Subscripted “K” values denote rate constants for exchange of Te with
binding sites on plasma proteins, solubilization in plasma water, and
irreversible elimination.
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tigation measured total and bioavailable Te concentrations in
blood collected every 10 min for 24 h in two young men (16).
However, in view of estimated half-lives of the dissociation
of Te from plasma albumin and SHBG at 37 C of 0.2 and 3.8
sec, respectively, and a half-life of free Te’s elimination from
plasma of 2.5 min (34), transient elevations in free and bio-
available Te concentrations would not be readily measurable
at this sampling rate.

H. Sampling at or near the anatomic site of hormone

secretion

Although direct sampling of endocrine glands is not pos-
sible in healthy humans for ethical reasons, monitoring hor-
mone pulsatility at or near the secretory source in patho-
physiology allows secondary validation of pulsatility models
(12, 16, 17, 40, 65, 165, 166). For example, systemic Te pulses
are difficult to discern, but direct catheterization of the in-
ternal spermatic vein in men with varicoceles revealed Te
concentration pulses that are 65-fold larger than those in
peripheral blood (51, 167). Individual Te pulses so identified
coincide with LH pulses generated 40 min earlier. Analo-
gously, sampling the portal vein in patients with transhepatic
portasystemic shunts disclosed a 6.6-fold insulin signal-to-
noise ratio and a mean interpulse interval of 5 min (40, 71).
In vitro perifusion of human islets corroborated an interpulse
interval of 4–6 min. Peripheral-venous sampling at 1-min
intervals combined with high-specificity high-precision
ELISA yielded comparable insulin pulse-frequency esti-
mates in healthy individuals with peak-to-nadir insulin con-
centration ratios of 2.5 (168). The same frequency of insulin
pulses has been established in the dog and rat by comparing
direct pancreaticoportal vein sampling with peripheral ar-
terial insulin measurements made every 1 min (70). Whether
such pulses are perpetuated in interstitial fluid is not known,
although oscillations of corticosterone are detectable in the
brain (169).

II. Physiological Implications of Pulsatile Hormone

Signals

A. Downstream effects of GHRH and GH pulses

Quantifying secretory-burst number, size, and shape con-
fers insights into upstream mechanisms that regulate pulse
generation (Section I.E). Extensive studies document that
pulse properties differ in relation to species, gender, devel-
opment, nutrition, and age and vary overtly in stress, illness,
and disease (1, 2, 4). In contradistinction to elegant analyses
in laboratory models (170, 171), relatively little is known in
the human about in vivo tissue-specific effects of hormone
pulses. A preeminent exception is GnRH’s drive of LH se-
cretion, in which there is an unambiguous physiological
necessity for intermittent stimulation of gonadotrope cells in
mammals (172–175). In animal models, GH pulsatility me-
diates sexually dimorphic regulation of hepatic and muscle
gene expression, somatic growth, and negative feedback on
the hypothalamus (4, 176). Although fewer studies exist in
humans, continuous GH delivery in hypopituitary patients
maintains systemic (liver-derived) IGF-I, and lipoprotein(a)
concentrations to a greater degree than repeated injections

(84, 98, 177, 178). Conversely, bolus injections of GH stim-
ulate visceral lipolysis and elevate HDL concentrations more
effectively than constant infusions (84, 86, 98, 179, 180). The
finding that GH pulses increase insulin requirements more
than constant GH infusion in young diabetics further un-
derscores the organ specificity of pulsatility effects.

B. Target-tissue effects of ACTH and testosterone (Te) pulses

Few clinical studies have assessed pulsatile effects of hor-
mones other than GnRH and GH. Continuous infusion of
CRH sustains ACTH pulses, and constant infusion of ACTH
over 72 h evokes a sustained rise in cortisol production but
only a brief increase in aldosterone secretion (106, 181, 182).
In another model, continuous infusion of Te over 48 h sup-
pressed LH pulses more rapidly than bolus Te injections in
young men pretreated with ketoconazole to block testicular
steroidogenesis (109). The reproducibility and generality of
these observations are not yet established.

C. Other clinical examples (oxytocin, PTH, insulin,

glucagon)

1. Oxytocin. Oxytocin is secreted episodically (37, 39) and is
subject to frequency control in humans (63). Both constant
infusion and rapid pulses of oxytocin evoke uterine contrac-
tions. Three randomized clinical trials involving a total of
1064 women reported that pulsatile compared with contin-
uous oxytocin infusions reduce the duration of labor and/or
the total dose of peptide required (107, 183, 184). A fourth
study in 94 pregnancies described no difference between the
two modes of administration (185). Thus, clinical data favor
the notion that pulses of oxytocin are physiologically rele-
vant but not obligatory to stimulate human myometrial con-
traction in parturition. Whether oxytocin pulses convey
unique signaling information to enhance milk letdown is not
known.

2. PTH. PTH pulses recur every 8.5 (range, 5–12) min and
constitute about 50% of total PTH secretion in the normal
human (44, 45, 49). No clinical studies have examined pro-
longed tissue effects of such rapid low-amplitude pulses in
PTH-deficient subjects. However, once-daily PTH injections
are superior to constant 24-h PTH infusions in stimulating
osteoblastic activity (100, 186). This outcome was foreshad-
owed by studies in the rat showing that daily infusion of PTH
for 1 h, but not for 2, 6, or 24 h, is strongly anabolic to bone
(100). Two models have been advanced to account for this
temporal selectivity, one based upon receptor kinetics and
the other upon bone-cell turnover (187, 188). The clinical
application of this insight is once-daily administration of
biosynthetic N-terminal PTH (1–34) for the treatment of os-
teoporosis (189). The experience with PTH supplementation
illustrates that the therapeutic benefit of a particular time
mode of hormone delivery (once daily) may derive from
factors other than precise mimicry of the primary pulse pat-
tern (a pulse every 8.5 min). Relevant factors determining
therapeutic responses putatively include the kinetics of
signal transduction, gene transcription, mRNA and pro-
tein synthesis, the operation of comodulatory hormones,
and systemic and local feedback adaptations (141, 187,

830 Endocrine Reviews, December 2008, 29(7):823–864 Veldhuis et al. • Analytical Concepts of Pulsatility

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/2

9
/7

/8
2
3
/2

3
5
5
0
2
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



188). Comparable insights are needed for other pulsatile
hormones.

3. Islet-cell hormones. Insulin and glucagon are released in
pulses that recur every 4–7 min and are out of phase (40, 50,
62, 71, 168, 190). However, whether pulsatile is more effective
than continuous insulin infusion in suppressing hepatic glu-
cose output, stimulating muscle glucose uptake, or inhibiting
lipolysis in normal volunteers and diabetic patients remains
controversial (102, 191–193). Available outcomes suggest
that a sustained (�4 h) train of rapid insulin pulses (peri-
odicity � 10 min) is more effective than continuous stimu-
lation in inhibiting gluconeogenesis in a low-glucagon milieu
when submaximally effective concentrations of insulin are
achieved. By way of caveats, no clinical paradigm has em-
ployed portal-vein pulses every 4–6 min, although tolbut-
amide stimulation has been proposed as a way to induce
portal insulin pulses; statistical power for small negative
studies is typically low; no formal metaanalysis exists; and
it is unknown whether such rapid pulses persist in tissues.

Several studies have compared the effects of pulsatile and
constant glucagon delivery on hepatic glucose output. In the
dog, glucagon and insulin pulses may not be critical to he-
patic effects (104). In the human, outcomes include attenu-
ated (one analysis) and accentuated (four analyses) hyper-
glycemic, lipolytic, and/or ketogenic effects of glucagon
pulses compared with continuous infusions in healthy young
men and NIDDM patients. In the only study available on
satiety as the endpoint, pulsatile and continuous glucagon
injection had equal effects. The caveats noted for insulin
studies apply to glucagon also.

4. Other hormones: role of pulses. Although data for GH were
reviewed recently (4), no comprehensive clinical studies
have compared the target-tissue impact of pulsatile vs. con-
tinuous stimulation with LH, FSH, TSH, prolactin, ADH,
estrogen, cortisol, aldosterone or l-T4. One investigation in
women found that intermittent sc injection mimicked con-
tinuous infusion of FSH (194), consistent with the long
plasma half-life of human FSH (149). In the male rat and
sheep, continuous and pulsatile injections of LH stimulated
gonadal Te secretion comparably (95, 96). In a limited num-
ber of clinical investigations, continuous submaximal stim-
ulation with CRH, TRH, GHRH, and GH-releasing peptide
maintained pulsatile secretion of ACTH, TSH, and GH, re-
spectively (41, 106, 181, 195, 196). One comparison indicated
that GHRH pulses were more effective than continuous
GHRH infusion in provoking deep sleep in young men (97).
Under in vitro perifusion conditions, pulses of LH stimulated
greater progesterone secretion by human granulosa-luteal
cells than continuous LH delivery (197). In the monkey, TRH
pulses preferentially elevated prolactin, whereas constant
TRH infusions especially increased TSH concentrations
(103). No similar analyses are available in humans. Accord-
ingly, knowledge of organ-selective and effector-specific ac-
tions of hormone pulses remains in its infancy in most cases,
except for GH and GnRH.

D. Experimental paradigms to appraise pulse effects in vivo

Excellent studies of frequency-dependent receptor signal-
ing exist in simple in vitro models, such as yeast and single

cells (122, 124, 131, 173). Ideal in vivo models to assess tissue
effects of pulsatile hormonal stimulation would include: 1)
rapid, reversible, and selective suppression of endogenous
hormone concentrations to obviate confounding; 2) con-
trolled iv delivery of physiological amounts of biologically
active hormone; 3) comparison of physiological and non-
physiological (negative control) secretory-pulse patterns;
and 4) concurrent precise, sensitive, valid, and repeated mea-
surements of more than one target-tissue response. Measur-
ing several responses concurrently is valuable because hor-
mone-signaling patterns often convey distinct information to
different cells (4). Experiments establish this in relation to GH
signaling in brain, skeleton, muscle, and liver. For example,
GH pulses are optimal for central nervous-system negative
feedback and skeletal and muscle growth, whereas contin-
uous GH stimulation is favored for hepatic expression of
IGF-I, GH-binding protein, and low-density lipoprotein re-
ceptor (4, 198). A relevant molecular explanation is that GH
pulses preferentially induce nuclear signaling via STAT5b
and HNF4�, which activate anabolic (male-like) patterns of
gene transcription (199). Clinical studies of the relevance of
pulsatile signals may eventually be facilitated by new drug-
delivery systems, such as microchip polymers capable of
releasing trains of pulses of a drug or hormone (200).

III. Altered Pulsatility Control in Pathophysiology

A. Neuroendocrine neoplasia

1. Secretory autonomy. A consistent feature of functioning
neuroendocrine tumors is relative secretory autonomy, re-
flected by a reduction in feedback sensitivity (201–203). Se-
cretory autonomy is not absolute, inasmuch as high concen-
trations of the feedback signal may inhibit secretion partially
or substantially. Examples include glucocorticoid-mediated
feedback on ACTH secretion by corticotropinomas (Cush-
ing’s disease); saline-induced suppression of aldosterone se-
cretion by aldosteronomas (Conn’s syndrome); IGF-I-en-
forced inhibition of GH production by somatotropinomas
(acromegaly); vitamin D- and Ca2�-dependent repression of
PTH secretion in hyperparathyroidism; T4-imposed diminu-
tion in TSH release by thyrotropinomas; sex-steroidal feed-
back on LH or FSH secretion by gonadotropinomas; and
insulin-induced suppression of C-peptide secretion by insu-
linomas (44, 202, 204–206). Toxic thyroid nodules, adrenal
and gonadal steroidogenic tumors, gastrinomas, glucagono-
mas, somatostatinomas, and ectopically secreting benign and
malignant neoplasms also exhibit sparing suppressibility by
relevant downstream products (201). Thus, relative indepen-
dence of secretion from negative feedback characterizes the
majority of endocrine tumors.

The mechanisms subserving secretory autonomy are not
clear. In vitro analyses indicate that expression of feedback-
activated receptors may be deficient in some neuroendocrine
tumors, such as IGF-I receptors in the case of somatotropi-
nomas and glucocorticoid receptors in corticotropinomas
(207–209). Postreceptor and nonreceptor-related mecha-
nisms may also contribute to feedback resistance. For exam-
ple, autonomous tumors may metabolize the feedback hor-
mone more rapidly than normal tissue. This mechanism

Veldhuis et al. • Analytical Concepts of Pulsatility Endocrine Reviews, December 2008, 29(7):823–864 831

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/2

9
/7

/8
2
3
/2

3
5
5
0
2
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



could apply to corticotropinomas with elevated 11 �-hy-
droxysteroid dehydrogenase type II, which inactivates cor-
tisol (210).

2. Disruption of orderly secretory patterns. Disruption of orga-
nized secretion characterizes most endocrine tumors. Exam-
ples includes somatotropinomas, prolactinomas, cortico-
tropinomas, aldosterone- and cortisol-secreting adrenal
adenomas, and parathyroid neoplasms (43, 211–214). Patho-
physiological patterns typically comprise three quantifiable
abnormalities: 1) decreased serial orderliness, regularity, or
reproducibility of hormone-concentration profiles quanti-
fied by the approximate entropy (ApEn) statistic (215); 2)
frequent but diminutive secretory bursts (reduced mass of
hormone release per pulse) estimated by deconvolution anal-
ysis to correct mathematically for hormone half-life (213,
216); and 3) elevated nonpulsatile hormone secretion in-
ferred by high interpulse hormone concentrations or in-
creased basal secretion rates (211, 212, 217, 218).

GH secretion in patients with acromegaly exemplifies the
foregoing alterations by being more irregular in pattern and
timing with inconsistently shaped, frequent, small peaks su-
perimposed upon high baseline interpulse GH concentra-
tions (204, 211). Imposition of negative feedback by physi-
ological inhibitors (glucose) or pharmacological repressors (a
SS analog) usually fails to restore orderly GH secretion pat-
terns (204). In contradistinction, surgical microadenomec-
tomy reinstates physiological secretion patterns, indicating
that anomalous GH secretion is due to tumoral effects (218).
Successful transphenoidal pituitary surgery in Cushing’s
disease also normalizes ACTH secretory patterns in patients
with corticotropinomas (212, 216, 217).

Similar tripartite secretory derangements characterize be-
nign prolactin, cortisol, aldosterone, and PTH-producing tu-
mors (43, 213). Whether invasive endocrine neoplasms man-
ifest comparable disruption of normal secretory patterns is
uncertain. However, ACTH secretion patterns are paradox-
ically more orderly in patients with adrenalectomy-associ-
ated corticotropinomas (Nelson’s syndrome) than benign
corticotropinomas (Cushing’s disease) (219).

In summary, neuroendocrine tumors tend to produce mul-
tiple, small, irregular pulses superimposed upon a high basal
rate of secretion, which is not fully suppressible by negative
feedback.

B. Type II (non-insulin-dependent) diabetes mellitus

Two prominent anomalies of insulin pulsatility in type II
diabetes mellitus �non-insulin-dependent diabetes mellitus
(NIDDM)� are diminished secretory-burst mass (as evalu-
ated by deconvolution analysis), and decreased secretory-
pattern orderliness (as assessed by ApEn, a regularity mea-
sure) (73, 220). Smaller pulses are also detected in evolving
type I diabetes mellitus (221). Reduced pattern regularity is
detected in about 50% of glucose-tolerant first-degree rela-
tives of patients with NIDDM and in patients with diagnosed
NIDDM (73). If verified, these data could indicate that at-
tenuation of secretory coordination is a harbinger of meta-
bolic disease or a marker of mild insulin resistance and vis-
ceral adiposity. The last two considerations are suggested

because small insulin pulses and irregular patterns also occur
in obese and healthy older individuals (74, 81, 222). Conversely,
endurance training and weight loss enhance secretory regular-
ity (222). These changes are relatively specific because insulin
pulse frequency estimated by sampling blood every 1 or 2 min
is normal in NIDDM patients and aging adults (223).

C. Fasting-induced hypogonadism

Extended nutrient deprivation delays or arrests pubertal pro-
gression in children (4). Even brief fasting inhibits the secretion
of LH and gonadal steroids, and in lesser measure FSH (224,
225). In the sheep and rat, undernutrition causes diminutive
GnRH and LH pulses. Small LH pulses and low Te concen-
trations typify fasting-associated hypogonadotropism in young
men, which can be ameliorated by exogenous pulses of GnRH
(224). Quantifiable regularity of LH secretion patterns increases
during fasting, suggesting that negative feedback by Te declines
less than feedforward by GnRH. The inference follows because
regularity (orderliness) of secretion patterns is maintained by
negative feedback (226). Some investigators have reported that
LH pulse frequency declines in fasting individuals (reviewed in
Ref. 227). This might be due to false-negative errors (pulse
censoring) because of insufficiently intensive blood sampling.
This flaw became apparent two decades ago in studies of LH,
GH, insulin, and PTH secretion (1, 2, 66, 76, 228, 229).

D. Hyperprolactinemia secondary to pituitary-stalk

disruption

Interruption of hypothalamic inhibitory signals to lacto-
tropes results in secondary hyperprolactinemia, the magnitude
of which overlaps that of prolactinomas. The question arises
whether the dynamics of prolactin secretion in the two patho-
physiologies can be distinguished objectively. Recent analyses
reveal smaller prolactin pulses and less regular secretion pat-
terns in both primary tumoral and secondary hyperprolactine-
mia compared with euprolactinemia (214, 230). However, tu-
moral prolactin secretion is marked by more frequent peaks
than benign hyperprolactinemia. The basis for apparently in-
creased pulse number is not clear, but might reflect bursts of
prolactin released by clusters of autonomous tumor cells (231).

E. Primary hyperparathyroidism

The pulsatility phenotype associated with PTH-secreting ad-
enomas and secondary hyperparathyroidism comprises a nor-
mal pulse frequency with irregular patterns superimposed
upon high basal concentrations (44, 205). Negative feedback
imposed by Ca2� infusion fails to repress PTH secretion ap-
propriately or normalize irregular PTH secretion patterns fully
(45, 232, 233).

F. Cortisol-secreting adrenocortical adenomas

Few investigations have applied modern analytical methods
to evaluate secretory patterns in primary adrenal hypercorti-
solism. The only detailed study documented a quadruple phe-
notype of small, frequent, and irregular secretory bursts su-
perimposed upon high basal secretion (213).

832 Endocrine Reviews, December 2008, 29(7):823–864 Veldhuis et al. • Analytical Concepts of Pulsatility

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/2

9
/7

/8
2
3
/2

3
5
5
0
2
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



G. Primary hyperaldosteronism

Several frequently sampled analyses of aldosterone pulsa-
tility have been conducted, three in normal subjects and one in
patients with primary hyperaldosteronism (43, 54, 234, 235).
The study of aldosteronomas identified secretory aberrations
typical of other endocrine tumors, viz., frequent irregular pulses
with elevated baseline secretion (43). Whether these aberrations
are reversed by unilateral adrenalectomy remains unstudied. In
healthy men, acute inhibition of angiotensin converting-en-
zyme activity amplified renin secretory-burst size and en-
hanced the regularity of renin secretion without influencing
aldosterone patterns (234).

H. Failure of the target organ

A fundamental query in pathophysiology is the nature of
neuroendocrine adaptations to feedback withdrawal. Pat-
terns of TSH secretion in normal individuals and patients
with primary thyroidal failure or pituitary tumors have been
evaluated to a limited extent (15, 236, 237). A consistent
observation is that TSH pulses are superimposed upon sig-
nificant (10–35%) baseline secretion. In addition, patients
with primary hypothyroidism exhibit larger TSH secretory
bursts with irregular patterns, albeit of normal frequency and
still copulsatile with prolactin (52, 226). Several months of
l-T4 replacement reinstate near-physiological burst size and
regularity (226).

Fasting-associated metabolic changes, which include re-
duced IGF-I concentrations, unleash large bursts of GH in
irregular patterns but at a normal frequency, which are thus
distinguishable from acromegaly (211). Irregularity is re-
pressed by IGF-I infusion (226), consistent with expected
feedback effects (238).

Another approach to assessing the impact of target-organ
failure is experimental interruption of the negative-feedback
signal. Pharmacological inhibition of Te synthesis in young
men evokes an irregular pattern of small, frequent LH pulses
with elevated interpulse concentrations (239). All four fea-
tures are reversed by iv or transdermal Te repletion (109,
240). This is consistent with Te-mediated feedback effects on
GnRH/LH secretory-burst number, the regularity of the se-
cretion process, mean LH concentrations, and basal (non-
pulsatile) LH release.

Metyrapone-induced cortisol depletion paradoxically en-
hances the orderliness of ACTH release (35, 241). Similar but
less pronounced regularity changes are observed in patients
with 21-hydroxylase deficiency. Experimental reduction in
Ca2� concentrations augments the quantifiable regularity of
PTH secretory patterns (45). The exact physiological bases for
heightened regularity of ACTH and PTH secretion under
low feedback are not known. On theoretical grounds, greater
pattern regularity denotes enhanced coordination of the
regulatory network (238, 242). Thus, possible explanations
for greater orderliness include more synchronous feed-
forward by CRH and AVP on corticotropes and more
organized neurogenic (or other) inputs to PTH-secreting
cells (44, 45).

In summary, disinhibition of negative feedback mimics
some features of autonomous neuroendocrine tumors.

IV. Early Methods of Pulse Analysis

A. Empirical threshold approaches

Empirical methods, as defined here, are procedures based
upon intuition and reason, which have not been both vali-
dated experimentally and verified by mathematical proof.
Empirical criteria for detecting discrete peaks in serial hor-
mone concentrations typically specify a threshold increase
greater than that explicable by intraassay variability. Assay
variability is estimated by the sd or the coefficient of vari-
ation (sd/mean � 100%) of replicate measurements in the
standard curve and/or experimental samples. Examples are
the Santen and Bardin method (for which the threshold is a
20% increment in any single concentration), Cluster analysis
(for which the operator specifies a critical two-sample t-
statistic for accepting significant upstrokes and downstrokes
in a peak), and the regional coefficient of variation (CV)
method (which employs local sample variance to test for
peaks) (1, 243, 244). Limitations of these fixed-criterion meth-
ods include variable false-positive and false-negative errors
introduced by unequal sampling density (e.g., 5-min vs. 10-
min intervals) or duration (4 h vs. 24 h), nonuniform pulse
shape (abrupt vs. slow rise in concentrations), sample out-
liers, and variable assay precision.

B. Semiempirical baseline strategies

Semiempirical methods are defined here as those which
use nadir and/or baseline estimates to specify superimposed
pulsatility but lack the combination of primary in vivo ex-
perimental validation and direct mathematical proof. De-
sade, Ultra, Detect, and Pulsar discriminate baseline or nadir
concentrations by numerical filtering, baseline detrending,
or line-segmentation criteria (245–247). The first three tech-
niques incorporate secretion estimates, thus representing de-
convolution approaches. As reviewed earlier (1, 2), the per-
formance characteristics and limitations (preceding paragraph)
of empirical and semiempirical methods are quite similar.
For example, sensitivity and specificity are about 85% for
Cluster analysis of 10-min LH data (248–250).

V. Criteria for Optimal Pulse Analysis

Several consensus conferences have attempted to formu-
late minimal requirements for optimal pulse evaluation (146,
251). Cardinal but nonexclusive suggestions include the fol-
lowing: 1) high discriminative accuracy (�90%) of signal
detection; 2) direct empirical validation in vivo, in vitro, and
by computer simulations; 3) mathematical verification of
reproducible parameter estimates; 4) robustness to sampling
schedule and assay type; 5) low sensitivity to occasional
outliers; 6) automated implementation; 7) quantitation of
relevant endpoints like elimination kinetics, basal secretion,
pulse signal size (amplitude or mass), duration, shape, and
number; and 8) utilization of relevant physiological knowl-
edge of the system.

The challenge inherent in fulfilling the foregoing collective
criteria simultaneously has stimulated development of new
methods.
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VI. Methodologies for Secretion Estimation

(Deconvolution Analyses)

A. Motivation

Hormone concentrations are measurements of the amount
of hormone contained in a unit of distribution volume (e.g.,
micrograms/liter for GH, IU/liter for LH, picomoles/liter
for glucagon). Any single hormone concentration contains
limited information about the endocrine system because the
value is determined simultaneously by five distinguishable
factors: 1) the amount (mass) of hormone secreted previously
and simultaneously, which has not yet been removed; 2)
distribution degradation, transformation, or removal (elim-
ination) of measured hormone; 3) unexplained (random)
variations in the host or biological system; 4) unknown pro-
cedural errors introduced by obtaining the sample; and 5) the
precision, validity, reliability, sensitivity, and specificity of
the assay.

Recent enhancements in assay performance and sample
collection (items 4 and 5 above) include automated blood
sampling; greater sensitivity, specificity, precision, and re-
liability of robotics-assisted double-monoclonal assays; and
more rigorous assay-data reduction methods followed by
electronic transfer of files (75, 79, 80). Assay specificity is
being addressed by mass spectrometry and ELISA methods,
as reported recently in the case of gonadotropin, catechol-
amine, cortisol, sex steroids, GH, IGF-I, and insulin (252–
262). Given optimal sampling and assay conditions, the re-
maining challenges are to quantify the mass of hormone
secreted in pulses and basally (item 1), estimate the amount
removed (item 2), and allow for unexplained biological vari-
ability (item 3).

B. Definition of deconvolution analysis

Determining underlying secretion or elimination rates (or
both) from a hormone-concentration profile is termed de-
convolution analysis. According to lexicons, deconvolution
is a process by which the result produced by two (or more)
interlinked processes is disentangled or disentwined to re-
veal the underlying components. The etymology is de, from,
and convolvere, to roll together. Deconvolution procedures
estimate the simultaneous contributions of accumulation (se-
cretion) and dissipation (elimination) to a measured outcome
(hormone concentrations). The idea is to decompose a con-
centration profile into underlying secretion and elimination.
Concentrations �C(t)� are described by 1) the elimination of
previously secreted hormone; 2) ongoing secretion S(t) into
and elimination E(t) from the system; and 3) random exper-
imental variability, as follows:

C�t	 � E�t	 � C�0	 	 �
0

t

S�z	 � E�t 
 z	 dz 	 �i

(1)

The first term on the right side of the equation represents the
concentration remaining at time t given a starting concen-
tration, C(0), acted upon by an elimination function, E(t). The
middle term is a convolution integral, which denotes that

secretion and elimination between time zero and t are eval-
uated by summing the product of their effects over all in-
finitesimally short intervals, dz. Taking the product of the
two functions, S(z) and E(t 
 z), indicates that the effects of
input and output contribute jointly to describing how much
of the secretion at time z remains in the concentration at time
t. The expression (t 
 z) in the elimination function denotes
that removal only proceeds after secretion has occurred at
time t. The rightmost term, �i, signifies unexplained vari-
ability in the observed concentrations. Random variability
may be technical or biological in origin.

Figure 5A schematizes the fundamental notion of decon-
volving (unraveling) a concentration profile into component
secretion and elimination rates. Secretion comprises a vari-
ably pulsatile (intermittent) and stable basal (nonpulsatile or
slowly varying) component, and elimination a biexponential
process (26, 32). Reconvolution is the inverse operation of
calculating C(t), given known or estimated S(t) and E(t). One
estimates secretion and elimination parameters iteratively by
repeatedly comparing reconvolution curves with measured
concentrations. Figure 5B shows one of the steps in this
interactive estimation process. Deconvolution methods com-
prise various analytical algorithms with individual assump-
tions (Table 1).

C. Fixed half-life deconvolution methods

Deconvolution methods that utilize a priori half-life esti-
mates were developed first historically, as reviewed else-
where (21, 22, 263, 264). Assuming a known half-life makes
the deconvolution problem of calculating secretion (given
concentrations) more tractable mathematically (93). A host of
nonparametric and some parametric methods are in this
category (Table 1). If half-lives are restated as rate constants
in the E(t) function (t1⁄2 � ln 2/rate constant), deconvolution
permits one to calculate secretion rates, S(t), from serial hor-
mone concentrations, C(t). A caveat is that hormone kinetics
(fast and slow half-lives and their relative amplitude con-
tributions) must be estimated validly and precisely in the
actual physiological or pathophysiological context under
study (e.g., matched for hepatic and renal function, hydra-
tional status, gender, age, and body composition). An issue
is whether a mean kinetic estimate obtained in one cohort
of subjects is adequately representative in another cohort
and among different individuals. In the latter regard, ex-
pected biological variability of kinetics among individuals
has stimulated the development of so-called blind decon-
volution methods to estimate secretion rates and hormone
half-lives simultaneously from the hormone-concentra-
tion profile (11, 15, 32). Nonetheless, simultaneous esti-
mation of secretion and elimination rates introduces sev-
eral fundamental challenges.

D. Challenges in deconvolution analysis

Valid deconvolution analysis requires precisely framing
an otherwise ill-posed mathematical problem to allow a com-
puter-assisted solution. The problem is considered ill-posed
because several different answers could result from analyses,
unless suitable precautions are stipulated. Table 2 illustrates
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this difficulty, wherein different deconvolution estimates
arise for the same method applied to the same data set (LH
profiles). Accordingly, a necessary feature of deconvolution
analysis is to obtain statistically reliable (reproducible) and
valid (true) estimates of basal and pulsatile secretion and
hormone elimination simultaneously. Stated technically, the
mathematical objective is to guarantee asymptotic parameter
uniqueness, defined as model realizability. The point is that
many different solutions should not be possible for the same
data set. The challenge of ensuring unique estimates of
hormone secretion and elimination emerges because of
strong statistical interdependence (high cross-correla-
tions) among four classes of parameters (93):

• Half-life of hormone elimination.

• Basal secretion rate.
• Secretory-burst size (amplitude or mass) and shape

(waveform).
• Number and locations of secretory bursts.

Recent methods to address this impasse exploit special-
ized model forms and simplifying assumptions.

E. Simplifying assumptions in deconvolution analysis

The particular assumptions underlying any method
must be recognized and shown to be noncritical to the
study context. Assumptions fall into several broad cate-
gories: 1) the half-life and distribution volume (Vd) do not
change during the observation interval; 2) basal secretion

General Concept of Deconvolution Analysis
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FIG. 5. A, Principle of deconvolution analysis to
decompose a hormone concentration peak (top)
into an underlying secretory burst of finite mass
and shape, basal secretion, an exponential elim-
ination process, and random (stochastic) effects
(bottom, left to right). B, One step in the inter-
active process of repeatedly estimating pulse am-
plitudes (continuous line) and hormone half-life
(interrupted line) simultaneously to fit hormone
data shown by the asterisks. Arrows depict pu-
tative pulse-onset times.
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is arbitrarily time-invariant (a fixed value), zero, slowly
varying or some lower bound (e.g., 5%) of all sample
secretion rates; 3) pulses are instantaneous secretion
events (delta functions) or finite-duration bursts of ho-
mogeneous symmetric or asymmetric shape; 4) candidate
pulses are identified first, and then secretion and elimi-
nation parameters are estimated, conditional on each set
of possible pulse times; and 5) stochastic contributions
(random effects) enter into the observations and the bio-
logical dynamics.

F. Impact of analytical assumptions on secretion estimates

1. Uniformity and reproducibility of half-life and distribution vol-
ume. The assumption that hormone half-life and distribution
volume (Vd) are uniform during a sampling session has not
been rigorously tested. In one study, the slow component of
the biexponential half-life of injected GH in healthy young
men was several minutes shorter in the morning than
evening, although Vd was not different (265). The exact basis
for and reproducibility of the inferred diurnal variation are

TABLE 1. Deconvolution methods: overview

Type Concept Examples First author (Ref.)

Nonparametric component Smoothed secretion assumed half-
life

Insulin Turner et al. (355)

Gaussian smoothing PULSE Veldhuis et al. (24, 30)
Smoothed secretion Cortisol Jusko et al. (22)
Smoothed secretion LH Rebar et al. (21)
Smoothed baseline ULTRA Van Cauter et al. (23)
Use known kinetics WENDEC De Nicolao and De Nicolao

(356)
Maximum-entropy Bayesian method;

spline smoothing for basal
secretion; pulses superimposed;
random effects

Maximum-likelihood and
Bayesian estimation

Yan et al. (357)

Discrete Calculate sample-by-sample
secretion rate given half-life

DETECT Oerter et al. (245)

Parametric Assumed kinetics: blind method to
estimate secretion and kinetics
using gaussian bursts

PULSE4, DECONV Johnson et al. (276), Veldhuis
et al. (11, 27, 93)

Combined nonparametric and
parametric

Identify pulses and predict secretion
and kinetics; linear or exponential
pulse upstroke; poisson pulse
timing

Generalized cross-validation,
autoregressive with
feedback, Bayesian and
MLE

O’Sullivan and O’Sullivan
(317), Diggle and Zeger
(299), Kushler and Brown
(246), Guo et al. (358)

Estimate secretion and kinetics
conditional on pulse times

Stochastic components
allowable; MLE structure;
flexible gamma waveform;
Weibull pulse-renewal
process; pattern search
algorithm with
nonnegativity constraint

Keenan et al. (12, 16, 32),
Chattopadhyay (36)

Dual secretory-burst
waveforms

Two secretory-burst shapes
permitted

Model-selection criteria for 1
vs. 2 burst types

Keenan et al. (15, 35)

Bayesian model Pulsatile and basal secretion jointly
estimated

Bayesian and stochastic
models nonparametric

Johnson (293), Breda and
Cobelli (359)

Parametric Keenan et al. (26)
Binding proteins and free

hormone included
Pulsatile and basal secretion and

unbound-hormone kinetics
estimated

Estimate free Te and cortisol
kinetics

Keenan et al. (16, 17, 34, 35)

Estimate unobserved hormone
signal in tripartite system

Pulsatile and basal secretion;
stochastic pulse allowances;
feedback and feedforward
estimation

GnRH-LH-Te ensemble;
reconstruct unobserved
GnRH signal;
mathematically verified
realizability

Keenan et al. (17),
Chattopadhyay et al. (36)

Definitions: Bayesian estimation—incorporation of prior knowledge as mathematical conditions, e.g., the measured concentrations, popu-
lational distribution of half-lives, to obtain a maximum a posteriori estimate of the parameters.

Blind deconvolution—estimation of both the input (secretion) and the output (elimination) process, when neither is known.
Linear system—a model in which a change in an input parameter (secretion rate or half-life) produces a proportionate (linear) change

in output (mean concentration).
MLE—maximum-likelihood estimation wherein the parametric solution is asymptotically unique.
Model—a theoretical construct used to visualize, predict or estimate the properties of a phenomenon.
Model-selection criteria—statistical rules for choosing a low-parameter model that is most representative of the data; e.g., AIC or

BIC.
Nonparametric deconvolution—regularized (smoothed) estimation of secretion rates whether or not bursts are present, given elimination

rates and a rule for penalizing excessive smoothing.
Parametric deconvolution—model-defined algebraic construct to estimate secretory-burst shape, size, and number, basal secretion, hormone

elimination, and error terms.
Combined parametric and nonparametric deconvolution—candidate pulse times are proposed independently as discrete values; then,

secretion and elimination parameters are estimated as continuous variables conditional on the choice of pulse times.
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not known. In another investigation, the metabolic clearance
rate (MCR) of infused cortisol �where MCR � (ln 2/half-
life) � Vd�, was higher after ACTH stimulation than saline
infusion (266). This outcome would occur if unbound (free)
or albumin-bound cortisol were removed more rapidly than
CBG-bound cortisol (35). The same phenomenon could occur
briefly in the morning when free cortisol concentrations are
higher than in the evening and during stress-induced or
pathological cortisol elevations (35, 164, 267).

A second assumption is that a mean cohort estimate of
half-life is appropriate to apply to individual subjects. Data
on this point are not extensive. However, analysis of multiple
C-peptide decay curves revealed intersubject CVs for the
rapid and slow-phase half-lives of 24 and 18.5%, respectively
(268). In contrast, intraassay CVs for many hormones are
approximately 3–6.5% (75, 269). Interindividual CVs for
slow-phase half-lives of infused GH in octreotide-treated
healthy adults and of LH in GnRH antagonist-treated normal
men averaged 20 and 32%, respectively (145, 265, 270–272).
Published estimates represent minimal CVs because disease,
posture, hydration status, age, gender, and body composi-
tion further modify hormone kinetics. For example, in one
study visceral adiposity reduced the half-life and increased
the MCR of recombinant human GH by 33% in women (273),
and in another age augmented the MCR and Vd of recom-
binant human GH by as much as 65% (274). Thus, investi-
gators must be aware that using fixed cohort-based kinetics
may bias secretion estimates in some subjects.

2. Basal hormone secretion. Basal secretion may be defined as
nonpulsatile (constitutive) hormone release, which may or
may not be time-invariant over prolonged intervals. The
semantically similar term, baseline, refers to noninterven-
tional observations (e.g., baseline measurements). The basal
secretion rate is not known in vivo for most hormones. In-
deed, few studies have assessed regulation of basal secretion.
The difficulty in discriminating between basal and burst-like
hormone release arises analytically when 1) pulses overlap
or are closely spaced, and 2) blood sampling is too infrequent
to demarcate valleys between pulses. These points are ex-
emplified by GH secretion patterns during deep (stages III

and IV) sleep and fasting when secretory bursts are partially
superimposed, and anytime if blood sampling is too infrequent
to capture stretches of interpulse concentrations (64, 66, 68).

Pragmatic avenues to enhance accurate estimation of basal
secretion include: 1) first sample over 24 h to assess when
pulses are least frequent and when nonpulsatile release is
most apparent; 2) then sample frequently at the best time to
obtain three to five consecutive unchanging measurements
between pulses; and 3) selectively antagonize the endoge-
nous secretagogue that drives pulsatility. The last point is
illustrated by the administration of escalating doses of a
selective GnRH-receptor antagonist. The antagonist progres-
sively reduces the size of LH pulses, leaving essentially non-
pulsatile LH concentrations (275). At present, this approach
is less readily implemented in other axes due to the absence
of suitable secretagogue-receptor antagonists. Possible ex-
ceptions are GHRH and angiotensin II-receptor antagonists,
which in principle could assist in the estimation of basal (or
more particularly, non-GHRH dependent and non-angio-
tensin II dependent) secretion of GH and aldosterone, re-
spectively. However, GHRH is not the sole factor mediating
GH pulse generation, inasmuch as normally timed GH
pulses persist in patients with inactivating mutations of the
GHRH receptor, albeit at 30-fold lower amplitude. The same
limitation applies to aldosterone secretion, which is regu-
lated by potassium, ACTH, and other factors distinct from
angiotensin II. Accordingly, innovative strategies are needed
to determine whether basal secretion of any given hormone
is: 1) dependent upon acute vis-à-vis long-term agonist input,
and 2) influenced by age, gender, body composition, phys-
iological state, and/or disease.

3. Secretory-burst duration and shape (waveform). A contempo-
rary tenet is that significant burst-like hormone release re-
flects intermittent inputs by secretagogues and/or inhibitors.
Prototypical examples are GnRH-induced LH and CRH-
stimulated ACTH pulses. If this premise is valid, then de-
termining the number and size of secretory bursts should
confer insights into the timing of upstream signals, glandular
responsiveness to the signals, and concomitant feedback.
Accordingly, both the size and shape of secretory events

TABLE 2. Example of ill-posed deconvolution problem

Infused LH profile1 Simulated LH profile2 Sheep LH profile3

A. Starting Estimates
Burst SD (min)a 1 10 30 1 10 30 1 10 30
Half-life (min) 15 50 150 15 50 150 15 50 150
Basal secretionb 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1
Starting concentration 1 1 1 1 1 1 1 1 1
B. Deconvolution results
Frequency (per session) 6 6 zero 16 17 4 zero zero zero
Burst SD (min)a 2.6 2.5 
9.9 0.74 1.3 0.5 
0.58 
100 1.2
Half-life (min) 61 49 551 53 50 334 2.2 2.3 391
Basal secretionb 0.03 0.05 0.009 0.02 0.02 0.003 3.0a 2.8 0.02
Mass/burstb 5.9 5.5 zero 3.0 2.9 1.7 zero zero zero

Analyses used a web-based automated deconvolution (AutoDecon) program downloaded from http://mljohnson.pharm.virginia.edu/down-
loads.html on 11/07/07. The three 10-min LH profiles are listed in the Appendix (published as supplemental data on The Endocrine Society’s
Journals Online web site at http://mend.endojournals.org) as �Lhinfused,� �Lhsimulated,� and �Lhsheep.�

1, 2, 3 True pulse numbers were 6, 16, and 7, respectively, based upon specified LH injections, explicit simulations, and portal-venous GnRH
pulses.

a
SD of Gaussian burst.

b Concentration units per minute for basal secretion and concentration units for mass.
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should provide important insights into physiology and
pathophysiology. Earlier methods were generally insensitive
to subtle or even moderate differences in pulse shape (1–4).

Figure 6A schematizes three principal categories of mod-
eled secretion processes: instantaneous, symmetric and
asymmetric burst shapes (waveforms). The waveform of the
secretion event at any given elimination half-life controls the
shape of the concentration peak. The assumption that in vivo
secretory bursts are instantaneous (zero-duration) events is
unduly restrictive in many contexts and physiologically in-
valid in others. This point was demonstrated by directly
sampling GnRH, AVP, CRH, GHRH, SS, ACTH, GH, LH,
FSH, Te, progesterone, PTH, cortisol, and insulin secretion as
often as every 30 sec to 5 min in the horse, sheep, dog, pig,
rat, or human (1, 4, 146). An alternative assumption is that
sample-by-sample secretion rates may be smoothed with a
fixed Gaussian function would also be arbitrary (24, 30, 276).

The shape of an underlying secretory burst is defined
formally as the time course of instantaneous secretion rates

comprising a burst, as distinct from the shape of the mea-
sured hormone-concentration peak. Although bursts are dif-
ficult to sample directly in the human, insights have been
obtained by monitoring venous drainage of endocrine glands
in vivo in animals (37, 38) and perifused cells in vitro (277,
278). Studies of this kind reveal significantly asymmetric
secretion events characterized by a rapid increase in secre-
tion toward a maximum, followed by a slow decrease toward
basal. This is illustrated when LH secretory bursts are de-
lineated by sampling pituitary blood every 30 sec in the
conscious horse. Precisely how hormone type, species, age,
sex, stress, and endocrine status modulate secretory-burst
shape individually and jointly is not yet known.

Figure 6A illustrates further that when a secretion event is
instantaneous (mathematically a delta function), the elimi-
nation half-life can be calculated directly by exponential re-
gression of decreasing hormone concentrations on time (left
panels). On the other hand, when a secretory burst is asym-
metric, but erroneously assumed to be instantaneous, expo-

Time (min)
S

e
c

re
ti

o
n

 (
  

  
  

  
),

 C
o

n
c

e
n

tr
a

ti
o

n
 (

  
  

  
  

)

Impact of Secretory-Burst Waveform and Hormone Half-Life

Instantaneous Gaussian Gamma

Half-Life

15 min

30 min

90 min

Variable Secretory-Burst Waveform

Concentration Peak [H] Expanded Secretory Burst

β0 = basal

β1 β3 = upstroke

β3 = peakedness

β3/β2 = downstroke

Gaussian-like granule exocytosis

[H]

(S)

Time

(S)t

Time

β0

β3

β3/β2

Secretion Rate (S)

Generalized Gamma flexible model

β1 β3

A

B

FIG. 6. A, Simulated impact of half-life (top to bottom)
and secretory-burst waveform (interrupted curves, left
to right) and on the resultant shape of hormone-con-
centration peaks (continuous curves). Instantaneous
secretion (delta function) yields a sharp peak, from
which elimination half-lives may be estimated directly
by exponential regression (left column). Symmetric
Gaussian (middle) and asymmetric gamma (right) se-
cretory bursts widen the peak and slow the descent of
the concentration curve. B, Mathematical formulation
of a flexible generalized gamma-probability model of
secretory bursts. The three-parameter gamma wave-
form encompasses both rapid initial Gaussian-like (ap-
proximately time-symmetric) hormone release and de-
layed continuing (time-asymmetric) secretion. The
three � parameters confer full flexibility of burst
shape.
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nential regression of concentrations on time would predict a
spuriously long half-life (right panels). An intermediate de-
gree of bias would arise if the secretory event were sym-
metric, but assumed to be instantaneous (middle panels). Ac-
cordingly, a flexible-waveform (gamma) model is important
to embody variable waveforms ranging from Gaussian-like
to asymmetric bursts (15–17, 26).

Models of secretory bursts should link time-evolving
kinetics of exocytosis to the macroscopic waveform of
hormone release (60, 279). Figure 6B presents a simplified
mathematical construct of a putative in vivo (asymmetric
gamma) secretory burst superimposed upon low basal con-
stitutive release. In this model, exocytosis comprises rapid
initial Gaussian-like discharge of membrane-localized
granules and delayed but sustained exocytosis of newly
available secretory granules. The burst is ultimately
quenched by feedback factors and dissipation of the ag-
onistic signal (15, 32, 92).

G. Deconvolution analysis of secretory-burst waveform

Several mathematical approaches exist to evaluate secre-
tory bursts (Table 1). Nonparametric deconvolution meth-
odologies assume a known fixed half-life to obtain estimates
of sample-by-sample instantaneous secretion rates (discrete
ISR) or locally smoothed secretion profiles (24, 30, 264, 276,
280, 281), thereby eschewing any model of shape. One para-
metric deconvolution approach approximates the shape of
secretory bursts with a symmetric Gaussian function (two-
parameter probability distribution) (11). A Gaussian burst
represents rapid initial release but fails to capture delayed
secretion. A more recent deconvolution method imple-
ments a flexible gamma function (three-parameter prob-
ability distribution), which embodies rapid and delayed
exocytosis in a continuous asymmetric burst (12, 26, 32, 33,
61) (Fig. 6B).

Outcomes of the three constructs (ISR, Gaussian burst, and
gamma waveform) are not identical. The discrete ISR tech-
nique can yield rapid oscillations in baseline secretion rates
referred to as ringing. The Gaussian (symmetric-waveform)
model may overestimate pulse frequency and hormone half-
life by generating false-positive peaks with slower decay to
accommodate de facto burst asymmetry. The gamma (vari-
able-waveform) model should recover burst number and
variable secretory-burst shape.

H. Influence of secretory-burst offset

Secretory bursts with finite duration definitionally com-
prise an onset, a peak rate of secretion, and an offset (trailing
edge of diminishing secretion). An important reason to es-
timate secretory-burst waveform accurately is to decompose
(deconvolve) plasma-hormone concentration peaks correctly
into underlying secretion and elimination components. An
analytical impediment is that secretory-burst shape, size and
timing, basal secretion, and elimination half-life are strongly
intercorrelated. Interdependence among parameter esti-
mates forces the momentary estimate of any one parameter
to alter that of all correlated parameter estimates, rendering
unique parameter estimation difficult.

If any given hormone-concentration peak could result
from different secretory-burst shapes paired with different
half-lives, how could one determine the true shape? A recent
approach is to estimate the onset times of secretory bursts
independently, and then use maximum-likelihood estima-
tion (MLE) or Bayesian estimation to obtain estimates or
probability distributions of the shape parameters and half-
life simultaneously (15, 17, 26, 36). The new strategy, which
addresses a longstanding quandary (93), was justified by
direct mathematical proof of realizability and by primary
experimental validation in three species (12, 16, 17, 36).

Burst-like secretion into the bloodstream generates a peak
in hormone concentrations. Molecules entering the circula-
tion are subject to rapid initial distribution in the blood due
to aqueous diffusion (random molecular dispersion), advec-
tion (linear flow due to heart action), and convection (ad-
mixture due to fluid turbulence) (282). Molecules are re-
moved more gradually by a finite probability of irreversible
elimination (Fig. 7A). Correctly modeling these combined
kinetic factors from first principles requires an algebraically
biexponential (two half-lives) rather than monoexponential
(one half-life) formulation (16, 26) (Fig. 7B). The reason is
that, although widely used, monoexponential models sig-
nificantly overestimate basal secretion (by failing to utilize an
adequately slow half-life, which is required to find the true
basal rate) and underestimate the size of high-amplitude
secretory bursts (by failing to use a sufficiently rapid half-life,
which is needed to find the true height of the peak) (33).
Overestimation of basal secretion accentuates pulse under-
estimation because a falsely high prediction of the basal
contribution to any given concentration reduces the apparent
size of each pulse. These points are verifiable empirically
by showing that the distribution volume predicted by
monoexponential compared with biexponential kinetics is
inflated by a factor of as much as 3.3 over that determined
independently in LH-depleted men injected with known
pulses of synthetic LH (32, 148) (Fig. 7C). The distribution
volume is the slope of the estimated mass of infused LH
(IU per liter of Vd) regressed on the true mass of injected
LH (IU).

I. Regulation of hormone secretory-burst onset

Secretory-burst onset (initial rise in or upstroke of secre-
tion rate within a burst) is subject to physiological regulation
in each hypothalamo-pituitary axis studied to date, viz., the
gonadotropic, corticotropic, thyrotropic, and somatotropic
axes. This is exemplified by variable-waveform (gamma
rather than Gaussian) deconvolution analyses of 24-h LH-
concentration profiles obtained at three stages of the human
menstrual cycle and in postmenopausal women (89) (Fig. 8,
left). In the gamma model, secretory-burst shape is calibrated
by the mode of the secretory burst (time delay from objective
burst onset to maximal secretion). For LH, the mode aver-
aged 31 min in the midluteal phase, 19 min in the early
follicular phase, and 16 min in estrogen-deficient postmeno-
pausal women. Estimated shapes of ACTH, TSH, and GH
secretory bursts are also regulated physiologically. ACTH
and TSH secretory bursts are abbreviated by feedback with-
drawal and unknown nighttime factors, respectively (15, 26,
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35). Conversely, GH secretory bursts are prolonged by E2 and
shortened by peptidyl secretagogues (283). The collective
data indicate that sex steroids, negative feedback, time of
day, and secretagogues can control the waveform of pituitary
secretory events.

J. Deconvolution with pulse detection

1. Critical nature of accurate pulse times. A significant imped-
iment to valid and reliable parametric deconvolution anal-
ysis is that errors made in the assignment of pulse number
and/or timing bias estimation of secretion and elimination
parameters. Simulations illustrate this issue. Imputing su-
pernumerary pulses (false-positive errors) spuriously de-

creases estimates of mean secretory-burst mass, basal se-
cretion, and hormone half-life. Omission of true pulses
(false-negative errors) has the opposite consequences. In-
valid timing of the correct total number of pulses unpre-
dictably corrupts recovery of true burst size, shape, basal
secretion, and elimination. Therefore, accurate peak iden-
tification is a necessary, but not sufficient, condition for
valid parametric deconvolution analysis. Nonparametric
deconvolution does not require burst identification and
thus has utility when secretion rates but not pulses need
to be estimated (21, 22, 263, 264, 284).

2. Validation of pulse detection. Validation of pulse-detection
methods requires direct comparison of analytical estimates
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FIG. 7. A, Fate of hormone molecules secreted into the bloodstream. Mathematical components comprise a partial derivative on space and time
to define diffusion (random molecular motion in solution), a first derivative on time to reflect advection (linear blood flow due to cardiac action),
and a finite elimination probability to denote irreversible removal or degradation. B, Combined equation system derived from the first principles
of panel A. Any momentary concentration, X(t), arises from double-exponential elimination of starting concentrations, X(0), nonpulsatile basal
secretion, �0, and pulsatile hormone secretion, P(r). C, Error in estimating the plasma Vd (slope of deconvolved LH mass regressed on injected
LH mass) due to using a single-exponential rather than dual-exponential model of hormone elimination. Independent studies establish that
Vd is approximately 3.5 liters for human LH (148).
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with known pulse trains using any of several experimental
paradigms (Table 2). One needs to identify true-positive,
false-positive, true-negative, and false-negative pulses and
then construct a receiver operating-characteristic curve
(ROC) (285). Validation of a variable-waveform (gamma)
deconvolution method recently used several of these ap-
proaches, viz.: 1) direct sampling of hypothalamo-pituitary
portal-venous blood in the conscious horse or sheep; 2) in
vivo suppression/infusion paradigms; and 3) mathematical
simulations of pulsatile hormone series (12, 16, 17, 286).

3. Methods of pulse enumeration in deconvolution analysis. De-
convolution techniques described earlier by Veldhuis and
Johnson (11, 24, 27, 30, 93, 276) did not incorporate automated
objective ascertainment of pulse number and locations. Po-
tential pulses were added by the analyst according to em-
pirical criteria such as a run of two or more positive residuals,
which suggests underfitting consecutive concentration val-
ues (146, 287). A putative pulse was ultimately retained if the
calculated amplitude (maximal secretion rate) or mass (in-
tegral) was significantly nonzero on post hoc testing of indi-
vidual or joint 95% statistical confidence intervals. Although
adding a potential peak is now automated based upon the
runs test, autocorrelation, and the reverse-rearrangements
test (276), what remains unclear on formal statistical grounds
is whether confidence intervals should be calculated for in-
dividual pulse amplitudes, for a subset of amplitudes (e.g.
smallest one third), for all amplitudes, or for all secretion and

elimination parameters simultaneously. Each approach has
been used in published analyses (19, 68, 288–290). Empirical
simulations suggest that the correct choice for the Gaussian
method as framed may depend upon sampling intensity and
duration, burst size, number and frequency, data variability,
weighting of sample means by the fitting algorithm, per-
centage basal secretion, and a mono- vs. biexponential half-
life model (30, 93, 146, 287). No formal criteria exist to specify
these dependencies.

4. Simultaneous pulse detection and deconvolution. Most earlier
deconvolution models do not have mathematically verified
unique parameter asymptotes (viz., a maximum-likelihood
solution) or Bayesian-estimation capabilities. This limitation
opens the possibility that repeated analyses of the same data
set could give different answers depending upon initial pa-
rameter estimates and/or the order of parameter estimation,
as articulated a decade ago (27, 93). Simulations readily il-
lustrate this problem when using a web-based automated
deconvolution program, wherein three starting guesses are
made for basal secretion and burst duration (276). Program
results were compared with true-positive pulses created by:
1) infusing known pulses of biosynthetic LH iv after sup-
pressing gonadotropin secretion with a GnRH-receptor an-
tagonist (286); 2) mathematically simulating an LH pulse
train from mean secretion and half-life parameters obtained
in healthy men (17, 34); and 3) monitoring GnRH pulses
directly in hypothalamo-pituitary portal blood of the castrate

FIG. 8. Left, Analytically estimated LH secretory-burst waveform (shape) in six premenopausal women studied in the early and late follicular
and midluteal phases of the menstrual cycle and 16 estrogen-deficient postmenopausal women. The waveform is the time evolution of the
secretion rate within a burst, defined independently of mass by using a flexible generalized gamma probability distribution. Open circles and
numbers on x-axes give the cohort mean secretory-burst mode (time latency to achieve maximal secretion). LH profiles were obtained by 10-min
sampling for 24 h. Right, Interpulse-interval distributions in the same women. Lambda and gamma denote mean probabilistic pulse frequency
(per 24 h) and interpulse regularity (unitless), respectively. �Adapted from D. M. Keenan et al.: Am J Physiol 285:E938–E948, 2003 (89).�
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ewe. Limitations of ill-posed techniques have prompted the
development of mathematically verified (statistically asymp-
totic) methods, such as MLE and Bayesian models.

5. MLE. Several MLE methods exist (Table 1). However, in
most cases comprehensive in vivo validation has not been
performed. One recent MLE-based deconvolution model
was validated experimentally in three mammalian species
and verified statistically by direct mathematical proof (15, 17,
26, 32, 36). The concept is to first remove any long-term
trends in the hormone profile using the classical heat equa-
tion, and then normalize concentrations to the unit interval
(0, 1) (26, 36). The next step is to create a registry of all possible
sets of pulse-onset times via repeated incremental smoothing
(a nonlinear-diffusion algorithm), motivated by analogy
with modern image boundary-detection theory (291). (A
pulse onset is analogous to a boundary edge.) To this end, the
algorithm initially marks all local minima to define an ex-
haustive pulse-time set of N pulses, and then very gradually
smoothes away (removes) the statistically least significant
minimum one at a time to create a succession of reduced
pulse-time sets. This is illustrated for a 24-h ACTH profile in
Fig. 9A. The outcome comprises multiple successively dec-
remental pulse-time sets containing N, N-1, N-2, N-3 . . . . 1
pulse(s).

To eschew bias, all parameters are estimated simulta-
neously conditioned on each candidate pulse set (26) (Fig.
9B). The secretion, elimination, and variability (random-ef-
fects) parameters (total n � 10) are computed via an MLE
procedure. The random effects are reconstructed as their
conditional expectations, given the observed data. Then, the
most probable (optimal) pulse-time set is chosen from among
the registry of N pulse-time candidates via a statistical mod-
el-selection criterion, such as the Akaike information crite-
rion (AIC) or Bayesian information criterion (BIC), discussed
further in Section VI.N.1 (292).

6. Bayesian estimation. Bayesian models offer a mathematical
strategy that is distinct from and complementary to MLE
methods (26, 293). A recent Bayesian approach made pos-
terior probability estimates of secretory-burst number, size
and shape, hormone half-lives, and basal secretion of mul-
tiple anterior pituitary hormones (26). A Bayesian platform
allows one to estimate each secretion and elimination pa-
rameter as a posterior probability distribution (in this case
the distribution is approximated by 100 values). Parameter
estimates for any one hormone profile may be viewed as a
range of values expected some fraction, such as 50 or 95%, of
the time, or as a mean � sd. The Bayesian structure also
permits one to utilize prior independently obtained infor-
mation, such as the populationally determined half-life, in
framing probabilistic estimates of parameters. An experi-
mental limitation is that accurate prior values may not be
known for certain study contexts.

7. Future directions. Formal comparisons are needed between
maximum-likelihood and Bayesian models under different
conditions of blood sampling, hormone assay, and patho-
physiological pulsatility. Innovative analytical approaches
should also advance the field further.

K. Nature of pulse-timing (pulse-renewal) process

1. Gaussian and Poisson models. Accurate pulse enumeration
allows one to evaluate pulse-timing (pulse-renewal) mech-
anisms. This may seem unimportant, inasmuch as hormone
pulses recur after apparently random time delays. However,
several kinds of random pulse-renewal processes can be
distinguished biologically (294, 295). The term renewal pro-
cess implies that successive interpulse-interval lengths (wait-
ing times) are independent (296), and thus the underlying
burst-generator mechanism is memoriless (297, 298). Any
train of N pulses has a set of N-1 interpulse intervals, for
which a central tendency (mean, median, mode) and mea-
sure of dispersion (range, sd, sem) can be estimated. The
question arises what type of stochastic process would best
explain interpulse intervals in health and disease. Two com-
mon types of random distributions are a truncated-Gaussian
(normal) and Poisson (exponential). A Gaussian distribution
is defined fully by its mean and sd, and a Poisson process by
the probabilistic mean event rate �lambda� (294). Clinical in-
vestigations indicate that neither Gaussian nor Poissonian
models will adequately explain LH, ACTH, TSH, GH, or
insulin pulsatility evaluated by sampling blood every 10 min
for 24 h (pituitary hormones) or every 1 min for 2–4 h (in-
sulin) (15, 26, 34, 35, 89). Accordingly, earlier pulsatility sim-
ulations based upon Gaussian or Poisson models may not be
realistic (25, 249, 299).

2. Weibull pulse-renewal model. Interpulse-interval variability
in human neuroendocrine systems is approximately 20–60%
�expressed as a CV (sd/mean � 100%)� (12, 15, 17, 26, 34, 35,
89, 91, 92, 300). Although a two-parameter symmetric
Gaussian distribution could have a CV in this range, dis-
tributions of physiological interpulse intervals are not
symmetric. Albeit asymmetric, the one-parameter Poisson
process is unsatisfactory because the interpulse-interval CV
is fixed at 100%, given that sd � mean by definition in this
case (301). A third model is the Weibull renewal process,
which includes the Poisson as a special member (294). The
Weibull distribution allows for flexible interpulse-interval
variability, wherein CVs can vary from 100 to 0% asymp-
totically (26, 92). Flexibility is achieved by independently
defining gamma �a unitless term, proportional to the CV�,
which describes the regularity of the pulsing and lambda
�mean probabilistic pulsing frequency�. For gamma � 1, the
Weibull distribution simplifies to the Poisson with an inter-
pulse-interval CV of 100%. For gamma greater than 1.0, the
CV of interpulse intervals is less than 100%, thereby emu-
lating inferred physiological variability of 20–30% (15, 17, 26,
89, 92). As gamma approaches infinity, the pulse times ap-
proach exact regularity, i.e., equal spacing. By way of exam-
ple, the distribution of 67 LH-interpulse intervals was ob-
tained by analyzing the LH profile of a healthy older man
sampled every 10 min for 4 d without interruption. Gamma
was 2.51 and lambda 14.9 pulses/24 h, yielding a CV of
22.1%, well below 100% required for a Poisson process. In
contrast, when a mechanical infusion pump was used to
inject 6-min squarewave iv pulses of recombinant human LH
every 120 min, gamma was 164 (denoting marked regularity
of interval lengths) and lambda was 12 pulses/24 h. Few data
of this kind exist.
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FIG. 9. A, Concept of estimating multiple pulse-onset
times by repeated incremental smoothing (nonlinear diffu-
sion) of a hormone-concentration profile (top pictograph).
Data are first detrended by the heat equation and normal-
ized to the unit interval (0, 1) (data not shown). The incre-
mental smoothing algorithm then gradually removes indi-
vidual nadirs (points with least rapid subsequent increases)
from the concentration time series (horizontal axis), leaving
successive sets with one less pulse time each (asterisks).
Thus, algorithmic cycles (oblique axis) create a family of
decremental sets of potential pulse times, e.g., 34, 33,
32 . . . 3, 2, 1 pulse(s) per set. Columns of asterisks (middle
section) show the locations of retained pulse onsets as a
function of successive algorithmic runs. The maximum
(starting) and a reduced candidate pulse set (bottom) are
illustrated for a 10-min ACTH concentration profile. B,
MLE of 10 simultaneous parameters of secretion and elim-
ination statistically conditioned upon individual candidate
pulse sets (step I, top). Pulse-mass random effects are re-
constructed as conditional expectations evaluated at the
MLE (steps II and III, middle). The final choice among
multiple possible pulse-time sets is made by objective mod-
el-selection criteria, such as the AIC or BIC (step IV, bot-
tom). Parameter asymptotics were verified by direct math-
ematical proof, and peak detection was validated by
experimental paradigms (15, 17, 26, 36).
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3. Physiological insights into pulse-renewal mechanisms. Appli-
cation of the flexible Weibull renewal-process model has
unveiled physiological regulation and pathological disrup-
tion of neuroendocrine mechanisms that control pulsing reg-
ularity as well as frequency. For example, gamma (pulsing
regularity) and lambda (probabilistic mean pulse frequency)
of 24-h LH time series both differ among pre- and post-
menopausal women and young and older men (89, 92). In
particular, the regularity and frequency of LH pulses are
lower in the midluteal than the early-follicular phase of
young women (89) (Fig. 8, right). Conversely, LH interpulse-
interval regularity and pulse frequency are higher in older
than young men (300). Reduced cortisol concentrations and
sleep increase mean pulse frequencies of ACTH and TSH,
respectively, but neither condition alters interpulse-interval
regularity (12, 15, 35). GH pulse frequency and interpulse-
interval regularity do not differ in post- and premenopausal
individuals (283). Thus, negative feedback, gender, age, and
time of day can differentially control pulse frequency and
pulsing regularity. The biochemical and cellular bases for
such finely tuned regulation of stochastic pulse-renewal pro-
cesses remain unknown.

4. Weakly coupled pulse automata. A theoretical rationale for
using the Weibull renewal process is to allow for sparse
feedforward or feedback coupling among putative pulse au-
tomata (294). Automata (independently randomly firing
units) are strictly uncorrelated stochastic processes. How-
ever, the fact that gamma of Weibull exceeds unity (typical
values are 1.8–3.1) in neuroendocrine systems could indicate
weak feedforward, partial refractoriness, or delayed feed-
back among oscillators. Any of these processes would con-
tribute to lesser variability than a classical Poisson process
(89). Because gamma (regularity) of LH pulsing is higher in
older than young adults, age per se may influence the sto-
chastic behavior of GnRH-neuronal oscillators (89, 92).

Beyond comparing the distributions of interpulse inter-
vals, one may ask whether the relative randomness of two
sequences of consecutive interpulse intervals is distinguish-
able. Weak serial correlation was inferable in an autoregres-
sive moving-average model of electrophysiologically de-
fined GnRH interpulse intervals in two ovariectomized
monkeys, and by autocorrelation analysis of LH interpulse
lengths in women in the late luteal phase of the menstrual
cycle (298, 302). Autocorrelation was not evident in other
stages of the menstrual cycle or in healthy young men (297).
A significant degree of (low-order) autocorrelation would
suggest that factors associated with the preceding pulse
time(s) directly or indirectly influence the next pulse time.
The explicit nature of such factors is not known, but it could
include autofeedback by secreted or diffusible factors.

A precise discriminator of the relative randomness of serial
processes or time series is the ApEn statistic (238, 242). ApEn
is a sensitive and specific measure of the regularity or re-
producibility of subpatterns in numerical sequences (303–
306). ApEn analyses reveal that LH, TSH, ACTH, and GH
interpulse-interval sequences in men and women are mean
random, viz., statistically indistinguishable from 1000 ran-
domly shuffled versions of the original sequences (15, 35, 92,
307). Analogous studies are needed to assess pulse-renewal

processes associated with prolactin, PTH, insulin, sex ste-
roids, cortisol, epinephrine, ADH, and oxytocin secretion.
Using data in which LH pulsatility was monitored every 10
min for 4 d in an older man, ApEn of the first differences of
the 61 successive interpulse intervals was 1.3910 compared
with 1.3636 � 0.0565 (mean � sd) of 1000 randomly shuffled
versions of the same interpulse-interval sequence (z score �
�0.53; P � 0.75; and ApEn ratio � 1.0201 � 0.0565). The
corresponding ApEn ratio was 0.9608 � 0.0617 (P � 0.18) for
the 62 sequential LH burst-mass values. The outcomes are
consistent with a memoriless, unpatterned GnRH pulse-gen-
erating process in this subject.

L. Stochastic elements in endocrine systems

Dynamic analyses require precise, specific, sensitive, valid
(true), and reliable (consistent) measurements of hormone
concentrations to accurately reconstruct underlying rates of
secretion (system input) and elimination (system output).
However, randomness (inexplicable or stochastic variability)
enters into experimental observations at multiple levels.
Three principal sources of unaccountable variations are: 1)
procedural errors (e.g., sampling and assay variations); 2)
fluctuations in the status of the sampled host (e.g., sleep-wake
cycle, posture, hydration); and 3) variability in the biological
system itself (e.g., successive pulse size and timing). Al-
though stochastic processes can enhance deterministic sig-
naling under some conditions, valid estimation procedures
must make mathematical allowance for unexplained (model-
independent) random components in experimental data (12,
15–17, 35, 89, 92, 308). For example, erroneously assuming a
purely deterministic (cause-and-effect) model in which GH
secretory bursts are identical in size and timing would mark-
edly bias analyses.

A major advance in the last decade is analytical allowance
for possible stochastic variability (12, 15, 17, 26, 32, 33, 36, 61,
293). Some recent deconvolution models allow for random
variability in the size and timing of hormone pulses and/or
the elimination process (16, 26, 32, 36, 293) (Table 1). Inves-
tigations using such models indicate that age accelerates the
mean frequency and squelches random variability in the size
of LH secretory bursts in healthy men (17, 92). Conversely,
Te supplementation accentuates random variability in the
size of successive GH secretory bursts (307). Additional stud-
ies are needed to examine the generality of such inferences
and extend insights into stochastic features of other endo-
crine systems.

M. Investigational limits of secretion-estimation procedures

No current methodology achieves all idealized character-
istics of deconvolution analysis. Therefore, the investigator
should ask several questions: 1) are a priori kinetic estimates
required for the particular deconvolution model chosen? 2)
To what degree will the results for the hormone in question
depend upon sampling frequency and duration? 3) What
analytical assumptions may affect interpretation of outcomes?
4) Has the deconvolution technique been validated in vivo, in
vitro, and/or by computer simulations? 5) Has the statistical
structure been verified mathematically? 6) Is the hormone
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time series actually pulsatile? and 7) What are the analytical
consequences of baseline trends or short epochs of increased
variability in the data?

N. Unresolved issues

Analytical procedures should have primary validity (sta-
tistical and empirical verification), reproducibility (reliabil-
ity), mathematical tractability, physiological relevance, min-
imal bias, low vulnerability to occasional outliers, flexibility
and generality of application. Even when these conditions
are met, certain questions remain unresolved.

1. Model-selection criteria. An important query is how to de-
cide objectively among different potential deconvolution
outcomes. This is referred to as a model-selection issue. In
economics, statistics, physics, and engineering, common
model-selection criteria include the AIC described in 1973, a
Bayesian version, the BIC, reported by Schwartz in 1978,
generalized cross-validation, and the risk-inflation criterion
(309–311). Each method defines a particular statistical pen-
alty for imposing greater smoothness or adding more pa-
rameters in the analysis. Parameters in deconvolution anal-
ysis include the smoothing function in nonparametric
methods, the number of pulses, and all the secretion and
elimination terms in parametric methods. A reason for pe-
nalization is that excessive smoothing degrades the original
data structure. Moreover, overparameterization, such as
adding a pulse of variable height at every other data point
(somewhat akin to Fourier or wavelet analyses with the
maximal number of basis functions) or assigning a polyno-
mial function of degree close to N-1 (where N is the number
of data points), would represent all time series precisely
without yielding any helpful insights into the biological
mechanisms.

One earlier deconvolution technique used two parameters
for each pulse (viz., its location in time and amplitude), one
parameter for basal secretion, a burst half-width term (or
Gaussian sd), and three parameters for elimination kinetics,
thus necessitating 35 parameters to fit 15 pulses (11, 93). This
structure is highly parameterized, and therefore difficult to
estimate uniquely if few (50) data points are available. A
more recent variable-waveform method specifies 10 secre-
tion/elimination parameters to deconvolve a 15-pulse pro-
file, because the MLE solution is mathematically conditioned
on independently identified candidate pulse-time sets. The
final parameter set is then selected by probabilistic informa-
tion criteria (12, 15–17, 26, 36). In this case, for a fixed elim-
ination/secretion parameter set, one may identify the opti-
mal pulse-time set by finding the minimum AIC or BIC,
defined as follows: AIC � 
(log likelihood function) � (2)
(# pulses); and BIC � 
(log likelihood function) � (ln N) (#
pulses).

A question arises in using model-selection criteria as to
whether the statistical penalty should be the same for adding
one more pulse vis-à-vis one more secretion or elimination
parameter. The query arises because for pulsatile time series
the number of estimated pulses is implicitly constrained
between 1 and (N 
 1)/2 for N data points. The probabilistic
penalty for adding or removing pulses (given any particular

secretion/elimination parameter set and data set) should
presumptively grow as the estimated pulse number ap-
proaches less likely realizations, such as 1 or the theoretical
maximum. According to this reasoning, the penalty term
would resemble an inverted “U,” rather than linear, func-
tion of pulse number. Because the shape of the postulated
U-function is not known, further advances are needed in
this area.

2. Empirical validation. Direct experimental validation of de-
convolution methods is complementary to mathematical ver-
ification. Table 3 highlights several important validation ap-
proaches. One clinical paradigm is to suppress secretion of
a hormone and then inject known pulses of the recombinant
peptide (such as LH, GH, PTH, insulin) or synthetic molecule
(cortisol, Te). This strategy can be applied to the male go-
nadal axis. Specifically, gonadotropin secretion is first sup-
pressed overnight with a GnRH-receptor antagonist, and
then pulses of saline or biosynthetic LH are infused iv the
next morning in randomly assigned order (286). True-posi-
tive (TP) LH pulses could also be defined reasonably by way
of: 1) multiunit electrophysiological activity in the hypothal-
amus as a surrogate for GnRH release; 2) GnRH pulses sam-
pled in hypothalamo-pituitary portal blood; 3) exogenous

TABLE 3. Illustrative methods for primary validation of
deconvolution algorithms

1. Direct sampling at the site of secretion to ensure high signal-to-
noise ratio

Hypophyseal-portal sampling for oxytocin, CRH, and AVP (37, 38)
Pituitary intercavernous-sinus sampling for LH, GnRH, GHRH,

somatostatin, and ACTH (65)
Portal- or hepatic-venous sampling for insulin (40, 71)

2. Corroboration by independent in situ markers of pulse events
Electrophysiological recordings in hypothalamus to mark

oxytocin or GnRH pulses (39, 360, 361)
Injected GnRH pulses in men with isolated GnRH deficiency

(287)
3. In vivo suppression or stimulation paradigms

GnRH-receptor antagonist administered before iv infusion of
biosynthetic LH pulses (270, 272, 286)

Somatostatin, insulin, and glucagon infusions (14)
Insulin-pulse entrainment by oscillatory iv glucose infusion (362)

4. In vitro perifusion models
Ovarian granulosa-luteal cells (41, 197)
Human islets (42)
Pituitary cells (363)

5. By computer simulation model-based simulations
Computer-assisted mathematical simulations to designate pulse

locations, shape and amplitude, basal secretion, and half-life
with superimposed random perturbations (245, 249, 250, 287,
313, 364)

6. Test-retest reliability analysis
Correlation between estimates made in separate sampling

sessions (328, 365, 366)

Limitations of each approach:
1. Direct sampling is unethical in healthy humans and may disrupt

secretion patterns in animals.
2. The surrogate marker and pulse might not always correspond

1:1.
3. Exact experimental mimicry of endogenous pulses is difficult.
4. Perifusion conditions diverge in complex ways from in vivo

physiology.
5. Mathematical constructs are only estimates of an unknown

physiological process.
6. Reliability coefficients may be reduced by factors unrelated to

the algorithm.
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GnRH-stimulated LH pulses in hypogonadotropic individ-
uals; 4) in vitro perifusion of pituitary cells stimulated with
GnRH; and 5) biomathematical computer-assisted simula-
tion of a train of amplitude-varying LH pulses.

Validation requires comparing experimentally designated
(true) and deconvolution-estimated (potential) pulse times to
enumerate false-positive (FP), false-negative (FN), true-pos-
itive (TP) and true-negative (TN) events. “Sensitivity” is de-
fined as the TP proportion, TP/(TP � FN), and “specificity”
as the TN proportion, TN/(TN � FP). From these two out-
comes, one may construct a ROC, which relates sensitivity
(y-axis) to the difference term, 1-specificity (x-axis) (312). The
term “1-specificity” is equivalent to the FP proportion. An
ideal methodology with 100% specificity (zero FPs) and 100%
sensitivity (zero FNs) would achieve an area of 1.0 under the
ROC curve. The ROC area is a measure of overall discrim-
inative accuracy. Specificity and sensitivity of pulse detection
can be based on analyses of 5-, 10-, 20-, and 30-min subsets
of hormone pulse profiles with known (TP) events. The crit-
ical nature of adequate sampling frequency becomes appar-
ent by contrasting pulse-detection sensitivities achieved on
5-min vs. 30-min data. Undersampling typically forces un-
derestimation of pulse frequency and hormone half-life, and
overestimation of mean burst size and basal secretion by
censoring small events (9, 25, 249, 250, 313, 314). Moreover,
sampling frequency and the deconvolution model influence
pulse estimates, thus underscoring the 3-fold importance of
adequate sampling intensity, independent validation, and
statistical verification (16, 17, 26, 240).

What is unknown is how closely any given in vivo vali-
dating paradigm emulates the study context in which the
deconvolution method is ultimately applied. The same quan-
dary arises for in vitro perifusion systems and mathematical
(in silico) simulations. Inasmuch as estimates of sensitivity
and specificity are affected by the validating context, the
validation paradigm should be stated when discriminative
indices are reported. A minimal performance goal is sug-
gested here as ROC-area estimates of pulse-detection accu-
racy consistently exceeding 0.90 (90% diagnostic accuracy) in
three or more independent realistic validating paradigms,
one of which is in vivo and another mathematical.

3. Discordant inferences. A difficult question in deconvolution
analysis is what to do when model-selection criteria, such as
the AIC and BIC, are discordant. When samples are collected
frequently with respect to burst duration, interpulse interval,
and hormone half-life, model-selection differences are un-
common. Accordingly, optimal model-selection criterion re-
quire validation as well. Incorporation of independent
knowledge of the endocrine system would further enhance
the validity of model selection when correctly employed in
Bayesian models.

4. Combined approaches. In principle, selected aspects of non-
parametric and parametric likelihood-based and Bayesian
formalisms could be combined in composite multistep de-
convolution algorithms. An advantage of nonparametric ap-
proaches is that structural assumptions (such as secretory-
burst shape and basal secretion) are not required, thus
extending generality. Well-chosen parametric models reflect

specific physiology (such as pulse frequency), thus affording
greater insights into underlying biology (9, 12, 61). Bayesian
inference permits one to exploit prior knowledge when well
substantiated. Thus, a possible tripartite approach would be,
first, estimate a smooth (nonpulsatile) secretion process non-
parametrically. Second, estimate all elimination and secre-
tion parameters, conditioned on the putative basal rate.
Third, make global estimates of all parameters simulta-
neously (peak positions, basal and pulsatile secretion, elim-
ination rates) with Bayesian constraints. The latter might
include populational probability distributions of hormone
kinetics, basal secretion rates, and waveform parameters (26,
293). In Bayesian theory, progressive deviation of the pa-
rameter estimate from the populational expectation is treated
as increasingly improbable. The analytical goal is a valid and
reliable algorithm suited to address the particular experi-
mental question in the face of de facto data limitations.

VII. Analyses of Multihormone (Ensemble)

Interactions

A. Ensemble concept

Endocrine glands communicate with target cells via in-
termittent exchange of chemical signals, which vary in fre-
quency, amplitude, duration, and pattern. Interactions are
mediated by way of time-delayed feedback (inhibitory) and
feedforward (stimulatory) dose-response interfaces. A pro-
totypical signal pair comprises PTH and calcium ions, Ca2�,
wherein PTH elevates Ca2� concentrations and Ca2� con-
centrations repress PTH secretion (Fig. 10). Associated reg-
ulators include vitamin D, phosphorus, magnesium, phos-
photonin, calcitonin, multiple receptors, and second and
third messengers. Neuroendocrine ensembles also comprise
three or more regulatory loci, viz., the hypothalamus, pitu-
itary gland, and target organ. Because only a subset of signals
in the ensemble can be measured directly in vivo, specialized

Varying Complexity of Feedback-Control Systems

PTH

Ca2+

PTH

Ca2+

Vit D

Two-Signal System Three-Signal System

Four-Signal System

PTH

Ca2+

Vit D Phosphorus

Extended System

Mg2+

Phosphotonin

Calcitonin

Receptors

Messengers

Metabolites

(-)

(+)

(-)

(+)

(-)

(+)

(-)

(-)

(+)

(+)

(+)

(-)

(-)

FIG. 10. Schema of ensemble feedback (
) and feedforward (�) in-
teractions among PTH and calcium ions (top left), vitamin D (top
right), phosphorus (bottom left), and other coregulators (bottom right).
Unpublished line drawing.
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analytical tools are required to evaluate the underlying dy-
namics accurately. This must be done without disrupting
signaling pathways or time delays in the ensemble. Few
methods exist to this end.

B. Ensemble modeling requirements

Current concepts of ensemble dynamics originate from a
long succession of incremental developments. Milestones
include the identification of hormone fluctuations, feedback,
feedforward, time delays, nonlinearities, and stochastic in-
puts (6–8, 10–12, 16, 26, 305, 315–319). Ensemble models are
classifiable as analytical or predictive. An ideal construct
embodies both capabilities. Analytical models must account
for three features of biological systems: 1) reciprocal inter-
actions, which evolve either concurrently (in parallel) or after
time delays (in series); 2) nonlinearities at points of signal
convergence (e.g., inhibitory and stimulatory dose-response
interfaces); and 3) unknown random (stochastic) variability
due to procedural (e.g., assays) and biological factors (e.g.,
pulsing mechanisms) (Fig. 11). Whatever the resultant for-
malism, analyses must be robust to relatively short data
series, missing observations, occasional outliers, procedural
uncertainties, and variable admixtures of deterministic and
stochastic effects. The paucity of validated ensemble analyt-
ical strategies underscores the inherent difficulty in address-
ing these needs (12, 16, 17, 36).

Suitably rendered analytical and predictive models com-
plement experiments by formalizing objective understand-
ing of the biological processes. The purpose is to buttress
intuitive interpretation, facilitate experimental inference, gen-
erate new hypotheses, and estimate physiological parameters.
Ideal constructs include faithful representation of mechanistic
structure, analytical and predictive capabilities, mathematical
verification, empirical validation, model revision, and param-
eter parsimony. A caveat is that no model can overcome inad-
equate data. For example, equivalent information cannot be
extracted from two LH concentration time series with means of
6.2 IU/liter, in which one is corrupted by random sample sd

values of 3 IU/liter and the other 0.3 IU/liter, or one is sampled
every 30 min and the other every 1 min.

C. Examples of ensemble-control models in endocrine systems

An analytical model was proposed recently to reconstruct
endogenous dose-response properties noninvasively with-
out injecting agonists, antagonists, or labeled or unlabeled
hormones (12, 16, 17, 34, 320). The noninvasive methodology
was used to estimate endogenous feedforward dose-re-
sponse functions linking concentrations of ACTH and LH
with secretion rates of cortisol and Te, respectively, in
healthy adults (34, 320) (Fig. 12, A and B). Analytical esti-
mates of the potencies of endogenous ACTH and LH were
24 ng/liter and 3.4 IU/liter in 32 and 26 adults, respectively.
Potency estimates occupied the middle tertile of the normal
range of 24-h mean concentrations in the same subjects. Ad-
vantages of noninvasive estimation strategies are that phys-
iological pathways are not perturbed experimentally; no in-
vestigational compounds are injected; and the reconstructed
dose-response function reflects bioactivity of the endoge-
nous agonist acting on the unmanipulated target gland.

A novel analytical prediction of feedforward estimates is
that successive pulses of ACTH and LH in a given subject or
animal are associated with nonidentical dose-response prop-
erties. The basis for inferable stochastic variability is not
known, but may include random fluctuations in blood flow
to or from the target gland, intermittent response sensitiza-
tion and desensitization, or variability in endogenous agonist
potency (16, 34, 320).

The biomathematical formalism for estimating dose-re-
sponse functions can be extended to three (or more) inter-
linked signals. Quantitative estimates have been made of
dose-response connections implicit among all three of
GnRH, LH, and Te (16, 17, 34). The model includes feedfor-
ward and feedback-control equations to embody time delays,
nonlinearities of signal interfaces, regulated rates of hormone
secretion, distribution and elimination kinetics, and stochas-
tic variability in secretory-burst mass, pulse timing, and

Formulating Valid Ensemble Endocrine Models

Relevant model structure

(biologically motivated)

Model revision

Simplification
Statistical justification

(direct mathematical proof)

Primary experimental validation

(in vivo, in vitro, in silico)

• objective complementation

• experimental inference

• feedback, feedforward

• time delays

• nonlinearities

• stochastic elements

• kinetic features

Model goals:

• hypothesis generation

• analytical estimation

FIG. 11. Summary of key elements of ensemble (mul-
tipathway) endocrine models. The primary model structure
(connections) should reflect known biology (central rectan-
gle). Four main issues emerge, viz., model revision, vali-
dation, simplification, and verification. Goals of a valid
models are highlighted below the figure.
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dose-response parameters. The ensemble construct allows
analytical estimation, hypothesis generation, and outcome
simulation using a Matlab framework implemented on desk-
top computers (12, 16, 17, 34–36).

GH secretion has been modeled nonanalytically as the
regulated consequence of stimulation by GHRH, potentia-
tion by ghrelin, inhibition by SS, and negative feedback by
pulses of GH (18, 131–133, 135). Formulations of the GH
system are needed that include necessary and expected sto-
chastic components. Also required are constructs of the GH
axis that permit noninvasive dose-response reconstruction
without injection of agonists or antagonists.

D. Simplifying assumptions

Estimation of ensemble parameters may require simpli-
fying assumptions and stepwise framing of the solution.
Assumptions must be clearly articulated and consonant with
known physiological properties of the endocrine system. For
example, several plausible assumptions apply in the male
gonadal axis. First, discrete bursts of GnRH released by the
hypothalamus evoke distinct pulses of LH from the pituitary
gland (321). Therefore, although GnRH cannot be measured
directly in human hypothalamo-pituitary portal blood, ob-
served LH pulse times could provide a surrogate for unob-
served GnRH pulse times (16, 17, 322) (Fig. 13, top). Second,

FIG. 12. Observed and estimated hormone-concen-
tration and secretion pairs with simultaneously re-
constructed dose-response functions encapsulating
nonlinear feedforward. The pairs are ACTH concen-
trations (Con) driving cortisol secretion rates (Sec)
(A), and analogously for LH concentrations feeding
forward onto Te Sec (B). Each plot depicts data from
one healthy adult. Cohort estimates of mean feed-
forward potencies (�SEM) are stated (right lower pan-
els) (N � number of subjects). �Adapted with per-
mission from D. M. Keenan and J. D. Veldhuis: Am J
Physiol 286:R381–R389, 2004 (34); and D. M.
Keenan and J. D. Veldhuis: Am J Physiol 285:R950–
R961, 2003 (35).�
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LH pulses drive Te pulses, as inferred by measurements of
LH and Te pulses in the human spermatic vein and by in vitro
Leydig-cell perifusion studies (34, 51, 96). Thus, one may
formulate an LH 3 Te dose-response function linking LH
concentrations to calculated Te secretion rates. Third, given
that total Te concentrations comprise unbound (free) Te and
Te bound to SHBG and albumin, one may create a kinetic
model of Te’s binding and distribution in (and elimination
from) plasma (Fig. 13, middle). And fourth, experimental data
establish that (total, bound, or free) Te noncompetitively
represses both the frequency and the size of GnRH pulses
and inhibits GnRH’s concentration-dependent stimulation of
LH secretion (128) (Fig. 13, bottom). Stating the foregoing
points mathematically via coupled time-delayed differential
equations permits estimation of the strength of the connecting
pathways in individual subjects as well as in a group of subjects
analyzed together (17, 34, 36) (Fig. 14). Thereby, calculated
strength of endogenous feedback and feedforward may be re-
lated to age, gender, body composition, or other clinical vari-
ables. Analyses based upon this model structure suggest that

age attenuates all three of hypothalamic GnRH secretion, the
efficacy of LH in stimulating Te secretion, and negative feed-
back by Te onto GnRH outflow in healthy men (17).

Innovative analytical constructs are needed that embody
multiple interacting loci. The concept of an ensemble is that
all pathways operating together, rather than any single path-
way acting in isolation, supervise homeostasis. Conspicuous
opportunities exist to formalize ensemble models in endo-
crine axes.

VIII. Model-Free Evaluation of Endocrine Networks

A. Concept of model-free assessment

Ensemble endocrine systems definitionally comprise three
or more neuroanatomic sites, which are: 1) subject to local
control mechanisms, and 2) interlinked by secreted signals
and the nervous system. For example, the brain-pituitary-
adrenal axis is regulated by (at least) AVP, CRH, ACTH, and
cortisol; the sympathetic nervous system; and multiple para-
crine and autocrine factors. Another biological network is
illustrated by the reproductive axis, which has at least 12 (of
an unknown total number of) principal connections. Even in
this circumscribed network, direct experimental determina-
tion of system properties would require monitoring multiple
pathways; viz., GnRH 3 LH, LH 3 Te, Te 3 GnRH, Te 3
LH, GnRH 3 FSH, FSH 3 E2, E2 3 GnRH, E2 3 LH,
prolactin 3 GnRH, E2 3 Prl, and Te 3 E2 inter alia. More-
over, measurements would need to be frequent, simulta-
neous, and nondisruptive of the pathways. The difficulty in
fulfilling this experimental demand has motivated comple-
mentary noninvasive ways to quantify ensemble behavior
indirectly.

B. Rationale for ensemble statistics

Ensemble statistics quantify dynamics of the system as a
whole via objective measurements of (at times very) subtle
distinctions in the patterns of an observed signal. This per-
spective is predicated on the thesis that the time patterns of
observable signals (e.g., ACTH concentrations) contain sig-
nificant information about the entire, albeit incompletely
observed, network (e.g., brain-pituitary-adrenal axis). The
concept is evident intuitively because any interlinked system
in some measure reverberates the effects of small changes in
the number, direction, delay, and strength of its coupled
components. Network-propogated effects would be detect-
able, in principle, by quantifying subtle alterations in signal
patterns observed at any accessible point in the interdigitated
system. Ensemble tools include the ApEn statistic (a prob-
abilistic measure of pattern persistence) and artificial neural
networks (resembling polynomial-based discrimination).
Both approaches are termed model-free because underlying
biological pathways are not modeled or necessarily known.

C. Approximate entropy (ApEn) as an ensemble measure of

regularity

1. ApEn of concentration or secretion profiles. The utility of
meaningful application of ApEn within clinical and exper-
imental contexts derives from several observations. First,

FIG. 13. Conceptual steps in analytical reconstruction of unobserved
hypothalamic GnRH outflow, given measured serial concentrations of
LH and Te and mean values of albumin and SHBG. Top, Identification
of multiple potential LH pulse-time sets by incremental smoothing
(nonlinear diffusion). Upper, Estimation of all secretion/elimination
parameters conditional on a set of putative pulse-onset times. Middle,
Nonequilibrium partitioning of Te into plasma diffusion, intravascu-
lar advection, protein binding, and irreversible elimination. Lower,
Reconstruction of tripartite Te3LH feedback, Te3GnRH feedback,
and GnRH3LH feedforward surface. Bottom, Inhibitory feedback by
Te on number (Weibull lambda) or regularity (Weibull gamma) of LH
pulses. �Derived from Ref. 17.�
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ApEn correlates with subclinical changes often undetected
by more classical time-series means, including moment sta-
tistics and spectral and correlogram analyses (305). ApEn
changes are often predictive of subsequent clinical changes
and per-subject longitudinal evolution, such as pubertal de-
velopment, physiological aging, and postsurgical hormonal
recovery (including subsequent relapse) (73, 233, 323, 324).
Second, a relatively modest amount of serial data is required
for valid application, typically no more than 60 and as few
as 10 points (303), which has facilitated the application of
ApEn in a wide variety of settings. ApEn evaluates both
dominant and subordinate patterns in data and, notably, will
detect changes in underlying episodic behavior not reflected
in peak occurrences or amplitudes, or even more subtle dif-
ferences in instances in which no clear waves or pulses are
easily identifiable. This fills a critical need because for highly
irregular sequences, classical statistics often fail to clearly
discriminate such sequences either from one another or from
apparent randomness. Furthermore, changes in ApEn have
been shown pathophysiologically and mathematically to cor-
respond to mechanistic inferences about relative autonomy
vis-à-vis coupling in diverse settings (Table 3).

ApEn is a sensitive and specific statistic for discriminating
insidious differences in serial dynamics. ApEn is calculated
for any time series as a single nonnegative number, with zero
denoting perfect orderliness, as for a sine wave, and larger
ApEn values corresponding to more apparently irregular
dynamics (238, 295). Two input parameters are specified a
priori, a threshold for evaluating pattern reproducibility (r)
and the number of points over (window) which to test pat-
tern recurrence (m).

ApEn is termed a regularity statistic because it quantifies
the relative reproducibility, orderliness, or consistency of

subpatterns in sequential measurements (325). The concept
is illustrated in Fig. 15A by mixing random (stochastic) input
with a perfectly ordered sine wave (deterministic function).
Higher ApEn, as the term entropy suggests, denotes greater
relative randomness confounding the deterministic process
(238, 242). Deterministic mechanisms subserve the physiol-
ogy of dose-response functions; mean secretory-burst size,
shape, and frequency; basal secretion; and irreversible elim-
ination. Random elements arise in the measurement tech-
nique and the underlying biology (e.g., molecular diffusion
and convection, receptor desensitization, and individual
pulse timing).

In typical biological applications, ApEn calculations are
normalized against the sd of the data series by defining a
pattern-reproducibility threshold value of r � 0.2 sd vali-
dated for data lengths n �60 samples (303). This choice of r
limits random effects of low measurement variability (typ-
ically �0.065 sd), thus allowing discrimination between fine
gradations in the orderliness of the underlying process. Val-
idation studies have established the suitability of the m � 1
as the pattern-recurrence length for time series comprising
60 n 300 points, as would be true for many endocrine
profiles (211, 303). For this (m, r) pair, there is quantifiably
greater regularity (lower ApEn) of nocturnal GH secretion in
adult male than female rats castrated prepubertally (306).
ApEn is translation- and scale-independent mathematically,
which means that adding or multiplying each data value by
a fixed number does not alter ApEn (10). This feature ensures
valid comparisons between different mean concentrations,
overall variation, or secretion rates due to age, gender, phys-
iological state, and pathology. For example, more irregular
(higher ApEn, less orderly) GH secretion occurs in patients
with either hypersomatotropism due to GH-secreting pitu-

FIG. 14. Analytical estimation of age co-
hort-defined three-dimensional surfaces
relating LH secretion (vertical axis) to
estimated GnRH outflow (oblique axis)
and free Te (left), bioavailable Te (mid-
dle), and total Te (right) concentrations
(horizontal axes). Data are from 10
young and 8 older men. �Reproduced
with permission from D. M. Keenan et al.:
Endocrinology 147:2817–2828, 2006 (17).�
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itary tumors or hyposomatotropism due to hypopituitarism
despite 1000-fold differences in GH production (211, 326).

ApEn quantifies marked disruption of the orderliness of
secretion patterns in patients with endocrine tumors com-
pared with age-, gender-, and body mass index-matched
healthy individuals. Examples are GH and ACTH concen-
tration time series in patients with acromegaly (204, 211, 218,
303) or corticotropinomas (212, 216, 219) compared with
healthy individuals. ApEn may be calculated as an absolute
value or as a z score (number of sd values removed from
empirically mean random ApEn, estimated by randomly
shuffling the order of the time series 1000 times) (20, 226).
Smaller absolute z scores quantify more irregular (less re-
producible) patterns of GH and ACTH secretion by cognate

tumors. The sensitivity and specificity of ApEn both exceed
90%, including when as few as 10–17 samples are collected
at appropriate times using ApEn thresholds validated for
short data series (303, 323, 327). Test-retest reliability of ApEn
analyses of 24-h GH data also exceeds 90% (328).

ApEn quantifies vivid differences in the pattern regularity
of LH secretion between young and older men, in women at
different stages of the menstrual cycle, and between pre- and
postmenopausal individuals (300, 304, 305, 323). In particu-
lar, greater randomness (lesser orderliness) characterizes LH
secretion in aging men and postmenopausal women than
their younger counterparts. In healthy young men, higher Te
concentrations impose greater LH regularity (Fig. 15B). Mid-
puberty is marked by transiently increased regularity of LH

FIG. 15. A, Concept of ApEn statistic, a measure of relative process randomness (irregularity). ApEn distinguishes subtle differences in
regularity, orderliness, or reproducibility of subpatterns in sequential measurements. Low ApEn denotes more orderly and less random
(irregular) contributions to the signaling pattern. Conversely, high ApEn signifies more irregular or apparently “random” inputs. High ApEn
characterizes hormone secretion patterns associated with autonomous endocrine tumors, low feedback states, aging individuals, and fixed
exogenous stimulation of hormone output. B and C, Exogenously imposed negative feedback by Te onto LH secretion and by glucose onto insulin
secretion. The fall in ApEn with higher feedback-signal concentrations denotes greater regularity of LH and insulin secretion. �Adapted with
permission from P. Y. Liu et al.: J Clin Endocrinol Metab 91:4077–4084, 2006 (240).�
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and, conversely, decreased regularity of GH release patterns
(324, 329). Visceral adiposity and female gender are also
associated with more disorderly GH secretion compared
with a lean phenotype and male gender (306, 328–333). Al-
though the basis of the adiposity effect is not clear, the gender
effect putatively reflects increased estrogen action and
greater hypothalamic drive in women than men. Indeed,
irregular GH secretion patterns are evoked by E2 and secre-
tagogues (214, 334–336).

A common denominator of irregularity is attenuation of
negative feedback compared with feedforward (Table 4).
Thus, pathophysiologies that impair feedback elevate ApEn
(process randomness). Well-established conditions of high
ApEn include primary failure of a target gland like the thy-
roid, testis, and ovary, autonomous endocrine tumors, aging,
and PCOS (211, 212, 218, 219, 305, 327, 337–339). Addition-
ally, excessive feedforward enforces irregular patterns.
PTH secretion is more disorderly in hyperparathyroidism
(45, 233), and aldosterone secretion in primary and sec-
ondary hyperaldosteronism (43, 54). In keeping with these
inferences, irregularity can be induced experimentally by
muting negative feedback by Te, cortisol, and IGF-I, which
normally maintain regularity of their upstream hormones
(LH, ACTH, GH), as well as by augmenting feedforward
by GnRH or GHRH on downstream hormones (LH and
GH) (226, 239, 340).

Insulin secretion patterns are more irregular in healthy
older and obese individuals and patients with prediabetes or
type II diabetes mellitus than in young, nonobese, nondia-

betic subjects (73, 74, 81, 223). This may in part reflect failure
of negative feedback by glucose, which is otherwise readily
inferable by in vitro perifusion studies (Fig. 15C). Inasmuch
as disorderly insulin secretion patterns in aging and predi-
abetes accompany insulin resistance, irregularity may be due
to attenuated autofeedback on, or accentuated feedforward
onto, insulin secretion.

2. Regularity of pulse-timing mechanisms. The relative regu-
larity of random pulse-timing (renewal) processes can be
discriminated using ApEn. ApEn may be applied to any
sequence of consecutive interpulse intervals to quantify
reproducibility (regularity) of the burst-generating pro-
cess. The orderliness of successive interpulse intervals is
not the same as the CV of interpulse intervals because the
CV is independent of the de facto order of interpulse
lengths (89, 307). Average ApEn of consecutive GH inter-
pulse intervals determined from 24-h time series in healthy
men does not differ from that of 1000 randomly shuffled
versions of the same sequences (307). Thus GH pulse tim-
ing is irregularly irregular. Specifically, the mean ratio of
ApEn of observed-to-random GH interpulse-interval se-
ries is 1.000 � 0.046 (sem). In contrast, ApEn of successive
LH interpulse intervals in the luteal phase is less than
mean empirically random (89), consistent with weak serial
autocorrelation detected earlier (298).

3. Regularity of sequential secretory-burst mass. ApEn of serial
secretory-burst mass values quantifies relative regularity of

TABLE 4. Illustrative pathophysiologies of putative feedback failure inferred by disorderly secretory patternsa

Refs.

I. Autonomous secretion
Somatotropinoma 211, 218
Corticotropinoma 212, 216, 217, 219
Prolactinoma 214, 230
Parathyroid adenoma 43
Aldosteronoma 213
Cortisol-secreting adrenal adenoma 213

II. Secondary hypersecretory states
Hyperprolactinemia of stalk section 230
Hyperaldosteronism of salt depletion 43
Hyperparathyroidism in renal failure 44
Hypergonadotropism: menopause 304
Fasting-induced GH secretion 211

III. Experimental feedback depletion (signal monitored)
2 Te (LH secretion) 109, 239, 340
2 IGF-I (GH secretion) 226

IV. Puberty
LH, GH: more disorderly despite 1 Te and 1 IGF-I 323, 324, 328, 329, 334, 367

V. Aging
LH, FSH, GH, ACTH 74, 81, 217, 305, 327, 367, 368

IV. Prediabetes or diabetes mellitus type II
Insulin 73

VII. Feedforward enhancement
1 Orderliness of ACTH with low cortisol 241
1 Orderliness of PTH with low calcium 226

VIII. Unexplained pathophysiology
PCOS 2 orderliness of LH and Te 338
Adult GH deficiency 2 regularity 326
Depression 2 ACTH/cortisol orderliness 369–371
Visceral obesity 2 GH orderliness 334

2, Decreasing; 1, increasing.
a Defined quantitatively by elevated ApEn.
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secretory-burst size. One may thereby estimate individual
ratios of ApEn determined on observed and randomly shuf-
fled GH pulse-mass sequences normalized for preceding in-
terpulse-interval length in healthy men. The null hypothesis
of mean randomness would predict an average observed/
random ApEn ratio of 1.0. The calculated ApEn ratio was
0.462 � 0.032 in healthy men (307), thus demonstrating sub-
stantial serial reproducibility of GH pulse-mass patterns over
random expectation (P  10
5). The exact basis for significant
consistency of successive burst size is not known. Most plau-
sibly, it reflects the feedback-adaptive nature of generating
recurrent GH pulses (132, 133) (Fig. 3).

D. Artificial neural networks

1. Concept. The artificial neural-network approach entails
creating an array of mathematically interconnected pseudo-
neurons, a concept developed initially in artificial intelli-
gence. One does not know a priori exactly how weakly or
strongly the virtual neurons should be connected to discrim-
inate among data types. Thus, the first step requires itera-
tively estimating (training) the set of mathematically defined
pathway strengths by repeatedly adjusting coefficients of
arbitrarily interlinked algebraic functions. Network training
is performed on prototypical time series, such as GH-con-
centration profiles obtained in healthy men or women (341).
Validation requires analyzing a new set of comparable
normative data to ensure consistency. The trained neural
network is then used to distinguish between putatively
abnormal and known normal data series. Discriminative
performance can be assessed in terms of diagnostic spec-
ificity, sensitivity, and accuracy (285, 342).

2. Applications. Artificial neural networks have been applied
successfully in endocrine systems to evaluate risk of thyroid
cancer, patterns of GH secretion in acromegaly, PTH release
in osteoporosis, and glucose excursions in type I diabetes
mellitus (341, 343). Limitations include obtaining adequate

data for comprehensive primary network training and sec-
ondary validation to ensure finely graded distinctions and
comparing data collected under different conditions in dif-
ferent laboratories. Advantages are an empirical basis, thus
limiting model assumptions, and refinement of discrimina-
tion as more data become available.

3. Complementarity with ApEn. ApEn and artificial neural
networks are complementary, given that the former derives
from explicit statistical formalism and the latter exploits pro-
pitious empiricism (238, 242). ApEn has been validated ex-
perimentally by manipulating negative feedback in vivo (20,
226, 303) and verified mathematically by both ensemble neu-
roendocrine models and reductionistic equation systems (lo-
gistic, stochastic, and autoregressive) (12, 89, 215, 300, 344).

IX. Methods of Synchrony Appraisal

A. Rationale for assessing hormone synchrony

One way to relate a biological input to a measured
output is via a nonlinear dose-response function (5) (Fig.
12). Nonlinearity of the coupling function is predicted on
theoretical and empirical grounds (345). However, for
some hormone pairs, the question simply arises whether
the signals are or are not linked (346). For example,
whereas LH concentrations and Te secretion rates are
causally connected (16, 17, 34), it is less evident whether
GH and cortisol pulses are temporally concordant. Syn-
chrony analysis rather than dose-response estimation is
more appropriate in the latter case (347).

In general, three methodologies have been informative in
assessing linkages between hormone time series: 1) linear
cross-correlation analysis performed at various lag times
(296); 2) discrete peak concordance assessed at various lag
times (165, 348); and 3) cross-ApEn, a model-free, scale-in-
variant, and lag-independent joint regularity statistic (242,

Cross-Correlation

Peak Concordance

Cross-ApEn

lag of one

sample

[H]

[H]

[H]

Time

Time

Time

Schema of Methods of Synchrony Appraisal

pulse

coincidence

subpatterns

recur

FIG. 16. Schematic representation of three methods
to quantify pairwise synchrony of hormone time se-
ries. The techniques give complementary insights
into coordinate control. In particular, cross-correla-
tion is linear and lag-specific (top); discrete peak
coincidence is probabilistic and lag-specific (middle);
and cross-ApEn is a scale-, model-, and lag-free joint
synchrony measure (bottom).
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305) (Fig. 16). Methods in physics also include cross-spectral
analysis, which involves a linear combination of sine and
cosine functions (349). Cross-spectral methods are useful
when the paired signals exhibit consistent periodicity and
synchrony. However, uniform periodicity and synchrony are
not typical of endocrine systems. In addition, averaging dis-
similar cross-spectral results among subjects remains diffi-
cult (346).

B. Cross-correlation analysis

Cross-correlation analysis is analogous to traditional lin-
ear correlation, wherein the strength of the relationship be-
tween two time series is quantified by a correlation coeffi-
cient, rho or r. Cross-correlation is applied to exactly paired
(simultaneous) as well as lagged pairs formed when the time
series is offset (lagged) in either direction by 1 or any integral
number of samples (Fig. 16, top). A range of lag times (relative
shifts of the two series) is checked to assess if and when a
maximal cross-correlation occurs. The method requires that
1) the series be exactly paired with uniform sample spacing;
and 2) a reproducible time lag of maximal correlation exists.
The strength of the correlation (percentage of explained vari-
ance) is proportionate to r2. Limitations arise when lag times
are inconsistent and when data series are short. The latter is
due to low statistical power, given that the sd of r is (1/
[rad]N 
 k[/rad]), where N is the number of samples and k
the lag interval. For example, if only 12 paired data points are
obtained, the sd of calculated r at a two-sample lag is
1/[rad]12 
 2[/rad] � 0.316. In a Gaussian (z score) approx-
imation of significance, critical two-tailed z is 1.96 for P �
0.05, and thus absolute r would need to exceed 0.619. On the
other hand, cross-correlation based upon 145 paired samples
yields a critical absolute r of 0.16. By comparison, typical r
values are 0.5 to 0.8 for paired LH-Te and ACTH-cortisol time
series and 0.3 to 0.5 for paired LH-prolactin data (53, 87, 88,
348, 350).

A conceptual enhancement of the cross-correlation ap-
proach is to relate the concentration of a putative input to the
secretion rate of the output (e.g., LH 3 Te or ACTH 3
cortisol). Analysis is thereby performed using physiologi-
cally relevant pairing of concentrations and secretion rates
(351–353). Another strategy is to perform cross-correlation
analysis of paired secretion profiles, which are obtained by
deconvolving the concentration data. This allows one to as-
sess more precisely whether hormones with different half-
lives are temporally cosecreted (e.g., LH and prolactin). No
matter how the data are processed, a pivotal point remains
that cross-correlation analysis has good statistical power
only when coupled signals are separated by a consistent time
lag, the data series are of sufficient length, and the relation-
ship between the amplitudes of the paired signals is linear
(305, 346).

C. Exact peak concordance

A relevant physiological issue is whether pulses of differ-
ent hormones coincide (occur concordantly) more often than
expected by chance (Fig. 16, middle). One approach is to
assume that each sample in a given time series may or may

not contain a pulse, as defined by a binomial probability
distribution. Then, one binomial distribution would underlie
the locations of pulses observed in series A (e.g., LH) and
another binomial distribution those in the paired series B
(e.g., prolactin). The number of exactly, as well as sample-
lagged, concordant pulses can then be compared with the
number expected due to chance associations by way of the
hypergeometric distribution, which is the conjunction of two
binomial processes (346, 348). The expected mean and sd of
the hypergeometric distribution are determined algebra-
ically from the number of paired observations (samples) and
the numbers of pulses in the two series. This simple frame-
work allows one to calculate P values against randomness for
any degree of observed concordance between two as well as
among three or more pulse trains (348). Nonrandom peak
concordance would suggest direct or indirect coupling be-
tween the processes that generate the pulse trains. Con-
versely, suppressed concordance could indicate reciprocally
quenched (negatively linked) pulsing processes. Enhanced
concordance over randomness was inferred for LH and Te,
LH and progesterone, LH and FSH, LH and prolactin, ACTH
and cortisol, and insulin and glucagon pulses when assessed
at relevant time delays, whereas suppressed concordance has
been observed for simultaneous LH and cortisol pulses (53,
87, 88, 348, 350). Nonrandom triple concordance has been
demonstrated among ACTH, �-endorphin, and cortisol
pulses (147).

Disadvantages of binomial peak-concordance statistics are
that 1) peak locations are not known perfectly because sam-
pling and detection artifacts yield false-positive and false-
negative errors; and 2) the binary view of an equal pulse
probability in each sample is oversimplified. More realistic
models of the pulse-renewal process, such as the Weibull (or
possibly log-normal or Pareto) models, would be preferred
to represent an exponential and more general dispersion of
interpulse intervals (294).

Other approaches are to simulate randomly reassigned
pulse locations or to pair irrelevant pulse trains to obtain
empirical estimates of chance pulse concordance (354). How-
ever, the first method requires prior knowledge of the true
underlying pulse-timing process to ensure valid simulations.
The second strategy carries the risk of misrepresenting ran-
dom coincidence rates if time-of-day influences pulse
number.

D. Cross-approximate entropy (cross-ApEn)

Cross-ApEn is a statistic that measures the joint pattern
synchrony of two time series (215, 242, 305). The question
asked is: To what extent do subpatterns of successive hor-
mone concentrations in series A recur in series B? Cross-
ApEn confers insights into synchrony that are complemen-
tary to those of cross-correlation and peak coincidence. This
is because cross-ApEn estimates do not depend upon lin-
earity of coupling between the two processes, consistent lag
times, prior pulse enumeration, or sampling at fixed intervals
(so long as the paired series are matched). Like ApEn, cross-
ApEn quantifies relative pattern regularity or reproducibility
(Fig. 16, bottom). Cross-ApEn simply uses one series as the
template and the paired time series as the mate. To ensure
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high replicability, data are first normalized by z score
transformation.

Important attributes of cross-ApEn like ApEn are model-,
lag-, scale-, and translation-independence (344). Model-in-
dependence indicates that the underlying biological mech-
anisms need not be defined a priori (215). Lag independence
signifies that joint synchrony encompasses reproducible sub-
patterns (runs of similar structure) both upstream and down-
stream in the series matched against the template. This prop-
erty has considerable utility, given that time lags in biological
systems are often inconsistent. Scale-invariance and trans-
lation-independence are significant in view of the wide
variability in scale encountered in endocrine pathophys-
iology (3, 4, 211).

Cross-ApEn, like cross-correlation, may be performed in
both a forward direction (wherein series A is the template for
series B) and a reverse direction (wherein series B leads series
A). Directionality of synchrony for causally paired series may
be assessed after deconvolving one of the hormone-concen-
tration time series, so as to relevantly relate concentration
(input) to secretion (output) (352, 353). When coordinate
(synchronous) secretion is evaluated, cross-ApEn could be
performed on secretion-secretion rather than concentration-
secretion pairs. Application of the concept of forward and
reverse cross-ApEn to selected concentration-secretion pairs
has revealed that synchrony of cortisol3ACTH feedback is
greater than that of ACTH3 cortisol feedforward (352, 353).
In contradistinction, in men Te 3 LH feedback synchrony
exceeds LH3 Te feedforward synchrony. Age preferentially
degrades feedback synchrony in the ACTH-cortisol axis
(353), but erodes feedback and feedback synchrony equally
in the LH-Te axis (352). Accordingly, cross-ApEn allows one
to identify pathway disruption in a directionally selective
fashion.

X. Summary

Pulsatile secretion of endocrine glands was recognized
four decades ago and established unequivocally after the
development of RIA methods. Quantifying pulsatility pro-
vides a window into incompletely understood pulse-gener-
ating and feedback-control mechanisms in endocrine sys-
tems. In turn, time-delayed exchange of hormonal signals
mediates homeostatic adjustments toward species-, gender-,
and age-relevant physiology. Specialized quantitative tools
are available to assist clinicians and investigators in parsing
normal and aberrant mechanisms of secretory control in
health and disease. Future developments should help to en-
large insights further into the pathophysiology and physi-
ology of pulsatile hormone secretion.
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