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Abstract Given a smooth complex threefold X, we define the virtual motive
[Hilbn(X)]vir of the Hilbert scheme of n points on X. In the case when X is
Calabi–Yau, [Hilbn(X)]vir gives a motivic refinement of the n-point degree
zero Donaldson–Thomas invariant of X. The key example is X = C3, where
the Hilbert scheme can be expressed as the critical locus of a regular function
on a smooth variety, and its virtual motive is defined in terms of the Denef–
Loeser motivic nearby fiber. A crucial technical result asserts that if a function
is equivariant with respect to a suitable torus action, its motivic nearby fiber is
simply given by the motivic class of a general fiber. This allows us to compute
the generating function of the virtual motives [Hilbn(C3)]vir via a direct com-
putation involving the motivic class of the commuting variety. We then give
a formula for the generating function for arbitrary X as a motivic exponen-
tial, generalizing known results in lower dimensions. The weight polynomial
specialization leads to a product formula in terms of deformed MacMahon
functions, analogous to Göttsche’s formula for the Poincaré polynomials of
the Hilbert schemes of points on surfaces.
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1 Introduction

Let Z be a scheme of finite type over C. The virtual Euler characteristic of Z

is defined to be the topological Euler characteristic, weighted by the integer-
valued constructible function νZ introduced by the first author [1]:

χvir(Z) =
∑

k∈Z

kχ
(
ν−1
Z (k)

)
.

Unlike the ordinary Euler characteristic, the virtual Euler characteristic is
sensitive to singularities and scheme structure. A virtual motive of Z is an
element [Z]vir in a suitably augmented Grothendieck group of varieties (the
“ring of motivic weights” MC, see Sect. 2.1) such that

χ
(
[Z]vir

)
= χvir(Z).

In the context where Z is a moduli space of sheaves on a Calabi–Yau threefold
X, the virtual Euler characteristic χvir(Z) is a (numerical) Donaldson–Tho-
mas invariant. In this setting, we say that [Z]vir is a motivic Donaldson–Tho-

mas invariant.
In this paper, we construct a natural virtual motive [Hilbn(X)]vir for the

Hilbert scheme of n points on a smooth threefold X. In the Calabi–Yau case,
the virtual Euler characteristics of the Hilbert schemes of points are the degree
zero Donaldson–Thomas invariants of X defined in [27] and computed in [2,
23, 24] (cf. Remark 4.8). So we call our virtual motives [Hilbn(X)]vir the
motivic degree zero Donaldson–Thomas invariants of X.

If f : M → C is a regular function on a smooth variety and

Z = {df = 0}

is its scheme theoretic degeneracy locus, then there is a natural virtual motive
(Definition 2.14) given by

[Z]vir = −L− dimM
2 [ϕf ],

where [ϕf ] is the motivic vanishing cycle defined by Denef-Loeser [11, 25]
and L is the Lefschetz motive. (This is similar to Kontsevich and Soibelman’s
approach to motivic Donaldson–Thomas invariants [21].) The function f is
often called a global Chern-Simons functional or super-potential. This set-
ting encompasses many useful cases such as when Z is smooth (by letting
(M,f ) = (Z,0)) and (less trivially) when Z arises as a moduli space of rep-
resentations of a quiver equipped with a super-potential. The latter includes
Hilbn(C3) which we show is given as the degeneracy locus of an explicit
function fn : Mn → C on a smooth space Mn (see Sect. 3.2).
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We prove (Theorem B.1, cf. Propositions 2.11, 2.13, and 2.12) that if
f : M → C is equivariant with respect to a torus action satisfying certain
properties, then the motivic vanishing cycle is simply given by the class of
the general fiber minus the class of the central fiber:

[ϕf ] =
[
f −1(1)

]
−

[
f −1(0)

]
.

This theorem should be applicable in a wide variety of quiver settings and
should make the computation of the virtual motives [Z]vir tractable by quiver
techniques.

Indeed, we apply this to compute the motivic degree zero Donaldson–Tho-
mas partition function

ZX(t) =

∞∑

n=0

[
Hilbn(X)

]
virt

n

in the case when X is C3. Namely, it is given in Theorem 3.7 as

ZC3(t) =

∞∏

m=1

m−1∏

k=0

(
1 − Lk+2−m

2 tm
)−1

.

The virtual motive [Hilbn(C3)]vir that we construct via the super-potential
fn has good compatibility properties with respect to the Hilbert-Chow mor-
phism Hilbn(C3) → Symn(C3). Consequently we are able to use these virtual
motives to define virtual motives [Hilbn(X)]vir for the Hilbert scheme of any
smooth threefold X (see Sect. 4.1). The now standard technology [6, 14, 16,
18] allows us to express in Theorem 4.3 the motivic degree zero Donaldson–
Thomas partition function of any threefold X as a motivic exponential

ZX(−t) = Exp

(
[X]

−L− 3
2 t

(1 + L
1
2 t)(1 + L− 1

2 t)

)
.

See Sect. 2.5 for the definition of Exp.
While the above formula only applies when dim(X) = 3, it fits well with

corresponding formulas for dim(X) < 3. In these cases, the Hilbert schemes
are smooth and thus have canonical virtual motives which are easily expressed
in terms of the ordinary classes [Hilbn(X)] in the Grothendieck group. The
resulting partition functions have been computed for curves [18] and surfaces
[16], and all these results can be expressed (Corollary 4.4) in the single for-
mula

ZX(T ) = Exp
(
T [X]vir Exp

(
T

[
Pd−2]

vir

))
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valid when d = dim(X) is 0, 1, 2, or 3. Here

[X]vir = L− d
2 [X],

also1

T = (−1)d t,

and the class of a negative dimensional projective space is defined by (4.3).
In particular, [P−1]vir = 0 and [P−2]vir = −1. The above formula has sig-
nificance for dimX > 3 as well. It holds whenever the virtual motive of
the Hilbert scheme is well defined (which for when dimX > 3, is when the
Hilbert scheme is smooth). One could thus regard the above formula as defin-

ing the virtual motive of the Hilbert scheme of points in all dimensions and
degrees. See Remarks 4.5 and 4.6.

The weight polynomial specialization of the class of a projective mani-
fold gives its Poincaré polynomial. For example, if X is a smooth projective
threefold, we get

W
(
[X], q

1
2
)
=

6∑

d=0

bdq
d
2 ,

where bd is the degree d Betti number of X. Taking the weight polynomial
specialization of the virtual motives of the Hilbert schemes gives a virtual
version of the Poincaré polynomials of the Hilbert schemes. In Theorem 4.7
we apply weight polynomials to our formula for ZX(t) to get

∞∑

n=0

W
([

Hilbn(X)
]

vir, q
1
2
)
tn =

6∏

d=0

M d−3
2

(
−t,−q

1
2
)(−1)dbd

where Mδ is the q-deformed MacMahon function

Mδ

(
t, q

1
2
)
=

∞∏

m=1

m−1∏

k=0

(
1 − qk+ 1

2 −m
2 +δtm

)−1
.

The above formula is the analog for threefolds of Göttsche’s famous product
formula [15] for the Poincaré polynomials of Hilbert schemes on surfaces.
Similar q-deformed MacMahon functions appear in the refined topological
vertex of Iqbal-Kozcaz-Vafa [19]. We discuss Mδ further in Appendix A.

In addition to motivic Donaldson–Thomas invariants, one may consider
categorified Donaldson–Thomas invariants. Such a categorification is a lift

1Note that the operator Exp depends on the variable t . In particular, one cannot simply substi-
tute t for T in the above equation for ZX . See Remark 2.8.



Motivic degree zero Donaldson–Thomas invariants 115

of the numerical Donaldson–Thomas invariant χvir(Z) to an object [Z]cat in
a category with a cohomological functor H • such that

χ
(
H •

(
[Z]cat

))
= χvir(Z).

We have partial results toward constructing categorified degree zero Donald-
son–Thomas invariants which we discuss in Sect. 4.4. See also the recent
work [22].

2 Motivic weights and vanishing cycles

All our varieties and maps are defined over the field C of complex numbers.

2.1 The ring of motivic weights

Let K0(VarC) be the Z-module generated by isomorphism classes of reduced
C-varieties,2 under the scissor relation

[X] = [Y ] + [X \ Y ] ∈ K0(VarC)

for Y ⊂ X a closed subvariety. K0(VarC) has a ring structure whose product
is the Cartesian product of varieties. The following two properties of the setup
are well known.

1. If f : X → S is a Zariski locally trivial fibration with fiber F , then

[X] = [S] · [F ] ∈ K0(VarC).

2. If f : X → Y is a bijective morphism, then

[X] = [Y ] ∈ K0(VarC).

Let

L =
[
A1] ∈ K0(VarC)

be the class of the affine line. We define the ring of motivic weights (or motivic

ring for short) to be

MC = K0(VarC)
[
L− 1

2
]
.

2One can also consider the rings K0(SchC) and K0(SpC) generated by schemes or algebraic
spaces (of finite type) with the same relations. By [5, Lemma 2.12], they are all the same. In
particular, for X a scheme, its class in K0(VarC) is given by [Xred], the class of the associated
reduced scheme. We will implicitly use this identification throughout the paper without further
comment.
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We set up notation for some elements of MC that we will use later. Let

[n]L! =
(
Ln − 1

)(
Ln−1 − 1

)
· · · (L − 1)

and let [
n

k

]

L

=
[n]L!

[n − k]L![k]L!
.

Using property (1) above, elementary arguments show that

[GLn] = L

(
n

2

)
[n]L!

Then using the elementary identity
(

n
2

)
−

(
k
2

)
−

(
n−k

2

)
= (n − k)k, the class

of the Grassmannian is easily derived:

[
Gr(k,n)

]
=

[
n

k

]

L

.

For later reference, we recall the computation of the motivic weight of the
stack of pairs of commuting matrices. Let Vn be an n-dimensional vector
space, and let

Cn ⊂ Hom(Vn,Vn)
×2

denote the (reduced) variety of pairs of commuting n × n matrices over the
complex numbers. Let

c̃n =
[Cn]

[GLn]
∈ MC

[(
1 − Ln

)−1
: n ≥ 1

]
(2.1)

be its class, renormalized by taking account of the global symmetry group
GLn. Consider the generating series

C(t) =
∑

n≥0

c̃nt
n. (2.2)

Proposition 2.1 We have

C(t) =

∞∏

m=1

∞∏

j=0

(
1 − L1−j tm

)−1
. (2.3)

Proof The main result of the paper of Feit and Fine [13] is the analogous
formula

C(t, q) =

∞∏

m=1

∞∏

j=0

(
1 − q1−j tm

)−1
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for the generating series of the number of pairs of commuting matrices over
the finite field Fq , renormalized as above. Feit and Fine’s method is motivic;
in essence they provide an affine paving of Cn. For details, see [28]. �

Remark 2.2 In (2.2), the coefficient c̃n of tn in C(t) is in the ring MC[(1 −
Ln)−1 : n ≥ 1]. In (2.3), the coefficients are the Laurent expansions in L of
these elements.

The following result is now standard [16, Lemma 4.4].

Lemma 2.3 Let Z be a variety with the free action of a finite group G. Extend

the action of G to Z × An using a linear action of G on the second factor.
Then the motivic weights of the quotients are related by

[(
Z × An

)
/G

]
= Ln[Z/G] ∈ MC.

Proof Let π : (Z × An)/G → Z/G be the projection. By assumption, π is
étale locally trivial with fiber An, and with linear transition maps. Thus it is an
étale vector bundle on Z/G. But then by Hilbert’s Theorem 90, it is Zariski
locally trivial. �

2.2 Homomorphisms from the ring of motivic weights

The ring of motivic weights admits a number of well-known ring homomor-
phisms. Deligne’s mixed Hodge structure on compactly supported cohomol-
ogy of a variety X gives rise to the E-polynomial homomorphism

E : K0(VarC) → Z[x, y]

defined on generators by

E
(
[X];x, y

)
=

∑

p,q

xpyq
∑

i

(−1)i dimHp,q
(
H i

c (X,Q)
)
.

This extends to a ring homomorphism

E : MC → Z
[
x, y, (xy)−

1
2
]

by defining

E
(
Ln

)
= (xy)n

for half-integers n.
The weight polynomial homomorphism

W : MC → Z
[
q± 1

2
]
,
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is defined by the specialization

x = y = −q
1
2 , (xy)

1
2 = q

1
2 .

This maps L to q , and encodes the dimensions of the graded quotients of the
compactly supported cohomology of X under the weight filtration, disregard-

ing the Hodge filtration. For smooth projective X, W([X];q
1
2 ) is simply the

Poincaré polynomial of X. Specializing further,

χ
(
[X]

)
= W

(
[X];q

1
2 = −1

)

defines the map

χ : MC → Z

of compactly supported Euler characteristic; this agrees with the ordinary Eu-
ler characteristic.

2.3 Relative motivic weights

Given a reduced (but not necessarily irreducible) variety S, let K0(VarS) be
the Z-module generated by isomorphism classes of (reduced) S-varieties,
under the scissor relation for S-varieties, and ring structure whose mul-
tiplication is given by fiber product over S. Elements of this ring will
be denoted [X]S . A morphism f : S → T induces a ring homomorphism
f ∗ : K0(VarT ) → K0(VarS) given by fiber product. In particular, K0(VarS) is
always a K0(VarC)-algebra. Thus we can let

MS = K0(VarS)
[
L− 1

2
]
,

an MC-module. A morphism f : S → T induces a ring homomorphism
f ∗ : MT → MS by pullback, and a direct image homomorphism f! : MS →

MT by composition, the latter a map of MT -modules.
In the relative case, the E-polynomial, weight polynomial and Euler char-

acteristic specializations map to the K-group of variations of mixed Hodge
structures (or mixed Hodge modules), the K-group of mixed sheaves, and the
space of constructible functions, respectively.

2.4 Equivariant motivic weights

Let G be a finite group. An action of G on a variety X is said to be good, if
every point of X is contained in an affine G-invariant open subset. Actions of
finite groups on quasiprojective varieties are thus good.
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We will have occasion to use two versions of equivariant rings of motivic
weights. For a fixed variety S with good G-action, let K̃G

0 (VarS) be the K-
group generated by good G-varieties over S, modulo the G-scissor relation.
Let also KG

0 (VarS) be the quotient of K̃G
0 (VarS) by the further relations

[V ] =
[
Cr × S

]
(2.4)

where V → S is any G-equivariant vector bundle over S of rank r and Cr ×S

is the trivial rank r bundle with trivial G-action. The affine S-line A1 × S in-
herits a G-action and so defines elements L ∈ K̃G

0 (VarS) and L ∈ KG
0 (VarS);

we let M̃
G
S and M

G
S be the corresponding extensions by L− 1

2 .
If the G-action on S is trivial, then M

G
S and M̃

G
S are MS -algebras, using

the map which regards a motive over S as a G-motive with trivial action. In
this case, there is a map of MS -modules

πG : M̃
G
S → MS (2.5)

given on generators by taking the orbit space. This operation is clearly com-
patible with the module operations and scissor relation. In general, this map
does not respect the relations (2.4), so it does not descend to M

G
S .

As a variant of this construction, let μ̂ = lim← μn be the group of roots
of unity. A good μ̂-action on a variety X is one where μ̂ acts via a finite

quotient and that action is good. Let M
μ̂
S = K

μ̂
0 (VarS)[L− 1

2 ] be the corre-

sponding K-group, incorporating the relations (2.4). The additive group M
μ̂
S

can be endowed with an associative operation ⋆ using convolution involving
the classes of Fermat curves [9, 21, 25]. This product agrees with the ordinary

(direct) product on the subalgebra MS ⊂ M
μ̂
S of classes with trivial μ̂-action,

but not in general.
We will need the following statement below.

Lemma 2.4 For any positive integer n, there exists a well-defined nth power

map

(−)n : MC → M̃
Sn

C

to the ring of Sn-equivariant motivic weights, defined by the property that for

a class A ∈ MC represented by a quasiprojective varity, An as an equivariant

motive is the class of the ordinary nth power of that variety, carrying the

standard Sn-action.



120 K. Behrend et al.

Proof Assume first that we can write A = B ± C where B,C are classes
represented by quasiprojective varieties. Then by the binomial theorem,

An =

n∑

i=0

(±1)iXi,

where Xi is the variety which consists of
(
n
i

)
disjoint copies of the variety

Bn−iCi . We claim that all these varieties Xi carry geometric Sn-actions. La-
bel the B’s and C’s in the expansion of (B ± C)n with the labels 1, . . . , n,
depending on which bracket they come from. Then every term will carry
exactly one instance of each label. The group Sn acts by interchanging the
labels, and does not change the number of B’s and C’s in a monomial. Thus
each element of Sn defines a map Xi → Xi , i.e. a geometric automorphism of
Xi , which is moreover good. The class An thus becomes an element of M̃

Sn

C
.

The extension of this argument to the case of more than two summands

is clear. Since up to powers of L± 1
2 , every class in MC is a signed sum of

classes represented by quasiprojective varieties, this shows that every An can
be viewed as an element of M̃

Sn

C
.

Next, suppose that A = B +C with A,B,C all represented by quasiprojec-
tive varieties. Then An is already an element of M̃

Sn

C
, and the above definition

gives another way of viewing (B + C)n as an equivariant class. However, in
this case the above Xi simply give an Sn-equivariant stratification of the vari-
ety underlying An, and thus the two equivariant classes are the same. Again,
the extension to more than two summands is clear.

Finally, if A = B −C = D −E with B,C,D,E quasiprojective, then B +

E = C + D. Thus there exists a common refinement, a finite set of classes
{Ai : i ∈ I } represented by quasiprojective varieties, and subsets J,K ⊂ I

such that B =
∑

i∈J Ai , C =
∑

i∈K Ai , D =
∑

i∈I\K Ai , E =
∑

i∈I\J Ai . So
the two differences B − C and D − E are represented by the same signed
sum of Ais and so the two definitions of An ∈ M̃

Sn

C
are equal. �

2.5 Power structure on the ring of motivic weights

Recall that a power structure on a ring R is a map

(
1 + tR

[
[t]

])
× R → 1 + tR

[
[t]

]
(
A(t),m

)
	→ A(t)m

satisfying A(t)0 = 1, A(t)1 = A(t), A(t)m+n = A(t)mA(t)n, A(t)mn =

(A(t)m)n, A(t)mB(t)m = (A(t)B(t))m, as well as (1+ t)m = 1+mt +O(t2).
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Theorem 2.5 (Gusein-Zade et al. [17], cf. Getzler [14]) There exists a power

structure on the Grothendieck ring K0(VarC), defined uniquely by the prop-

erty that for a variety X,

(1 − t)−[X] =

∞∑

n=0

[
Symn X

]
tn

is the generating function of symmetric products of X, its motivic zeta func-

tion.

Since we will need it below, we recall the definition. Let A(t) = 1 +∑
i≥1 Ai t

i be a series with Ai ∈ K0(VarC). Then for [X] ∈ K0(VarC) a class
represented by a variety X, the definition of [17] reads

A(t)[X] = 1 +
∑

α

πGα

[(∏

i

Xαi \ 	

)
·

(∏

i

A
αi

i

)]
t |α|. (2.6)

Here the summation runs over all partitions α; for a partition α, write αi

for the number of parts of size i, and let Gα =
∏

i Sαi
denote the standard

product of symmetric groups. 	 denotes the big diagonal in any product of
copies of the variety X. By Lemma 2.4, the product (

∏
i X

αi \ 	) ×
∏

i A
αi

i

can be represented by a class in K
Gα

0 (VarC), and the map πGα is the quotient
map (2.5).

Note that if we replace the coefficients Ai by LciAi for positive integers
ci , then by Lemma 2.3 above, the individual terms in the sum change as

πGα

[(∏

i

Xαi \ 	

)
×

∏

i

(
LciAi

)αi

]

= L
∑

i ciαiπGα

[(∏

i

Xαi \ 	

)
×

∏

i

A
αi

i

]
,

since the action of Gα on the L
∑

i ciαi factor comes from a product of permu-
tation actions and is hence linear. We thus get the substitution rule

A
(
Lct

)[X]
= A(t)[X]|t 	→Lct

for positive integer c. We extend the definition (2.6) to allow coefficients Ai

which are from MC, by the formula

πGα

[(∏

i

Xαi \ 	

)
×

∏

i

((
−L

1
2
)ciAi

)αi

]
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=
(
−L

1
2
)∑

i ciαiπGα

[(∏

i

Xαi \ 	

)
×

∏

i

A
αi

i

]

for integers ci (see Remark 2.7 for the reason for the appearance of signs
here). This implies the substitution rule

A
((

−L
1
2
)n

t
)[X]

= A(t)[X]
∣∣
t 	→(−L

1
2 )nt

for integers n. We also extend the power structure to exponents from the
ring MC by defining

(1 − t)−(−L
1
2 )n[X] =

(
1 −

(
−L

1
2
)n

t
)−[X]

for all n ∈ Z; as in Theorem 2.5, this determines a unique extension of the
power structure.

Finally, still following [14, 17], introduce the map

Exp : t MC

[
[t]

]
→ 1 + t MC

[
[t]

]

by

Exp
∞∑

n=1

[An]t
n =

∏

n≥1

(
1 − tn

)−[An]
. (2.7)

Exp is an isomorphism from the additive group t MC[[t]] to the multiplicative
group 1 + t MC[[t]].

The above equations imply the following substitution rule:

Exp
(
A(t)

)∣∣
t 	→(−L

1
2 )nt

= Exp
(
A

((
−L

1
2
)n

t
))

. (2.8)

Example 2.6 It is easy to check that the generating series C(t) of the mo-
tivic weight of pairs of commuting matrices (2.3) can be written as a motivic
exponential (cf. [22, Proposition 7]):

C(t) = Exp

(
L2

L − 1

t

1 − t

)
.

Remark 2.7 The existence a power structure on K0(VarC) is closely related to
the fact that K0(VarC) has the structure of a pre-λ-ring where the operations
σn are characterized by σn(X) = [Symn(X)] (see [14]). In order to extend
the power structure to MC so that the Euler characteristic homomorphism



Motivic degree zero Donaldson–Thomas invariants 123

respects the power structure, we must have3 σn(−L
1
2 ) = (−L

1
2 )n which ex-

plains the signs in the formulae above.

Remark 2.8 Note that the isomorphism Exp does not commute with substitu-
tions in the variable t . For example, Exp(t) = 1

1−t
whereas Exp(−t) = 1 − t .

This explains why we use the auxilary variable T in the introduction.

2.6 Motivic nearby and vanishing cycles

Let

f : X → C

be a regular function on a smooth variety X, and let X0 = f −1(0) be the
central fiber.

Using arc spaces, Denef and Loeser [11, §3],[25, §5] define [ψf ]X0 ∈

M
μ̂
X0

, the relative motivic nearby cycle of f . Using motivic integration,
Denef–Loeser give an explicit formula for [ψf ] in terms of an embedded
resolution of f . We give this formula in detail in Appendix B.

Let

[ϕf ]X0 = [ψf ]X0 − [X0]X0 ∈ M
μ̂
X0

be the relative motivic vanishing cycle of f . It follows directly from the def-
initions that over the smooth locus of the central fiber, the classes [ψf ]X0

and [X0]X0 coincide, so the motivic difference [ϕf ]X0 is a relative class
[ϕf ]Sing(X0) over the singular locus of X0. The latter is exactly the degen-
eracy locus Z ⊂ X, the subscheme of X0 given by the equations {df = 0}.

We will denote by [ψf ], [ϕf ] ∈ M
μ̂

C
the absolute motivic nearby and vanish-

ing cycles, the images of the relative classes under pushforward to the point.
We next recall the motivic Thom–Sebastiani theorem. Given two regular

functions f : X → C and g : Y → C on smooth varieties X,Y , define the
function f ⊕ g : X × Y → C by

(f ⊕ g)(x, y) = f (x) + g(y).

Theorem 2.9 (Denef–Loeser [10], Looijenga [25]) Let f,g be non-constant

regular functions on smooth varieties X,Y , and let X0, Y0 be their zero fibers.
Let

i : X0 × Y0 → (X × Y)0

3We thank Sven Meinhardt for calling our attention to this sign issue.
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denote the natural inclusion into the zero fiber of f ⊕ g. Then

i∗[−ϕf ⊕g]X0×Y0 = p∗
X[−ϕf ]X0 ⋆ p∗

Y [−ϕg]Y0 ∈ M
μ̂
X0×Y0

where pX,pY are the projections from X0 × Y0 to the two factors.

Remark 2.10 Consider the functions f (x) = x2 and g(y) = y2. Restricting
to the origins in C and C2, Theorem 2.9 reads

(−ϕx2) ⋆ (−ϕy2) = −ϕx2+y2 ∈ M
μ̂

C
.

Direct computation (using for example (B.1)) yields

−ϕx2+y2 = L, −ϕx2 = −ϕy2 = 1 − [2pt,μ2]

where [2pt,μ2] is the space of 2 points, with the μ2-action which swaps the

points. We see that rather than adjoining L
1
2 formally to M

μ̂

C
, we could have

taken

L
1
2 = 1 − [2pt,μ2] (2.9)

(cf. [21, Remark 19]). Indeed, imposing the above equation as a relation in

M
μ̂

C
has some desirable consequences such as making the relative virtual

motive of a smooth variety canonical at each point; see Remark 2.15.4

2.7 Torus-equivariant families

We wish to study regular functions f : X → C on smooth varieties X with
the following equivariance property.5 We assume there exists an action of a
connected complex torus T on X such that f is T -equivariant with respect to
a primitive character χ : T → C∗. That is, for all t ∈ T and x ∈ X, we have
f (tx) = χ(t)f (x).

Assuming the existence of such a T -action, the family defined by f is
trivial away from the central fiber. Indeed, since χ is primitive, there exists a
1-parameter subgroup C∗ ⊂ T such that χ is an isomorphism restricted to C∗.
Let X1 = f −1(1), then the map X1 × C∗ → X − X0 given by (x, λ) 	→ λ · x
has inverse

x 	→

(
1

f (x)
· x,f (x)

)

and thus defines an isomorphism X1 × C∗ ∼= X − X0.

4We thank Sheldon Katz for discussions on this issue.
5We thank Patrick Brosnan and Jörg Schürmann for very helpful correspondence on this sub-
ject.
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Proposition 2.11 Assume that the regular function f : X → C on a smooth

variety X has a T -action as above, and assume that f is proper. Then the

absolute motivic vanishing cycle [ϕf ] of f lies in the subring MC ⊂ M
μ̂

C
.

Moreover, this class can be computed as the motivic difference

[ϕf ] = [X1] − [X0] ∈ MC

of the general and central fibers of f .

Proof Using the trivialization of the family discussed above, there is a dia-
gram

X

f

X1 × C

p

C

with the birational map being an isomorphism over C∗; here Xt denotes the
fiber of f over t ∈ C, and p denotes the projection to the second factor.

The fiber product W of f and p is proper over C. Let Z̄ be the irreducible
component of the closure of the graph Γg which maps dominantly to C; Z̄ is
proper over the fiber product W so proper and birational over X and X1 × C.
Let Z be a desingularization of Z̄. We get a diagram

Z
g h

X

f

X1 × C

p

C

with g,h proper maps.
Denote the composite f ◦ g = p2 ◦ h by k. On the central fibers, we get a

diagram

Z0
g0 h0

X0

f0

X1

p0

{0}
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since the central fiber of the family p is X1; of course the central fibers are
no longer birational necessarily.

By [4, Remark 2.7], for the motivic relative nearby cycles,

[ψf ]X0 = g0![ψk]Z0 ∈ M
μ̂
X0

,

and

[ψp]X1 = h0![ψk]Z0 ∈ M
μ̂
X1

.

Thus, the absolute motivic nearby cycle of f is given by

[ψf ] = f0!g0![ψk]Z0 = k0![ψk]Z0 = p0![ψp]X1 ∈ M
μ̂

C
.

But p is an algebraically trivial proper family over C, so its motivic nearby
cycle is the class of its central fiber with trivial monodromy. So the absolute
motivic nearby cycle of f is

[ψf ] = p0![X1]X1 = [X1] ∈ MC ⊂ M
μ̂

C
.

Finally by definition,

[ϕf ] = [ψf ] − [X0],

with X0 carrying the trivial μ̂-action. The proof is complete. �

In our examples, our f will not be proper. To weaken this assumption, we
say that an action of C∗ on a variety V is circle compact, if the fixed point set
V C∗

is compact and moreover, for all v ∈ V , the limit limλ→0 λ · y exists. We
use the following variant of Proposition 2.11.

Proposition 2.12 Let f : X → C be a regular function on a smooth quasi-

projective complex variety. Suppose that T is a connected complex torus with

a linearized action on X such that f is T -equivariant with respect to a prim-

itive character χ , i.e. f (tx) = χ(t)f (x) for all t ∈ T x ∈ X. Moreover, sup-

pose that there exists C∗ ⊂ T such that the induced C∗-action on X is circle

compact. Then the absolute motivic vanishing cycle [ϕf ] of f lies in the sub-

ring MC ⊂ M
μ̂

C
, and it can be expressed as the motivic difference

[ϕf ] = [X1] − [X0] ∈ MC

of the general and central fibers of f .

We do not have a conceptual proof of this Proposition as we did for Propo-
sition 2.11. Instead, in Appendix B, we prove this directly using Denef and
Loeser’s motivic integration formula for [ϕf ]. The key point is that the circle
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compact C∗-action gives rise to a Białynicki-Birula stratification of X. The
conditions that X is quasi-projective and the T -action is linear can proba-
bly weakened; they are added for convenience in the proof and because they
should hold in most cases of interest. The condition that the fixed point set
of the C∗-action is compact can be dropped; we only use the existence of
λ → 0 limits. For a recent significant generalization of this result, see [8,
Theorem 1.3].

We will also use the following enhancement of the proposition.

Proposition 2.13 Let f : X → C be a T -equivariant regular function satisfy-

ing the assumptions of Proposition 2.12. Let Z = {df = 0} be the degeneracy

locus of f and let Zaff ⊂ Xaff be the affinizations of Z and X. Suppose that

X0 = f −1(0) is reduced. Then [ϕf ]Zaff , the motivic vanishing cycle of f rel-

ative to Zaff, lies in the subring MZaff ⊂ M
μ̂
Zaff

.

This result will also be proved in Appendix B.

2.8 The virtual motive of a degeneracy locus

Definition 2.14 Let f : X → C be a regular function on a smooth variety X,
and let

Z = {df = 0} ⊂ X

be its degeneracy locus. We define the relative virtual motive of Z to be

[Z]relvir = −L− dimX
2 [ϕf ]Z ∈ M

μ̂
Z,

and the absolute virtual motive of Z to be

[Z]vir = −L− dimX
2 [ϕf ] ∈ M

μ̂

C
,

the pushforward of the relative virtual motive [Z]relvir to the absolute motivic

ring M
μ̂

C
.

Remark 2.15 As a degenerate but important example, consider f = 0. Then
we have X0 = X and [ψf ]X0 = 0, so the virtual motives of a smooth variety
X with f = 0 are given by

[X]relvir = L− dimX
2 [X]X ∈ MX ⊂ M

μ̂
X (2.10)

and

[X]vir = L− dimX
2 [X] ∈ MC ⊂ M

μ̂

C
. (2.11)



128 K. Behrend et al.

If one imposes equation (2.9) as a relation in M
μ̂

C
, then it is not hard to show

that whenever Z is smooth, [Z]relvir agrees with equation (2.10) at each point,

that is for each P ∈ Z, [Z]relvir|P = L− dimZ
2 .

Proposition 2.16

1. At a point P ∈ Z, the fiberwise Euler characteristic of the relative virtual

motive [Z]relvir ∈ M
μ̂
Z , evaluated at the specialization L

1
2 = −1, is equal

to the value at P ∈ Z of the constructible function νZ of [1].
2. The Euler characteristic of the absolute virtual motive [Z]vir ∈ M

μ̂

C
is the

virtual Euler characteristic χvir(Z) ∈ Z of [1]:

χ
(
[Z]vir

)
= χvir(X) =

∑

k∈Z

kχ
(
ν−1
Z (k)

)
.

Proof By [1, Eq. (4)], for Z = {df = 0} ⊂ X, the value of the function νZ at
the point P is

νZ(P ) = (−1)dimX
(
1 − χ(FP )

)
,

where FP is the Milnor fiber of f at P . On the other hand, the pointwise
Euler characteristic of [ϕf ] at P is the Euler characteristic of the reduced
cohomology of the Milnor fiber FP [11, Theorem 3.5.5], equal to χ(FP )− 1.

The factor −LdimX/2 at L
1
2 = −1 contributes the factor −(−1)dimX . This

proves (1). (2) clearly follows from (1). �

Remark 2.17 If Z = {df = 0} is a moduli space of sheaves on a Calabi–
Yau threefold, then the associated Donaldson–Thomas invariant is given by
χvir(Z). So by the above proposition, [Z]vir is a motivic refinement of the
Donaldson–Thomas invariant and hence can be regarded as a motivic Do-

naldson–Thomas invariant. The function f in this context is called a global

Chern-Simons functional or a super-potential.

Remark 2.18 Unlike the ordinary motivic class of Z, the virtual motive is
sensitive to both the singularities and the scheme structure of Z since in par-
ticular, the constructible function νZ is. However, unlike the function νZ , we
expect the virtual motive of Z to depend on its presentation as a degeneracy
locus Z = {df = 0} and not just its scheme structure. We will not include
the pair (X,f ) in the notation but it will be assumed that whenever we write
[Z]vir, it is to be understood with a particular choice of (X,f ). When Z is
smooth, a canonical choice is provided by (X,f ) = (Z,0).

Remark 2.19 Let us comment on our use of the term virtual, which has ac-
quired two different meanings in closely related subjects. On the one hand,
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there are what are sometimes called virtual invariants, invariants of spaces
which are additive under the scissor relation; these invariants are generally
called motivic in this paper. Examples include the virtual Hodge polyno-

mial and the virtual Poincaré polynomial, for which we use the terms E-
polynomial and weight polynomial. On the other hand, there is the philoso-
phy of virtual smoothness and the technology of virtual cycles for spaces such
as Hilbert schemes of a threefold, which have excess dimension compared to
what one would expect from deformation-obstruction theory. We use the term
virtual exclusively in this second sense in this paper.

Remark 2.20 Let E be an object in an ind-constructible Calabi–Yau A∞-
category C (see [21] for the definitions of all these terms). In [21, Defini-
tion 17], Kontsevich and Soibelman associate to E a motivic weight w(E).

This weight lives in a certain motivic ring M̄
μ̂

C
, which is a completion of

the ring M
μ̂

C
used above, quotiented by the equivalence relation, explained

in [21, Sect. 4.5], which says that two motivic classes are equivalent if all co-
homological realizations of these classes coincide. They claim moreover that,
given a moduli space S of objects of C , their definition gives an element in a

piecewise-relative motivic ring M̄
μ̂
S .

The Kontsevich–Soibelman definition is closely related to our definition
of the virtual motive of a degeneracy locus. It relies on a local description
of the moduli space S as the zeros of a formal functional W built from the
A∞-structure on C , and includes an additional factor arising from a choice
of orientation data on C , which cancels the effect of local choices. See [7,
Sect. 2] for a comparison between the two approaches.

3 The Hilbert scheme of points on C3

3.1 Generalities on Hilbert schemes of points

For a smooth and quasi-projective variety X of dimension d , let

Symn(X) = Xn/Sn

denote the nth symmetric product of X. For a partition α of n, let

Symn
α(X) ⊂ Symn(X)

denote the locally closed subset of Symn(X) of n-tuples of points with mul-
tiplicities given by α. This gives a stratification

Symn(X) =
∐

α⊢n

Symn
α(X).
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Assume that the number of parts in α is n(α) and that α contains αi parts of
length i. Let Gα =

∏
i Sαi

be the corresponding product of symmetric groups.
Then there exists an open set Tα ⊂ Xn(α) such that

Symn
α(X) = Tα/Gα

is a free quotient.
There is a similar story for the Hilbert scheme Hilbn(X), which is stratified

Hilbn(X) =
∐

α⊢n

Hilbn
α(X)

into locally closed strata Hilbn
α(X), the preimages of Symn

α(X) under the
Hilbert–Chow morphism. On the deepest stratum with only one part,

Hilbn
(n)(X) → Symn

(n)(X) ∼= X

is known to be a Zariski locally trivial fibration with fiber Hilbn(Cd)0, the
punctual Hilbert scheme of affine d-space at the origin; see e.g. [2, Corol-
lary 4.9]. For affine space, we have a product

Hilbn
(n)

(
Cd

)
∼= Cd × Hilbn

(
Cd

)
0.

For an arbitrary partition α, by e.g. [2, Lemma 4.10],

Hilbn
α(X) = Vα/Gα

is a free quotient, with

Vα =
∏

i

(
Hilbi

(i)(X)
)αi \ 	̃,

where 	̃ denotes the locus of clusters with intersecting support. The product
of Hilbert–Chow morphisms gives a map

Vα →
∏

i

Xαi \ 	,

where as before, 	 is the big diagonal in a product of copies of X. This map
is a Zariski locally trivial fibration with fiber

∏
i(Hilbi(Cd)0)

αi .

3.2 The Hilbert scheme of C3 as critical locus

Let T be the three-dimensional space of linear functions on C3, so that

C3 = Spec Sym• T .
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Fix an isomorphism vol : ∧3T ∼= C; this corresponds to choosing a holo-
morphic volume form (Calabi–Yau form) on C3. We start by recalling the
description of the Hilbert scheme as a degeneracy locus from [35, Proof of
Theorem 1.3.1].

Proposition 3.1 The pair (T ,vol) defines an embedding of the Hilbert

scheme Hilbn(C3) into a smooth quasi-projective variety Mn, which in turn

is equipped with a regular function fn : Mn → C, such that

Hilbn
(
C3) = {dfn = 0} ⊂ Mn (3.1)

is the scheme-theoretic degeneracy locus of the function fn on Mn.

Proof A point [Z] ∈ Hilbn(C3) corresponds to an embedded 0-dimensional
subscheme Z →֒ C3 of length n, in other words to a quotient OC3 → OZ with
H 0(OZ) of dimension n. Fixing an n-dimensional complex vector space Vn,
the data defining a cluster consist of a linear map T ⊗Vn → Vn, subject to the
condition that the induced action of the tensor algebra of T factors through an
action of the symmetric algebra Sym• T , and a vector 1 ∈ Vn which generates
Vn under the action.

Let

Un ⊂ Hom(T ⊗ Vn,Vn) × Vn

denote the space of maps with cyclic vector, the open subset where the linear
span of all vectors obtained by repeated applications of the endomorphisms
to the chosen vector v ∈ Vn is the whole Vn.

Let χ : GL(Vn) → C∗ be the character given by χ(g) = det(g). As proved
in [35, Lemma 1.2.1], the open subset Un is precisely the subset of stable
points for the action of GL(Vn) linearized by χ . In particular, the action of
GL(Vn) on Un is free, and the quotient

Mn = Hom(T ⊗ Vn,Vn) × Vn//χ GL(Vn) = Un/GL(Vn)

is a smooth quasi-projective GIT quotient.
Finally consider the map

ϕ 	→ Tr
(
∧3ϕ

)
,

where ∧3ϕ :
∧3

T × Vn → Vn and we use the isomorphism vol before tak-
ing the trace on Vn. It is clear that this map descends to a regular map
fn : Mn → C. The equations {dfn = 0} are just the equations which say that
the action factors through the symmetric algebra; this is easy to see from the
explicit description of Remark 3.2 below. Finally, as proved by [30] (in di-
mension 2, but the proof generalizes), the scheme cut out by these equations
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is precisely the moduli scheme representing the functor of n points on C3.
Thus, as a scheme,

Hilbn
(
C3) = {dfn = 0} ⊂ Mn. �

Remark 3.2 Fixing a basis of Vn, the commutative algebra C[x, y, z] acts on
Vn by a triple of matrices A,B,C. The variety Mn is the space of triples with
generating vector, where the matrices do not necessarily commute, modulo
the action of GL(Vn). The map fn on triples of matrices is given by

(A,B,C) 	→ Tr[A,B]C.

Written explicitly in terms of the matrix entries,

Tr[A,B]C =
∑

i,k

∑

j

(AijBjk − BijAjk)Cki,

and so

∂Cki
Tr[A,B]C =

∑

j

(AijBjk − BijAjk) = 0

for all i, k indeed means that A and B commute.

Remark 3.3 This description of Hilbn(C3) can also be written in the language
of quivers. Consider the quiver consisting of two nodes, with a single arrow
from the first node to the second (corresponding to v) and three additional
loops on the second node (corresponding to A, B , and C), with relations
coming from the super-potential W = A[B,C]. Then the space Mn can be
identified with stable representations of this bound quiver, with dimension
vector (1, n), and specific choice of stability parameter which matches the
GIT stability condition described above.

3.3 Some properties of the family

Lemma 3.4 There exists a linearized T = (C∗)3-action on Mn such that

fn : Mn → C is equivariant with respect to the primitive character χ : T →
C∗ given by χ(t1, t2, t3) = t1t2t3. Moreover, the action of the diagonal 1-

parameter subgroup is circle compact.

Proof In the notation of Remark 3.2, consider the T -action

(t1, t2, t3) ◦ (A,B,C,v) = (t1A, t2B, t3C, t1t2t3v)

on the space

Un ⊂ Hom(Vn,Vn)
×3 × Vn
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of maps with cyclic vector. The map (A,B,C,v) 	→ Tr[A,B]C is T -
equivariant with respect to the character χ(t1, t2, t3) = t1t2t3. Moreover, the
T -action on Un commutes with the GL(Vn)-action acting freely on Un, so
descends to the quotient Mn. The T -action on Un lifts to the linearization and
hence defines a linearized action of T on Mn.

Consider the C∗-action on Hom(Vn,Vn)
×3 × Vn induced by the diagonal

subgroup in T . Let

M0
n = Hom(Vn,Vn)

×3 × Vn//0 GL(Vn)

be the affine quotient, the GIT quotient at the trivial character. Then by
general GIT, there is a natural proper map πn : Mn → M0

n , which is C∗-
equivariant. On the other hand, it is clear that the only C∗-fixed point in M0

n is
the image of the origin in Hom(Vn,Vn)

×3 ×Vn, and all C∗-orbits in M0
n have

this point in their closure as λ → 0. By the properness of πn, the C∗-fixed
points in Mn form a complete subvariety, and all limits as λ → 0 exist. Thus
the diagonal C∗-action on Mn is circle compact. �

The function fn : Mn → C is not proper, so we cannot apply Proposi-
tion 2.11, but as a corollary to the above lemma, we may apply Proposi-
tion 2.12 instead.

Corollary 3.5 For each n, the absolute motivic vanishing cycle of the fam-

ily fn : Mn → C can be computed as the motivic difference

[ϕfn] =
[
f −1

n (1)
]
−

[
f −1

n (0)
]
∈ MC ⊂ M

μ̂

C
.

3.4 The virtual motive of the Hilbert scheme

As a consequence of Proposition 3.1, the singular space Hilbn(C3) acquires
relative and absolute virtual motives [Hilbn(C3)]relvir and [Hilbn(C3)]vir. Let
us stress that, a priori, these classes depend on the chosen linear Calabi–Yau
structure on C3; it is indeed not clear to us what happens to the relative motive
if we apply an automorphism of Hilbn(C3) induced by a non-linear regular
automorphism of C3.

Define the motivic Donaldson–Thomas partition function of C3 to be

ZC3(t) =

∞∑

n=0

[
Hilbn

(
C3)]

virt
n ∈ MC

[
[t]

]
.

By Proposition 2.16,

W
([

Hilbn
(
C3)]

vir, q
1
2 = −1

)
∈ Z
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is the Donaldson–Thomas invariant, the signed number of 3-dimensional par-
titions of n (see [2, §4.1]). Hence the Euler characteristic specialization

χZC3(t) = M(−t)

is the signed MacMahon function.
Using the stratification

Hilbn
(
C3) =

∐

α⊢n

Hilbn
α

(
C3),

the relative virtual motive
[
Hilbn

(
C3)]

relvir ∈ M
μ̂

Hilbn(C3)

can be restricted to define the relative virtual motives
[
Hilbn

α

(
C3)]

relvir ∈ M
μ̂

Hilbn
α(C3)

for the strata. We additionally define the relative virtual motive of the punctual
Hilbert scheme

[
Hilbn

(
C3)

0

]
relvir ∈ M

μ̂

Hilbn(C3)0

by restricting [Hilbn
(n)(C

3)]relvir to

{0} × Hilbn
(
C3)

0 ⊂ C3 × Hilbn
(
C3)

0
∼= Hilbn

(n)

(
C3).

Associated to each relative virtual motive, we have the absolute motives

[
Hilbn

α

(
C3)]

vir,
[
Hilbn

(
C3)

0

]
vir ∈ M

μ̂

C
,

and the absolute motives satisfy

[
Hilbn

(
C3)]

vir =
∑

α⊢n

[
Hilbn

α

(
C3)]

vir.

We now collect some properties of these virtual motives.

Proposition 3.6

1. The absolute virtual motives [Hilbn
α(C3)]vir and [Hilbn(C3)0]vir live in the

subring MC ⊂ M
μ̂

C
.

2. On the closed stratum,
[
Hilbn

(n)

(
C3)]

vir = L3 ·
[
Hilbn

(
C3)

0

]
vir ∈ MC.
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3. More generally, for a general stratum,

[
Hilbn

α

(
C3)]

vir = πGα

([∏

i

(
C3)αi \ 	

]
·
∏

i

[
Hilbi

(
C3)αi

0

]
vir

)
,

where πGα denotes the quotient map (2.5).

Proof We start by proving (1) and (2) together. On the one hand, consider the
closed stratum

Hilbn
(n)

(
C3) ∼= C3 × Hilbn

(
C3)

0,

with projections pi to the factors. By the invariance of the construction under
the translation action of C3 on itself, the relative virtual motive is

[
Hilbn

(n)

(
C3)]

relvir = p∗
2

[
Hilbn

(
C3)

0

]
relvir.

Taking absolute motives,

[
Hilbn

(n)

(
C3)]

vir = L3 ·
[
Hilbn

(
C3)

0

]
vir, (3.2)

with both sides living a priori in M
μ̂

C
.

On the other hand, as it is well known, the affinization of the Hilbert
scheme Hilbn(C3) is the symmetric product. The conditions of Proposi-
tion 2.13, hold, since the cubic hypersurface given by the function fn is re-
duced. Applying Proposition 2.13, we see that the relative virtual motives on
the strata of the Hilbert scheme have trivial μ̂-action over the corresponding
strata in the symmetric product. Hence the absolute motives [Hilbn

α(C3)]vir
also carry trivial μ̂-action. The same statement for the punctual Hilbert
scheme then follows from (3.2), with (3.2) holding in fact in MC.

To prove (3), consider the diagram

Vα

qα

Wα

∏
i Hilbi(C3)αi

Hilbn
α(C3) Uα Hilbn(C3)

from [2, Lemma 4.10]. Here Wα is the locus of points in
∏

i Hilbi(C3)αi

which parametrizes subschemes with disjoint support, Uα is the image of Wα

in Hilbn(C3), and Vα makes the left hand square Cartesian. The first vertical
map qα is Galois whereas the second one is étale. The first inclusion in each
row is closed whereas the second one is open.
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Consider the construction of the Hilbert scheme, as a space of commuting
matrices with cyclic vector, in a neighborhood of Uα in the space of matri-
ces. Pulling back to the cover Vα , we see that a point of Vα is represented
by tuples of commuting matrices Xj , Yj ,Zj acting on some linear spaces
Vj , with generating vectors vj . The covering map is simply obtained by di-
rect sum: V =

⊕
Vj acted on by X =

⊕
Xj and Y , Z defined similarly.

The vector v =
⊕

vj is cyclic for X,Y,Z exactly because the eigenvalues of
the Xj , Yj ,Zj do not all coincide for different j ; this is the disjoint support
property of points of Vα .

On the other hand, clearly

TrX[Y,Z] =
∑

j

TrXj [Yj ,Zj ]

for block-diagonal matrices. Thus, the Thom–Sebastiani Theorem 2.9 implies
that the pullback relative motive

q∗
α

[
Hilbn

α

(
C3)]

relvir ∈ M
μ̂
Vα

is equal to the restriction to Vα of the ⋆-products of the relative virtual motives
of the punctual Hilbert schemes Hilbi

(i)(C
3). Taking the associated absolute

motives, using the locally trivial fibration on Vα along with (2), we get

q∗
α

[
Hilbn

α

(
C3)]

vir =

[∏

i

(
C3)αi \ 	

]
·
∏

i

[
Hilbi

(
C3)αi

0

]
vir ∈ MC.

Here, using (1), the ⋆-product became the ordinary product. By Lemma 2.4,
the Gα-action extends to this class, and (3) follows. �

3.5 Computing the motivic partition function of C3

The core result of this paper is the computation of

ZC3(t) =

∞∑

n=0

[
Hilbn

(
C3)]

virt
n,

the motivic Donaldson–Thomas partition function of C3.

Theorem 3.7 The motivic partition function ZC3(t) lies in MC[[t]] ⊂

M
μ̂

C
[[t]] and is given by

ZC3(t) =

∞∏

m=1

m−1∏

k=0

(
1 − Lk+2−m/2tm

)−1
. (3.3)
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Proof Recall that

Hilbn
(
C3) = {dfn = 0},

where fn is the function

fn(A,B,C,v) = TrA[B,C]

defined on the smooth variety

Mn = Un/GL(Vn),

where Vn is an n-dimensional vector space, and

Un ⊂ Hom(Vn,Vn)
3 × Vn

is the open set of points (A,B,C,v) satisfying the stability condition that
monomials in A,B,C applied to v generate Vn.

By Corollary 3.5, to compute the virtual motive, we need to compute the
motivic difference of the fibers f −1

n (1) and f −1
n (0).

Let

Yn =
{
(A,B,C,v) : TrA[B,C] = 0

}
⊂ Hom(Vn,Vn)

3 × Vn,

and let

Zn =
{
(A,B,C,v) : TrA[B,C] = 1

}
⊂ Hom(Vn,Vn)

3 × Vn.

The isomorphism

Hom(Vn,Vn)
3 × Vn\Yn

∼= C∗ × Zn

given by

(A,B,C,v) 	→
(
TrA[B,C],

(
TrA[B,C]

)−1
A,B,C,v

)

yields the motivic relation

[Yn] + (L − 1)[Zn] =
[
Hom(Vn,Vn) × Vn

]
= L3n2+n,

equivalently

(1 − L)
(
[Yn] − [Zn]

)
= L3n2+n − L[Yn].

The space Yn stratifies as a union

Yn = Y ′
n ⊔ Y ′′

n
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where Y ′
n consists of the locus where B and C commute and Y ′′

n is its com-
plement. Projections onto the B and C factors induce maps

Y ′
n → Cn, Y ′′

n →
{
C2n2

\ Cn

}

where Cn ⊂ C2n2
is the commuting variety. The first map is projection on

the second factor under the product decomposition Y ′
n

∼= Cn2+n × Cn and the

second map is a Zariski trivial fibration with fibers isomorphic to Cn2−1+n.
Indeed, for fixed B and C with [B,C] �= 0, the condition TrA[B,C] = 0 is a
single non-trivial linear condition on the matrices A. Moreover, the fibration
is Zariski trivial over the open cover whose sets are given by the condition that
some given matrix entry of [B,C] is non-zero. Thus the above stratification
yields the equation of motives

[Yn] = Ln2+n[Cn] + Ln2−1+n
(
L2n2

− [Cn]
)
.

Substituting into the previous equation and canceling terms we obtain

(1 − L)
(
[Yn] − [Zn]

)
= −Ln2+n

(
L[Cn] − [Cn]

)
.

Writing

wn = [Yn] − [Zn],

we get the basic equation

wn = Ln(n+1)[Cn]. (3.4)

We now need to incorporate the stability condition. We call the smallest
subspace of Vn containing v and invariant under the action of A, B , and C

the (A,B,C)-span of v. Let

Xk
n =

{
(A,B,C,v) : the (A,B,C)-span of v has dimension k

}

and let

Y k
n = Yn ∩ Xk

n, Zk
n = Zn ∩ Xk

n.

We compute the motive of Y k
n as follows. There is a Zariski locally trivial

fibration

Y k
n → Gr(k,n)

given by sending (A,B,C,v) to the (A,B,C)-span of v.
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To compute the motive of the fiber of this map, we choose a basis of
Vn so that the first k vectors are in the (A,B,C)-span of v. In this basis,
(A,B,C,v) in a fixed fiber all have the form

A =

(
A0 A′

0 A1

)
, B =

(
B0 B ′

0 B1

)
, C =

(
C0 C′

0 C1

)
,

v =

(
v0
0

)

where (A0,B0,C0) are k × k matrices, (A′,B ′,C′) are k × (n − k) matrices,
(A1,B1,C1) are (n − k) × (n − k) matrices, and v0 is a k-vector.

Thus a fiber of Y k
n → Gr(k,n) is given by the locus of

{
(A0,B0,C0, v0), (A1,B1,C1),

(
A′,B ′,C′

)}

satisfying

TrA[B,C] = TrA0[B0,C0] + TrA1[B1,C1] = 0.

This space splits into a factor C3(n−k)k , corresponding to the triple
(A′,B ′,C′), and a remaining factor which stratifies into a union of

{
TrA0[B0,C0] = TrA1[B1,C1] = 0

}

and {
TrA0[B0,C0] = −TrA1[B1,C1] �= 0

}
.

Projection on the (A0,B0,C0, v0) and (A1,B1,C1) factors induces a product
structure on the above strata so that the corresponding motives are given by

[
Y k

k

]
· [Yn−k]L

−(n−k)

and

(L − 1)
[
Zk

k

]
[Zn−k]L

−(n−k)

respectively. Putting this all together yields

[
Y k

n

]
= L3(n−k)k

[
n

k

]

L

([
Y k

k

]
· [Yn−k] · L−(n−k)

+ (L − 1) ·
[
Zk

k

]
· [Zn−k] · L−(n−k)

)
.

A similar analysis yields

[
Zk

n

]
= L3(n−k)k

[
n

k

]

L

([
Y k

k

]
· [Zn−k] · L−(n−k)

+ (L − 2) ·
[
Zk

k

]
· [Zn−k] · L−(n−k) +

[
Zk

k

]
· [Yn−k] · L−(n−k)

)
.
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We are interested in the difference

wk
n =

[
Y k

n

]
−

[
Zk

n

]

= L(3k−1)(n−k)

[
n

k

]

L

(
wn−k

[
Y k

k

]
− wn−k

[
Zk

k

])

= L(n−k)(n+2k)

[
n

k

]

L

[Cn−k]w
k
k ,

where we used (3.4) for the last equality.
Observing that Yn =

⊔n
k=0 Y k

n and Zn =
⊔n

k=0 Zk
n, we get

wn
n = wn −

n−1∑

k=0

wk
n,

into which we substitute our equations for wn and wk
n to derive the following

recursion for wn
n :

wn
n = Ln(n+1)[Cn] −

n−1∑

k=0

[
n

k

]

L

L(n−k)(n+2k)[Cn−k]w
k
k . (3.5)

We can now compute the virtual motive of the Hilbert scheme. By Propo-
sition 2.12, we get

[ϕfn] = −
[
f −1

n (0)
]
+

[
f −1

n (1)
]
= −

[Y n
n ]

[GLn(C)]
+

[Xn
n]

[GLn(C)]
= −

wn
n

L(n
2)[n]L!

.

The dimension of Mn is 2n2 + n, so we find

[
Hilbn

(
C3)]

vir = −L−n2−n/2[ϕfn] = L− 3n2
2

wn
n

[n]L!
.

Working in the ring MC[(1 − Ln)−1 : n ≥ 1], we divide (3.5) by
L3n2/2[n]L! and rearrange to obtain

c̃nLn/2 =

n∑

k=0

c̃n−k

[
Hilbk

(
C3)]

virL
−(n−k)/2,

where

c̃n = L−(n
2)

Cn

[n]L!
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is the renormalized motive (2.1) of the space Cn of commuting pairs of ma-
trices. Multiplying by tn and summing, we get

C
(
tL1/2) = ZC3(t)C

(
tL−1/2),

with C(t) as in (2.2). Thus using Proposition 2.1 (cf. Remark 2.2) we obtain

ZC3(t) =
C(tL1/2)

C(tL−1/2)
=

∞∏

m=1

∞∏

j=0

(1 − L1−j+m/2tm)−1

(1 − L1−j−m/2tm)−1

=

∞∏

m=1

m−1∏

j=0

(
1 − L1−j+m/2tm

)−1
=

∞∏

m=1

m−1∏

k=0

(
1 − L2+k−m/2tm

)−1

(3.6)

which completes the proof of Theorem 3.7. �

Remark 3.8 Some formulae in the above proof appear also in recent work
of Reineke [32] and Kontsevich–Soibelman [22]. In particular, the twisted
quotient (3.6) appears in [32, Proposition 3.3]. The twisted quotient is applied
later in [32, Sect. 4] to a generating series of stacky quotients, analogously to
our series C defined in (2.1). Reineke’s setup is more general, dealing with
arbitrary quivers, but also more special, since there are no relations.

Remark 3.9 The result of Theorem 3.7 shows in particular that the absolute
virtual motives of Hilbn(C3) are independent of the chosen linear Calabi–Yau
structure on C3.

Remark 3.10 The first non-trivial example is the case of four points, with
Hilb4(C3) irreducible and reduced but singular. The E-polynomial realization
of the virtual motive on Hilb4(C3) was computed earlier by [12]. The result,
up to the different normalization used there, coincides with the t = 4 term of
the result above.

Remark 3.11 The Euler characteristic specialization of our formula is ob-

tained by setting L
1
2 = −1. This immediately leads to

χZC3(t) =

∞∏

m=1

(
1 − (−t)m

)−m
= M(−t),

where M(t) is the MacMahon function enumerating 3D partitions. The stan-
dard proof of

χZC3(t) = M(−t)
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is by torus localization [2, 27]. Our argument gives a new proof of this
result, which is independent of the combinatorics of 3-dimensional parti-
tions. Indeed, by combining the two arguments, we obtain a new (albeit
non-elementary) proof of MacMahon’s formula. It is of course conceivable
that Theorem 3.7 also has a proof by torus localization (perhaps after the E-
polynomial specialization). But as the computations of [12] show, this has to
be nontrivial, since the fixed point contributions are not pure weight.

4 The Hilbert scheme of points of a general threefold

4.1 The virtual motive of the Hilbert scheme

Let X be a smooth and quasi-projective threefold. Recall the stratification of
Hilbn(X) by strata Hilbn

α(X) indexed by partitions α of n. Proposition 3.6
dictates the following recipe for associating a virtual motive to the Hilbert
scheme and its strata.

Definition 4.1 We define virtual motives

[
Hilbn

α(X)
]

vir ∈ MC and
[
Hilbn(X)

]
vir ∈ MC

as follows.

1. On the deepest stratum,

[
Hilbn

(n)(X)
]

vir = [X] ·
[
Hilbn

(
C3)

0

]
vir,

where [Hilbn(C3)0]vir is as defined in Sect. 3.4.
2. More generally, on all strata,

[
Hilbn

α(X)
]

vir = πGα

([∏

i

Xαi \ 	

]
·
∏

i

[
Hilbi

(
C3)αi

0

]
vir

)
,

where the motivic classes [
∏

i X
αi \ 	] and

∏
i[Hilbi(Cd)0]

αi

vir carry Gα-
actions, and πGα denotes the quotient map (2.5).

3. Finally
[
Hilbn(X)

]
vir =

∑

α

[
Hilbn

α(X)
]

vir.

Of course by Proposition 3.6, this definition reconstructs the virtual mo-
tives of Hilbn(C3) from those of the punctual Hilbert scheme Hilbn(C3)0
consistently with its original definition.
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4.2 The partition function of the Hilbert scheme

Let

ZX(t) =

∞∑

n=0

[
Hilbn(X)

]
virt

n ∈ MC

[
[t]

]

be the motivic degree zero Donaldson–Thomas partition function of a smooth
quasi-projective threefold X. We will derive expressions for this series and its
specializations from Theorem 3.7. We use the Exp map and power structure
on the ring of motivic weights introduced in Sect. 2.5 throughout this section.

Let

ZC3,0(t) =

∞∑

n=0

[
Hilbn

(
C3)

0

]
virt

n

be the generating series of virtual motives of the punctual Hilbert schemes of
C3 at the origin. The following statement is the virtual motivic analogue of
Cheah’s [6, Main Theorem].

Proposition 4.2 We have

ZX(t) = ZC3,0(t)
[X].

Proof We have

ZX(t) = 1 +
∑

α

[
Hilbn

α(X)
]

virt
|α|

= 1 +
∑

α

πGα

([∏

i

Xαi \ 	

]
·
∏

i

[
Hilbi

(
Cd

)
0

]αi

vir

)
t |α|

=

(
1 +

∑

n≥1

[
Hilbn

(
Cd

)
0

]
virt

n

)[X]

.

Here, first we use Definition 4.1(3), then Definition 4.1(2), and finally the
power structure formula (2.6). �

Theorem 4.3 Let X be a smooth and quasi-projective threefold. Then

ZX(−t) = Exp

(
−t[X]vir

(1 + L
1
2 t)(1 + L− 1

2 t)

)
. (4.1)
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Proof We begin by writing the formula from Theorem 3.7 using the power
structure on MC and the Exp function defined in Sect. 2.5.

ZC3(−t) =

∞∏

m=1

m−1∏

k=0

(
1 − L2+k−m

2 (−t)m
)−1

=

∞∏

m=1

m−1∏

k=0

(
1 −

(
−L

1
2
)4+2k−m

tm
)−1

=

∞∏

m=1

(
1 − tm

)−
∑m−1

k=0 (−L
1
2 )4+2k−m

= Exp

(
∞∑

m=1

tm
m−1∑

k=0

(
−L

1
2
)4+2k−m

)

= Exp

(
∞∑

m=1

tm
(
−L

1
2
)4−m

·
1 − (−L

1
2 )2m

1 − L

)

= Exp

(
L2

1 − L

∞∑

m=1

((
−L− 1

2 t
)m

−
(
−L

1
2 t

)m)
)

= Exp

(
L

3
2

L− 1
2 − L

1
2

·

(
−L− 1

2 t

1 + L− 1
2 t

−
−L

1
2 t

1 + L
1
2 t

))

= Exp

(
−L

3
2 t

(1 + L− 1
2 t)(1 + L

1
2 t)

)
.

Replacing t by −t in Proposition 4.2, and letting X = C3, we find that

ZC3,0(−t) = Exp

(
−L− 3

2 t

(1 + L− 1
2 t)(1 + L

1
2 t)

)
.

Another application of Proposition 4.2 concludes the proof. �

Our formula fits nicely with the corresponding formulas for surfaces,
curves, and points. Göttsche’s formula [15, 16] for a smooth quasi-projective
surface S, rewritten in motivic exponential form in [17, Statement 4], reads

∞∑

n=0

[
Hilbn(S)

]
tn = Exp

(
[S]t

1 − Lt

)
(4.2)
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and for a smooth curve C we have

∞∑

n=0

[
Hilbn(C)

]
tn =

∞∑

n=0

[
Symn(C)

]
tn = Exp

(
[C]t

)
.

Finally, for completeness, consider P , a collection of N points. Then

∞∑

n=0

[
Hilbn(P )

]
tn =

N∑

n=0

(
N

n

)
tn =

(1 − t2)N

(1 − t)N
= Exp

(
[P ]t (1 − t)

)
.

Since Hilbn(X) is smooth and of the expected dimension when the dimension
of X is 0, 1, or 2, the virtual motives are given by (2.11):

[
Hilbn(X)

]
vir = L− ndimX

2
[
Hilbn(X)

]
.

The series

ZX(t) =

∞∑

n=0

[
Hilbn(X)

]
virt

n

is thus well defined for any X of dimension 0, 1, 2, or 3. For dimX ≥ 4, ZX(t)

is defined to order t3 since Hilbn(X) is smooth for n ≤ 3 in all dimensions. In
order to write ZX(t) as a motivic exponential, we must introduce a sign. Let
T = (−1)d t where d = dimX. Then for d equal to 0, 1, or 2, we have

ZX(T ) =

∞∑

n=0

[
Hilbn(X)

]
L− dn

2 T n =

∞∑

n=0

[
Hilbn(X)

]((
−L

1
2
)−d

t
)n

.

Applying the substitution rule (2.8) to the above formulas and including the
d = 3 case from Theorem 4.3, we find

ZX(T ) = Exp
(
T [X]virGd(T )

)
,

where

Gd(T ) =

⎧
⎪⎪⎨
⎪⎪⎩

1 − T d = 0
1 d = 1
(1 − T )−1 d = 2

(1 − L
1
2 T )−1(1 − L− 1

2 T )−1 d = 3.

The above can be written uniformly as

Gd(T ) = Exp
(
T

[
Pd−2]

vir

)
,
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where we have defined [PN ]vir for negative N via the equation

[
PN

]
vir = L−N

2 ·
LN+1 − 1

L − 1
. (4.3)

In particular we have [P−1]vir = 0 and [P−2]vir = −1.

Corollary 4.4 The motivic partition function of the Hilbert scheme of points

on a smooth variety X of dimension d equal to 0, 1, 2, or 3 is given by6

∞∑

n=0

[
Hilbn(X)

]
virT

n = Exp
(
T [X]vir Exp

(
T

[
Pd−2]

vir

))
,

where T = (−1)d t .

Remark 4.5 We do not know of a reasonable general definition for the virtual
motive [Hilbn(X)]vir when the dimension of X is greater than 3. However,
it is well known that the Hilbert scheme Hilbn(X) of n ≤ 3 points is smooth

in all dimensions and so the virtual motive is given by L− nd
2 [Hilbn(X)] in

these cases (cf. (2.11)). Remarkably, the formula in Corollary 4.4 correctly
computes the virtual motive for n ≤ 3 in all dimensions. This can be verified
directly using the motivic class of the punctual Hilbert scheme for n ≤ 3 [6,
§4]:

3∑

n=0

[
Hilbn

(
Cd

)
0

]
tn = 1 + t +

[
d

1

]

L

t2 +

[
d + 1

2

]

L

t3.

Remark 4.6 Using the torus action on Hilbn(Cd), one sees that χ(Hilbn(Cd))

counts subschemes given by monomial ideals. Equivalently, χ(Hilbn(Cd)) is
equal to the number of dimension d partitions of n. Thus naively, one expects
χZCd (T ) to be the generating function for d dimensional partitions of n,
counted with the sign (−1)nd . Indeed, this is the case when d ≤ 3 or when
n ≤ 3. Up to the sign (−1)nd , the Euler characteristic specialization of our
general formula yields exactly MacMahon’s guess for the generating function
of dimension d partitions:

χZCd (T ) = Exp
(
(−1)d tχ

[
Cd

]
vir Exp

(
(−1)d tχ

[
Pd−2]

vir

))

= Exp
(
t Exp

(
(d − 1)t

))

6We thank Lothar Göttsche, Ezra Getzler and Sven Meinhardt for discussions which led us to
this formulation.
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= Exp

(
t

(1 − t)d−1

)

=

∞∏

m=1

(
1 − tm

)−(m+d−3
d−2 )

.

However, it is now known that MacMahon’s guess is not correct, although it
does appear to be asymptotically correct in dimension four [29].

4.3 Weight polynomial and deformed MacMahon

When the dimension of X is 1 or 2, the weight polynomial specialization
of ZX(t) gives rise to MacDonald’s and Göttsche’s formulas for the Poincaré
polynomials of the Hilbert schemes. When the dimension of X is 3, the weight
polynomial specialization leads to the following analogous formula, involv-
ing the refined MacMahon functions discussed in Appendix A.

Theorem 4.7 Let X be a smooth projective threefold and let bd be the Betti

number of X of degree d . Then the generating function of the virtual weight

polynomials of the Hilbert schemes of points of X is given by

WZX(t) =

6∏

d=0

M d−3
2

(
−t,−q

1
2
)(−1)dbd ∈ Z

[
q± 1

2
][

[t]
]
, (4.4)

where

Mδ

(
t, q

1
2
)
=

∞∏

m=1

m−1∏

k=0

(
1 − qδ+ 1

2 +k−m
2 tm

)−1

are the refined MacMahon functions discussed in Appendix A.

Proof Recall that the weight polynomial specialization

W : MC → Z
[
q± 1

2
]

is obtained from the E polynomial specialization

E : MC → Z
[
x, y, (xy)−

1
2
]

by setting x = y = −q
1
2 and (xy)

1
2 = q

1
2 . It follows from [18, Proposition 4]

that the W -specialization is a ring homomorphism which respects power
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structures where the power structure on Z[q± 1
2 ] satisfies

(
1 − tm

)−
∑

i ai(−q
1
2 )i

=
∏

i

(
1 −

(
−q

1
2
)i

tm
)−ai .

From Theorem 4.3 we deduce that

ZX(t) = ZC3(t)
L

3
2 [X]vir = ZC3(t)

[X].

It then follows from Theorem 3.7 that

ZX(t) =

∞∏

m=1

m−1∏

k=0

(
1 −

(
−L

1
2
)2k+2−m

(−t)m
)−[X]

.

Applying the homomorphism W to ZX , using the compatibility of the power
structures, we get

WZX(t) =

∞∏

m=1

m−1∏

k=0

(
1 −

(
−q

1
2
)2k+2−m

(−t)m
)−

∑6
d=0(−1)dbd (−q

1
2 )d

=

6∏

d=0

∞∏

m=1

m−1∏

k=0

(
1 −

(
−q

1
2
)2k+2−m+d

(−t)m
)−(−1)dbd

=

6∏

d=0

M d−3
2

(
−t,−q

1
2
)(−1)dbd .

�

Remark 4.8 The Euler characteristic specialization is easily determined from

the formula in Theorem 4.7 by setting −q
1
2 = 1, namely

χZX(t) = M(−t)χ(X). (4.5)

By Proposition 2.16, this is the partition function of the ordinary degree
zero Donaldson–Thomas invariants in the case when X is Calabi–Yau. For-
mula (4.5) is a result, for any smooth quasi-projective threefold, of Behrend
and Fantechi [2].

Note that a variant of this formula, for a smooth projective threefold X,
was originally conjectured by Maulik, Nekrasov, Okounkov and Pandhari-
pande [27]. This involves the integral (degree) of the degree zero virtual cycle
on the Hilbert scheme, and says that for a projective threefold X,

∞∑

n=0

deg
[
Hilbn(X)

]vir
tn = M(−t)

∫
X c3−c1c2, (4.6)
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with ci being the Chern classes of X. This was proved by [23, 24]. The two
formulae become identical in the projective Calabi–Yau case, since then the
perfect obstruction theory on the Hilbert schemes is symmetric [2], and so by
the main result of [1], the degree of the virtual zero-cycle is equal to its virtual
Euler characteristic. Note that our work has nothing to say about formula (4.6)
in the non-Calabi–Yau case.

4.4 Categorified Donaldson–Thomas invariants

Our definition of the virtual motive of the Hilbert scheme Hilbn(X) of a
smooth quasi-projective threefold X, obtained by building it up from pieces
on strata, is certainly not ideal. Our original aim in this project was in fact to
build a categorification of Donaldson–Thomas theory on the Hilbert scheme
of a (Calabi–Yau) threefold X, defining an object of some category with a
cohomological functor to (multi)graded vector spaces, whose Euler charac-
teristic gives the degree zero Donaldson–Thomas invariant of X. Finding a
ring with an Euler characteristic homomorphism is only a further shadow of
such a categorification.

One particular candidate where such a categorification could live would
be the category MHM(Hilbn(X)) of mixed Hodge modules [33, 34] on the
Hilbert scheme. This certainly works for affine space C3, since the global de-
scription of the Hilbert scheme Hilbn(C3) as a degeneracy locus gives rise to
a mixed Hodge module of vanishing cycles, with all the right properties [12].
However, when trying to globalize this construction, we ran into glueing is-
sues which we couldn’t resolve, arising from the fact that the description of
Hilbn(C3) as a degeneracy locus uses a linear Calabi–Yau structure on C3

and is therefore not completely canonical.
In some particular cases, we were able to construct the mixed Hodge mod-

ules categorifying Donaldson–Thomas theory of the Hilbert scheme. Since
we currently have no application for categorification as opposed to a refined
invariant taking values in the ring of motivic weights, and since our results
are partial, we only sketch the constructions.

– Low number of points. For n ≤ 3, the Hilbert scheme Hilbn(X) is smooth
and there is nothing to do. The next case n = 4 is already interesting. It
is known that for a threefold X, the space Hilb4(X) is irreducible and re-
duced, singular along a copy of X which is the locus of squares of maximal
ideals of points. As proved in [12], for X = C3 the mixed Hodge module
of vanishing cycles of f4 on Hilb4(C3) admits a very natural geometric de-
scription: it has a three-step non-split filtration with quotients being (shifted
copies of) the constant sheaf on the (smooth) singular locus, the intersec-
tion cohomology (IC) sheaf of the whole irreducible space Hilb4(C3), and
once more the constant sheaf on the singular locus. It also follows from
results of [ibid.] that the relevant extension groups are one-dimensional,
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and so this mixed Hodge module is unique. Turning to a general (simply-
connected) X, we again have the IC sheaf on the space Hilb4(X) and the
constant sheaf on its singular locus, and a compatible extension of these
mixed Hodge modules exists and is unique. This provides the required cat-
egorification. We expect that such an explicit construction is possible for
some higher values of n than 4 but certainly not in general.

– Abelian threefolds. Let X be an abelian threefold (or some other quotient
of C3 by a group of translations). Then we can cover X by local analytic
patches with transition maps which are in the affine linear group of C3. The
local (analytic) vanishing cycle sheaves on the Hilbert schemes of patches
can be glued using the affine linear transition maps to a global (analytic)
mixed Hodge module on Hilbn(X).

– Local toric threefolds. Finally, it should be possible to construct the gluing
directly for some local toric threefolds. We checked the case of local P1

explicitly, in which case the mixed Hodge modules on all Hilbert schemes
exist. However, we already failed for local P2.

Compare also the discussion surrounding [20, Question 5.5], and see also
the recent work [22].
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Appendix A: q-Deformations of the MacMahon function

Let P denote the set of all finite 3-dimensional partitions. For a partition
α ∈ P , let w(α) denote the number of boxes in α. The combinatorial gener-
ating series

M(t) =
∑

α∈P

tw(α)

was determined in closed form by MacMahon [26] to be

M(t) =

∞∏

m=1

(
1 − tm

)−m
.
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Motivated by work of Okounkov and Reshetikhin [31], in a recent paper [19],
Iqbal–Kozçaz–Vafa discussed a family of q-deformations of this formula.
Think of a 3-dimensional partition α ∈ P as a subset of the positive octant
lattice N3, and break the symmetry by choosing one of the coordinate direc-
tions. Define w−(α),w0(α) and w+(α), respectively, as the number of boxes
(lattice points) in α ∩ {x − y < 0}, α ∩ {x − y = 0} and α ∩ {x − y > 0}. For
a half-integer δ ∈ 1

2Z, consider the generating series

Mδ(t1, t2) =
∑

α∈P

t
w−(α)+( 1

2 +δ)w0(α)

1 t
w+(α)+( 1

2 −δ)w0(α)

2 .

Clearly Mδ(t, t) = M(t) for all δ.

Theorem A.1 (Okounkov–Reshetikhin [31, Theorem 2]) The series

Mδ(t1, t2) admits the product form

Mδ(t1, t2) =

∞∏

i,j=1

(
1 − t

i− 1
2 +δ

1 t
j− 1

2 −δ

2

)−1
.

In the main body of the paper, we use a different set of variables. Namely,
we set

t1 = tq
1
2 , t2 = tq− 1

2 .

Then the product formula becomes

Mδ

(
t, q

1
2
)
=

∞∏

m=1

m−1∏

k=0

(
1 − tmqk+ 1

2 −m
2 +δ

)−1
.

The specialization to the MacMahon function is Mδ(t, q
1
2 = 1) = M(t) for

all δ.

Appendix B: The motivic nearby fiber of an equivariant function

In this appendix we prove Proposition 2.12, which asserts that if a regular
function f : X → C on a smooth variety is equivariant with respect to a torus
action satisfying certain assumptions, then Denef-Loeser’s motivic nearby
fiber [ψf ] is simply equal to the motivic class of the geometric fiber [f −1(1)].
To make this appendix self-contained, we recall the definitions and restate the
result below.

Let

f : X → C
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be a regular function on a smooth quasi-projective variety X, and let X0 =

f −1(0) be the central fiber. Denef and Loeser define [ψf ] ∈ M
μ̂

C
, the motivic

nearby cycle of f using arc spaces and the motivic zeta function [9, 25].
Using motivic integration, they give an explicit formula for [ψf ] in terms of
any embedded resolution which we now recall.

Let h : Y → X be an embedded resolution of X0, namely Y is non-singular
and

f̃ = h ◦ f : Y → C

has central fiber Y0 which is a normal crossing divisor with non-singular com-
ponents {Ej : j ∈ J }. For I ⊂ J , let

EI =
⋂

i∈I

Ei

and let

Eo
I = EI −

⋃

j∈I c

(Ej ∩ EI ).

By convention, E∅ = Y and Eo
∅ = Y − Y0.

Let Ni be the multiplicity of Ei in the divisor f̃ −1(0). Letting

mI = gcd(Ni)i∈I ,

there is a natural etale cyclic μmI
-cover

Ẽo
I → Eo

I .

The formula of Denef and Loeser for the (absolute) motivic nearby cycles
of f is given by

[ψf ] =
∑

I �=∅

(1 − L)|I |−1[Ẽo
I ,μmI

]
∈ M

μ̂

C
. (B.1)

Since all the Eo
I appearing in the above sum have natural maps to X0, the

above formula determines the relative motivic nearby cycle [ψf ]X0 ∈ M
μ̂
X0

.
The relative motivic vanishing cycle is supported on Z = {df = 0}, the de-
generacy locus of f :

[ϕf ]Z = [ψf ]X0 − [X0]X0 ∈ M
μ̂
Z ⊂ M

μ̂
X0

.

Recall that an action of C∗ on a variety V is circle compact, if the fixed
point set V C∗

is compact and moreover, for all v ∈ V , the limit limt→0 t · y

exists.
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The following is a restatement of Proposition 2.12 and Proposition 2.13. It
is the main result of this appendix.

Theorem B.1 Let f : X → C be a regular morphism on a smooth quasi-

projective complex variety. Let Z = {df = 0} be the degeneracy locus of

f and let Zaff ⊂ Xaff be the affinization of Z and X respectively. Assume

that there exists an action of a connected complex torus T on X so that f

is T -equivariant with respect to a primitive character χ : T → C∗, namely

f (t · x) = χ(t)f (x) for all x ∈ X and t ∈ T . We further assume that there

exists a one parameter subgroup C∗ ⊂ T such that the induced action is cir-

cle compact. Then the motivic nearby cycle class [ψf ] is in MC ⊂ M
μ̂

C
and

is equal to [X1] = [f −1(1)]. Consequently the motivic vanishing cycle class

[ϕf ] is given by

[ϕf ] =
[
f −1(1)

]
−

[
f −1(0)

]
.

If we further assume that X0 is reduced then [ϕf ]Zaff , the motivic vanish-

ing cycle, considered as a relative class on Zaff, lies in the subring MZaff ⊂

M
μ̂
Zaff

.

By equivariant resolution of singularities [36, Corollary 7.6.3], we may
assume that h : Y → X, the embedded resolution of X0, is T -equivariant.
Namely Y is a non-singular T -variety and

f̃ = h ◦ f : Y → C

is T -equivariant with central fiber E which is a normal crossing divisor with
non-singular components Ej , j ∈ J . Let C∗ ⊂ T be the one-parameter sub-
group whose action on X is circle compact. Then the action of C∗ on Y is
circle compact (since h is proper) and each Ej is invariant (but not necessar-
ily fixed).

We will make use of the Białynicki-Birula decomposition for smooth va-
rieties [3]. This result states that if V is a smooth projective variety with a
C∗-action, then there is a locally closed stratification:

V =
⋃

F

ZF

where the union is over the components of the fixed point locus and ZF → F

is a Zariski locally trivial affine bundle. The rank of the affine bundle ZF → F

is given by

n(F ) = index(NF/V )

where the index of the normal bundle NF/V is the number of positive weights
of the fiberwise action of C∗. The morphisms ZF → F are defined by x 	→
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limt→0 t · x and consequently, the above stratification also exists for smooth
varieties with a circle compact action. As a corollary of the Białynicki-Birula
decomposition, we get the following relation in the ring of motivic weights.

Lemma B.2 Let V be a smooth quasi-projective variety with a circle compact

C∗-action. For each component F of the fixed point locus, we define the index

of F , denoted by n(F ), to be the number of positive weights in the action of

C∗ on NF/V . Then in MC we have

[V ] =
∑

F

Ln(F )[F ],

where the sum is over the components of the fixed point locus and L = [A1
C
]

is the Lefschetz motive.

We call this decomposition a BB decomposition.
We begin our proof of Theorem B.1 with a “no monodromy” result.

Lemma B.3 The following equation holds in M
μ̂

C
:

[
Ẽo

I ,μmI

]
=

[
Eo

I

]
.

Under the further assumption that X0 is reduced, the above equation holds in

M
μ̂
Xaff

.

An immediate corollary of Lemma B.3 is that [ψf ] lies in the subring

MC ⊂ M
μ̂

C
and that if X0 is reduced, then [ϕf ]Zaff lies in the subring

MZaff ⊂ M
μ̂
Zaff

.

To prove Lemma B.3, we recall the construction of the μmI
-cover Ẽo

I →

Eo
I given in [25, §5]. Let N = lcm(Ni) and let Ỹ → Y be the μN -cover ob-

tained by base change over the N th power map (·)N : C → C followed by
normalization. Define Ẽo

I to be any connected component of the preimage of
Eo

I in Ỹ . The component Ẽo
I is stabilized by μmI

⊂ μN whose action defines
the cover Ẽo

I → Eo
I .

Observe that the composition

Ei → Y → X → Xaff

contracts Ei to a point unless Ei is a component of the proper transform
of X0. Thus for these components (and their intersections), the proof given
below (stated for absolute classes), applies to relative classes over Xaff as
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well. Under the assumption that X0 is reduced, those Ei which are compo-
nents of the proper transform of X0 have multiplicity one and so Ẽi = Ei and
there is nothing to prove.

We define T̃ by the fibered product

T̃

χ̃

C∗

(·)N

T
χ

C∗

Thus T̃ is an extension of T by μN ⊂ C∗ and it has character χ̃ satisfying
χ̃N = χ . Moreover, χ̃ is the identity on the subgroup μN ⊂ T̃ . The key fact
here is that since χ is primitive, T̃ is connected.

By construction, T̃ acts on the base change of Y over the N th power map
and hence it acts on the normalization Ỹ . Thus we have obtained an action of
a connected torus T̃ on Ỹ covering the T -action on Y . Since T acts on each
Eo

I , T̃ acts on each component of the preimage of Eo
I in Ỹ . Thus we have an

action of the connected torus T̃ on Ẽo
I such that the μmI

-action is induced by
the subgroup

μmI
⊂ μN ⊂ T̃ .

Lemma B.3 then follows from the following:

Lemma B.4 Let W be a smooth quasi-projective variety with the action of a

connected torus T̃ . Then for any finite cyclic subgroup μ ⊂ T̃ , the equation

[W,μ] = [W ] = [W/μ]

holds in M
μ̂

C
.

Proof Let C∗ ⊂ T̃ be the 1-parameter subgroup generated by μ ⊂ T̃ . The
C∗-action on W gives rise to a C∗-equivariant stratification of W into va-
rieties Wi of the form (V − {0}) × F where F is fixed and V is a C∗-
representation. This assertion follows from applying the Białynicki-Birula
decomposition to W , any C∗-equivariant smooth compactification of W and
stratifying further to trivialize all the bundles and to make the zero sections
separate strata. The induced stratification of W then is of the desired form.
Thus to prove Lemma B.4, it then suffices to prove it for the case of μ acting
on V − {0} where V is a μ-representation. By the relation given in (2.4),
we have [V,μ] = [V ] and hence [V − {0},μ] = [V − {0}]. The equality
[V − {0}] = [(V − {0})/μ] follows from [25, Lemma 5.1].
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Applying Lemma B.4 to (B.1), we see that in order to prove [ψf ] = [X1],
we must prove

[X1] =
∑

I �=∅

(1 − L)|I |−1[Eo
I

]
.

As explained in the beginning of Sect. 2.7, there is an isomorphism

X1 × C∗ ∼= X − X0.

Consequently we get (L − 1)[X1] = [X] − [X0] or equivalently

[Y ] = [Y0] + (L − 1)[X1].

Combining this with the previous equation we find that the equation we wish
to prove, [ψf ] = [X1], is equivalent to

[Y ] = [Y0] −
∑

I �=∅

(1 − L)|I |
[
Eo

I

]
,

which can also be written (using the conventions about the empty set) as

0 =
∑

I

(1 − L)|I |
[
Eo

I

]
. (B.2)

By the principle of inclusion/exclusion, we can write

[
Eo

I

]
= [EI ] −

∑

∅�=K⊂I c

(−1)|K|[EI∪K ] =
∑

K⊂I c

(−1)K [EI∪K ],

thus we have

(−1)|I |
[
Eo

I

]
=

∑

A⊃I

(−1)|A|[EA].

Thus the right hand side of (B.2) becomes
∑

I

(L − 1)|I |
∑

A⊃I

(−1)|A|[EA] =
∑

A

(−1)|A|[EA]
∑

I⊂A

(L − 1)|I |.

Since

∑

I⊂A

(L − 1)|I | =

|A|∑

n=0

(
|A|

n

)
(L − 1)n = L|A|,

we can reformulate the equation we need to prove as

0 =
∑

A

(−L)|A|[EA]. (B.3)
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Note that each EA is smooth and C∗ invariant and that the induced C∗-
action on EA is circle compact, so we have a BB decomposition for each.

Let F denote a component of the fixed point set YC∗
and let θF,A denote a

component of F ∩ EA. Since EA is smooth and C∗ invariant and the induced
C∗-action is circle compact, EA admits a BB decomposition

[EA] =
∑

F

∑

θF,A

Ln(θF,A)[θF,a]

where

n(θF,A) = index(NθF,A/EA
).

Therefore the sum in (B.3) (which we wish to prove is zero) is given by

∑

A

(−L)|A|[EA] =
∑

A

∑

F

∑

θF,A

(−1)|A|L|A|+n(θF,A)[θF,A].

We define a set I (F ) by

I (F ) = {i : F ⊂ Ei}.

Then clearly

θF,A = θF,A′ if A ∪ I (F ) = A′ ∪ I (F ).

So writing A = B ∪ C where B ⊂ I (F ) and C ⊂ I (F )c, we can rewrite the
above sum as

∑

F

∑

C⊂I (F )c

∑

θF,C

(−L)|C|[θF,C]
∑

B⊂I (F )

(−1)|B|L|B|+n(θF,B∪C). (B.4)

We will show that the inner most sum is always zero which will prove Theo-
rem B.1.

Let y ∈ θF,A where A = B ∪C. We write the C∗ representation TyY in two
ways:

T F + NF/Y = T EA + NEA/Y = T θF,A + NθF,A/EA
+

∑

i∈A

NEi/Y

where restriction to the point y is implicit in the above equation. Counting
positive weights on each side, we get

n(F ) = n(θF,A) +
∑

i∈A

mi(θF,A)
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where

mi(θF,A) = index(NEi/Y |θF,A
).

Note that mi(θF,A) is 1 or 0 depending on if the weight of the C∗-action on
Ei |y is positive or not. Note also that if i ∈ I (F ) then

mi(θF,A) = mi,F = index(NEi/Y |F ).

Moreover, if i ∈ I (F )c, then

NEi/Y |y ⊂ T F |y

and so mi(θF,A) = 0.
Thus writing A = B ∪ C with B ⊂ I (F ) and C ⊂ I (F )c, we get

n(θF,A) = n(F ) −
∑

i∈B

mi,F ,

and so
∑

B⊂I (F )

(−1)|B|L|B|+n(θF,A) = Ln(F )
∑

B⊂I (F )

(−1)|B|L
∑

i∈B (1−mi,F ).

For k = 0,1, we define

Ik(F ) =
{
i ∈ I (F ) : mi,F = k

}
.

Then
∑

B⊂I (F )

(−1)|B|L
∑

i∈B (1−mi,F ) =
∑

B0⊂I0(F )

(−L)|B0|
∑

B1⊂I1(F )

(−1)|B1|,

but
∑

B1⊂I1(F )

(−1)|B1| = 0

unless I1(F ) = ∅. Since the above equation implies that the expression in
(B.4) is zero, and that in turn verifies (B.2) and (B.3) which are equivalent to
Theorem B.1, it only remains for us to prove that I1(F ) �= ∅ for all F .

Let y ∈ F . We need to show that for some i, the action of C∗ on NEi/Y |y
has positive weight.

By the Luna slice theorem, there is an etale local neighborhood of y ∈ Y

which is equivariantly isomorphic to TyY . Over the point y, we have a de-
composition

T Y = T F + NF/EI (F )
+

∑

i∈I (F )

NEi/Y .
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Let (u1, . . . , us, v1, . . . , vp, {wi}i∈I (F )) be linear coordinates on TyY compat-
ible with the above splitting. The action of t ∈ C∗ on TyY is given by

t · (u, v,w) =
(
u1, . . . , us, t

a1v1, . . . , t
apvp,

{
tbiwi

}
i∈I (F )

)
.

In these coordinates, the function f̃ is given by

f̃ (u, v,w) = g(u)
∏

i∈I (F )

w
Ni

i

where g(u) is a unit. Since the C∗-action on Y is circle compact, f̃ is equiv-
ariant with respect to an action on C of positive weight l, that is

f̃
(
t · (u, v,w)

)
= t l f̃ (u, v,w).

This implies that

l =
∑

i∈I (F )

biNi .

Then since Ni > 0 and l > 0 we have that bi > 0 for some i ∈ I (F ) and so
for this i, we have mi,F = 1 which was what we needed to prove. The proof
of Theorem B.1 is now complete. �
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