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ABSTRACT

In this paper we construct symmetric powers in the motivic homotopy categories of morphisms and finite cor-
respondences associated with f -admissible subcategories in the categories of schemes of finite type over a field. Using
this construction we provide a description of the motivic Eilenberg-MacLane spaces representing motivic cohomology on
some f -admissible categories including the category of semi-normal quasi-projective schemes and, over fields which admit
resolution of singularities, on some admissible subcategories including the category of smooth schemes. This description is
then used to give a complete computation of the algebra of bistable motivic cohomological operations on smooth schemes
over fields of characteristic zero and to obtain partial results on unstable operations which are required for the proof of the
Bloch-Kato conjecture.
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0. Introduction

In this paper we analyze the structure of the motivic Eilenberg-MacLane spaces
K(A, p, q)C for p ≥ q. From the perspective of the general motivic homotopy theory its
most important result is Theorem 3.49 which asserts that for a field k of characteristic
zero the algebra of all bistable operations in the motivic cohomology on �op(Sm/k)#

+
with coefficients in Z/l coincides with the motivic Steenrod algebra A∗,∗(k,Z/l) which
was introduced in [33]. From the point of view of the proof of the Bloch-Kato conjecture
which requires information about the unstable operations its most important results are
Theorems 2.76, 3.25 and 3.32.

� Work on the earlier versions of this paper was supported by NSF grant 0403367.
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The definition of motivic Eilenberg-MacLane spaces appears only in the third
part of the paper (Section 3) after a number of techniques necessary for our analysis of
these spaces has been developed. Following the general outline of the paper we start the
introduction with the description of the results of the first two parts (Sections 1 and 2).

Let us fix a field k. Let c(k) = 1 if char(k) = 0 and c(k) = char(k) if char(k) >

0. The number c(k) is sometimes known as the “characteristic exponent” of k. A full
subcategory C of Sch/k such that

1. Spec(k) and A1 are in C
2. for X and Y in C the product X × Y is in C
3. if X is in C and U → X is etale then U is in C
4. for X and Y in C the coproduct X � Y is in C

will be called admissible. If in addition C is closed under the formation of quotients with
respect to actions of finite groups it will be called f -admissible. The category Sm/k of
smooth schemes over k is essentially the smallest admissible C since for any smooth X and
any admissible C there exists a Zariski covering {Ui → X} with Ui ∈ C. Unfortunately,
Sm/k is not f -admissible. There are two reasons for this. One is that the quotients may
not exist for actions on smooth schemes which are not quasi-projective. This is easily
resolved by considering the category of smooth quasi-projective schemes which is also
admissible and whose category of sheaves in any topology which is at least as strong as
the Zariski one, is equivalent to the category of sheaves on the whole Sm/k. Another one
is that a quotient of a smooth scheme with respect to a finite group action need not be
smooth. This is the main reason why we have to consider non-smooth schemes and one
of the key sources of technical complexity of the paper.

For an admissible C let C+ be the full subcategory of the category of pointed ob-
jects in C which consists of objects pointed by a disjoint base point, and Cor(C,R) the
category of finite correspondences over C. In our computations we will have to consider
the (Nis,A1)-homotopy categories HNis,A1(C), HNis,A1(C+) and HNis,A1(Cor(C,R)) of C,
C+ and Cor(C,R) respectively. To have a uniform treatment of these three cases we use
the formalism of radditive functors developed in [38] and summarized in Appendix A.3.
A radditive functor on a category D with finite coproducts is a presheaf of sets on this
category which takes finite coproducts to products. The category Rad(D) of radditive
functors on a small category D is complete and cocomplete-complete with a set of com-
pact generators and the category of simplicial radditive functors �opRad(D) on any D
provides a convenient environment for the homotopy theory. In our context, the cate-
gory Rad(C+) is equivalent to the category Rad(C)• of pointed objects in Rad(C) and
Rad(Cor(C,R)) is equivalent to the category of presheaves with transfers of R-modules
on C which allows us to treat the cases of non-pointed, pointed and “transfer enriched”
homotopy theories as particular cases of the homotopy theory of simplicial radditive func-
tors.

The categories HNis,A1(C), HNis,A1(C+) and HNis,A1(Cor(C,R)) are obtained by the
application of the standard localization constructions to the simplicial objects in Rad(C),
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Rad(C+) and Rad(Cor(C,R)) respectively. The category HNis,A1(C) comes out to be
equivalent to the non-pointed homotopy category of the site with interval (CNis,A1) and
the category HNis,A1(C+) to the pointed homotopy category of (CNis,A1) (see [16]). The
category HNis,A1(Cor(C,R)) is the (Nis,A1)-homotopy category of the category of fi-
nite correspondences on C with coefficients in R i.e. an unstable analog of the category
DMeff

− (C,R).
For each C and R we get a pair of adjoint functors

L�l
R : HNis,A1(C+) → HNis,A1(Cor(C,R))

�r
R : HNis,A1(Cor(C,R)) → HNis,A1(C+)

(see Theorem 1.7), which are analogous to the pair which consists of the forgetting functor
and the free R-module functor connecting the homotopy categories of pointed simplicial
sets and simplicial R-modules.

An inclusion of admissible categories i : C → D defines pairs of adjoint functors
(Lirad, irad), (Lirad

+ , irad,+) and (Lirad
tr , irad,tr) between the homotopy categories of each type

for C and D. Corollary 1.20 asserts that the left adjoint of each pair is a full embedding
i.e. HNis,A1(C) is a full subcategory in HNis,A1(D), etc.

The left adjoints defined by i commute with L�l
R and the right adjoints with �r

R.
In an important addition to this elementary observation we prove in Theorem 1.21 that
if k admits resolution of singularities and C ⊂ Sm/k then L�l

R also commutes with the
right adjoints defined by i. This result allows us to prove later Theorem 3.32 which is a
key step on the way to Theorem 3.49.

In the second part of the paper we investigate the functors on the homotopy cate-
gories which are defined by the functors of generalized symmetric products on schemes.
Let � be a pair of the form (G, φ : G → Sn) where G is a group and φ an embedding
of G to the symmetric group on n elements. Such a pair will be called a permutation
group. If C is an f -admissible category then a permutation group defines two generalized
symmetric product functors S̃� : X+ �→ (Xn/φ(G))+ and S� : X+ �→ (X+)n/φ(G) from
C+ to itself.

Using results of [3] we construct extensions of these functors to functors LS̃� and
LS� from HNis,A1(C+) to itself. In order to do it we use the following construction. For
a small category with finite coproducts D let D# be the full subcategory of directed col-
imits of representable functors in Rad(D) i.e the formal completion of D with respect to
directed (and therefore filtered) colimits. It is also known as the category of ind-objects
over D (see e.g. [1, I 8.2.4, p.70]). The homotopy theory of simplicial radditive functors
provides a construction of a canonical resolution functor L∗ : �opRad(D) → �opD# and
an assertion that the projection functor from �opD# to any homotopy category H(D,E)

associated with D by the “standard construction” is a localization. In particular, in order
to extend a functor F : D1 → D2 to a functor H(D1,E1) → H(D2,E2) it is sufficient to
show that the obvious extension of F to a functor �opD#

1 → �opD#
2 takes E1-local equiva-

lences to E2-local equivalences. Note that this applies to all functors F including the ones



4 VLADIMIR VOEVODSKY

which do not commute with finite coproducts. In the context of D = C+ and F = S̃�

or F = S� the required property of F with respect to (Nis,A1)-equivalences was proved
in [3]. Moreover, it was shown there that for these functors the equivalence LF(X) = X
holds not only for X ∈ �op(C+)# but also for a more general class of simplicial ind-
solid sheaves, which includes the Nisnevich quotient sheaves X/U for open embeddings
U ⊂ X. In particular, up to a Nis-equivalence one has

LS̃n(X/(X − Z)) = S̃n(X/(X − Z)) = SnX/(SnX − SnZ)

where Sn = S(Sn,Id) is the ordinary symmetric n-th power.
In the next section we consider the extensions of S̃� first to the categories

Cor(C,R) and then to HNis,A1(Cor(C,R)). We prove that such extensions LS�
tr , compat-

ible via functors L�l
R with LS̃�, exist provided that C is f -admissible and the “charac-

teristic exponent” c(k) of k is invertible in the coefficient ring R. Along with the existence
of LS�

tr we prove a number of results which allow us in Theorem 2.58 of the following
section to give a complete computation of LSl

tr(Ln) where l 	= char(k) is a prime and
Ln = L�r

Fl
(Tn) is the “homology” of the motivic (2n, n)-sphere with coefficients in the

finite field Fl .
In Section 2.4 we prove several relatively simple results about split proper Tate ob-

jects i.e. objects of HNis,A1(Cor(C,R)) which are isomorphic to (possibly infinite) direct
sums of objects of the form � iLj . Using these results together with the results of the pre-
ceding sections we prove that in case when the ring of coefficients is a field F of “allowed”
characteristic the subcategory SPT of proper split Tate objects is closed under the forma-
tion of all ordinary symmetric powers LSn

tr. In fact, the result proved in Theorem 2.76
is more precise and also provides a lower bound on the range of “weights” which may
appear in the n-th symmetric power of a proper split Tate object of weight ≥ q with co-
efficients in a field of characteristic l. This bound on the weight of summands was first
observed, in a particular case, by C. Weibel in [41] and plays an important role in one of
the key arguments of [37].

The next ingredient which goes into the proof of Theorem 3.25 and Theorem 3.49
are Theorem 3.7 and Proposition 3.11 which, when taken together, form a motivic analog
of the Dold-Thom Theorem for connected CW-complexes. The role of connectedness
assumption is played in our context by “condition (D1)” of Definition 3.10 which holds
for a wide class of motivic spaces including the motivic Moore spaces constructed in the
following section. The combination of 3.7 and 3.11 implies that for spaces X satisfying
condition (D1) and an f -admissible C which is contained in the category of semi-normal
schemes, there is a canonical isomorphism in HNis,A1(C+) of the form

�r
SL�l

S(X) = LS∞[1/c(k)](X)(1)

where S = Z[1/c(k)] and LS∞[1/c(k)] is the homotopy colimit of the sequence of mor-
phisms from LS∞ to itself defined by the multiplication by c(k) in the obvious Abelian
monoid structure of S∞.
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In Section 3.2 we finally define, in the context of a general admissible C, the mo-
tivic cohomology functors and the motivic Eilenberg-MacLane spaces. We could have
done it as soon as the categories HNis,A1(Cor(C,R)) and functors L�l

R, �r
R were defined

but decided that it is better to give an informal definition here and delay the formal one
until Section 3.2.

Let C be an admissible category. Consider the motivic spheres S1
t = (A1 − {0},1)

and Sq
t = (S1

t )
∧q as radditive functors on C+. Set

lq,R = L�l
R(Sq

t ).

It is the object of HNis,A1(Rad(Cor(C,R))) which represents the “homology” of the
sphere Sq

t . We will write lq for lq,Z. One defines the (reduced) motivic cohomology of
X ∈ �opRad(C+) with coefficients in an Abelian group A by the formula:

H̃p,q

un,C(X,A) =
{

HomHNis,A1 (Cor(C,Z))(L�l
ZX,�p−q(A ⊗L lq)) for p ≥ q

HomHNis,A1 (Cor(C,Z))(�
p−qL�l

ZX,A ⊗L lq) for p ≤ q
(2)

Corollary 1.20 implies that for X ∈ C and C ⊂ D one has

Hp,q

un,C(X,A) = Hp,q

un,D(X,A)

i.e. that the groups defined by (2) depend only on X and not on the ambient category
used in the definition. Because of this property we will often write H∗,∗

un instead of H∗,∗
un,C.

If C ⊂ Sm/k and k is a perfect field then Theorem 1.15 shows that

H̃p,q

un,C(X,A) = HomDMeff− (C,Z)(M̃(X),A(q)[p])(3)

i.e. for smooth schemes over a perfect field the definition given above agrees with the
standard one which goes back to [40].

We use the subscript un to emphasize the fact that the motivic cohomology of general

schemes as defined by (2) are not known to have suspension isomorphisms with respect to either of the

two motivic suspensions. In particular, the equality (3) is not known to hold for non-smooth
schemes since the right hand side of this equality automatically satisfies the suspension
isomorphism for the simplicial suspension. Among many possible extensions of motivic
cohomology functors to non-smooth schemes the one defined by (2) is, to the best of my
knowledge, the most basic and fundamental one in the sense that all other definitions can
be obtained from this one by the imposition of additional properties such as stability or
descent for special coverings.

The motivic Eilenberg-MacLane space K(A, p, q)C is the object of HNis,A1(C+)

which represents the motivic cohomology functor H̃p,q
un (−,A) on this category. The stan-

dard adjunctions show that for p ≥ q one has

K(A, p, q)C = �r
Z(�p−q(A ⊗L lq))(4)
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In Proposition 3.21 we prove that if A is a finitely generated Abelian group and p ≥ q,
p > 0, then there exist well behaved (see below) spaces X(A, p, q) such that

L�l
Z(X(A, p, q)) = �p−q(A ⊗L lq)(5)

Combining (4) and (5) we obtain the following expression for K(A, p, q)C in case when A
is finitely generated, p ≥ q and p > 0:

K(A, p, q)C = �r
ZL�l

Z(X(A, p, q)).(6)

This expression is the key to all the computations with the motivic Eilenberg-MacLane
spaces which are done in this paper. For p < q no similar description exists and because of
that the theory of spaces K(A, p, q)C for p < q is very different from the theory for p ≥ q.
At the moment we know very little about the p < q case and what we do know suggests
that the structure of the spaces K(A, p, q) and in particular of K(Q, p, q) for p < q and
q ≥ 2 is very complex (for a related discussion see [28]).

However, even in the case p ≥ q the spaces K(A, p, q)C themselves are very hard
to study. For example, the standard adjunctions show that for an inclusion of admissible
subcategories i : C → D one has

irad,+(K(A, p, q)D) = K(A, p, q)C

but the adjoint equality Lirad
+ (K(A, p, q)C) = K(A, p, q)D is not known to hold, except in

trivial cases, even under the resolution of singularities assumption, which creates one of
the key technical complications in our theory.

Fortunately, for any commutative ring R, all the information about the motivic
cohomology of these spaces with coefficients in R-modules, i.e. about the motivic co-
homological operations from H̃p,q

un (−,A) to the motivic cohomology with coefficients in
R-modules, is encoded in the objects

M(A, p, q;R)C = L�l
R(K(A, p, q)C)

which are much more tractable. Combining (6), (1) and some technical arguments which
allow us to consider S-coefficients instead of Z-coefficients and S∞ instead of S∞[1/c(k)]
we prove our next main theorem (Theorem 3.25) which asserts that for an f -admissible C,
finitely generated S-module A, p ≥ q, p > 0 and an S-algebra R there are natural isomor-
phisms

M(A, p, q;R)C
∼=

⊕
n≥0

Sn
tr(�

p−q((A ⊗L,S R) ⊗R lq,R))

Together with the results of the first (Theorem 1.21) and the second (Theorem 2.76) parts
of the paper, Theorem 3.25 leads to Theorem 3.32 and then to Corollary 3.33.
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This corollary and a few elementary results about proper split Tate objects are the
only results from the earlier parts of the paper which are needed for the proof of our
main “stable” theorem (Theorem 3.49) which asserts that if k is a field of characteristic
zero then one has

lim
n

H∗+2n,∗+n(K(Z/l,2n, n)Sm/k,Z/l) = A∗,∗(k,Z/l)

where A∗,∗(k,Z/l) is the motivic Steenrod algebra defined in [33].
An analog of Theorem 3.49 should hold with Sm/k replaced by an f -admissible

C which is contained in semi-normal schemes. The proof of such an analog would not
require Theorem 1.21 and therefore it would apply to all perfect fields. Writing such a
proof up would require two developments—to construct etale realization functors with
properties similar to the topological realization constructed in Section 3.3 and to extend
the results of [33] to T-stable version of motivic cohomology of non-smooth schemes. In
order to directly extend Theorem 3.49 to all perfect fields following the strategy used in
the present paper it would be sufficient to construct the etale analog of the topological
realization and to prove that for a smooth scheme X with an action of a finite group G
and a subgroup H ⊂ G, the map

L�l
Rirad(X/H) → L�l

Rirad(X/G)

where i : Sm/k → SN/k and [G : H]−1 ∈ R, is a split epimorphism. In the present ap-
proach this statement follows via Theorem 1.21 from the resolution of singularities but
may be there is a more direct way of proving it.

1. Motivic homology and homotopy

1.1. Main categories and functors

Let k be a field and C an admissible subcategory in Sch/k. Since C has finite co-
products the constructions and results of Appendix A.3 apply to C. The radditive functors
on C can be identified with presheaves on the category of connected objects in C or alter-
natively with sheaves in the topology on C which is generated by coverings by connected
components. In particular the class of projective equivalences in �opRad(C) is closed
under coproducts. Fix a set C0 of representatives of isomorphism classes of objects in C.
Consider the following two sets of morphisms in �opC:

1. The set GNis of generating Nisnevich equivalences is the set of morphisms of the
form KQ → X where Q is an upper distinguished square in C0 i.e. a pull-back
square of the form

B −−−→ Y⏐⏐� ⏐⏐�p

A
j−−−→ X

(7)
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where p is etale, j is an open embedding, B = p−1(A), p : Y − B → X − A an
isomorphism and KQ is the object of �opC given by the push-out square

B � B −−−→ B ⊗ �1⏐⏐� ⏐⏐�p

A � Y
j−−−→ KQ

2. The set GA1 of generating A1-equivalences is the set of morphisms of the form
X × A1 → X for X in C0.

Define the (Nis,A1)-homotopy category of C setting:

HNis,A1(C) = H(C,GNis ∪ GA1)

and similarly for HNis(C) and HA1(C).
By [39] there is a natural equivalence

HNis,A1(C) → H(CNis,A1)

where on the right hand side we have the homotopy category of the site with interval
(CNis,A1) as defined in [16].

Let i0, i1 : Spec(k) → A1 be the morphisms corresponding to the points 0 and 1
of A1 respectively. An elementary A1-homotopy between morphisms f , g : X → Y in
�opRad(C) is a morphism h : X×A1 → Y such that h◦ (Id× i0) = f and h◦ (Id× i1) = g.
Two morphisms are called elementary A1-homotopic if there exists an elementary A1-
homotopy between them. Two morphisms are called A1-homotopic if they are equivalent
with respect to the equivalence relation generated by the relation of being elementary A1-
homotopic. A morphism f : X → Y is called an A1-homotopy equivalence if there exists
a morphism g : Y → X such that the compositions f ◦ g and g ◦ f are A1-homotopic to
the corresponding identity morphisms.

Proposition 1.1. — The A1-homotopy equivalences belong to cll(GA1).

Proof. — By [38, 2007satr] it is enough to show A1-homotopy equivalences become
isomorphisms after localization with respect to cll(GA1). For any X the morphisms IdX ×
i0 and IdX × i1 become equal in the localized category since they are both sections of
the isomorphism X × A1 → X. Therefore, after the localization any two A1-homotopic
morphisms become equal. We conclude that an A1-homotopy equivalence f becomes an
isomorphism since there exists g such that both compositions f ◦ g and g ◦ f are equal to
the corresponding identities. �

Proposition 1.2. — A morphism f in �opRad(C) belongs to cll(GNis) if and only if it is a

local equivalence in the Nisnevich topology as a morphism of presheaves.
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Proof. — It follows easily from the Nisnevich variant of the Brown-Gersten theorem
[16, Lemma 3.1.18, p. 101]. See also [39]. �

Lemma 1.3. — The classes cll(GNis), cll(GA1), cll(GNis ∪ GA1) are closed under coproducts

and finite direct products.

Proof. — The case of coproducts follows immediately from the fact that projective
equivalences in �opRad(C) are closed under coproducts. In the case of products let us
consider for example the class cll(GNis ∪ GA1). By Theorem A.20 we have

cll(GNis ∪ GA1) = cl�̄((GNis � IdC) ∪ (GA1 � IdC) ∪ Wproj)

In particular cll(GNis ∪ GA1) is �̄-closed. Since it is closed under compositions it is
sufficient to show that for f : X → Y in cll(GNis ∪ GA1) and Z ∈ �opRad(C) one has
f × IdZ ∈ cll(GNis ∪ GA1). Since f × IdZ = �(g) where g is a morphism of bisimplicial
objects whose rows are of the form f × IdF for some F in Rad(C) it is sufficient to show
that f × IdF ∈ cll(GNis ∪ GA1) for F ∈ Rad(C). Applying the standard representable reso-
lution functor L∗ of Proposition A.12 to F and using the fact that projective equivalences
are closed under direct products we reduce the problem to the case when F ∈ C#. Using
the fact that our class is closed under filtered colimits we further reduce it to the case
F = X ∈ C. The functor (−) × X clearly takes �̄-closures to �̄-closures. It remains to
verify that for f ∈ (GNis � IdC) ∪ (GA1 � IdC) ∪ Wproj one has f × IdX ∈ cll(GNis ∪ GA1)

which is straightforward. �

Let C+ the category of disjointly pointed objects of C. As customary we write ∨
for the coproduct in the pointed case. Since C+ has finite coproducts the constructions
and results of Appendix A.3 apply to C+. The radditive functors on C+ can be identified
with pointed radditive functors on C. In particular the class of projective equivalences in
�opRad(C+) is closed under coproducts.

For X in C we write X+ for X � Spec(k) considered as an object of C+. The
functor (−)+ is left adjoint to the forgetting functor and in particular commutes with
colimits. Define the (Nis,A1)-homotopy category of C+ setting:

HNis,A1(C+) = H(C+, (GNis ∪ GA1)+)

and similarly for HNis(C) and HA1(C).
By [39] there is a natural equivalence

HNis,A1(C+) → H•(CNis,A1)

where on the right hand side we have the pointed homotopy category of the site with
interval (CNis,A1) as defined in [16].
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Lemma 1.4. — The classes cll((GNis)+), cll((GA1)+) and cll((GNis ∪ GA1)+) in

�opRad(C+) are closed under coproducts, direct products and smash products,

Proof. — The case of coproducts follows immediately from the fact that projective
equivalences in �opRad(C+) are closed under coproducts.

Smash products on Rad(C+) are defined as the radditive extension of the functor
∧ : C+ × C+ → C+ which takes (U+,V+) to (U × V)+. One verifies easily that under
the equivalence between Rad(C+) and the category of pointed presheaves on connected
objects of C the smash product of radditive functors is given by the usual smash product
of pointed presheaves (it is sufficient to verify this property for representable presheaves).
This interpretation implies that smash products respect projective equivalences. There-
fore by the same reasoning as in the proof of Lemma 1.3 it remains to verify that for
f ∈ (GNis � IdC)+ (resp. f ∈ (GA1 � IdC)+ and Z ∈ C+ one has f ∧ IdZ ∈ cll((GNis)+)

(resp. f ∧ IdZ ∈ cll((GA1)+)) which is straightforward. �

Proposition 1.5. — The functor (−)+ : C → C+ satisfies the conditions of Theorem A.16 and

Corollary A.17(2) with respect to the pair of classes of morphisms (GNis, (GNis)+), (GA1, (GA1)+)

and (GNis ∪ GA1, (GNis ∪ GA1)+). Therefore (−)+ defines adjoint pairs of functors between the corre-

sponding homotopy categories and in each case the right adjoint functor reflects isomorphisms.

Proof. — Straightforward verification using the coproduct parts of Lemmas 1.3
and 1.4. �

According to our general convention we should denote the functors between the
homotopy categories which correspond to (−)+ by L(−)rad

+ and R(−)+,rad. Using the
interpretation of radditive functors on C+ as pointed radditive functors on C it is easy
to see that the functor (−)rad

+ takes a non-pointed radditive functor F to the radditive
functor F � Spec(k) pointed by the canonical morphism pt → F � Spec(k). In particular,
it respects all projective equivalences and therefore can be used instead of L(−)rad

+ . It also
shows that we may use the notation (−)+ for (−)rad

+ without any danger of confusion.
Similarly, (−)+,rad in this interpretation is the forgetting functor from pointed rad-

ditive functors to radditive functors and we will denote it by φ.
Let Cor(C,R) be the category of finite correspondences with coefficients in a com-

mutative ring R between objects of C. This category was described in detail in [35] (see
also [2]). To distinguish objects of C from the corresponding objects of Cor(C,R) we let

[−]R : C → Cor(C,R)

denote the functor which is the identity on objects and which takes morphisms to their
graphs. The category Cor(C,R) is additive and in particular has finite coproducts and
[−] commutes with finite coproducts. The radditive functors on Cor(C,R) can be iden-
tified with R-linear functors from Cor(C,R) to the category of R-modules i.e. presheaves
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with transfers with coefficients in R on C. In particular the class of projective equivalences
in �opRad(Cor(C,R)) is closed under coproducts.

Define (Nis,A1)-homotopy category of Cor(C,R) setting:

HNis,A1(Cor(C,R)) = H(Cor(C,R), [GNis ∪ GA1]R)

When C = Sm/k this category is the full subcategory of the category DMeff
− (k,R) which

consists of complexes of sheaves with transfers with homotopy invariant cohomology
sheaves such that Hi = 0 for i > 0. See Theorem 1.15 below.

Category Cor(C,R) carries a natural tensor structure which is given by the prod-
uct of schemes on objects and by external products of relative cycles on morphisms. This
structure is a functor Cor(C,R) × Cor(C,R) → Cor(C,R). Its radditive extension is a
functor

Rad(Cor(C,R)) × Rad(Cor(C,R))

= Rad(Cor(C,R) × Cor(C,R)) → Rad(Cor(C,R))

which we call the tensor product on Rad(Cor(C,R)) and denote by ⊗. Alternatively, one
can define ⊗ on Rad(Cor(C,R)) by first extending ⊗ to Cor(C,R)# and then defining
F ⊗ G as π0(L∗(F) ⊗ L∗(G)).

Lemma 1.6. — The classes cll([GNis]R), cll([GA1]R) and cll([GNis ∪ GA1]R) are closed

under direct sums and their intersections with �opCor(C,R)# are closed under tensor products.

Proof. — The case of coproducts i.e. direct sums follows immediately from the fact
that projective equivalences in �opRad(Cor(C,R)) are closed under direct sums. The
proof of the tensor product part is parallel to the proofs of Lemmas 1.3 and 1.4. �

Since the category Cor(C,R) is pointed the functor [−] factors through the func-
tor (−)+. We denote the corresponding functor C+ → Cor(C,R) by �R. By definition
�R(X+) = [X]R. This functor commutes with finite coproducts and therefore defines a
pair of adjoint functors

�l
R = (�R)rad : Rad(C+) → Rad(Cor(C,R))

�r
R = (�R)rad : Rad(Cor(C,R)) → Rad(C+)

where �r
R is the right adjoint. If we interpret Rad(Cor(C,R)) as the category of

presheaves with transfers and Rad(C+) as the category of pointed radditive presheaves
then �r

R is the “forgetting” functor which takes a presheaf with transfers to the same
presheaf considered as a presheaf of pointed sets. By Proposition A.14 the functors �l

R
and �r

R define a pair of adjoint functors L�l
R and R�r

R between the homotopy categories
H(C+) and H(Cor(C,R)).
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We will denote the classes of local equivalences in the context of C by WNis,
WA1 and WNis,A1 , in the context of C+ by W+

Nis, W+
A1 and W+

Nis,A1 and in the context
of Cor(C,R) by Wtr

Nis, Wtr
A1 and Wtr

Nis,A1 .

Theorem 1.7. — For any R the functor �R satisfies the conditions of Theorem A.16 and

Corollary A.17(2) with respect to the pairs of classes of morphisms (GNis, (GNis)+), (GA1, (GA1)+)

and (GNis ∪ GA1, (GNis ∪ GA1)+).

In particular, one has:

1. �r
R(Wtr

Nis) ⊂ W+
Nis, �r

R(Wtr
A1) ⊂ W+

A1 and �r
R(Wtr

Nis,A1) ⊂ W+
Nis,A1

2. �l
R(W+

Nis ∩ �opC#
+) ⊂ Wtr

Nis, �l
R(W+

A1 ∩ �opC#
+) ⊂ Wtr

A1 and �l
R(W+

Nis,A1 ∩
�opC#

+) ⊂ Wtr
Nis,A1 ,

the functors between the corresponding homotopy categories defined by L�l
R and R�r

R are adjoint and in

each case R�r
R reflects isomorphisms.

Proof. — For simplicity of notation we will write � instead of �R. We have to
prove four inclusions �l((GNis)+ ∨ IdC+) ⊂ Wtr

Nis, �
l((GA1])+ ∨ IdC+) ⊂ Wtr

A1 , �r([GNis]⊕
IdCor(C,R)) ⊂ W+

Nis and �r([GA1]⊕ IdCor(C,R)) ⊂ W+
A1 . The functor �l takes ∨ to the direct

sum ⊕. Therefore the first two inclusions follow from the definitions and the direct sums
part of Lemma 1.6.

The functor �r takes ⊕ to direct product. Therefore the direct product part of
Lemma 1.4 implies that in order to prove the third and the fourth inclusion it is sufficient
to show that �r([GNis]) ⊂ W+

Nis and �r([GA1]) ⊂ W+
A1 . The fact that the functor φ which

forgets the distinguished point reflects equivalences of all the considered types further
implies that it is sufficient to show that φ�r([GNis]) ⊂ WNis and φ�r([GA1]) ⊂ WA1 .

Propositions 1.2 implies that in order to prove that φ�r([GNis]) ⊂ WNis it is suffi-
cient to show that for any upper distinguished square Q of the form (7) the morphism
[KQ] → [X] is a local equivalence on CNis as a morphism of presheaves of sets or, equiv-
alently, as a morphism of presheaves of Abelian groups. It is further equivalent to the
condition that the morphism of associated sheaves of Abelian groups is a local equiva-
lence on CNis. Consider the functor

γ : Rad(Cor(C,R)) → ShvAb(CNis)

which is the composition of the forgetting functor from Rad(Cor(C,R)) to presheaves of
Abelian groups on C with the associated sheaf functor. Clearly, γ respects finite coprod-
ucts and therefore it commutes with the KQ construction. Hence the morphism we are
interested in can be written as

γ ([KQ] → [X]) = (Kγ ([Q]) → γ ([X]))
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Consider a square S of pre-sheaves of Abelian groups on CNis of the form

S1 −−−→ S2⏐⏐� ⏐⏐�
S3 −−−→ S4.

Using the fact that CNis has enough points one verifies easily that the associated morphism
KS → S4 is a local equivalence if and only if the sequence

0 → aNisS1 → aNisS2 ⊕ aNisS3 → aNisS4 → 0

of associated Nisnevich sheaves is exact. We conclude that the morphism Kγ ([Q]) →
γ ([X]) is a local equivalence by [26, Proposition 4.3.9].

To prove that φ�r([GA1]) ⊂ WA1 it is sufficient by Lemma 1.1, to show that for
X ∈ C the map of presheaves of sets p : [X × A1] → [X] is an A1-homotopy equivalence.
The inverse equivalence is given by i : [X] → [X × A1] corresponding to the point 0 of
A1. The A1-homotopy

[X × A1] × A1 → [X × A1]
between the identity and p ◦ i is provided by the composition

[X × A1] × A1 → [X × A1 × A1] → [X × A1]
where the first map is a particular case of a general map of the form

[X] × Y → [X × Y]
and the second one is obtained from the multiplication map A1 × A1 → A1. �

Since by definition R�r
R is the natural descent to the homotopy categories of the

simplicial extension of the functor �r
R between the radditive functors we will often write

�r
R instead of R�r

R.

Remark 1.8. — The functor �l
R does not preserve projective equivalences between

all objects of �opRad(C+). Consider for example the morphism p : Spec(L) → Spec(k)
where L/k is a Galois extension with the Galois group G and let Č(p) be the correspond-
ing Cech simplicial object. Then the morphism p′ : Č(p) → Im(p) where Im(p) is the
image of p in Rad(C), is a projective equivalence and so is p′

+. On the other hand the
sections of �l

R((Č(p))+) over Spec(k) form a simplicial Abelian group which computes
homology of G with coefficients in R and therefore in general it is not equivalent to
�l

R(Im(p)) which is a single object in dimension zero.
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The standard cosimplicial object �•
A1 in Sch/k (see [16, p. 88] or [14, p. 16]) lies

in any admissible subcategory C. For a radditive functor F on C we let C∗(F) denote the
simplicial radditive functor with terms

Cn(F) : U �→ F(U × �n
A1)

Similarly for F in Rad(C+) we set

C+
n (F) : U+ �→ F((U × �n

A1)+)

and for F in Rad(Cor(C,R)) we set

Ctr
n (F) : [U] → F([U × �n

A1])
(in [16] the functor C∗ was denoted by Sing∗).

For F ∈ �opRad(C) we may consider C∗(F) as a bisimplicial object. Then the di-
agonal �C∗(F) is defined and belongs to �opRad(C). Similarly we get the functors �C+

∗
and �Ctr

∗ on �opRad(C+) and �opRad(C,R). The projection �•
A1 → Spec(k) defines

natural transformations Id�opRad(C) → �C∗, Id�opRad(C+) → �C+
∗ and Id�opRad(Cor(C,R)) →

�Ctr
∗ .

Proposition 1.9. — For any F ∈ �opRad(C) the object �C∗(F) is GA1-local and the

morphism F → �C∗(F) belongs to cll(GA1). Similarly for any F ∈ �opRad(C+) the object

�C+
∗ (F) is (GA1)+-local and the morphism F → �C+

∗ (F) belongs to cll((GA1)+) and for any

F ∈ �opRad(Cor(C,R)) the object �Ctr
∗ (F) is [GA1]-local and the morphism F → �Ctr

∗ (F)

belongs to cll([GA1]).
Proof. — The projection p : �•

A1 × A1 → �•
A1 and the embedding i : �•

A1 →
�•

A1 × A1 which corresponds to the point 0 of A1, are mutually inverse cosimplicial ho-
motopy equivalences. Indeed, let φ be morphism A1 → A1 given by x �→ 0. To construct
a cosimplicial homotopy between Id�• × IdA1 and Id�• × φ observe first that the multi-
plication morphism (x, y) �→ xy defines an A1-homotopy between φ and Id. Therefore, in
order to construct a required cosimplicial homotopy it is sufficient to construct a cosimpli-
cial homotopy between the morphisms Id�• × i0 and Id�• × i1 where i0, i1 : Spec(k) → A1

are the morphisms corresponding to the points 0 and 1 of A1. Such a homotopy is given
by the morphisms θi defined in [14, Def. 2.17, p. 17].

Applying any term-wise functor to p and i we obtain a pair of mutually inverse
simplicial homotopy equivalences. In particular, for any F ∈ Rad(C) and U ∈ C the map

C∗(F)(U) → C∗(F)(U × A1)

defined by the projection is a homotopy equivalence of simplicial sets and the same ap-
plies to C+

∗ and Ctr
∗ . Since the class of weak equivalences of simplicial sets is �̄-closed we

conclude that the first half of the proposition holds.
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For any F ∈ Rad(C) and any n ≥ 0 the morphism F → Cn(F) is easily seen to be
an A1-homotopy equivalence (see [16, Lemma 3.7] or [31, Lemma 3.2.2]). Therefore, for
any F ∈ �opRad(C) the morphism F → �C∗(F) is in cl�̄(GA1) and, by Theorem A.20
we conclude that this morphism is in cll(GA1). Similar argument applies in the two other
contexts. �

1.2. The category HNis,A(Cor(Sm/k)) and the category DMeff
− (k)

Let C be an admissible subcategory in Sch/k and R a commutative ring. A (Nis-
nevich) sheaf with transfers of R-modules on C is an object F of Rad(Cor(C,R)) such
that �r

R(F) is a (pointed) sheaf on CNis. We let ShvNis(Cor(C,R)) denote the full subcat-
egory of Nisnevich sheaves in Rad(Cor(C,R)). The proof of the following result in the
context of any admissible subcategory C in Sch/k is strictly parallel to their proof in the
context of C = Sm/k (see [31, Th. 3.1.4, Lemma 3.1.2], [2]).

Proposition 1.10. — The inclusion functor ιtr
Nis : ShvNis(Cor(C,R)) → Rad(Cor(C,R))

has a left adjoint atr
Nis such that �r ◦ atr

Nis = aNis ◦ �r where aNis is the usual associated sheaf functor.

Corollary 1.11. — The category ShvNis(Cor(C,R)) is Abelian.

Lemma 1.12. — For any X ∈ C the representable radditive functor [X] ∈ Rad(Cor(C,R))

is a Nisnevich sheaf with transfers.

Let D−(ShvNis(Cor(C,R))) be the derived category of complexes bounded from
the above over ShvNis(Cor(C,R)). Note that a morphism in Cmpl−(ShvNis(Cor(C,R)))

is a quasi-isomorphism if and only if it is a quasi-isomorphism as a morphism of com-
plexes of Nisnevich sheaves of Abelian groups.

Let N : �opRad(Cor(C,R)) → Cmpl−(Rad(Cor(C,R))) be the normalization
functor. A morphism f : X → Y in �opRad(Cor(C,R)) is a projective equivalence if
and only if N(f ) is a quasi-isomorphism and a local equivalence in the Nisnevich topol-
ogy if and only if atr

NisN(f ) is a quasi-isomorphism. Together with Proposition 1.2 this
implies that N defines a functor

NNis : HNis(Cor(C,R)) → D−(ShvNis(Cor(C,R)))

Let

K : Cmpl−(Rad(Cor(C,R))) → �opRad(Cor(C,R))

be the right adjoint to N. As for any Abelian category, it takes a complex to the simplicial
object corresponding to the canonical truncation of this complex at level zero. Therefore
the same reasoning as above implies that if f is such that atr

Nis(f ) is a quasi-isomorphism
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then K(f ) is a local equivalence in the Nisnevich topology and by Proposition 1.2 an
element of Wtr

Nis. We conclude that K defines a functor

KNis : D−(ShvNis(Cor(C,R))) → HNis(Cor(C,R))

which is right adjoint to NNis. In addition, since N is a full embedding the adjunction
Id → KN is an isomorphism and since NNis and KNis are direct descends of N and K the
adjunction Id → KNisNNis is an isomorphism. We proved the following result.

Proposition 1.13. — The adjoint functors

N : �opRad(Cor(C,R)) → Cmpl−(Rad(Cor(C,R)))

K : Cmpl−(Rad(Cor(C,R))) → �opRad(Cor(C,R))

descend to adjoint functors

NNis : HNis(Cor(C,R)) → D−(ShvNis(Cor(C,R)))

KNis : D−(ShvNis(Cor(C,R))) → HNis(Cor(C,R))

The functors N and NNis are full embeddings and the functors K and KNis are localizations.

For a class E of morphisms in a triangulated category let clvl(E) denote the (left)
Verdier closure of E i.e. the class of morphisms whose cones belong to the localizing
subcategory generated by cones of morphisms from E.

Define DMeff
− (C,R) as the localization

DMeff
− (C,R) = D−(ShvNis(Cor(C,R)))[clvl([GA1])−1]

In the case when C = Sm/k our definition agrees with the standard one by [31,
Prop. 3.2.3] i.e.

DMeff
− (k,R) = DMeff

− (Sm/k,R)

Let WDM be the class of morphisms in Cmpl−(Rad(Cor(C,R))) which become isomor-
phisms in DMeff

− (C,R). The standard properties of Verdier localization imply that a mor-
phism f in D−(ShvNis(Cor(C,R))) becomes an isomorphism in DMeff

− (C,R) if and only
if it belongs to clvl([GA1]). Therefore WDM coincides with the class of morphisms whose
image in D−(ShvNis(Cor(C,R))) lies in clvl([GA1]).

Proposition 1.14. — One has

N(Wtr
Nis,A1) ⊂ WDM

and therefore N descends to a functor

NNis,A1 : HNis,A1(Cor(C,R)) → DMeff
− (C,R)
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Proof. — By Proposition A.22 we have

Nproj(Wtr
Nis,A1) ⊂ clvl(Nproj([GNis]) ∪ Nproj([GA1]))

Since triangulated functors map Verdier closures to Verdier closures it is sufficient
to check that NNis([GNis]) and NNis([GA1]) are contained in clvl([GA1]) in
D−(ShvNis(Cor(C,R))) which is obvious. �

Theorem 1.15. — Let k be a perfect field and C an admissible subcategory contained in Sm/k.

Then the functor NNis,A1 is a full embedding.

Proof. — Denote by CC∗ the functor from Cmpl−(Rad(Cor(R,C))) to itself of the
form

CC∗(X) = Tot(N(Ccmpl
∗ (X)))

where Ccmpl
∗ is the functor from complexes to simplicial complexes obtained by applying

Ctr
∗ to a complex X term by term. The normalization of a simplicial complex in the

simplicial direction is a bicomplex of which we take the total complex. This operation
only involves finite direct sums since the bicomplex in question lies in the second and
third quadrants with only finitely many rows lying in the third one.

For an individual radditive functor F the cohomology presheaves of NCtr
∗ (F) are

homotopy invariant by Proposition 1.9 or by [30, Prop. 3.6]. On the other hand it is easy
to see that if B is a bicomplex such that the cohomology presheaves of its rows or columns
are A1-homotopy invariant then the same holds for Tot(B). Therefore the cohomology
presheaves of CC∗(X) are homotopy invariant for any X. Similarly, from Proposition 1.9
and from [31, Lemma 3.2.5] we conclude that for an individual radditive functor F the
morphism F → NCtr

∗ (F) is in WDM which easily implies that the same holds for any
complex X of such functors.

This reasoning holds for any C and R. If C = Sm/k or equivalently if C is con-
tained in Sm/k and k is a perfect field then we know from the second part of [31,
Prop. 3.2.3] that a morphism f ∈ WDM whose source and target are complexes with ho-
motopy invariant cohomology presheaves is a quasi-isomorphism in the Nisnevich topol-
ogy. Therefore CC∗ takes elements of WDM to Nisnevich quasi-isomorphisms and the
functor KNis ◦ CC∗ descends to a functor

RKNis,A1 : DMeff
− (C,R) → HNis,A1(Cor(C,R))

The natural transformation Id → CC∗ provides a construction of a pair of natural trans-
formations Id → RKNis,A1 ◦NNis,A1 and NNis,A1 ◦RKNis,A1 → Id which form an adjunction.
Up to this point the construction would go through with any other A1-localization functor
instead of CC∗. To prove that NNis,A1 is a full embedding we need to show that the first of
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these transformations is an isomorphism. For X ∈ �opRad(Cor(C,R)) it is represented
by the composition

X → K(N(X)) → K(CC∗(N(X)))) = K(Tot(N(Ccmpl
∗ (N(X)))))(8)

The first morphism is an isomorphism of the Dold-Thom correspondence. We obviously
have

N(Ccmpl
∗ (N(X))) = NrowsNcolumnsCtr

∗ (X)

and by Eilenberg-Zilber Theorem there is a natural homotopy equivalence of complexes
of the form Tot(NrowsNcolumnsB) ∼= N(�B) for any bisimplicial object B. Therefore

K(Tot(N(Ccmpl
∗ (N(X))))) = K(Tot(NrowsNcolumnsCtr

∗ (X)))

∼= K(N(�Ctr
∗ (X))) = �Ctr

∗ (X)

and the morphism (8) is isomorphic to the morphism X → �Ctr
∗ (X) which is a [GA1]-

local equivalence by Proposition 1.9. Theorem is proved. �

Remark 1.16. — I do not know whether or not the functor NNis,A1 is a full em-
bedding for a general admissible C. The problem is that the main theorem of [30] is
only known for smooth schemes. On the other hand it should be possible to prove using
general arguments that NNis,A1 becomes a full embedding after HNis,A1 is stabilized with
respect to the simplicial suspension. From this point of view the main theorem of [30]
may be stated by saying that HNis,A1(Cor(Sm/k)) is �s-stable.

The following proposition describes the behavior of the functors N relative to the cofiber
sequences in H(Cor(C,R)). For a general definition of a cofiber sequence see [11,
Def. 6.2.7, pp. 156]. Since Cor(C,R) is additive the coaction part of the cofiber sequence
is determined by the boundary map (cf. [11, Rm. 7.1.3, p. 178]) and we will write the
cofiber sequences as X → Y → Z → �1X. Proposition A.18 shows that a sequence of
this form in H(Cor(C,R)) or in any other of the homotopy categories of Cor(C,R) is a
cofiber sequence if and only if it is isomorphic to the image of the sequence defines by a
term-wise coprojection sequence X → Y → Z in �opCor(C,R)#. Since such coprojec-
tion sequences are exact we get the following result.

Proposition 1.17. — With respect to the natural isomorphisms N(�1(Z)) ∼= N(Z)[1]
the functor NNis,A1 maps cofiber sequences in HNis,A1(Cor(C,R)) to distinguished triangles in

DMeff
− (C,R).

We also mention without proof the following result which can be easily deduced from the
proof of Theorem 1.15.
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Proposition 1.18. — If k is a perfect field and C is contained in Sm/k then a sequence of the

form X → Y → Z → �1(Z) in HNis,A1(Cor(C,R)) is a cofiber sequence if and only if its image

in DMeff
− (C,R) is a distinguished triangle.

1.3. Change of the underlying category C

For the purpose of the following discussion let us denote the classes GNis and GA1

in �opRad(C) for a given admissible subcategory C by GC
Nis and GC

A1 .
Let C, D be two admissible subcategories such that i : C ⊂ D. Since i commutes

with coproducts it defines a pair of adjoint functors irad : Rad(C) → Rad(D) and irad :
Rad(D) → Rad(C). If we interpret radditive functors as sheaves in the topology defined
by coverings by connected components then irad and irad become the usual inverse and
direct image functors for the corresponding continuous map of sites. Note that this map
of sites is not in general a morphism of sites i.e. irad does not commute with limits.

Proposition 1.19. — The inclusion functor i satisfy the conditions of Theorem A.16 and Propo-

sition A.17(1) relative to the pairs of classes (GC
Nis,GD

Nis) and (GC
A1,GD

A1).

The same holds for the functors i+ : C+ → D+ and itr : Cor(C,R) → Cor(D,R) relative

to the pairs of classes ((GC
Nis)+, (GD

Nis)+), ((GC
A1)+, (GD

A1)+) and ([GC
Nis], [GD

Nis]), ([GC
A1], [GD

A1])
respectively.

Therefore we get pairs of adjoint functors (irad,Lirad), (i+,rad,Lirad
+ ) and (itr,rad,Lirad

tr ) between

the projective, Nis- and A1-homotopy categories and the left adjoints in these pairs are full embeddings.

Proof. — The condition on the left adjoint functor is obvious in each of the cases.
The condition on the right adjoint in the case of C follows easily from Proposition 1.2 and
Proposition 1.1. In the case of C+ and Cor(−,R) it follows from the same propositions
and the fact that the functor which forgets transfers reflect isomorphisms (Proposition 1.5
and Theorem 1.7). �

Corollary 1.20. — The inclusion functor i satisfy the conditions of Theorem A.16 and

Proposition A.17(1) relative to the pair of classes (GC
Nis ∪ GC

A1,GD
Nis ∪ GD

A1). The same holds for

he functors i+ : C+ → D+ and itr : Cor(C,R) → Cor(D,R) relative to the pairs of classes

((GC
Nis)+ ∪ (GC

A1)+, (GD
Nis)+ ∪ (GD

A1)+) and ([GC
Nis] ∪ [GC

A1], [GD
Nis] ∪ [GD

A1]) respectively.

Therefore we get pairs of adjoint functors (irad,Lirad), (i+,rad,Lirad
+ ) and (itr,rad,Lirad

tr ) between

the (Nis,A1)-homotopy categories and the left adjoints in these pairs are full embeddings.
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Let us analyze now how the adjoint pairs (Lirad
+ , i+,rad) and (Lirad

tr , itr,rad) are related
to each other. Consider the following diagram

HNis,A1(C+)
Lirad+−−−→ HNis,A1(D+)

i+,rad−−−→ HNis,A1(C+)

L�l

⏐⏐� L�l

⏐⏐� L�l

⏐⏐�
HNis,A1(Cor(C,R))

Lirad
tr−−−→ HNis,A1(Cor(D,R))

itr,rad−−−→ HNis,A1(Cor(C,R))

�r

⏐⏐� �r

⏐⏐� �r

⏐⏐�
HNis,A1(C+)

Lirad+−−−→ HNis,A1(D+)
i+,rad−−−→ HNis,A1(C+)

(9)

By Corollary 1.20 the compositions of the horizontal arrows are canonically isomorphic
to the corresponding identities. The commutative square

C+
i+−−−→ D+

�l

⏐⏐� ⏐⏐��l

Cor(C,R)
itr−−−→ Cor(D,R)

shows that the lower right square of (9) commutes. The upper left square is left adjoint to
the lower right one and therefore it commutes as well. The lower left square is unlikely to
commute. We do not know whether the upper right one commutes in general but there
is the following important partial result. Note that while the previous discussion holds
without change in the context of projective, Nis- and A1-equivalences the theorem below
is only known to be valid for the (Nis,A1)-equivalences.

Theorem 1.21. — Let k be a field with resolution of singularities and C ⊂ Sm/k. Then for

any admissible D which contains C the upper right square of (9) commutes i.e. one has

L�l i+,rad = itr,radL�l .

Proof. — Consider first the case C = Sm/k and D = Sch/k i.e. the commutativity
of the square

HNis,A1((Sch/k)+)
i+,rad−−−→ HNis,A1((Sm/k)+)

L�l

⏐⏐� L�l

⏐⏐�
HNis,A1(Cor(Sch/k))

itr,rad−−−→ HNis,A1(Cor(Sm/k))

(10)

We have a natural transformation

L�l i+,rad → itr,radL�l(11)
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arising from the adjunctions and the commutativity of the lower right square of (9) and
we need to show that it is an isomorphism. Consider the square

L�l i+,rad Lirad
+ i+,rad −−−→ L�l i+,rad⏐⏐� ⏐⏐�

itr,rad L�l Lirad
+ i+,rad −−−→ itr,rad L�l

(12)

where the vertical arrows come from (11) and the horizontal ones from the adjunction

Lirad
+ i+,rad → Id.

We need to prove that the right vertical arrow is an isomorphism. We will do it by showing
that the other three arrows are isomorphisms.

By Corollary 1.20 the functors Lirad
+ and Lirad

tr are full embeddings and therefore
the canonical morphisms

i+,rad → i+,rad Lirad
+ i+,rad(13)

and

itr,rad → itr,rad Lirad
tr itr,rad(14)

are isomorphisms. We conclude that the upper horizontal arrow in (12) is an isomorphism
and exchanging L�l and Lirad

+ by commutativity of the upper left square of the main
diagram that the left vertical arrow is an isomorphism. It remains to show that under our
assumptions the lower horizontal arrow is an isomorphism. It follows from Lemmas 1.22–
1.25.

Lemma 1.22. — In the diagram of projective homotopy categories similar to (9) which is defined

by the commutative square of functors

C
i−−−→ D

(−)+
⏐⏐� ⏐⏐�(−)+

C+
i+−−−→ D+

all four squares commute. The same holds for the diagrams of homotopy categories of all other types which

we consider.

Proof. — Straightforward using the identification of radditive functors on C+ and
D+ with pointed radditive functors on C and D respectively. �
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Lemma 1.23. — Let k be a field with resolution of singularities, then the morphism

Lirad
+ i+,rad(F) = irad

+ �L∗ i+,rad(F) → irad
+ i+,rad(F) → F

is a local equivalence in the cdh-topology for any F in �opRad((Sch/k)+).

Proof. — It is clearly sufficient to show that irad
+ takes projective equivalences to

local equivalences in the cdh-topology. Since the forgetting functor from the pointed
to non-pointed context reflects local equivalences in the cdh-topology and in view
of Lemma 1.22 it is sufficient to prove that irad takes projective equivalences in
�opRad(Sm/k) to cdh-local equivalences in �opRad(Sch/k).

Recall from [39] that Sm/k can be equipped with scdh-topology such that the
natural functor Sm/k → Sch/k defines a continuous map of sites

π : (Sch/k)cdh → (Sm/k)scdh

and that when k admits resolution of singularities π is a morphism of sites and therefore
π∗ respects the local equivalences of simplicial sheaves. On the other hand the raddi-
tive functors can be interpreted as sheaves on the sites (Sch/k)con and (Sm/k)con whose
topology is generated by coverings by connected components. Let ascdh be the associ-
ated sheaf functor from Rad(Sm/k) to Shv((Sm/k)scdh and acdh be the associated sheaf
functor from Rad(Sch/k) to Shv((Sch/k)cdh. These functors may be considered as the
inverse image functors for the obvious morphisms of sites (Sm/k)scdh → (Sm/k)con and
(Sch/k)cdh → (Sch/k)con. Therefore

acdhirad = π∗ascdh

and since π is a morphism of sites we conclude that acdhirad takes projective equivalences
i.e. local equivalences in the con-topology to local equivalences in the cdh-topology. �

Lemma 1.24. — Let f : X → Y be a morphism in �op(Sch/k)#
+ which is a local equivalence

in the cdh-topology. Then �l(f ) is a local equivalence in the cdh-topology.

Proof. — By [39] the class of local equivalences in the cdh-topology on �op(Sch/k)#
+

is cl�̄((WNis)+ ∪ (Wlcd)+) where Wlcd is defined in the same way as WNis but with respect
to the lower distinguished squares (i.e. abstract blow-up squares). The functor �l obvi-
ously takes �̄-closures to �̄-closures and therefore it is sufficient to verify that both for
upper and for lower distinguished Q the morphism [KQ] → [X] is an equivalence in the
cdh-topology. For upper distinguished ones we know it from the proof of Theorem 1.7.
By the same argument the condition that [KQ] → [X] is a local equivalence in the cdh-
topology for a lower distinguished square Q is equivalent to the condition that for such a
square the sequence of cdh-sheaves of Abelian groups

0 → acdh[B] → acdh[A] ⊕ acdh[Y] → acdh[X] → 0

is exact in the cdh-topology. This is the statement of [26, Prop. 4.3.3]. �
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Lemma 1.25. — Let k be a field with resolution of singularities and f : X → Y be

a local equivalence in the cdh-topology in �opRad(Cor(Sm/k)). Then the image of f in

HNis,A1(Cor(Sm/k)) is an isomorphism.

Proof. — By Theorem 1.15 it is sufficient to check that the corresponding morphism
is an isomorphism in DMeff

− . It follows from [5, Theorem 5.5(2)]. �

This finishes the proof of Theorem 1.21 for C = Sm/k and D = Sch/k. Changing Sm/k

to an admissible subcategory C does not change, up to an equivalence, the categories of
Nisnevich sheaves and therefore does not change the categories involved in the statement
of the theorem. For an admissible subcategory j : D ⊂ Sch/k which contains C consider
the diagram

H′(D+)
Ljrad+−−−−→ H′((Sch/k)+)

j+,rad−−−−→ H′(D+)
i+,rad−−−−→ H′(C+)

L�l

⏐⏐� L�l

⏐⏐� L�l

⏐⏐� L�l

⏐⏐�
H′(D+)

Ljrad
tr−−−−→ H′(Cor(Sch/k))

jtr,rad−−−−→ H′(Cor(D,R))
itr,rad−−−−→ H′(Cor(C,R))

(15)

where we write H′ instead of HNis,A1 to shorten the notation. Let S1, S2 and S3 be the
squares of the diagram. The rectangle S2S3 commutes by the previous remark. The
square S1 commutes since it consists of two left adjoints. Therefore the ambient rec-
tangle S1S2S3 commutes. On the other hand it is equivalent to S3 since by Corollary 1.20
the compositions j+,radLjrad

+ and jtr,radLjrad
+ are naturally isomorphic to the corresponding

identities.1 �

2. Symmetric powers

2.1. Generalized symmetric powers on HNis,A(C+)

In this section we assume that the underlying category C is f -admissible i.e. it
is admissible and categorical quotients exist for all finite group actions. For examples of
such categories see Appendix A.1. We will often use the following property of finite group
quotients.

Lemma 2.1. — Let X,X′ be schemes of finite type over a field k and let G → Aut(X),

G′ → Aut(G′) be actions on X and X′ by finite groups G, G′ such that the categorical quotients X/G
and X′/G′ exist. Then X/G × X′/G′ is the categorical quotient of X × X′ by the product action of

G × G′.

1 I would like to thank one of the referees for this argument.
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Proof. — The quotients with respect to finite group actions commute with flat base
changes. Therefore one has:

(X/G) × (X′/G′) = (X × (X′/G′))/G × {e}
= (X × X′/{e} × G′)/G × {e} = (X × X′)/G × G′ �

Let � = (G, φ : G → Sn) be a permutation group i.e. a group together with an embed-
ding into the symmetric group. Consider the functor S� (resp. S̃�) from C+ to itself of the
form

X+ �→ (X+)n/G

(resp. of the form X+ �→ (X+)∧n/G = (Xn/G)+ ). Let �i = (Gi, φi : Gi → Sni
), i = 1,2

be two permutation groups. Define their wreath product �1 ∗ �2 as follows. Let {n} =
{1, . . . , n}. The direct power Gn2

1 acts on {n1} × {n2} in the obvious way. Consider the
action of G2 on the same set which is the product of the action defined by φ2 on {n2} and
the trivial action on {n1}. Let φ : G → Sn1n2 be the subgroup generated by the images of
Gn2

1 and G2. We set

�1 ∗ �2 = (G, φ : G → Sn1n2)

(One can see that G is the semi-direct product of Gn2
1 and G2 with respect to the obvious

action of the later on the former.) Lemma 2.1 easily implies the following result.

Proposition 2.2. — For any �1 and �2 as above there are isomorphisms of functors

S�1∗�2 = S�2 ◦ S�1(16)

and

S̃�1∗�2 = S̃�2 ◦ S̃�1(17)

Define �1 × �2 by the formula

�1 × �2 = (G1 × G2, φ : G1 × G2 → Sn1+n2)

where φ is the composition of φ1 × φ2 with the obvious embedding Sn1 × Sn2 → Sn1+n2 .
We have another straightforward result.

Proposition 2.3. — For any �1 and �2 as above there are isomorphisms of functors

S�1×�2 = S�1 × S�2(18)

and

S̃�1×�2 = S̃�1 ∧ S̃�2 .(19)
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Consider now the radditive extensions

S�,rad : Rad(C+) → Rad(C+)

S̃�,rad : Rad(C+) → Rad(C+)

of S� and S̃�. The isomorphisms of Propositions 2.2 and 2.3 extend immediately to
these functors. To simplify the notation we will usually write S� and S̃� instead of S�,rad

and S̃�,rad. As all radditive extensions these functors commute with filtering colimits and
reflexive coequalizers. The behavior of these functors with respect to finite coproducts
corresponds to their behavior with respect to finite coproducts of schemes. For the case
of ordinary symmetric products see Proposition 2.15 below. Proposition 2.12 gives an
important example of how S̃� behaves with respect to colimits of another type.

The main result which allows us to extend the symmetric powers functors to differ-
ent homotopy categories is Theorem 2.5 below. The machinery needed for the proof of
this theorem was developed in [3]. The proofs there are given in the case when C = QP/k

is the category of quasi-projective schemes over k but they are applicable without any
modification to any f -admissible category C. Let a+,Nis be the functor of associated sheaf
from Rad(C+) to Shv•(CNis).

Definition 2.4. — An object F of Rad(C+) is called solid if there exists a filtration
pt = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F such that for each i = 0, . . . ,m − 1 there exist an open
embedding Ui ⊂ Xi in C and an isomorphism

a+,Nis(Fi+1/Fi) ∼= a+,Nis(Xi/Ui)

An object is called ind-solid if it is a filtered colimit of solid objects. A simplicial object is
called (ind-)solid if its terms are (ind-)solid.

Note in particular that according to this definition objects of �opC+ are solid and objects
of �opC#

+ are ind-solid. Note also that the object of Rad(C+) represented by a pointed
scheme (X, x) is not ind-solid unless the distinguished point is disjoint. In view of [3,
Prop. 35 (Prop. 4.1.7 in the preprint version)] a radditive functor F on C+ is (ind-)solid
if and only if a+,Nis(F) is (ind-)solid in the sense of [3, Def. 7 (Def. 4.1.5 in the preprint
version)].

Theorem 2.5. — Let � = (G, φ : G → Sn) be a permutation group. Then one has:

1. if X is an (ind-)solid object of �opRad(C+) the S̃�(X) and S�(X) are (ind-)solid

objects of �opRad(C+),

2. if f : X → Y is a Nis- (resp. an (Nis,A1)-) equivalence between ind-solid objects in

�opRad(C+) then S̃�(f ) and S�(f ) are Nis- (resp. (Nis,A1)-) equivalences. In partic-

ular, for an ind-solid F the obvious morphisms

S̃�(L∗(F)) → S̃�(F)
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S�(L∗(F)) → S�(F)

are Nis-equivalences.

Proof. — Let C/G be the category of G-objects in C. Denote by P� : C+ → (C/G)+
the functor which maps X+ to (X+)n with the permutational action of G defined by φ

and by P̃� the functor which maps X+ to (X+)∧n = (Xn)+.
Let further QuotG : (C/G)+ → C+ be the functor of the form X+ �→ (X/G)+.

Then S̃� = QuotG ◦ P̃� and S� = QuotG ◦ S�.
Define classes (GA1)+ and (GNis)+ in �opRad((C/G)+) in exactly the same way as

we have defined these classes for G = {e} in Section 1.1 (see also [3, p. 389]). Also define
the notion of solid and ind-solid object in �opRad((C/G)+) in exactly the same way as
we have done for G = {e}. Theorem 2.5 now follows from Propositions 2.6–2.10. �

Proposition 2.6. — A morphism f in �opRad((C/G)+) belongs to cll((GNis)+)

(resp. to cll((GNis)+ � (GA1)+)) if and only if a+,Nis(f ) is a local (resp. A1-) equivalence in

�op(Shv•((C/G)Nis)) in the sense of [3].

Proof. — Modulo the obvious analog of Proposition 1.1 for (C/G)+ this proposition
is essentially equivalent to [3, Th. 5 (Th. 3.6.1 in the preprint version)]. �

Proposition 2.7. — The radditive extensions of the functors P� and P̃� take (ind-)solid objects

to (ind-)solid objects.

Proof. — Let I� be the object of C/G which is the union of n copies of Spec(k)
with the permutational action of G defined by φ. In [3] we denoted by (−)I the functor
which takes a pointed sheaf F on (C/G)Nis to the pointed sheaf Hom(I,F) and by (−)∧I

a reduced version of this functor. One verifies immediately that the functor a+,Nis(P�)rad

is naturally isomorphic to (−)I ◦ a+,Nis and a+,Nis(P̃�)rad is naturally isomorphic to (−)∧I ◦
a+,Nis. The proposition now follows from [3, Th. 7 (Th. 5.2.3 in the preprint version)] in
the case of P� and from [3, Prop. 47 (Prop. 5.2.9 in the preprint version)] in the case
of P̃�. �

Proposition 2.8. — Let f : X → Y be a Nis- (resp. (Nis,A1)-) equivalence between ind-solid

objects of �opRad(C+). Then (P�)rad(f ) and (P̃�)rad(f ) are Nis- (resp. (Nis,A1)-) equivalences

in �opRad((C/G)+).

Proof. — The statement for P̃� follows from [3, Prop. 48 (Prop. 5.2.11 in the
preprint version)]. The statement for P� follows by the same argument. �

Proposition 2.9. — The radditive extensions of the functor QuotG takes (ind-)solid objects to

(ind-)solid objects.
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Proof. — The functor a+,NisQuotrad
G is naturally isomorphic to the functor η+,#a+,Nis

where η+,# is the pointed analog of the functor η# : Shv((C/G)Nis) → Shv(CNis) defined
in [3]. It is shows in [3] that η# is a left adjoint and in particular that it commutes with
colimits. Therefore the same the same is true for a+,NisQuotrad

G and the statement of the
proposition follows from the definition of (ind-)solid objects. �

Proposition 2.10. — Let f : X → Y be a Nis- (resp. (Nis,A1)-) equivalence between ind-

solid objects of �opRad((C/G)+). Then Quotrad
G (f ) is a Nis- (resp. (Nis,A1)-) equivalence in

�opRad(C+).

Proof. — It follows from [3, Prop. 45 (Prop. 5.1.4 in the preprint version)] through
the identification a+,NisQuotrad

G = η+,#a+,Nis. �

As an immediate corollary from Theorem 2.5 we get the following result.

Corollary 2.11. — For any � = (G, φ : G → Sn) there are unique (up to a canonical

isomorphism) functors LS̃� and LS� on the Nis- and (Nis,A1)-homotopy categories which are deter-

mined by the conditions that the squares

�opC#
+

S̃�−−−→ �opC#
+⏐⏐� ⏐⏐�

HNis,A1(C+)
LS̃�−−−→ HNis,A1(C+)

�opC#
+

S�−−−→ �opC#
+⏐⏐� ⏐⏐�

HNis,A1(C+)
LS�−−−→ HNis,A1(C+)

and their analogs for the Nis-local categories, commute. In addition, for any ind-solid object F in

�opRad(C+) one has LS̃�(F) = S̃�(F) and LS�(F) = S�(F) in both Nis- and (A1,Nis)-
homotopy categories.

For a closed subset Z of X we let S̃�(X+) − S̃�(Z+) denote the open subscheme in
S�(X+) = (Xn/G)+ whose complement is the image of Zn ⊂ Xn under the canonical
map from Xn.

Proposition 2.12. — Let Z be a closed subset of X. Consider X/(X − Z) as a radditive

functor on C+ and let aNis be the functor of associated Nisnevich sheaf. Then one has

a+,NisS̃�(X/(X − Z)) = a+,Nis(S̃�(X+)/(S̃�(X+) − S̃�(Z+))).

Proof. — As in the proof of Proposition 2.7 observe that a+,NisS̃� = η+,#(−)∧Ia+,Nis.
Therefore the statement of our proposition follows from [3, Example 8 (Example 5.2.8
in the preprint version)] and the fact that η+,# commutes with colimits. �
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Example 2.13. — Let us consider the statement of Proposition 2.12 for S̃� = S̃2

being the usual symmetric square. The pointed object X/(X − Z) is the coequalizer of
the reflexive pair X+ ∨ (X − Z)+

→→ X+ where the first arrow is identity on X+ and the
inclusion on (X − Z)+ and the second arrow is the identity on X+ and the projection of
(X − Z)+ to the distinguished point. Applying to this equalizer the functor S2 we see that
S2(X/(X − Z)) is the coequalizer of the pair

(S2X)+ ∨ (X × (X − Z))+ ∨ (S2(X − Z))+
→→ S2X+

and looking at the maps we conclude that it is defined by the push-out square of the form

X × (X − Z) � S2(X − Z) −−−→ S2X⏐⏐� ⏐⏐�
Spec(k) −−−→ S2(X/(X − Z))

The statement of the proposition is valid in this case because the map X × (X − Z) �
S2(X − Z) → S2X − S2Z is a Nisnevich covering. To see this consider the subset of
the source at which the map is etale. It is of the form (X × (X − Z) − �(X − Z)) �
S2(X − Z) and the restriction of the map to this subset is easily seen as arising from the
upper distinguished square

(X − Z) × (X − Z) − �(X − Z) −−−→ X × (X − Z) − �(X − Z)⏐⏐� ⏐⏐�
S2(X − Z) −−−→ S2X − S2Z

However this is not a covering in the con-topology or even in the Zariski topology which
make it necessary to use the Nisnevich associated sheaf functor in Proposition 2.12.

As was noted above the radditive functor on C+ represented by a pointed scheme (X, x)

is not solid unless x is a disjoint base point. To extend the computations of derived sym-
metric powers to such objects we need the following results.

Proposition 2.14. — Let � = (G, φ) be a permutation group and (X, x) an object of

�opRad(C+) represented by a pointed object of �opC#. Then the morphism

S�(�L∗((X, x))) → S�((X, x))

is a projective equivalence and S�((X, x)) = (Xn/G, xn).

Proof. — It is clearly sufficient to verify the proposition for (X, x) being a pointed
object of C. Consider the pair of adjoint functors

(−)+ : C# → C#
+

φ : C#
+ → C#
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where φ is the functor which forgets the distinguished point. Let F = (−)+ ◦φ be the cor-
responding cocomplete-triple. Then F((X, x)) = X+. Since φ reflects projective equiva-
lences and φ F = (−) � pt respects projective equivalences, F respects projective equiva-
lences and in particular

FL∗((X, x)) → F((X, x))

is a projective equivalence between objects of �opC#
+.

The natural isomorphisms (−)n
+ = ((−)+)∧n define functor isomorphisms

F(S�(−)) = S̃�(F(−))(20)

Therefore we have a commutative square

FS�L∗((X, x)) −−−→ S̃�FL∗((X, x))⏐⏐� ⏐⏐�
FS�((X, x)) −−−→ S̃�F((X, x))

in which the horizontal arrows are isomorphisms and the right vertical arrow is a projec-
tive equivalence by Proposition A.13(2). We conclude that FS�L∗((X, x)) → FS�((X, x))

is a projective equivalence.
Since Rad(C+) = Rad(C)•, one verifies easily that for any X ∈ Rad(C+) the map

from the simplicial object F∗(X) = (F◦(i+1)(X))i≥0 defined by the cocomplete-triple F to
X is a projective equivalence. Since F maps projective equivalences to projective equiv-
alences this implies that a morphism f : X → Y in �opRad(C+) is a projective equiva-
lence if and only if F(f ) = (φf )+ is a projective equivalence which finishes the proof of
the proposition.

The fact that S�((X, x)) = (Xn/G, xn) follows easily from the isomorphism (20). �

In the case of the ordinary symmetric products associated with the permutation
group (Sn, Id) we will use the simplified notations Sn and S̃n. For small values of n one has

S0(X+) = pt S̃0(X+) = S0

S1(X+) = X+ S̃1(X+) = X+

S2(X+) = (X2/S2)+ ∨ X+ S̃2(X+) = (X2/S2)+

Proposition 2.15. — For any n > 0 there is a family of natural in X,Y ∈ �opRad(C+)

isomorphisms

S̃n(X ∨ Y) =
∨

n≥i≥0

(S̃iX ∧ S̃n−iY).(21)
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Proof. — The left hand side of (21) is the value on (X,Y) of the simplicial exten-
sion of the radditive extension of the functor C+ × C+ → C+ of the form (U+,V+) �→
S̃n(U+ ∨ V+), the right hand side is the value on (X,Y) of the simplicial extension of the
radditive extension of the functor (U+,V+) �→ ∨

n≥i≥0(S̃
i(U+) ∧ S̃n−i(U+)). These two

functors from C+ × C+ to C+ are isomorphic due to the formula

(U � V)n/Sn =
∐

n≥i≥0

(Ui/Si × Vn−i/Sn−i).

Therefore their radditive extensions and then simplicial extensions of radditive extensions
are isomorphic as well. �

Since radditive extensions commute with filtered colimits Proposition 2.15 immediately
implies the following result.

Corollary 2.16. — Let (Xα)α∈A be a family of objects in �opRad(C+). Then one has

S̃n

(∨
α∈A

Xα

)
=

∨
k1α1+···+kmαm∈SnA

(S̃k1Xα1 ∧ · · · ∧ S̃kmXαm
).

where SnA is the n-th symmetric power of the set A, k1 + · · · + km = n and α1, . . . , αm are pairwise

distinct.

Consider a coprojection sequence X
f→ Y

p→ Z in Rad(C+). Let us say that a
morphism f : A → B in a category has a strict image if the image of the morphism
of representable functors defined by f is representable i.e. if there exists a factorization
A → Im(f ) → B of f where the first morphism is a split epimorphism and the second
one is a monomorphism.

Lemma 2.17. — Let f : X → Y be a coprojection in Rad(C+). Then the composition

∨
n≥a≥i

(S̃a(X) ∧ S̃n−a(Y)) → S̃n(X ∨ Y)
S̃n(f ∨Id)−→ S̃n(Y)

has a strict image which we denote by Sn
≥i(X,Y) → S̃n(Y). A choice of i : Z → Y such that f ∨ i :

X ∨ Z → Y is an isomorphism defines an isomorphism

Sn
≥i(X,Y) ∼=

∨
n≥a≥i

(S̃a(X) ∧ S̃n−a(Z))

over S̃n(Y).
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Proof. — Let us choose i : Z → Y such that f ∨ i : X ∨ Z → Y is an isomorphism.
We get a commutative square

∨
n≥a≥i(S̃

a(X) ∧ S̃n−a(Z)) −−−→ S̃n(X ∨ Z)
∼=−−−→ S̃n(Y)⏐⏐� ⏐⏐� ⏐⏐�=∨

n≥a≥i(S̃
a(X) ∧ S̃n−a(Y)) −−−→ S̃n(X ∨ Y) −−−→ S̃n(Y)

To finish the proof it remains to construct for each j ≥ i a morphism

S̃j(X) ∧ S̃n−j(Y) →
∨

n≥a≥i

(S̃a(X) ∧ S̃n−a(Z))

such that the diagram

S̃j(X) ∧ S̃n−j(Y) −−−→ S̃n(Y)⏐⏐� ⏐⏐�=∨
n≥a≥i(S̃

a(X) ∧ S̃n−a(Z)) −−−→ S̃n(Y)⏐⏐� ⏐⏐�=∨
n≥a≥i(S̃

a(X) ∧ S̃n−a(Y)) −−−→ S̃n(Y)

commutes. We define this morphism as the composition

S̃j(X) ∧ S̃n−j(Y) ∼= S̃j(X) ∧ S̃n−j(X ∨ Z)

=
∨

n−j≥k≥0

(S̃j(X) ∧ S̃k(X) ∧ S̃n−k−j(Z))

→
∨

n≥a≥j

(S̃a(X) ∧ S̃n−a(Z)) →
∨

n≥a≥i

(S̃a(X) ∧ S̃n−a(Z))

where a = k + j. �

By construction we obtain a sequence of morphisms

S̃n(X) = S̃n
≥n(X,Y) → ·· · S̃n

≥1(X,Y) → S̃n
≥0(X,Y) = S̃n(Y)

As a corollary of the second statement of Lemma 2.17 we see that the morphisms

S̃n
≥i+1(X,Y) → S̃n

≥i(X,Y)

are coprojections. The following result identifies the cofibers of these coprojections.
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Lemma 2.18. — For any coprojection sequence X → Y → Z there are natural morphisms

S̃n
≥i(X,Y) → S̃i(X) ∧ S̃n−i(Z) such that the sequences

S̃n
≥i+1(X,Y) → S̃n

≥i(X,Y) → S̃i(X) ∧ S̃n−i(Z)

are coprojection sequences.

Proof. — Note first that it is clear from Lemma 2.17 that a choice of i : Z → Y
defines a coprojection sequence of the required form. The point of the lemma is to show
that this sequence is independent on the choice of i.

To do so let us show that the obvious morphism∨
n≥a≥i

(S̃a(X) ∧ S̃n−a(Y)) → S̃i(X) ∧ S̃n−i(Z)(22)

factors through the projection∨
n≥a≥i

(S̃a(X) ∧ S̃n−a(Y)) → S̃n
≥i(X,Y)(23)

The proof of Lemma 2.17 implies easily that this projection identifies S̃n
≥i(X,Y) with the

image of the projector on the left hand side of (23) of the form∨
n≥a≥i

(S̃a(X) ∧ S̃n−a(Y)) ∼=
∨

n≥a≥i

∨
n−a≥j≥0

S̃a(X) ∧ S̃n−a−j(X) ∧ S̃j(Z)

→
∨

n≥b≥i

S̃b(X) ∧ S̃n−b(Y)

which maps S̃a(X) ∧ S̃n−a−j(X) ∧ S̃j(Z) to S̃n−j(X) ∧ S̃j(Y). The compositions of both the
identity and this projector with (22) are zero on the summands S̃a(X)∧ S̃n−a−j(X)∧ S̃j(Z)

with j 	= n − i and coincide with the canonical isomorphisms

S̃i(X) ∧ S̃0(X) ∧ S̃n−i(Z) → S̃i(X) ∧ S̃n−i(Z)

on the only summand with j = n− i. Therefore (22) factors through (23). The fact that the
resulting morphism extends the morphism S̃n

≥i+1(X,Y) → S̃n
≥i(X,Y) to a coprojection

sequence is straightforward. �

For 0 ≤ a ≤ b ≤ n define objects S̃n
a,b(X,Y) by the coprojection sequences

S̃n
≥b(X,Y) → S̃n

≥a(X,Y) → S̃n
a,b(X,Y)

Summarizing the previous discussion and extending it to simplicial objects we get the
following theorem which described the behavior of S̃n with respect to coprojection se-
quences.
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Theorem 2.19. — Any term-wise coprojection sequence

X → Y → Z

in �opRad(C+) defines in a natural way a collection of objects S̃n
a,b(X,Y) for 0 ≤ a ≤ b ≤ n, natural

isomorphisms

S̃n
0,n(X,Y) = S̃n(Y)

and for any a = 0, . . . , n

S̃n
a,a(X,Y) = S̃a(X) ∧ S̃n−a(Z)

and for any 0 ≤ a ≤ b ≤ c ≤ n coprojection sequences

S̃n
b+1,c(X,Y) → S̃n

a,c(X,Y) → S̃n
a,b(X,Y)(24)

The following corollary describes a particularly useful in applications tower of coprojec-
tion sequences of the form (24).

Corollary 2.20. — Under the assumptions of the theorem there is a tower of coprojection sequences

of the form

S̃n(X) → S̃n(Y) → S̃n
0,n−1(X,Y)

S̃i(X) ∧ S̃n−i(Z) → S̃n
0,i(X,Y) → S̃n

0,i−1(X,Y) i = n − 1, . . . ,2

X ∧ S̃n−1Z → S̃n
0,1(X,Y) → S̃n(Z)

Proof. — These are coprojection sequences (24) for a = 0 and c = b + 1. �

Using Proposition A.18 one can easily reformulate an analog of Theorem 2.19 and
Corollary 2.20 for cofiber sequences in any of the homotopy categories of C+ which
we have considered.

The following lemma is straightforward.

Lemma 2.21. — For any n > 0 there is a family of natural in X ∈ C+ coprojection sequences

Sn−1(X) → Sn(X) → S̃n(X).(25)

As a corollary of the fact that the isomorphisms and sequences of the lemmas are natural
we conclude that they extends to objects of C#

+ and further to objects of �opC#
+.

We let S∞(X) denote the colimit of the sequence

S0(−) → S1(−) → S2(−) → ·· ·
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in C#
+. Note that for X ∈ C one has

S∞(X+) =
(∐

n≥1

Xn/Sn

)
+

=
∨
n≥1

S̃n(X+)

however his decomposition is natural only for morphisms of the form f+ where f is a
morphism in C and not for general morphisms in C+.

We will also consider the functors S∞[1/d] for integers d > 0 defined by the for-
mula

S∞[1/d](X) = colim(S∞(X)
×d−→ S∞(X)

×d−→ · · ·)
where ×d is the multiplication by d map with respect to the Abelian monoid structure
of S∞.

Lemma 2.22. — For any X,Y ∈ C#
+ there is a natural isomorphism

S∞[1/d](X ∨ Y) = S∞[1/d](X) × S∞[1/d](Y).(26)

Proof. — The maps X ∨ Y → X and X ∨ Y → Y define the map from the left
to the right hand side of (26). To verify that it is an isomorphism we may assume that
X = U+ and Y = V+ for U,V ∈ C. The case d = 1 follows then immediately from Propo-
sition 2.15. The case d > 1 follows from the case d = 1 and the fact that finite products
commute with filtered colimits. �

Corollary 2.11 together with the fact that (Nis,A1)-equivalences are closed under filtered
colimits implies the following result.

Corollary 2.23. — For any d > 0 there are unique functors LS∞[1/d] on the Nis- and

(Nis,A1)-homotopy categories which are determined by the conditions that the square

�opC#
+

S∞[1/d]−−−→ �opC#
+⏐⏐� ⏐⏐�

HNis,A1(C+)
LS∞[1/d]−−−−→ HNis,A1(C+)

and its analog for the Nis-local category, commute. In addition, for any ind-solid object F in

�opRad(C+) one has LS∞[1/d](F) = S∞[1/d](F) in both Nis- and (A1,Nis)-homotopy cat-

egories.

Remark 2.24. — Proposition 2.14 shows that if (X, x) is a radditive functor rep-
resented by a pointed scheme then S∞((X, x)) is ind-represented by the usual infinite
symmetric power colimi≥0Sn((X, x)) and the morphism LS∞((X, x)) → S∞((X, x)) is in
this case a projective equivalence.
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2.2. Generalized symmetric powers on HNis,A(Cor(C,R))

We continue to assume that the underlying category C is f -admissible. Set

c = c(k) =
{

1 if char(k) = 0
char(k) otherwise

The number c(k) is sometimes called the characteristic exponent of k. In what follows we
assume that c is invertible in our ring of coefficients R. We start with the following result.

Proposition 2.25. — Let X,Y ∈ C and let G be a finite group acting on X. Then

HomCor(C,R)([X/G], [Y]) = HomCor(C,R)([X], [Y])G

i.e. [X/G] is the categorical quotient for the action of G on [X].
Proof. — It follows from the fact that the functor represented by [Y] on Sch/k is

a qfh-sheaf by [26, Proposition 4.2.7] and that for qfh-sheaves F one has F(X/G) =
F(X)G. �

Proposition 2.26. — For any permutation group � = (G, φ : G → Sn) there exist a unique

(up to a canonical isomorphism) functor S�
tr : Cor(C,R) → Cor(C,R) such that the square

C+
S̃�−−−→ C+

�l

⏐⏐� ⏐⏐��l

Cor(C,R)
S�

tr−−−→ Cor(C,R)

commute.

Proof. — In view of Proposition 2.25 we may define S�
tr by the rule

S�(X+) = [X]⊗n/G.

One verifies easily that the required squares commute. �

Remark 2.27. — One can also define functors on Cor(C,R) corresponding to the
un-reduced symmetric powers S�. However, some of the important natural transforma-
tions between these functors on C+ do not extend to natural transformation over Cor. For
example, the embeddings Sn(X) → Sn+1(X) are not natural with respect to morphisms
in Cor which can be seen by looking at the morphism d · Id : [X] → [X] for d > 1.

Let � be as above, i : H → G a subgroup of G and � the permutation group (H,ψ =
φ ◦ i). Assume for a moment that H is normal in G and consider finite correspondences
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with coefficients in a commutative ring R such that d = [G : H] is invertible in R. Then
for any X in Rad(Cor(C,R)) there is an action of G/H on S�

tr (X) and it is more or less
obvious that S�

tr (X) is the direct summand of G/H-invariants in S�
tr (X). We will need an

analog of this observation in the case when H is not necessarily normal in G.
For any g ∈ G let �g be the permutation group corresponding to the subgroup

H ∩ gHg−1 of G. Then for any X in Cor(C,R) there are two morphisms

p : S
�g

tr (X) → S�
tr (X)

p′ : S
�g

tr (X) → S�
tr (X)

where

p : X⊗n/(H ∩ gHg−1) → X⊗n/H

is the projection and p′ is the map whose composition with X⊗n → X⊗n/(H ∩ gHg−1) is
x �→ gx followed by the projection.

Theorem 2.28. — Let d = [G : H] be invertible in the ring of coefficients R. Then for any X
in Cor(C,R) there is a split cocomplete-equalizer sequence:⊕

g∈G

S
�g

tr (X)
→→ S�

tr (X) → S�
tr (X)

where the two arrows are given by p and p′ on each summand.

Proof. — In view of Proposition 2.25 the theorem is a particular case of Proposi-
tion A.10. �

Corollary 2.29. — Under the assumptions of the theorem assume in addition that H is normal

in G. Then

S�
tr (X) = (S�

tr (X))G/H

i.e. S�
tr (X) is the image of the projector d−1

∑
u∈G/H u acting on S�

tr (X).

As in the case of the symmetric power functors on C+ we will write S�
tr instead

of (S�
tr )

rad for the radditive extensions of these functors. Note that Theorem 2.28 and
Corollary 2.29 immediately extend to the functors S�

tr on Rad(Cor(C,R)) and further
on �opRad(Cor(C,R)).

Remark 2.30. — Note however, that the definition of S�
tr (X) as the categorical

quotient of X⊗n by the permutational action of G extends to Cor(C,R)# but not to
Rad(Cor(C,R)). Even for X ∈ Cor(C,R), the quotient S�

tr (X) is not the quotient of the
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radditive functor X⊗n by the action of G in Rad(Cor(C,R)). The later exists and maps
to S�

tr (X) but this map is almost never an isomorphism or even an (Nis,A1)-equivalence
unless the projection X⊗n → S�

tr (X) splits.

Theorem 2.31. — For any R such that c(k) is invertible in R and any � = (G, φ : G → Sn)

the functors S�
tr take Nis- (resp. (Nis,A1)-) equivalences between objects of �opCor(C,R)# to Nis-

(resp. (Nis,A1)-) equivalences. Therefore, there are unique functors LS�
tr on the Nis- and (Nis,A1)-

homotopy categories which are determined by the conditions that the squares

�opCor(C,R)# S�
tr−−−→ �opCor(C,R)#⏐⏐� ⏐⏐�

HNis,A1(Cor(C,R))
LS�

tr−−−→ HNis,A1(Cor(C,R))

and their analogs for the Nis-local categories, commute.

Proof. — Let X,Y be objects of �opCor(C,R)# and f : X → Y be a Nis-
equivalence. Then by Theorem A.20 we have f ∈ cl�̄([GNis]). As any radditive extension,
the functor S�

tr takes �̄-closures to �̄-closures. On the other hand [GNis] = �l((GNis)+)

and

S�
tr (�

l((GNis)+)) = �l(S̃�((GNis)+)) ⊂ �l(cll((GNis)+) ∩ �opC#
+)

⊂ cll((GNis)+)

where the equality holds by Proposition 2.26, the first inclusion by Theorem 2.5 and the
second inclusion by Theorem 1.7. The same argument applies to the case of (Nis,A1)-
equivalences. �

Let us consider now in more detail the case of ordinary symmetric powers Sn
tr.

Generalizing a particular case of Corollary 2.29 to radditive functors we get:

Lemma 2.32. — Let n be an integer and R be a ring where n! is invertible. Then for any X in

�opRad(Cor(C,R)) the obvious morphism X⊗n → Sn
tr(X) defines an isomorphism between Sn

tr(X)

and the image of the projector (1/n!)∑
σ∈Sn

σ on X⊗n.

Proposition 2.33. — Let n be an integer, l a prime and n = ∑
nil

i the l-primary decomposition

of n. Let further R be an l-local ring (i.e. a ring where all primes but l are invertible). Then for any X
in �opRad(Cor(C,R)) there is a split epimorphism

pn,l : ⊗i((Sl
tr)

◦i(X))⊗ni → Sn
tr(X)(27)

such that both pn,l and its section are natural in X.
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Proof. — Denote temporarily by �l the permutation group (Sl, Id). For a sequence
of non-negative integers q = (q1, . . . , qk) consider the permutation group

�l,q =
∏

i

(�∗i
l )×qi = (Gl,q, φl,q : Gl,q → Sn)

where n = ∑
qil

i .
By Propositions 2.2 and 2.3 the left hand side of (27) is canonically isomorphic to

S̃�(X) where � = �l,n(X) for n = (n0, . . . , ni, . . .). The morphism pn,l is associated with
the embedding Gl,n → Sn. Using the fact that n is the l-primary decomposition of n and
computing how many times l divides n! one concludes that [Sn : Gl,n] is prime to l and
therefore invertible in R. Our result follows now from Theorem 2.28. �

Proposition 2.34. — For any n ≥ 0 there is a natural in X,Y ∈ �opRad(Cor(C,R))

family of isomorphisms of the form

Sn
tr(X ⊕ Y) =

⊕
i≥0

Si
tr(X) ⊗ Sn−i

tr (Y)

Proof. — The same reasoning as in the proof of Proposition 2.15 shows that it is
sufficient to consider the case when X,Y ∈ Cor(C,R). Then we have morphisms

Si
tr(X) ⊗ Sn−i

tr (Y) → Sn
tr(X ⊕ Y)

which are obvious from the definition of Si
tr as (−)⊗i/Si . These morphisms are clearly

natural in X and Y. On the other hand they are compatible with the morphisms which
define the isomorphism of Proposition 2.15 and therefore their sum gives an isomor-
phism. �

Corollary 2.35. — Let (Xα)α∈A be a family of objects in �opRad(Cor(C,R)). Then one

has

Sn
tr

(⊕
α∈A

Xα

)
=

⊕
k1α1+···+kmαm∈SnA

Sk1
tr Xα1 ⊗ · · · ⊗ Skm

tr Xαm

where SnA is the n-th symmetric power of the set A, k1 + · · · + km = n and α1, . . . , αm are pairwise

distinct.

By exactly the same reasoning as in the proof of Theorem 2.19 we get the following
results.

Theorem 2.36. — Any term-wise coprojection sequence

X → Y → Z
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in �opRad(Cor(C,R)) defines in a natural way a collection of objects Sn
tr,a,b(X,Y) for 0 ≤ a ≤

b ≤ n, natural isomorphisms

Sn
tr,0,n(X,Y) = Sn

tr(Y)

and for any a = 0, . . . , n

Sn
tr,a,a(X,Y) = Sa

tr(X) ⊗ Sn−a
tr (Z)

and for any 0 ≤ a ≤ b ≤ c ≤ n coprojection sequences

Sn
tr,b+1,c(X,Y) → Sn

tr,a,c(X,Y) → Sn
tr,a,b(X,Y)(28)

The following corollary describes a particularly useful in applications tower of coprojec-
tion sequences of the form (24).

Corollary 2.37. — Under the assumptions of the theorem there is a tower of coprojection sequences

of the form

Sn
tr(X) → Sn

tr(Y) → Sn
tr,0,n−1(X,Y)

Si
tr(X) ⊗ Sn−i

tr (Z) → Sn
tr,0,i(X,Y) → Sn

tr,0,i−1(X,Y) i = n − 1, . . . ,2

X ⊗ Sn−1
tr Z → Sn

tr,0,1(X,Y) → Sn
tr(Z)

Proof. — These are coprojection sequences (28) for a = 0 and c = b + 1. �

Using Proposition A.18 one can easily reformulate an analog of Theorem 2.36
and Corollary 2.37 for cofiber sequences in any of the homotopy categories of Cor(C,R)

which we have considered. Below we do it in the case of HNis,A1(Cor(C,R)).

Proposition 2.38. — For any n > 0 and any cofiber sequence

X → Y → Z → �1X

in HNis,A1(Cor(C,R)) there are objects LSn
tr,a,b(X,Y) such that for 0 ≤ a ≤ n one has

LSn
tr,a,a(X,Y) = LSa

trX ⊗L LSn−a
tr Y,

and

LSn
tr,0,n(X,Y) = LSn

trY,

and cofiber sequences

LSn
tr,k+1,j(X,Y) → LSn

tr,m,j(X,Y) → LSn
tr,m,k(X,Y) → �1LSn

tr,k+1,j(X,Y).(29)
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Corollary 2.39. — Under the assumptions of the proposition there is a tower of cofiber sequences

LSn
trX → LSn

trY → LSn
tr,0,n−1(X,Y) → �1LSn

trX

LSi
trX ⊗L LSn−i

tr Z → LSn
tr,0,i(X,Y) → LSn

tr,0,i−1(X,Y)

→ �1(LSi
trX ⊗L LSn−i

tr Z) for i = n − 1, . . . ,2

X ⊗L LSn−1
tr Z → LSn

tr,0,1(X,Y) → LSn
trZ → �1(X ⊗L LSn−1

tr Z)

The usual problems with the lifting of morphisms of cofiber sequences in homo-
topy categories to morphisms in the model categories prevent us from asserting that the
cofiber sequences of symmetric products of Theorem 2.38 and Corollary 2.39 are natural
with respect to morphisms of the base cofiber sequence. Due to this issue and in view of
Proposition A.18 we will formulate the results below in the context of coprojection rather
than cofiber sequences.

Definition 2.40. — An object X of HNis,A1(Cor(C,R)) is called even (resp. odd) if
the permutation isomorphism σ : X⊗X → X⊗X is the identity (resp. the multiplication
by −1).

We have the following obvious fact.

Lemma 2.41. — Tensor product of two odd or two even objects is even. Tensor product of an odd

and an even object is odd.

Lemma 2.42. — Let X be an even (resp. odd) object. Then �1
s X is odd (resp. even).

Proof. — It follows from the fact that �1
s X = X ⊗ S1

s and that S1
s is odd. �

Lemma 2.43. — Let R be an l-local ring, X an object of HNis,A1(Cor(C,R)) and 1 < n <

l an integer. Then one has:

1. if X is odd then Sn
tr(X) = 0,

2. if X is even then the map X⊗n → Sn
tr(X) is an isomorphism.

Proof. — Since the projection �opCor(C,R)# → HNis,A1 is an additive functor
Proposition 2.32 implies hat Sn

tr(X) as an object of HNis,A1 is the image of the averag-
ing projector. Therefore for an even X we get X. The number of elements in Sn is even
for n > 1 and therefore for an odd X and n > 1 we get zero. �

Let � be the permutation group (G, i : G → Sl) where G = Z/l is embedded into
Sl as the subgroup generated by the cycle (1 . . . l). The symmetric power S�

tr associated
with � is the l-th cyclic power. The quotient N(G)/G where N(G) is the normalizer of G
in Sl is canonically isomorphic to Aut(Z/l) = (Z/l)∗. The definition of S�

tr shows that this
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quotient acts on S�
tr (X) for any X in a manner natural in X. If l −1 is invertible in R then

we may define the direct summand S�
tr (X)/Aut(Z/l) of coinvariants of this action and

Corollary 2.29 implies that it is naturally isomorphic to S� ′
(X) where � ′ corresponds to

N(G) ⊂ Sl . In particular, the we get a natural morphism S�
tr (X)/Aut(Z/l) → Sl

tr(X).

Proposition 2.44. — Let R be an l-local ring and X an object of �opCor(C,R)# which is

even in HNis,A1(Cor(C,R)). Then the morphism S�
tr (X)/Aut(Z/l) → Sl

tr(X) is an (Nis,A1)-

equivalence.

Proof. — Let us apply Theorem 2.28 to the natural transformation of func-
tors S�

tr → Sl
tr on X. Since Z/l has no non-trivial subgroups, one has gGg−1 = G or

G ∩ gGg−1 = {e} for any g ∈ Sl . Therefore, we can re-write the first term of the split co-
equalizer diagram of Theorem 2.28 as (

⊕
g∈N(G) S�

tr (X))⊕ (
⊕

g∈Sl\N(G) X⊗l) with the two
arrows differing by the action of N(G) on S�

tr (X) on the summands of the first type and
by the action of Sl on X⊗l on the summands of the second type. Since split equalizer
diagrams are absolute i.e. preserved by all functors (see e.g. [12, p. 149]) the image of this
diagram in HNis,A1(Cor(C,R)) is still a split coequalizer diagram. Since the action of Sl

on X⊗l in this category is trivial we conclude that Sl
tr(X) = S�

tr (X)/Aut(G). �

Proposition 2.45. — Let R be an l-local ring and n ≤ l. Let

X → Y → Z → �1X

be a coprojection sequence in �opCor(C,R)#. Then one has:

1. If X is odd in HNis,A1(Cor(C,R)) then there are natural coprojection sequences of the form

Sn
tr(X) → Sn

tr(Y) → Sn
tr,0,n−1(X,Y)(30)

X ⊗ Sn−1
tr (Z) → Sn

tr,0,1(X,Y) → Sn
tr(Z)(31)

and a natural (Nis,A1)-equivalence Sn
tr,0,n−1(X,Y) → Sn

tr,0,1(X,Y).

2. If Z is odd then there are natural coprojection sequences in of the form

Sn
tr(X) → Sn

tr(Y) → Sn
tr,0,n−1(X,Y)(32)

Sn−1
tr (X) ⊗ Z → Sn

tr,0,n−1(X,Y) → Sn
tr,0,n−2(X,Y)(33)

and a natural (Nis,A1)-equivalence Sn
tr,0,n−2(X,Y) → Sn

tr(Z).

Proof. — The sequence (30) is the first one and the sequence (31) the last one of
the family of sequences in Corollary 2.39. The remaining sequences of the family give us
morphisms

Sn
tr,0,n−1(X,Y) → ·· · → Sn

tr,0,1(X,Y)
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which are (Nis,A1)-equivalences by our assumption on X, Lemma 2.43 and Proposi-
tion A.18(3).

Similarly, the sequence (32) is the first and (33) the second of the sequences of
Corollary 2.39. The rest of the sequences define morphisms

Sn
tr,0,n−2(X,Y) → ·· · → Sn

tr,0,0(X,Y) = Sn
tr(Z)

which are (Nis,A1)-equivalences by our assumption on Z, Lemma 2.43 and Proposi-
tion A.18(3). �

Corollary 2.46. — Let l be a prime, R be an l-local ring and X is an object of

�opCor(C,R)#. Then one has:

1. If l = 2 or X is odd in HNis,A1(Cor(C,R)) then there is a cofiber sequence of the form

� l−1
s X⊗l → �1Sl

tr(X) → Sl
tr(�

1
s X) → � l

sX
⊗l .(34)

2. If l = 2 or X is even in HNis,A1(Cor(C,R)) then there is a cofiber sequence of the form

�1
s X⊗l → �1Sl

tr(X) → Sl
tr(�

1
s X) → �2

s X⊗l .(35)

Proof. — There is an obvious coprojection sequence

X → Cone(X) → �1
s X(36)

where Cone(X) is the simplicial cone of X. Applying to this sequence Proposition 2.45
and using Lemma 2.43(2) and Lemma 2.42 we get the required sequences. �

We will now consider the finite correspondence versions of the infinite symmetric
power S∞.

Proposition 2.47. — For any X in C+, any n ≥ 0 and any R the sequences

�l
RSn(X) → �l

RSn+1(X) → �l
RS̃n+1(X) = Sn+1

tr (X)

are split exact in a manner natural in X. In particular, there are natural in X ∈ C+ isomorphisms

�l
R(S∞(X)) ∼= ⊕i≥1Si

tr(�
l
R(X)).

Proof. — Let ∗ : Spec(k) → X denote the distinguished point of X and Sn−1(X) →
Sn(X) the inclusions given on the level of the products by (x1, . . . , xn−1) �→ (x1, . . . , xn−1,∗).
We need to construct maps

�lSn(X) → �lSn−1(X)

which split the morphisms in Cor defined by these inclusions. Since

�lSn(X) = �l(Xn/Sn) = �l(Xn)/Sn

(by Proposition 2.25) it suffice to construct maps sn : �lXn → �lXn−1 such that
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1. �lXn sn→ �lXn → (�lXn−1)/Sn−1 is invariant under the action of Sn on Xn,

2. �lXn−1 Id×∗→ �lXn sn→ �lXn−1 is the identity.

Let {n} be the set {1, . . . , n}. Any map f : {m} → {n} defines in the obvious way a map
fX : Xn → Xm. For n > 0, define sn : �lXn → �lXn−1 by the formula

sn =
∑

0≤m≤n−1

∑
i:{m}→{n}

(−1)n−m−1[iX × (∗)(n−m−1)]

where i runs through all order preserving monomorphisms {m} → {n}. For example, for
n = 3 we get

s3 = [pr1,2] + [pr2,3] + [pr1,3] − [pr1 × ∗]
− [pr2 × ∗] − [pr3 × ∗] + [∗ × ∗].

where pri1,...,im corresponds to the map i : {m} → {n} whose image is {i1, . . . , im}. One ver-
ifies easily that the maps sn defined in this way satisfy the two conditions stated above. �

Set S∞
tr = ⊕

n≥1 Sn
tr. For [X] ∈ Cor(C,R) the morphisms S̃i(X)∧ S̃j(X) → S̃i+j(X) define

a morphism

S∞
tr ([X]) ⊗ S∞

tr ([X]) → S∞
tr ([X])

which makes S∞
tr ([X]) into a commutative monoid relative to ⊗. One verifies immedi-

ately that this monoid structure is natural for morphisms in Cor(C,R).
Combining Proposition 2.26 with Proposition 2.47 and extending them to raddi-

tive functors we get the following result.

Proposition 2.48. — There is a commutative square of functors

Rad(C+)
S∞−−−→ Rad(C+)

�l
R

⏐⏐� ⏐⏐��l
R

Rad(Cor(C,R))
S∞

tr−−−→ Rad(Cor(C,R))

Note that the functor S∞[1/d] does not extend to a functor on Cor since the definition of
the “multiplication by d” maps Sn → Snd involves the diagonals which are not functorial
for morphisms in Cor.

Proposition 2.49. — For any X,Y in Cor(C,R) there is an isomorphism

S∞
tr (X ⊕ Y) = [S∞

tr (X) ⊗ S∞
tr (Y)] ⊕ S∞

tr (X) ⊕ S∞
tr (Y)

which is natural in X and Y.
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Proof. — We have

[S∞
tr (X) ⊗ S∞

tr (Y)] ⊕ S∞
tr (X) ⊕ S∞

tr (Y)

=
∑

i,j≥0,i+j>0

Si
tr(X) ⊗ Sj

tr(Y)

=
∑
n>0

∑
i≥0

Si
tr(X) ⊗ Sn−i

tr (Y) = S∞
tr (X ⊕ Y)

where the last equality holds by Proposition 2.34. �

Proposition 2.50. — The functor S∞
tr take (Nis,A1)-equivalences between objects of �opCor#

to (Nis,A1)-equivalences. In particular there exist unique up to a canonical isomorphism functors

S∞
tr : HNis,A1(Cor(C,R)) → HNis,A1(Cor(C,R))

such that the squares

�opCor# S∞
tr−−−→ �opCor#⏐⏐� ⏐⏐�

HNis,A1
S∞

tr−−−→ HNis,A1

commute.

Proof. — Follows immediately from Theorem 2.31 and the fact that (Nis,A1)-
equivalences are closed under direct sums. �

Remark 2.51. — All the results proved in this section for HNis,A1(Cor(C,R)) also
hold for the intermediate homotopy categories H(Cor(C,R)), HA1(Cor(C,R)) and
HNis(Cor(C,R)).

2.3. The motive of S̃l(Tn)

Everywhere in this section l is a prime not equal to char(k). The underlying cat-
egory C will be the category of quasi-projective schemes. Let Tn = a+,Nis(An/(An − {0}))
be the standard model of the motivic n-sphere and

Ln = L�l(Tn) = �l(L∗(Tn))

its image in HNis,A1(Cor(C,R)). The goal of this section is to compute the isomorphism
class of LSl

tr(Ln) in the case when R = Fl .



MOTIVIC EILENBERG-MACLANE SPACES 45

Recall that for a linear representation ρ : G → Aut(V) of a finite group V we let
Th(ρ) denote the quotient sheaf (in the Nisnevich topology)

Th(ρ) = a+,Nis(V/V − {0})
where V and V − {0} are considered as representable sheaves on quasi-projective G-
schemes (see [34]). Applying the functor QuotG on sheaves we get a pointed sheaf
QuotG(Th(ρ)) on CNis. Since QuotG commutes with colimits and coincides with the
scheme-theoretic quotient on representable sheaves we have

QuotG(Th(ρ)) = (V/G)/((V − {0})/G).

We start by computing the isomorphism class of L�lQuotG(Th(ρ)) in
HNis,A1(Cor(C,R)) in the case when ρ is a representation of the cyclic group Z/l and R is
any commutative ring. Similar computations were done independently by Nie (see [19]).
In what follows quotients, wedge products etc. are considered in the category of pointed
Nisnevich sheaves i.e. after the application of the associated sheaf functor to the result of
the corresponding construction in radditive functors.

Let us say that a linear representation ρ : Z/l → Aut(V) is free if the corresponding
action of Z/l on V − {0} is free. Since char(k) 	= l, any nontrivial representation ρ has a
canonical decomposition into a direct sum ρ = λ⊕ τ where λ is free and τ is a trivial. As
was shown in [34] one has an isomorphism of sheaves

QuotZ/l(Th(λ ⊕ τ)) = QuotZ/l(Th(λ)) ∧ Td

where d = dim(τ ). Therefore it is sufficient to consider free representations ρ. For a linear
representation of any G we have

QuotG(Th(ρ)) = QuotG(V)/QuotG(V − {0})
because QuotG is a left adjoint and therefore commutes with colimits (see [3, §5.1]). Set

Xρ = QuotG(V − {0}) = (V − {0})/G.

Since V is G-equivariantly A1-contractible, the pointed sheaf QuotG(V) is A1-contractible
and therefore QuotG(Th(ρ)) is the unreduced suspension of Xρ i.e. there is a cofiber se-
quence in HNis,A1(C+) of the form

(Xρ)+ → S0 → QuotG(Th(ρ)) → �1((Xρ)+).(37)

Since we consider representations of a cyclic group, the scheme Xρ is smooth and
the full embedding part of Proposition 1.19 together with Theorem 1.15 imply that
we may do our computation in the more familiar context of the triangulated category
DMeff

− (k,R). To keep in concordance with our earlier notation we will write M̃(X) in-
stead of NNis,A1(X).
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Shifting the image of the cofiber sequence (37) in DMeff
− by one step to the left

and taking into account the canonical isomorphism M̃(S0) = R we get a distinguished
triangle

M̃(QuotG(Th(ρ)))[−1] → M̃((Xρ)+ → Fl → M̃(QuotG(Th(ρ)))

Since dim(V) > 0, the map M̃((Xρ)+ → R is an epimorphism which is split by any ratio-
nal point of Xρ and its kernel is canonically isomorphic to the reduced motive M̃(Xrho)

of the non-pointed scheme Xρ as defined in [31, p. 192]. Therefore we get the following
result.

Proposition 2.52. — Let λ : Z/l → Aut(V) be a non-trivial linear representation of the cyclic

group and λ = ρ ⊕ τ be its decomposition into the direct sum of a free and a trivial representation. Then

QuotG(Th(λ)) ∈ HNis,A1((Sm/k)+) and there is a natural isomorphism

M̃(QuotG(Th(λ))) = M̃(Xρ)(d)[2d + 1]
where d = dim(τ ).

Let us assume now that R = Fl . Since the action of Z/l on V − {0} is free the projection
V −{0} → Xρ is an etale Galois covering with the Galois group Z/l which defines a class
uρ ∈ H1

et(Xρ,Z/l). This construction is clearly natural i.e. the following lemma holds.

Lemma 2.53. — Let ρ : Z/l → Aut(V), α : Z/l → Aut(W) be two free representations

and f : W − {0} → V − {0} be an equivariant morphism. Then one has

uα = QuotZ/l(f )∗uρ.

To obtain a motivic interpretation of uρ let us consider the following construction. Let ml

be the object of DMeff
− (k,Fl) corresponding the sheaf with transfers μl = ker(Gm

(−)z→ Gm).
If k contains an l-th root of unity then a choice of such a root defines an isomorphism
Fl → ml . In general, ml is an Artin motive which is a direct summand of the motive of the
zero dimensional smooth scheme Spec k[t]/((xl − 1)/(x − 1)). In particular the dual m∗

l

to ml is well defined and there is a canonical isomorphism m∗
l ⊗ ml → Fl . The object m⊗i

l

corresponds to the etale sheaf μ⊗i
l and in particular m

⊗(l−1)

l = Fl and m∗
l = m

⊗(l−2)

l .

Lemma 2.54. — For any smooth scheme X there is a canonical isomorphism

H1
et(X,Z/l) = HomDM(M(X),m∗

l (1)[1])(38)

Proof. — In DMeff
−,et we have Fl(1)[1] = ml since Gm

(−)z→ Gm is a surjection in the
etale topology. Therefore in DMeff

−,et we have a canonical isomorphism m∗
l (1)[1] = Fl .

This defines a map from the right hand side of (38) to the left hand side. To verify that
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this map is an isomorphism it is sufficient by the usual transfer argument to do it over an
extension of k of degree prime to l which contains an l-th root of unity. Then it becomes
isomorphic to the well known isomorphism H1

et(X,μl) = H1,1(X,Z/l). �

Using the isomorphism of Lemma 2.54 we may consider u = uρ as a morphism
M(Xρ) → m∗

l (1)[1]. Applying to it an obvious analog of the Bockstein homomorphism
we get a morphism

v = β(u) : M(Xρ) → m∗
l (1)[2].

Using the tensor structure of DM and the diagonal of Xρ we further define the “product
classes”

vi : M(Xρ) → (m∗
l )

⊗i(i)[2i]
uvi : M(Xρ) → (m∗

l )
⊗(i+1)(i + 1)[2i + 1]

where v0 : M(Xρ) → Fl is the canonical morphism.

Proposition 2.55. — The morphism

I(ρ) =
n−1⊕
i=0

(vi ⊕ uvi) : M(Xρ)(39)

→
n−1⊕
i=0

((m∗
l )

⊗i(i)[2i] ⊕ (m∗
l )

⊗(i+1)(i + 1)[2i + 1])

where n = dim(ρ), is an isomorphism which identifies M̃(Xρ) with the sub-object of the right hand

side of the form

M̃(Xρ) = m∗
l (1)[1] ⊕

n−1⊕
i=1

((m∗
l )

⊗i(i)[2i] ⊕ (m∗
l )

⊗(i+1)(i + 1)[2i + 1])

Proof. — By the usual transfer argument we may assume that k contains an l-th
root of unity ξ . Then our representation V can be written canonically as a direct sum
⊕Vm where the restriction of ρ to Vm takes 1 to the multiplication by ξm. The condition
that ρ is free means that n = dim(ρ) > 0 and V0 = 0.

Consider first the case when V = V1. Then [33, Lemma 6.3] implies that Xρ is
canonically isomorphic to the complement to the zero section of the line bundle O(−l)

on Pn−1 and our result follows easily by computations similar to the one in [33, pp. 18–
19].

Consider now the general V = ⊕Vm. Denote by W the same space as V but con-
sidered as a Z/l-scheme with respect to the representation α where α(1) = (w �→ ξw).
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Let us choose a basis (eij) in each Vj . Let p : W → V be the morphism which takes
∑

xij eij

to
∑

x
j

ij eij . This morphism is clearly Z/l-equivariant and maps W −{0} to V −{0}. Since
m runs from 1 to l −1, the resulting morphism q : W−{0} → V−{0} is finite and surjec-
tive and of degree

∏
mdimVm which is prime to l. The same is then true for the morphism

p = QuotZ/l(q) : Xα → Xρ . Since we work with Fl coefficients the morphism of motives
M(p) is a split epimorphism.

Consider now the class uρ . By Lemma 2.53 we have p∗(uρ) = uα and therefore we
have I(ρ) ◦ M(p) = I(α). Since M(p) is a split epimorphism and I(α) is an isomorphism
we conclude that both M(p) and I(ρ) are isomorphisms.

The part of the proposition describing M̃(Xρ) follows immediately from the fact
that v0 is the canonical morphism M(Xρ) → Fl . �

Corollary 2.56. — Let λ : Z/l → Aut(V) be a non-trivial linear representation of the cyclic

group and λ = ρ ⊕ τ be its decomposition into the direct sum of a free and a trivial representation. Then

there is a canonical isomorphism in HNis,A1(Cor(C,Fl)) of the form

M̃(QuotZ/l(Th(λ)))(40)

=
( n−1⊕

i=1

((m∗
l )

⊗i(i + d)[2i + 2d] ⊕ (m∗
l )

⊗i(i + d)[2i + 2d + 1])
)

⊕ (m∗
l )

⊗n(d + n)[2d + 2n]
where n = dim(ρ) and d = dim(τ ).

We will consider now a special case when λ : Z/l → Aut(V) is the direct sum of n

copies of the regular representation of Z/l. The additional feature which appears in this
case is the action of the automorphism group U = (Z/l)∗ of Z/l on V. Let us denote this
action by s : (Z/l)∗ → Aut(V). It does not commute with the action defined by λ i.e. the
morphisms s(m) are not Z/l-equivariant but for any a ∈ (Z/l)∗ the square

V − {0} s(a)−−−→ V − {0}
λ(1)

⏐⏐� ⏐⏐�λ(a)

V − {0} s(a)−−−→ V − {0}
(41)

commutes. Therefore s defines an action of (Z/l)∗ on the related quotients and in partic-
ular on QuotZ/l(Th(V)) and we write

r(a) : QuotZ/l(Th(V)) → QuotZ/l(Th(V))

for the automorphism corresponding to a ∈ (Z/l)∗.
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Proposition 2.57. — Let ρ be the direct sum of n > 0 copies of the regular representation of

Z/l. Then the isomorphism of Corollary 2.56 is of the form

M̃(QuotZ/l(Th(ρ)))(42)

=
(n(l−1)−1⊕

i=1

((m∗
l )

⊗i(i + n)[2i + 2n] ⊕ (m∗
l )

⊗i(i + n)[2i + 2n + 1])
)

⊕ (m∗
l )

⊗n(nl)[2nl]

With respect to this isomorphism the morphism M̃(r(a)) is of the form

M(r(a)) =
(n(l−1)−1⊕

i=1

(a−iId ⊕ a−iId)

)
⊕ a−n(l−1)Id(43)

Proof. — In the decomposition

Vρ = Vλ ⊕ Vτ(44)

of V into the free and trivial parts we have dim(Vλ) = n(l − 1) and dim(Vτ ) = n which
implies the first part of the proposition. To prove the second part observe first that the
decomposition (44) is invariant under the action of (Z/l)∗ and that the corresponding
action on Vτ is trivial. Therefore, the action of (Z/l)∗ on (42) is determined by its action
on M(Xλ). The action of any endomorphism of Xλ on its motive is determined by its
action on the motivic cohomology class uλ.

In view of (41) we may consider s(a) as an equivariant morphism assuming that
the action on the first copy of Vλ − {0} is given by λ and on the second copy by λa where
λa(1) = λ(a). Applying Lemma 2.53 we conclude that s(a)∗(uλ) = a−1 · uλ which implies
our result. �

We are ready now to prove the main theorem of this section. Recall that we let Ln denote
the image L�l(Tn) of Tn in HNis,A1(Cor(C,R)).

Theorem 2.58. — Let l be a prime and k be a perfect field of characteristic 	= l. Let C be

the category of quasi-projective schemes over k. Then for any n > 0 there is a natural isomorphism in

HNis,A1(Cor(C,Fl)) of the form

LSl
tr(Ln) = Lln ⊕

n−1⊕
i=1

(Li(l−1)+n ⊕ �1
s Li(l−1)+n).
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Proof. — By our definition of Ln we have Ln ∈ �opCor(C,R) and in particular
LSl

tr(Ln) = Sl
tr(Ln). By [14, Corollary 15.8], Ln is an even object and therefore Proposi-

tion 2.44 applies i.e.

Sl
tr(Ln) = S�

tr (Ln)/Aut(Z/l) = S�
tr (�

l(L∗(Tn)))/Aut(Z/l)

= �l S̃�(L∗(Tn))/Aut(Z/l) = L�l S̃�(L∗(Tn))/Aut(Z/l)

where � = (Z/l,Z/l → Sl) is the permutation group responsible for the cyclic product.
Since Tn is a solid sheaf we further have by Theorem 2.5 a Nis-equivalence

L�l S̃�(L∗(Tn))/Aut(Z/l) = L�l S̃�(Tn)/Aut(Z/l)

By Proposition 2.12 we have (after taking the associated sheaves)

S̃�(Tn) = S̃�(An
+)/(S̃�(An

+) − S̃�({0}+)) = QuotZ/lTh(ρ)

where ρ is the direct sum of n copies of the regular representation of Z/l. It remains
to apply Proposition 2.57 taking into account that ((m∗

l )
⊗i)/(Aut(Z/l)) = 0 if i 	= 0

(mod(l − 1)) and ((m∗
l )

⊗i)/(Aut(Z/l)) = Z/l otherwise and Theorem 1.15. �

Example 2.59. — Let ln = L�l
F(S

n
t ) be the unstable version of F(n)[n]. Then �nln =

Ln and ln is an odd or an even object depending on the parity of n. Therefore we may
use Theorem 2.58 together with Corollary 2.46 to try to compute LSl

tr(ln). One can see
immediately that there exists N such that �NLSl

tr(ln) can be obtained from elementary
Tate object li with i ≤ l · n by taking cones of morphisms i.e. that �NLSl

tr(ln) is s-stably
a mixed Tate object. Let us compute �4LSl

tr(l2) over an algebraically closed field of
characteristic zero more explicitly.

Let X = �1l2. Then X is odd and applying to it Corollary 2.46 we have a cofiber
sequence

� l−1X⊗l → �1LSl
tr(X) → LSl

tr(�
1X) → � lX⊗l.

Since �1X = L2 we can rewrite it as

�2l−1l2l → �1LSl
tr(X) → LSl

tr(L2) → �2l l2l(45)

Theorem 2.58 shows that in the motivic notation the sequence (45) is of the form

Fl(2l)[4l − 1] → �1LSl
tr(X) → Fl(2l)[4l] ⊕ Fl(l + 1)[2l + 2]

⊕ Fl(l + 1)[2l + 3] ∂1→ Fl(2l)[4l]
for some morphism ∂1.

Since the topological realization of �1S2
t is the 3-sphere we know that the ordinary

homology of LSl
tr(X) are of the form H2l+1 = H2l+2 = Fl and the rest of the homology
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groups are zero ([17]). Together with the properties of the topological realization functor
considered in Section 3.3 this implies that for l > 2 the morphism ∂1 is an isomorphism
on the first summand and zero on two other summands and therefore

�2LSl
tr(X) ∼= Fl(l + 1)[2l + 3] ⊕ Fl(l + 1)[2l + 4].(46)

Applying Corollary 2.46 to l2 we get a cofiber sequence

�1l2l → �1LSl
tr(l2) → LSl

tr(X) → �2l2l

or in the motivic notation

Fl(2l)[2l + 1] → �1LSl
tr(l2) → Sl

tr(X) → Fl(2l)[2l + 2].
Suspending it twice and using (46) we get

Fl(2l)[2l + 3] → �3LSl
tr(l2) → Fl(l + 1)[2l + 3]

⊕ Fl(l + 1)[2l + 4] ∂2→ Fl(2l)[2l + 4]
for some morphism ∂2. The restriction of ∂2 to the first summand belongs to the group
which is isomorphic to H1,l−1(k,Fl) and which is zero since the base field is algebraically
closed (see []). It remains to compute the restriction of ∂2 to the second summand. Topo-
logically, S2

t is a 2-sphere and applying again the topological realization functor we con-
clude that LSl

tr(l2) has only one non-trivial ordinary homology group in dimension 2l.
Therefore, the restriction of ∂2 to the second summand is a morphism of the form

τ ′ : Fl(l + 1)[2l + 4] → Fl(2l)[2l + 4]
which defines an isomorphism on ordinary homology. Up to the multiplication by an
element of (Z/l)∗ there is a unique such morphism which corresponds to the generator
τl−1 of H0,l−1(Spec(k),Z/l) and we conclude that there is an isomorphism of the form

�4LSl
tr(l2)

∼= Fl(l + 1)[2l + 4] ⊕ cone(τ ′)

The topological realization of cone(τ ′) is trivial and does not affect the ordinary homol-
ogy of LSl

tr(l2) but the object itself is non-trivial. In particular, neither LSl
tr(l2) nor any of

its suspensions is a direct sum of elementary Tate objects.

2.4. Split proper Tate objects

In this section we assume that the coefficient ring used to define finite correspon-
dences is a field F and that the base field k is perfect.

Definition 2.60. — An object X in HNis,A1(Cor(C,F)) is called a split proper Tate
object if it is isomorphic to a coproduct (direct sum) of objects of the form � iLj for i ≥ 0.
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We denote the full subcategory of split proper Tate objects by SPT. Let further SPTn

(resp. SPT≤n, SPT≥n) be the full subcategory in SPT which consists of direct sums of
objects of the form �kLn (resp. �kLm for m ≤ n, m ≥ n). All these subcategories are clearly
closed under direct sums and tensor products.

Since objects Lj belong to HNis,A1(Cor(Sm/k,F)), Theorem 1.15 is applicable and
we may consider SPT as a subcategory of DMeff

− . In the standard DM notation this sub-
category consists of direct sums of objects of the form F(n)[m] with m ≥ 2n. We will also
work with the subcategory SDT (resp. SDT≤n etc.) in DMeff

− which consists of all direct
sums of elementary Tate objects F(n)[m] for n ≥ 0 and m ∈ Z which exist in DM−.

Let us recall the following key result.

Theorem 2.61 (See [35]). — Let k be a perfect field. Then for any Y ∈ DMeff
− (k,F) we have:

HomDM(Y(i)[j],F(i′)[j ′]) =
{

HomDM(Y,F(i′ − i)[j ′ − j]) for i′ ≥ i

0 for i′ < i

Lemma 2.62. — For any n ≥ 0 the subcategory SDTn is Abelian, semi-simple and closed

under cones i.e. if in a distinguished triangle X → Y → Z → X[1] one has X,Y ∈ SDTn then

Z ∈ SDTn and the same holds for SPTn.

Proof. — By Theorem 2.61 together with the fact that

HomDM(F,F[i]) = Hp,0(Spec(k),F) =
{

F for i = 0
0 for i 	= 0

we conclude that for any n

HomDM(F(n)[i],F(n)[j]) =
{

F for i = j

0 for i 	= j

Therefore, the functor

M �→ ⊕iHom(F(n)[i],M)

defines an equivalence between SDTn and the category of graded vector spaces (Vi)i∈Z

over F such that Vi = 0 for i � 0 which maps SPTn to the subcategory of spaces such
that Vi = 0 for i < 2n. This shows that both categories are Abelian and semi-simple.

Let X
f→ Y → Z → X[1] be a distinguished triangle with X,Y ∈ SDTn. Since SDTn is

Abelian and semi-simple, the morphism f is isomorphic to a morphism of the form

ker(f ) ⊕ Im(f )
0⊕Id→ coker(f ) ⊕ Im(f )

Since the cone of a direct sum of two morphisms is the direct sum of cones it remains to
verify that Z ∈ SDTn (resp. Z ∈ SDTn) if X,Y ∈ SDTn (resp. X,Y ∈ SPTn) and f = 0 or
f = Id, which is obvious. �
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The following construction which we give here in the context of SDT is a particular case
of the general slice filtration constructions and can be extended to a much wider class of
motives (see e.g. [36]).

For X ∈ DMeff
− and n ∈ Z consider the sub-functor of the functor representable

by X on DMeff
− which consists of morphisms Y → X which admit a factorization

of the form Y → Z(n + 1) → X. Theorem 2.61 implies immediately that for X =⊕
i≥0,j∈Z F(i)[j]⊕n(i,j) ∈ SDT this sub-functor is represented by a direct summand s>n(X)

of X which is identified with
⊕

i>n,j∈Z F(i)[j]⊕n(i,j). Set s≤n(X) = X/s>n(X) and

sn(X) = s>n−1(X)/s>n(X) = ker(s≤nX → s≤n−1(X)).

This construction provides for each X ∈ SDT a collection of split distinguished triangles
of the form

s>nX → X
pn→ s≤nX → s>nX[1](47)

and

snX → s≤nX
qn→ s≤n−1X → snX[1](48)

whose terms are in SDT and which are natural in X and commute in the obvious sense
with the shift functor.

Remark 2.63. — Note that for X = ⊕
i,j F(i)[j]⊕m(i,j) we have

1. s>nX = ⊕
i>n,j F(i)[j]⊕m(i,j) as a subobject of X,

2. s≤nX = ⊕
i≤n,j F(i)[j]⊕m(i,j) as a quotient object of X.

We also have isomorphisms snX ∼= ⊕
j F(m)[j]⊕m(n,j) and in particular there is an isomor-

phism X ∼= ⊕
n snX. However, this last isomorphism is not natural in X.

Proposition 2.64. — Let X = ⊕
α∈A F(qα)[pα] be an object of SPT such that for each q the

set A∗,≤q = {α ∈ A | qα ≤ q} is finite. Then X is the direct product of the family (F(qα)[pα])α∈A in

DMeff
− .

Proof. — Since direct product is an exact functor from families of F-vector spaces to
F-vector spaces the functor

∏
α∈A Hom(−,F(qα)[pα]) is a cohomological functor which

takes direct sums to direct products. Therefore in order to show that the natural transfor-
mation

Hom(−,X) →
∏
α∈A

Hom(−,F(qα)[pα])

is an isomorphism it is sufficient to verify that it defines isomorphisms on a set of genera-
tors of DMeff

− for which we can take the set of objects of the form M(U)[i] for U ∈ Sm/k
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and i ∈ Z. Since these objects are compact we need to show that for such U and i the
natural map ⊕

α

Hom(M(U)[i],F(qα)[pα]) →
∏

α

Hom(M(U)[i],F(qα)[pα])(49)

Since X ∈ SPT we have pα ≥ 2qα and therefore

Hom(M(U)[i],F(qα)[pα]) = 0

for qα ≥ dim(U) + i + 1. Together with our assumption on the finiteness of the sets
A∗,≤q this shows that the family Hom(M(U)[i],F(qα)[pα]) has only finitely many non-
zero members and therefore the map (49) is a bijection. �

Lemma 2.65. — Consider a distinguished triangle in DMeff
− (k,F) of the form

X → Y → Z → X[1](50)

Such that X ∈ SDT≤n and Z ∈ SDTn. Then Y ∈ SDT≤n. Similarly if X ∈ SPT≤n and Z ∈ SPTn

then Y ∈ SPT≤n.

Proof. — Since Z ∈ SDTn, the morphism Z → X[1] factors through a morphism
Z → s>(n−1)X[1] and we get a diagram

Z −−−→ s>(n−1)X[1]
=
⏐⏐� ⏐⏐�
Z −−−→ X[1] −−−→ Y[1] −−−→ Z[1]

where lower row is the shift of our original triangle by one step to the right. By the usual
properties of triangulated categories (see e.g. [18, Prop. 1.4.6, p. 58]) this diagram can be
extended to a commutative diagram of the form

Z −−−→ s>(n−1)X[1] −−−→ W −−−→ Z[1]
=
⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
Z −−−→ X[1] −−−→ Y[1] −−−→ Z[1]⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
0 −−−→ s≤(n−1)X[1] f2=Id−−−→ s≤(n−1)X[1] −−−→ 0⏐⏐� f3

⏐⏐� ⏐⏐�f1

⏐⏐�
Z[1] −−−→ s>(n−1)X[2] −−−→ W[1] −−−→ Z[2]
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whose rows and columns are distinguished triangles. Since X ∈ SDT≤n we have
s>(n−1)(X) = sn(X) ∈ SDTn and by Lemma 2.62 we conclude that W ∈ SDTn. Moreover,
it is easy to see from the upper distinguished triangle of our diagram that if X,Z ∈ SPT
then W[−1] ∈ SPTn. To prove the lemma it is now sufficient to show that f1 = 0 i.e.
Y[1] = W ⊕ s≤(n−1)(X)[1]. This follows immediately from the fact that f2 is an isomor-
phism and f3 = 0 since triangles of the form (47) for objects of SDT are split. �

Lemma 2.66. — Let X
f→ Y

g→ Z be a sequence of morphisms in SDT such that for each

U ∈ Sm/k, i ∈ Z the sequence of Abelian groups

0 → Hom(M(U)[i],X) → Hom(M(U)[i],Y)(51)

→ Hom(M(U)[i],Z) → 0

is exact. Then the sequence 0 → X
f→ Y

g→ Z → 0 is split exact in DMeff
− (k,R).

Proof. — Consider a distinguished triangle

X
f→ Y

g′′→ cone(f ) → X[1](52)

Since X is a direct sum of Tate objects and Tate objects are direct summands of shifts of
objects of the form M(Pn) the exactness of (51) implies that g ◦ f = 0 and therefore there

exists a morphism cone(f )
g′′→ Z such that g = g′′g′. Since the maps Hom(M(U)[i],X) →

Hom(M(U)[i],Y) are injective the long exact sequence defined by the triangle (52) splits
into short exact sequences of the form

0 → Hom(M(U)[i],X) → Hom(M(U)[i],Y)

→ Hom(M(U)[i], cone(f )) → 0

and we conclude that the map g′′ defines isomorphisms on Hom(M(U)[i],−) for all
U ∈ Sm/k and i ∈ Z. Since DMeff

− (k,R) is generated as a triangulated category by objects

of the form M(U) for U ∈ Sm/k we conclude that g′′ is an isomorphism and X
f→ Y

g→ Z

extends to a distinguished triangle X
f→ Y

g→ Z
∂→ X[1]. Since sequences (51) are exact

the morphism ∂ is zero on Hom(M(U)[i],−) for all U and i. Since Z is a direct sum of
Tate objects we conclude that ∂ = 0. This is equivalent to the assertion of the lemma. �

Lemma 2.67. — Let X
f→ Y

g→ Z be a sequence of morphisms in SPT such that for all

n ≥ 0 the sequence

0 → s≤nX → s≤nY → s≤nZ → 0

is split exact. Then the sequence 0 → X
f→ Y

g→ Z → 0 is split exact.
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Proof. — For any U ∈ Sm/k we have Hom(M(U),F(p)[q]) = 0 for q > p+dim(U).
Since for a proper split Tate object W, s>nW is a direct sum of copies of object F(p)[q] for
p > n and q ≥ 2p we have Hom(M(U)[i], s>nW) = 0 for all n > i+dim(U)−1. Therefore
for each U and i there exists n such that Hom(M(U)[i],W) = Hom(M(U)[i], s≤nW) for

W = X,Y,Z. We conclude that the sequence X
f→ Y

g→ Z satisfies the condition of
Lemma 2.66 and therefore it is split exact. �

Proposition 2.68. — For a morphism f : X → Y in DMeff
− (k,F) one has:

1. if X,Y ∈ SDT≤n and si(f ) is a split monomorphism for each i ≤ n then f a split monomor-

phism and cone(f ) ∈ SDT≤n,

2. if X,Y ∈ SPT and si(f ) is a split monomorphism for each i ≥ 0 then f is a split monomor-

phism and cone(f ) ∈ SPT.

Proof. — To prove the first assertion let us shows that for each m ≤ n there is a split
exact sequence of the form

0 → s≤mX
s≤mf→ s≤mY

φ≤m→
⊕
i≤m

(siY/siX) → 0(53)

where siY/siX is the cokernel of si(f ) which is well defined since si(f ) is a split monomor-
phism.

We proceed by induction on m. For m = 0 the statement is obvious. To make an
inductive step observe that by simple diagram search there exists a morphism φ≤m which
fits into the commutative diagram of the form

smX
sm(f )−−−→ smY −−−→ smY/smX⏐⏐� ⏐⏐� ⏐⏐�

s≤mX
s≤m(f )−−−→ s≤mY

φ≤m−−−→ ⊕
i≤m(siY/siX)⏐⏐� ⏐⏐� ⏐⏐�

s≤(m−1)X
s≤m(f )−−−→ s≤(m−1)Y

φ≤(m−1)−−−→ ⊕
i≤(m−1)(siY/siX)

and that for any such morphism the middle row is split exact.
Consider now the second assertion. By the same argument as above we see that

there are split exact sequences of the form (53). Since Y is a direct sum of Tate objects
and siY/siX are proper split Tate objects a simple argument shows that, for each choice
of morphisms φ≤m as above, there exists a unique morphism φ : Y → ⊕

i≥0(siY/siX) such
that the composition of φ with the projection to

⊕
i≤m(siY/siX) equals φ≤m. The sequence

X
f→ Y

φ→ ⊕
i≥0(siY/siX) clearly satisfies the condition of Lemma 2.67 and therefore is

split exact. Proposition is proved. �
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Corollary 2.69. — For a morphism f : X → Y in DMeff
− (k,F) one has:

1. if X,Y ∈ SDT≤n and si(f ) is an isomorphism for each i ≤ n then f an isomorphism,

2. if X,Y ∈ SPT and si(f ) is an isomorphism for each i ≥ 0 then f is an isomorphism.

Corollary 2.70. — Let p : Spec(K) → Spec(k) be a field extension and let f : X → Y be

a morphism in DMeff
− (k,F). Then one has:

1. if X,Y ∈ SDT≤n and p∗(f ) is an isomorphism then f an isomorphism,

2. if X,Y ∈ SPT and p∗(f ) is an isomorphism then f is an isomorphism.

Proof. — The functors si : SDT → SDTi commute with the functor p∗. On the
other hand the restriction of p∗ to SDTi is an equivalence in view of the proof of
Lemma 2.62. Therefore, for a morphism f satisfying the conditions of the corollary, the
morphisms si(f ) are isomorphisms and we conclude that f is an isomorphism by Corol-
lary 2.69. �

Let X1
f1→ ·· · fi−1→ Xi

fi→ ·· · be a sequence of morphisms in a triangulated category
such that

⊕
i≥1 Xi exists. Recall that the homotopy colimit of this sequence is an ob-

ject hocolimiXi which is defined up to a non-canonical isomorphism by a distinguished
triangle of the form⊕

i≥1

Xi

ψ(f1,...)→
⊕
i≥1

Xi

p→ hocolimiXi →
⊕
i≥1

Xi[1](54)

where the morphism ψ(f1, . . .) is defined by the condition that its restriction to Xi is
ιi − ιi+1fi where ιi : Xi → ⊕

i≥1 Xi is the canonical embedding.

Corollary 2.71. — Let X1
f1→ ·· · fi−1→ Xn

fi→ ·· · be a sequence of morphisms in SPT. Then

the direct sum
⊕

i≥1 Xi exists, the distinguished triangle (54) which defines hocolimiXi splits and

hocolimiXi ∈ SPT.

Proof. — The direct sum
⊕

i≥1 Xi exists because objects Xi belong to the image of
the category HNis,A1(Cor(Sm/k,F)) which has all direct sums under the functor which
respects direct sums. We obviously have sn(ψ(f1, . . .)) = ψ(sn(f1), . . .) for each n ≥ 0 and
since SDTn is equivalent to the category of graded F-vector spaces one observes easily
that the morphisms sn(ψ(f1, . . .)) are split monomorphisms. Our result follows now from
Proposition 2.68(2). �

Corollary 2.72. — Let X1
f1→ ·· · fi−1→ Xn

fi→ ·· · be a sequence of morphisms in SDT≤n

such that
⊕

i≥1 Xi exists. Then the distinguished triangle (54) which defines hocolimiXi splits and

hocolimiXi ∈ SDT≤n.



58 VLADIMIR VOEVODSKY

Proof. — Same argument as in the proof of Corollary 2.71. �

Corollary 2.73. — The subcategory SPT (resp. SDT≤n) is closed under direct summands i.e.

contains images of projectors.

Proof. — The image of a projector p can be identified with the homotopy colimit

of the sequence X
p→ ·· · p→ X

p→ ·· · . Since for any X in DMeff
− the direct sum

⊕
i≥1 X

of countably many copies of X exists the result follows from Corollary 2.71 in the case of
SPT and Corollary 2.72 in the case of SDT≤n. �

Remark 2.74. — The analog of Corollary 2.72 (and therefore of Proposition 2.68)
for the whole category SDT is false. It is easy to see on the example of the sequence

Xi

fi→ Xi+1 where Xi = F(i − 1)[i − 1], fi = Id ⊗ ρ where ρ ∈ H1,1(k,F) is the class of
−1, k = R and F = F2. The corresponding homotopy colimit Y = hocolimiXi has the
property that sn(Y) = 0 for all n ≥ 0 but Y 	= 0.

I do not know whether or not the analog of Corollary 2.73 holds for SDT.

Our next goal is to prove Theorem 2.76 which shows that SPT is closed under
(standard) symmetric powers. Note that symmetric powers have only been defined on
HNis,A1(Cor(C,R)) where C is an f -admissible category and c(k) is invertible in R. There-
fore, for the purposes of Theorem 2.76 we must consider SPT as a full subcategory in
HNis,A1(Cor(C,F)) where C is the category of quasi-projective schemes, F is a field and if
char(k) > 0 then char(F) 	= char(k).

Lemma 2.75. — Let F be a field of characteristic l > 0. Then for any q ≥ 1 one has

LSl
tr(SPT≥q) ⊂ SPT≥q+l−1.

Proof. — For i < l and X ∈ SPT≥q one has LSi(X) ∈ SPT≥iq. Together with Propo-
sition 2.34 this implies that the class of X ∈ SPT≥q for which the lemma holds is closed
under direct sums.

It remains to show that for any k ≥ 0 and q ≥ 1 one has LSl
tr(�

kLq) ∈ SPT≥q+l−1.
The proof is by induction on k. For k = 0 the result follows from Theorem 2.58. By
[14, Corollary 15.8], L is an even object and therefore �kLq is odd or even depending
on whether k is odd or even. The inductive step follows now from Corollary 2.46 and
Lemma 2.65. �

The present formulation of the following theorem is partly based on the considerations
of [41].

Theorem 2.76. — Let k be our base field and F the field of coefficients. Then for any integers

q ≥ 1, n ≥ 0 one has:
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1. if char(F) = 0 then

LSn
tr(SPT≥q) ⊂ SPT≥nq

2. if char(F) = l > 0, char(F) 	= char(k) and

n =
∑
i≥0

nil
i

is the l-primary decomposition of n then

LSn
tr(SPT≥q) ⊂ SPT≥wl (q,n)

where wl(q, n) = (
∑

i ni)q + (
∑

i ini)(l − 1).

Proof. — The case of char(F) = 0 is obvious. Suppose that char(F) = l > 0. Let
X ∈ SPT≥q. By Proposition 2.33, LSn

tr(X) is a direct summand of
⊕

i((LSl
tr)

◦i(X))⊗ni

where as before n = ∑
i nil

i is the l-primary decomposition of n. By Corollary 2.73 it is
sufficient to show that⊕

i

((LSl
tr)

◦i(X))⊗ni ∈ SPT≥wl (q,n)

Since wl(q, n) = ∑
i ni(q + (l − 1)i) it is further sufficient to show that

(LSl
tr)

◦i(X) ∈ SPT≥q+i(l−1)

This follows by obvious induction from Lemma 2.75. �

Corollary 2.77. — Under the assumptions of the theorem one has LS∞
tr (SPT≥q) ⊂ SPT≥q.

Remark 2.78. — Note that out computation of the l-th cyclic power of Ln in Sec-
tion 2.3 shows that SPT is not closed under the generalized symmetric products LS�

tr .

Remark 2.79. — We can make the computations done in the proof of Lemma 2.75
more precise as follows. First observe that Corollary 2.46 implies that there are cofiber
sequences in HNis,A1(Cor(C,R)) of the form

�1LSl
tr(�

2i+1Lm) → LSl
tr(�

2i+2Lm) → �2(i+1)lLlm(55)

and

�1LSl
tr(�

2iLm) → LSl
tr(�

2i+1Lm) → �2il+2Llm(56)

for all k ≥ 0. Using the topological realization functor (see Section 3.3 below) together
with the fact that we know the topological homology of S̃l(Sn) with coefficients in Fl

(see [17]) one can show that these sequences split so that we have isomorphisms

LSl
tr(�

2iLm) = �1LSl
tr(�

2i−1Lm) ⊕ �2ilLlm
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and

LSl
tr(�

2i+1Lm) = �1LSl
tr(�

2iLm) ⊕ �2il+2Llm

Using obvious induction on i one can now get explicit formulas for the isomorphism
classes of LSl

tr(�
iLm).

3. Eilenberg-MacLane spaces and their motives

Recall that c(k) = 1 if char(k) = 0 and c(k) = char(k) if char(k) > 0. In this section
we let S denote the ring Z[1/c(k)]. If M is an Abelian monoid we let M+ denote its group
completion and M[1/d] the colimit of the sequence

M
x �→d·x−→ M

x �→d·x−→ · · ·
Clearly, for any M one has (M[1/d])+ = M+[1/d] and for an Abelian group A one has
A[1/c(k)] = A ⊗ S.

3.1. Motivic Dold-Thom Theorem

The goal of this section is to prove Theorems 3.7 which is the motivic analog of
the topological Dold-Thom theorem and then to give some sufficient conditions for the
equivalence between S∞[1/c(k)] and its group completion S∞[1/c(k)]+. The proof of
Theorem 3.7 in the context of normal schemes goes back to [25].

Let us recall the following definition (see [27], [7]).

Definition 3.1. — A scheme U is called semi-normal if it is reduced and any finite
morphism U′ → U such that U′ is reduced and for any field K the map U′(K) → U(K)

is bijective is an isomorphism.

Let SN/k be the category of semi-normal schemes over k. By Lemma A.5 it is f -
admissible.

Lemma 3.2. — Let U be a semi-normal affine scheme of finite type over k and f : U′ → U be

a universal homeomorphism of finite type. Then there exists n ≥ 0 such that O(U′)c(k)n ⊂ O(U). In

particular, if char(k) = 0 then f is an isomorphism.

Proof. — Note first that a semi-normal scheme is necessarily reduced and there-
fore O(U) → O(U′) is a monomorphism. Since f is a universal homeomorphism it is
separated, universally closed and quasi-finite. Therefore, by Zariski theorem (see e.g. [15,
Th. 1.8]), f is a finite morphism. Then U′ is affine and O(U′) is a finitely generated
module over O(U).
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Let K be a field and x : Spec(K) → U a K-point of U. Since f is a universal
homeomorphism there exists a purely inseparable field extension K ⊂ K′ and a K′ point
x′ of U′ lying over x. Moreover since O(U′) is a finitely generated module over O(U)

there exists n such that for any x as above one may choose K′ of degree dividing c(k)n

over K.
Let R = O(U)O(U′)c(k)n

. We claim that R = O(U). Indeed the morphism
Spec(R) → U is finite and since for a purely inseparable K ⊂ K′ one has (K′)degK′/K ⊂ K,
our choice of n implies that for any K the map Spec(R)(K) → U(K) is a bijection. Since
U is assumed to be semi-normal we conclude that U = Spec(R) �

Lemma 3.3. — Let U be an affine scheme of finite type over k and dn : O(Sc(k)n

U) → O(U)

be the map defined by the diagonal. Then one has

Im(dn) = O(U)c(k)n · k.

Proof. — The inclusion “⊃” is obvious. To prove the opposite inclusion consider
O(U) as a vector space over k and choose a basis ei , i ∈ I for it. The basis for O(UN) =
O(U)⊗N is formed by the tensor products ei = ei1 ⊗ · · · ⊗ eiN, i = (i1, . . . , iN) ∈ IN. The
natural action of SN on O(UN) is permutational relative to this basis. Therefore, the
subspace of invariants O(SNU) coincide with the subspace generated by expressions of
the form eA = ∑

i∈A ei where A runs through the orbits of the action of SN on IN. For
convenience let us choose a linear ordering on I. Then we may describe these orbits by
pairs of sequences (i1, . . . , im; j1, . . . , jm) where i1 < · · · < im are in I, j1, . . . , jm ∈ Z>0 and
j1 + · · · + jm = N. Such a sequence defines the orbit A(i, j) which contains the element

e
⊗j1
i1

⊗ · · · ⊗ e
⊗jm
im

.
The image of eA(i;j) under the diagonal map O(SNU) → O(U) is the element

x(i;j) = N!
j1! · · · jm! e

j1
i1
· · · e

jm
im

In our case N = c(k)n. Since (x1 +· · ·+ xm)c(k) = x
c(k)
1 +· · ·+ xc(k)

m in k[x1, . . . , xm] we know
that N!

j1!···jm! = 0 in k unless m = 1 when it equals 1. Therefore for N = c(k)n the image of

the diagonal map is generated by elements of the form e
c(k)n

i . Lemma is proved. �

Proposition 3.4. — For any X the functor U �→ Hom(U,
∐

n≥0 SnX)[1/c(k)] is a sheaf in

the qfh-topology on SN/k.

Proof. — Our functor is a filtered colimit of representable functors and [29, Proof
of Th. 3.2.9] implies that the associated qfh-sheaf is of the form

U �→ colimU′→UHom
(

U′,
∐
n≥0

SnX
)
[1/c(k)]
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over all universal homeomorphisms U′ → U. To prove the proposition it remains to show
that for a universal homeomorphism U′ → U such that both U and U′ are semi-normal,
the map

Hom
(

U,
∐
n≥0

SnX
)
[1/c(k)] → Hom

(
U′,

∐
n≥0

SnX
)
[1/c(k)]

is bijective. Since semi-normal schemes are reduced it is injective. It remains to show that
for a map U′ → SiX there exists n and a map U → Sic(k)n

X such that the diagram

U′ −−−→ SiX⏐⏐� ⏐⏐�
U −−−→ Sic(k)n

X

commutes. It is sufficient to consider the case of affine U,U′ and X. Then the claim
follows from Lemmas 3.3 and 3.2. �

Proposition 3.5. — Let X be such that SnX exist and Coreff(U,X) be the monoid of effective

finite correspondences from U to X. Then for any semi-normal U one has:

Hom
(

U,
∐
n≥0

Sn(X)

)
[1/c(k)] = Coreff(U,X)[1/c(k)].

Proof. — By [26, Proposition 4.2.7] Cor(−,X)eff[1/c(k)] is a qfh-sheaf and by
Proposition 3.4 the same holds for S∞[1/c(k)](X+). On the other hand by [25, Theo-
rem 6.8] we have

Coreff(U,X)[1/c(k)] = Hom(U,S∞(X))[1/c(k)]
for any normal U. Since any scheme has a qfh-covering by normal schemes we conclude
that this equality holds for all semi-normal U. �

Remark 3.6. — It is not hard to see that there are natural maps

Hom
(

U,
∐
n≥0

Sn(X)
)
[1/c(k)] → Coreff(U,X)[1/c(k)]

for all U and it might be the case that for char(k) > 0 these maps are bijective for all U.
For char(k) = 0 i.e. c(k) = 1 they are not necessarily surjective if U is not semi-normal.
For example let U be the cuspidal cubic and X = A1. Then the graph of the normaliza-
tion map X → U is in Coreff(U,X) but clearly not in the image of Hom(U,

∐
n≥0 Sn(X)).
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Theorem 3.7. — Let k be a perfect field and C an f -admissible category which is contained

in the category of semi-normal schemes. Consider �r
S�

l
S as a functor from �opC#

+ to �opRad(C+).

Then one has

�r
S�

l
S = aNis(S∞[1/c(k)])+(57)

Proof. — Since both sides of (57) commute with filtered colimits it is enough to very
that for X ∈ C one has:

�r
S�

l
S(X+) = aNis(S∞[1/c(k)](X+))+

By definition, �r
S�

l
S takes X+ to the functor

U �→ Cor(U,X) ⊗ S = Cor(U,X)[1/c(k)](58)

where Cor(U,X) is the group of finite correspondences from U to X. By Proposition 3.5
we have

S∞[1/c(k)](X+) = Coreff(−,X)[1/c(k)]
On the other hand Lemma 3.8 below together with the fact that Cor(−,X) is a sheaf
in the Nisnevich topology, implies that Cor(−,X) = aNis(Coreff(−,X)+). Theorem is
proved. �

Lemma 3.8. — Let U be a henselian local scheme. Then

Cor(U,X) = Coreff(U,X)+

Proof. — Since Cor(U,X) = Cor(Ured,X) and the same holds for Coreff we may
assume that U is reduced. Let Z = ∑

nizi be a finite correspondence from U to X i.e. a
relative finite cycle on XU = X × U over U. The individual points zi need not be relative
cycles over U but by the definition of a relative finite cycle (cf. [26]) we know that the
points zi lie over the generic points of U and that the closure [zi] of each zi is finite over
U. Therefore, in order to show that Z is a difference of two effective relative cycles it
is sufficient to show that for any z which lies over a generic point of U and such that
its closure [z] is finite over U there exists an effective relative finite cycle Z such that
Supp(Z) contains z. Since U is assumed to be local henselian any effective relative cycle
of relative dimension zero over U is a sum of an effective relative finite cycle and a cycle
whose support lies over the complement to the closed point of U. Therefore it is sufficient
to find an effective relative cycle Z of relative dimension 0 such that Supp(Z) contains z.

The closure [z] is a henselian local scheme. The image of the closed point of [z]
in X lies on one or more of the irreducible components X. Replacing X by one of such
components we may assume that X is irreducible and in particular equidimensional. We
may further replace XU by an affine open neighborhood of the closed point of [z]. This
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reduces the problem to the situation when we have a flat equidimensional morphism
p : XU → U of some dimension d of affine schemes such that U is reduced and a point
z over a generic point of U such that [z] → U is finite and we need to find a effective
relative cycle Z of relative dimension 0 such that z ∈ Supp(Z).

Since XU is flat and equidimensional the fundamental cycle of XU is a relative
cycle of dimension d over U and clearly z belongs to its support. Assume by induction
that there exists an effective equidimensional cycle Z = ∑

i nizi of relative dimension r

over U such that z ∈ Supp(Z). If r = 0 then we are done. Suppose that r > 0. Since XU

is affine there is a regular function f on X which is zero in the closed point of [z] and
non zero in the generic points of the closed fibers of [zi] → U for all i. By [35] the cycle
(Z,D(f )) = ∑

i niD(fi) where fi is the restriction of f to [zi] is a relative equidimensional
cycle of relative dimension r − 1 over U and one obviously has z ∈ Supp((Z,D(f ))). �

Remark 3.9. — The previous remark (3.6) shows that if we consider all schemes
instead of semi-normal ones then (57) stops being an isomorphism at least in character-
istic zero. It is possible that there is still an (Nis,A1)-equivalence of the form (3.6) for all
schemes. It is also clear that there is an equivalence of the same form with respect to a
modification of the Nisnevich topology which allows for semi-normalizations as cover-
ings.

In may cases, including the main case of Moore spaces considered in the next
section it is important to know when one can further simplify the description of �r

S�
l
S(X)

given in Theorem 3.7 by replacing S∞[1/c(k)]+ with S∞[1/c(k)]. The goal of the rest of
this section is to prove some partial results in this direction.

Definition 3.10. — Let C be an f -admissible subcategory. An object X of
�opRad(C+) is said to satisfy condition (D1) if for any henselian local scheme U of a
pointed scheme from C, the Abelian monoid π0(�C∗(S∞[1/c(k)](X))(U)) is a group.

Proposition 3.11. — If X satisfies condition (D1) then the natural morphism

S∞[1/c(k)](L∗(X)) → S∞[1/c(k)]+(L∗(X))

is a (Nis,A1)-equivalence.

Proof. — Consider the diagram of morphisms of monoids in �opRad(C+) of the
form

S∞[1/c(k)](L∗(X)) −−−−→ �C∗(S∞[1/c(k)](L∗(X)))⏐⏐� ⏐⏐�
S∞[1/c(k)](L∗(X))+ −−−−→ (�C∗(S∞[1/c(k)](L∗(X))))+ ∼= �C∗(S∞[1/c(k)](L∗(X))+)
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By Proposition 1.9 the horizontal morphisms are A1-equivalences. We have π0(X) =
π0(L∗(X)) since L∗(X) → X is a projective equivalence. We also have

π0(�C∗(Y)) = π0(�C∗(π0(Y))).

Indeed, for a bisimplicial set B one has π0(�B) = π0(�π vert
0 (B)) where π vert

0 (B)

is obtained by replacing each column of B by its π0. Therefore, π0(�C∗(Y)) =
π0(�π vert

0 (C∗(Y))). Consider Y as going in the vertical direction. Then π vert
0 (C∗(Y)) =

C∗(π0(Y)) since C∗ commutes with reflexive coequalizers (actually with all colimits).
Finally,

π0(S∞[1/c(k)](Y)) = S∞[1/c(k)](π0(Y))

since S∞[1/c(k)] being a radditive extension commutes with reflexive coequalizers. We
conclude that for any Y, we have

π0(�C∗(S∞[1/c(k)](L∗(X))))

= π0(�C∗(π0(S∞[1/c(k)](L∗(X)))))

= π0(�C∗(S∞[1/c(k)](π0(L∗(X))))) = π0(�C∗(S∞[1/c(k)](π0(X))))

= π0(�C∗(π0(S∞[1/c(k)](X)))) = π0(�C∗(S∞[1/c(k)](X)))

Therefore, the right hand side vertical morphism is a Nis-equivalence by our assump-
tion and Lemma 3.12 below. We conclude that the left hand side vertical morphism is a
(Nis,A1)-equivalence. �

Lemma 3.12. — Let X be a simplicial Abelian monoid such that π0(X) is a group. Then the

natural map X → X+ is a weak equivalence.

Proof. — See [20, p. 381]. �

Lemma 3.13. — For any f -admissible C and any X ∈ �opRad(C+) the object S1
s ∧ X

satisfies condition (D1).

Proof. — One can easily see that π0(�C∗(S∞[1/c(k)](S1
s ∧ X))) = 0. �

Lemma 3.14. — For any f -admissible C one has:

1. if X,Y satisfy condition (D1) then X ∨ Y satisfies condition (D1),
2. if f : X → Y is a morphism in �opRad(C+) such that X and Y satisfy condition (D1)

then cone(f ) satisfies condition (D1),
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Proof. — The first assertion follows from the formula

π0(�C∗(S∞[1/c(k)](X ∨ Y)))

= π0(�C∗(S∞[1/c(k)](X) × S∞[1/c(k)](X)))

= π0(�C∗(S∞[1/c(k)](X))) × π0(�C∗(S∞[1/c(k)](Y)))

where the first equality holds by Lemma 2.22 and the second since by C∗ and π0 com-
mute with products.

To prove the second assertion we may assume that f is a term-wise coprojection.
Then cone(f ) is projectively equivalent to the coequalizer of the reflexive pair X∨Y →→ Y
in which one map equals f on X and IdY on Y and the second one maps X to the distin-
guished point and again equals IdY on Y. Applying the functor π0(�C∗(S∞[1/c(k)](−)))

and using the fact that it commutes with reflexive coequalizers and takes ∨ to the direct
product we conclude that π0(�C∗(S∞[1/c(k)](cone(f )))) is a reflexive coequalizer of a
diagram of groups and therefore a group. �

Recall that we let S1
t denote the pointed scheme (A1 − {0};1) which we identify with the

radditive functor which it represents on C+.

Proposition 3.15. — For any f -admissible C which is contained in SN/k and X ∈
�opRad(C+) the objects S1

t ∧ X satisfies condition (D1).

Proof. — We may clearly assume that X ∈ �opC#
+. In view of Proposition 3.5, for

any U ∈ C and Y+ ∈ C+ we have

Hom(U,S∞[1/c(k)](S1
t ∧ Y+))

= Coreff[1/c(k)](U, (A1 − {0}) × Y)/Coreff[1/c(k)](U, {1} × Y)

Therefore, the π0 set which we consider is the set of A1-homotopy classes of maps from
[U] to [A1 − {0}] ⊗ [Y], in the subcategory of Cor(C,S) where morphisms are effective
finite correspondences, modulo those classes which contain correspondences landing in
[{1}] ⊗ [Y]. Let φ : A1 − {0} → A1 − {0} be the morphism z �→ z−1. For a morphism
f : [U] → [A1 − {0}] ⊗ [Y] in our category set f − = (φ ⊗ Id[Y]) ◦ f . Let us show that
f + f −1 is A1-homotopic to a correspondence which goes to zero. Note first that we have

f + (φ ⊗ Id[Y]) ◦ f = (Id ⊗ Id[Y]) ◦ f + (φ ⊗ Id[Y]) ◦ f

= ((Id + φ) ⊗ Id[Y]) ◦ f

Therefore it is enough to show that the finite correspondence φ + Id from A1 − {0}
to itself is A1-homotopic in the category of effective finite correspondences to a finite
correspondences which lands in 1. The set of finite correspondences of degree d from any



MOTIVIC EILENBERG-MACLANE SPACES 67

smooth X to A1 − 0 is in a natural bijection with Hom(X,Sd(A1 − {0})). The standard
theory of symmetric polynomials shows that S2(A1 − {0}) = A1 × (A1 − {0}) where the
projection to A1 corresponds to the polynomial −X − Y and the projection to A1 − {0}
to the polynomial XY. The correspondence φ + Id is represented under this bijection
by a morphism A1 − {0} → A1 × (A1 − {0}) whose image lies in A1 × {1} and which is,
therefore, A1-homotopic to the morphism which sends A1 −{0} to {1}+{1} = (−2,1). �

Remark 3.16. — Let c(k) = 1. In view of Proposition 3.5 the effective analog �r
eff of

�r maps (Coreff)# to C#
+ and we have a pair of adjoint functors �l

eff, �r
eff between these

two categories which is analogous to the pair �l , �r .
Consider the composition �l

eff�
r
eff : (Coreff)# → (Coreff)#. By Proposition 3.5 this

functor coincides on objects with the functors S∞
tr,eff which is the obvious effective vari-

ant of the functor S∞
tr . Note however that these two functors do not agree on morphisms.

For example, if d Id : [X] → [X] is the d-th multiple of the identity map on [X] then
�l

eff�
r
eff(d Id) = �l

eff(×d) where ×d is the multiplication by d map S∞(X) → S∞(X)

while Sn
tr,eff(d Id) = dn Id and

S∞
tr,eff(d Id) =

⊕
n≥0

Sn
tr,eff(d Id)

Since �l
eff�

r
eff and S∞

tr,eff do not agree on morphisms their extensions to the corresponding
categories of simplicial objects do not agree on objects. This effect remains after we pass
to group completions. In particular, the isomorphisms

�l�r([X]) ∼= S∞
tr ([X])+

do not extend to isomorphisms between the functors �l�r and S∞
tr (−)+.

3.2. Motivic Moore pairs and the main structure theorem

Let us recall the definition of motivic cohomology outlined in the introduction.
Let C be an admissible category. Consider the motivic spheres S1

t = (A1 − {0},1) and
Sq

t = (S1
t )

∧q as radditive functors on C+. Set

lq,R = L�l
R(Sq

t ) = �l
R(L∗(S

q
t )).

We will write lq for lq,Z. The (reduced) unstable motivic cohomology of X ∈ �opC#
+ with

coefficients in an Abelian group A is defined by the formula

H̃p,q
un (X,A) =

{
HomHNis,A1 (Cor(C,Z))(�

lX,�p−q(A ⊗L lq)) for p ≥ q

HomHNis,A1 (Cor(C,Z))(�
p−q�lX,A ⊗L lq) for p ≤ q

(59)

where ⊗L is the derived tensor product given by

A ⊗L lq = L∗(A) ⊗Z lq.
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Definition 3.17. — Let A be an Abelian group, p, q ∈ Z and C be an admissible sub-
category of Sch/k. A motivic Eilenberg-MacLane pair for (A, p, q) on C is a pair (X, ι)

where X ∈ �opRad(C+) and ι ∈ H̃p,q
un (X,A), which represents H̃p,q

un (−,A) on HNis,A1(C+).

By the adjunction between �r and L�l the functors H̃p,q
un (−,A) can be represented on

HNis,A1(C+) by the spaces �r�p−q(A ⊗L lq) for p ≥ q and �r�
p−q

Nis,A1(A ⊗L lq) for p < q. In
particular, motivic Eilenberg-MacLane pairs exist for all A, p and q. By the uniqueness of
representing objects the isomorphism class of a (X, ι) in HNis,A1(C+) is well defined up to
a canonical isomorphism and we will denote it by (K(A, p, q)C, ιp,q).

Lemma 3.18. — For any k, any A, any p, q ∈ Z and any inclusion i : C → D of admissible

subcategories there is a canonical isomorphism

K(A, p, q)C = irad,+(K(A, p, q)D)

Proof. — It follows immediately from the definition of K(A, p, q) as a representing
object and the adjunction between irad,+ and Lirad

+ . �

In what follows we will only consider the case of p ≥ q. The case of p < q is much
more complicated.

Definition 3.19. — Let A be an Abelian group, p ≥ q ≥ 0 and C be an admissible
subcategory of Sch/k. A motivic Moore pair for (A, p, q) on C is a pair (X, φ) where X ∈
�opRad(C+) and φ is an isomorphism L�l

Z(X) ∼= �p−q(A ⊗L lq) in HNis,A1(Cor(C,Z)).

Proposition 3.20. — If (X, φ) is a Moore pair for (A, p, q) on C then there is a natural

class ι in H̃p,q
un (�r

SL�l
S(X),A ⊗Z S) such that (�r

SL�l
S(X), ι) is an Eilenberg-MacLane pair for

(A ⊗Z S, p, q) on C.

Proof. — It follows immediately from the standard adjunctions that for any R and
A the image of the space �r

RL�l
R(M(A, p, q)) in HNis,A1(C+) represents the functor

H̃p,q
un (−,A ⊗L,Z R) = HomHNis,A1 (Cor(C,Z))(−,�p−q((A ⊗L,Z R) ⊗ lq)).

The claim of the proposition follows from the fact that A ⊗L,Z S = A ⊗Z S. �

Proposition 3.21. — For any f -admissible C which is contained in SN/k, any p ≥ q ≥ 0 such

that p > 0 and any finitely generated Abelian group A there exists a motivic Moore pair (X(A, p, q),φ)

for (A, p, q) on C such that

1. X(A, p, q) satisfies condition (D1),
2. for any d > 0 there exists a morphism md : X(A, p, q) → X(A, p, q) such that

(a) LS∞(md) = ×d in HNis,A1(C+),
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(b) L�l
Z(md) = d · Id.

Proof. — It follows from Lemma 3.14(1) and Lemma 2.22 that if X(A, p, q) and
X(B, p, q) satisfy the conditions of the proposition for (A, p, q) and (B, p, q) respectively
then X(A, p, q) ∨ X(B, p, q) satisfies its conditions for (A ⊕ B, p, q). Since any finitely
generated Abelian group is a direct sum of finite number of cyclic groups it means that it
is sufficient to construct X(Z/n, p, q) for n > 0 and X(Z, p, q). We consider the following
two cases. (q = 0, p > 0) Let S1

s,gr be a model of S1
s which is an Abelian group e.g. S1

s,gr =
K(Z,1). Let ·n : S1

s,gr → S1
s,gr be the multiplication by n map with respect to the Abelian

group structure. Set

X(Z, p,0) = S1
s,gr ∧ Sp−1

s

X(Z/n, p,0) = cone(·n) ∧ Sp−1
s

These spaces satisfy the first condition of the proposition by Lemmas 3.13 and 3.14(2).
The second condition is easily seen to hold relative to the maps md which are defined by
the map ·d on S1

s,gr.
(q ≥ 1, p ≥ q) Let (−)n : S1

t → S1
t be the map z �→ zn. Set

X(Z, p, q) = S1
t ∧ Sq−1

t ∧ Sp−q
s

X(Z/n, p, q) = cone((−)n) ∧ Sq−1
t ∧ Sp−q

s

These spaces satisfy the first condition of the proposition by Lemmas 3.15 and 3.14(2).
Let us shows that they satisfy the second condition relative to the maps md defined by
the maps (−)d on S1

t . The second half of the second condition is easy. To prove the first
part observe that by Lemma 3.23 below it is sufficient to verify that the morphism (−)d

defines on S∞(L∗(S1
t )) and S∞(L∗(cone((−)n))) the morphisms which coincide with ×d

in HNis,A1(C+).
By Proposition 2.14 the map

S∞(L∗(S1
t )) → S∞(S1

t )

is a projective equivalence. On the other hand the standard theory of symmetric polyno-
mials implies that there is a homomorphism of monoids

S∞(S1
t ) → S1

t(60)

which is an A1-equivalence. This proves the case of S∞(L∗(S1
t )). Using (60) it is not hard

to show further that there is an A1-equivalence of monoids

S∞(L∗(cone((−)n))) → K(S1
t

(−)n→ S1
t )

where K is the standard functor from complexes of Abelian groups to simplicial objects,
which proves the case of S∞(L∗(cone((−)n))). �
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Remark 3.22. — Note that if char(k) = 0 then conditions (1) and (2b) of Proposi-
tion 3.21 imply condition (2b). For char(k) > 0 this is not necessarily the case because we
do not know how to reconstruct S∞ from �l

Z even for objects satisfying condition (D1).

Lemma 3.23. — Let X be an object of �opC#
+ and md : X → X a morphism such that

S∞(md) = ×d in HNis,A1(C+). Then for any Y ∈ �opC#
+ one has

S∞(md ∧ IdY) = ×d

in HNis,A1(C+).

Proof. — Let fd be the composition X → S∞(X)
×d→ S∞(X) and gd be the com-

position of X
md→ X → S∞(X) or equivalently the composition of the natural map

X → S∞(X) with S∞(md). Let

h : S∞(X) ∧ Y → S∞(X ∧ Y)

be the map which takes (x1 + · · · + xn; y) to (x1; y) + · · · + (xn; y). Then there are com-
mutative diagrams (in �opC#

+)

S∞(X ∧ Y)
×d−−−→ S∞(X ∧ Y)

S∞(fd∧IdY)

⏐⏐� �⏐⏐
S∞(S∞(X) ∧ Y)

S∞(h)−−−→ S∞(S∞(X ∧ Y))

and

S∞(X ∧ Y)
S∞(md∧IdY)−−−−−→ S∞(X ∧ Y)

S∞(gd∧IdY)

⏐⏐� �⏐⏐
S∞(S∞(X) ∧ Y)

S∞(h)−−−→ S∞(S∞(X ∧ Y))

where the right hand side arrows are from the standard triple structure on S∞. Since
fd = gd in HNis,A1(C+) we conclude that ×d = S∞(md ∧ IdY) in this category as well. �

For any X the isomorphism of Theorem 3.7 defines a morphism

dtX : S∞(X) → �r
S�

l
S(X)

Proposition 3.24. — Let (X(A, p, q),φ) be a Moore pair satisfying the conditions of Propo-

sition 3.21. Then for any commutative algebra R over S = Z[1/c(k)] the morphism

L�R(dtL∗(X(A,p,q))) : L�l
R(LS∞(X(A, p, q))) → L�l

R(�r
SL�l

S(X(A, p, q)))

is an isomorphism in HNis,A1(Cor(C,R)).
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Proof. — By Theorem 3.7 we have

S∞[1/c(k)]+(L∗(X(A, p, q))) = �r
SL�l

S(X(A, p, q))

since X(A, p, q) satisfies condition (D1) so does L∗(X(A, p, q)) and we may replace
S∞[1/c(k)]+ by S∞[1/c(k)]. On the other hand

L�l
R(×c(k)) = L�l

R(S∞(mc(k))) = S∞
tr (L�l

R(mc(k)))

= S∞
tr (�l

R(mc(k))) = S∞
tr (c(k) · Id)

is an isomorphism since c(k) is invertible in R (note that condition (2b) of Proposition 3.21
implies a similar condition for �l

R). Therefore the morphism

L�l
R(LS∞(X(A, p, q))) → Lλl

R(LS∞[1/c(k)](X(A, p, q)))

is an isomorphism in HNis,A1(Cor(C,R)). �

Let us introduce the following notation:

M(A, p, q;R)C = L�l
R(K(A, p, q)C)

The following result is the main theorem of this section.

Theorem 3.25. — Let k be a perfect field, C an f -admissible category which is contained

in the category of semi-normal schemes, A a finitely generated module over S = Z[1/c(k)] and p, q

two integers such that p ≥ q ≥ 0 and p > 0. Then for any S-algebra R there is an isomorphism in

HNis,A1(Cor(C,R)) of the form

M(A, p, q;R)C
∼=

⊕
n≥0

Sn
tr(�

p−q((A ⊗L,S R) ⊗ lq,R))(61)

such that for any d > 0 the map M(A, p, q;R)C → M(A, p, q;R)C defined by multiplication by d

in A is of the form
⊕

n≥0 dn · Id. A choice of such an isomorphism is determined by a choice of a finitely

generated Abelian group A′, an isomorphism A = A′ ⊗ S and a motivic Moore pair (X(A′, p, q),φ)

satisfying the conditions of Proposition 3.21.

Proof. — Any finitely generated S-module A is of the form A = A′ ⊗ S for a finite
generated Abelian group A′. Let us choose a Moore pair X(A′, p, q) which satisfies the
conditions of Proposition 3.21. By Proposition 3.20 and Proposition 3.24 we have an
isomorphism

L�l
R(K(A, p, q)) ∼= L�l

R(LS∞(X(A′, p, q))) = LS∞
tr (L�l

R(X(A′, p, q)))

By an obvious “universal coefficients formula” the isomorphism

L�l
Z(X(A′, p, q)) = �p−q(A′ ⊗L,Z lq)



72 VLADIMIR VOEVODSKY

defines an isomorphism

L�l
R(X(A′, p, q)) = �p−q((A′ ⊗L,Z R) ⊗L,R lq,R)

= �p−q((A ⊗L,S R) ⊗L,R lq,R)

and therefore an isomorphism of the form (61).
The map L�l

R(K(A, p, q)) → L�l
R(K(A, p, q)) defined by multiplication by d in

A corresponds under the isomorphism L�l
R(K(A, p, q)) ∼= L�l

R(LS∞(X(A′, p, q))) to the
map L�l

R(×d) and the properties of the map md show that

L�l
R(×d) = L�l

R(LS∞(md)) = LS∞
tr (L�l

R(md))

= LS∞
tr (d · Id) =

⊕
n≥0

dn · Id.
�

Corollary 3.26. — Under the assumptions of the theorem assume in addition that R = F is a

field. Then a choice of (X(A, p, q),φ) defines isomorphisms

M(A, p, q;F)C = (M0 ⊗ M1) ⊕ M0 ⊕ M1

where

M0 = LS∞
tr (�p−q((A ⊗Z F) ⊗F lq,F))

and

M1 = LS∞
tr (�p−q+1(TorZ

1 (A,F) ⊗F lq,F)).

Proof. — It follows from the general case by Corollary 2.49 since we have a canon-
ical decomposition

A ⊗L,Z F = (A ⊗Z F) ⊕ �1TorZ
1 (A,F).

�

Corollary 3.27. — Under the assumptions of the theorem let R = F be a field of characteristic

l > 0 such that l 	= char(k). Then a choice of (X(Z/l, p, q),φ) defines isomorphisms:

M(Z/l, p, q;F)C = (M0 ⊗ M1) ⊕ M0 ⊕ M1

where M0 = M(Z, p, q;F)C and M1 = M(Z, p + 1, q;F)C.

Corollary 3.28. — Under the assumptions of the theorem assume in addition that R = F is a

field and p ≥ 2q. Then one has

M(A, p, q;F)C ∈ SPT≥q
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Proof. — The case when p = q = 0 is obvious. For p > 0 the statement follows easily
from Corollary 3.26 and Theorem 2.76. �

Remark 3.29. — It is not clear whether or not there exist motivic Moore pairs
(X(A, p, q),φ) satisfying the conditions of Proposition 3.21 which define isomorphisms
(61) which are different from the ones which are defined by the Moore pairs which are
constructed in the proof of this proposition. One can look at this problem from the follow-
ing angle. The composition F = L�l

Z�r
Z is a cocomplete-triple on HNis,A1(Cor(C,Z)). A

choice of a motivic Moore pair for (A, p, q) defines a structure of an F-coalgebra on
�p−q(A ⊗L,Z lq) and a choice of such a structure defines an isomorphism of the form (61).
Therefore in order to obtain an “exotic” isomorphism of this form we need a Moore
space X(A, p, q) which defines an exotic F-coalgebra structure on �p−q(A⊗L,Z lq). On the
other hand, one can easily see that such a structure is determined by the action of coho-
mological operations on the motivic cohomology of X(A, p, q). In the topological context
these observations show that there are no exotic coalgebra structures since there can be
no non-trivial actions of cohomological operations on the cohomology of Moore spaces.
In the motivic context they show that in order to construct an “exotic” Moore space for Z
we need to find a pointed space X whose motive is a Tate motive Z(p)[q] but the action of
the motivic cohomological operations on H∗,∗(X,Z) = H∗−p,∗−q(Spec(k),Z) is different
from their action on the motivic cohomology of the point. Since we know almost nothing
about unstable motivic cohomology operations of bi-degree (i, j) where 2i ≥ j ≥ i the
question of exotic Moore spaces remains open.

Remark 3.30. — The construction of the proof of Proposition 3.21 can be easily
adjusted to provide motivic Moore pairs for (A, p, q) where A is any S-module and p > q.
However, it is not clear how to construct motivic Moore pairs for (A, p, p) when p > 0 and
A is an indecomposable (infinitely generated) S-module of rank greater than 1. Multiple
examples of such modules can be found in [6].

Remark 3.31. — Theorem 3.25 together with Example 2.59 shows that for 2q >

p ≥ q the image of M(A, p, q;R) in DMeff
− is a “mixed Tate object” but not necessarily a

pure Tate object. For p < q this image may not even be a mixed Tate object as can be
seen on the example of M(Z/l,0,1;Q). The Eilenberg-MacLane object K(Z/l,0,1) is
the scheme of l-roots of unity and its motive is not a Tate motive unless the l-root of unity
is in k.

Theorem 3.32. — Under the assumptions of Theorem 3.25 assume in addition that R = F is

a field, p ≥ 2q and that k admits resolution of singularities in the sense of [40]. Then for any admissible

subcategory i : D → C of C such that D ⊂ Sm/k one has

Lirad
tr (M(A, p, q;F)D) = M(A, p, q;F)C
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Proof. — Set KC = K(A, p, q)C and KD = K(A, p, q)D and let MC = L�l
F(KC)

and MD = L�l
F(KC) be the corresponding objects of HNis,A1(Cor(−,F)). By Section 1.3

we have two pairs of adjoint functors connecting the categories HNis,A1(Cor(−)) and
HNis,A1((−)+) over C and D respectively. By Lemma 3.18, for any i : D → C, any A and
any p, q one has

KD = irad,+KC(62)

Since k be is a field with resolution of singularities and D ⊂ Sm/k we further have

itr,radMC = itr,radL�l
FKC = L�l

Firad,+KC = L�l
FKD = MD

where the second equality holds by Theorem 1.21 and therefore

Lirad
tr (MD) = Lirad

tr itr,radMC

Since p ≥ 2q, Corollary 3.28 implies that MC is in the image of the functor Lirad
tr and by

Corollary 1.20 this implies that the adjunction Lirad
tr itr,radMC → MC is an isomorphism. �

Corollary 3.33. — Under the assumptions of Theorem 3.25 assume in addition that R = F is

a field, p ≥ 2q and that k admits resolution of singularities in the sense of [40]. Then for any admissible

subcategory D ⊂ Sm/k one has

M(A, p, q;F)D ⊂ SPT≥q

3.3. Topological realization functors

In this section we assume that the base field is C and R is the ring of coefficients for
homology and correspondences. We set C = QP/C to be the category of quasi-projective
schemes over C.

Let Top be the category of (all) topological spaces. Sending X ∈ C to the topologi-
cal space of its C-points we get a functor

π : C → Top

We will need the following classical properties of this functor.

Theorem 3.34.

1. π commutes with disjoint unions,

2. π commutes with fiber products,

3. π commutes with finite group quotients,

4. π takes universal homeomorphisms to homeomorphisms.

Proof. — See [22]. �
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Proposition 3.35. — For any closed embedding i : Z → X in QP/C, π(i) is a closed embed-

ding and (X(C),Z(C))) is a CW-pair.

Proof. — It follows easily from the considerations of [9]. �

Consider the functor

π rad
+ : �opRad(C+) → �opRad(Top+)

Lemma 3.36. — The functor π rad
+ takes projective equivalences to projective equivalences. In

particular, for any X ∈ �oprad(C+) the morphism Lπ rad
+ (X) → π rad

+ (X) is a projective equivalence.

Proof. — A morphism of radditive functors is a projective equivalence if and only if
it is a simplicial weak equivalence as a morphism of presheaves of sets. Such equivalences
are preserved by inverse image functors defined by functors which commute with fiber
products. Therefore the lemma follows from Theorem 3.34(2). �

Let �r
R,mod be the “forgetting of transfers” functor from Rad(Cor(C,R)) to

presheaves of R-modules on C. Then π∗
R−mod�

r
R,mod(X) is a functor

Rad(Cor(C,R)) → PreShvR−mod(Top)

Evaluating a pointed presheaf (resp. a presheaf of R-modules) F on the standard cosim-
plicial object �•

top in Top we get a pointed simplicial set (resp. a simplicial R-module)
Sing∗(F). Composing π rad

+ (resp. π∗
R−mod�

r
R,mod) with Sing∗ followed by the diagonal we

get two functors

TC = �Sing∗π
rad
+ : �opRad(C+) → �opSets•

and

Ttr
C = �Sing∗π

∗
R−mod�

r
R,mod : �opRad(Cor(C,R)) → �opR − mod

Proposition 3.37. — The functor TC takes (Nis,A1)-equivalences to weak equivalences of

simplicial sets and therefore defines a functor

tC : HNis,A1(C+) → Htop
•

Proof. — By Theorem A.20 the class

W+
Nis,A1 = cll((GNis)+ ∪ (GA1)+)

of (Nis,A1)-equivalences in �oprad(C+) coincides with the class cl�̄((GNis � IdC)+ ∪
(GA1 � IdC)+ ∪ Wproj). Since TC clearly takes �̄-closures to �̄-closures and commutes
with � and since the class of weak equivalences in �opSets is �̄-closed it is sufficient to
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verify that TC takes Wproj, (GNis)+ and (GA1)+ to weak equivalences. The case of Wproj

follows from Lemma 3.36. Let us consider the case of GNis. Let Q be a Cartesian square
in C of the form

B −−−→ Y⏐⏐� ⏐⏐�p

A
j−−−→ X

such that p is etale, j an open embedding and Y\B → X\A is an isomorphism. Consider
the morphism f+ : (KQ)+ → X+. For U ∈ QP/C we have π∗(U) = U(C) and TC(U) =
Sing∗(U(C)) where Sing∗ is a singular simplicial set of a topological space. Therefore,
there is a push-out square of simplicial sets of the form

Sing∗(B(C))+ ∨ Sing∗(B(C))+ −−−→ Sing∗(Y(C))+ × �1⏐⏐� ⏐⏐�
Sing∗(A(C))+ ∨ Sing∗(Y(C))+ −−−→ TC((KQ)+)

and we need to verify that the obvious morphism TC((KQ)+) → Sing∗(X(C))+ is a weak
equivalence or equivalently that the square of singular simplicial sets

Sing∗(B(C))+ −−−→ Sing∗(Y(C))+⏐⏐� ⏐⏐�
Sing∗(A(C))+ −−−→ Sing∗(X(C))+

(63)

is a homotopy push-out square. This follows from Lemma 3.38.
It remains to consider the case of (GA1)+ i.e. to show that for any X ∈ QP/C the

map

Sing∗((X × A1)(C))+ → Sing∗(X(C)+)

is a weak equivalence. This follows from the fact that (X × A1)(C) = X(C)× C and C is
contractible. �

Lemma 3.38. — Let Q

B −−−→ Y⏐⏐� ⏐⏐�
A −−−→ X

be an upper distinguished square in Sch/C. Then the associated square of the form (63) is a homotopy

push-out square.
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Proof. — Since the spaces of C-points of A, B, X and Y admit triangulations the
condition that the square (63) is homotopy push-out square is equivalent to the condi-
tion that the obvious map q : hp(Q(C)) → X(C) where hp(Q(C)) is the push-out of the
diagram

B(C) × ∂�1 −−−→ A(C) � Y(C)⏐⏐�
B(C) × �1

is a weak equivalence. By [13, Cor. 1.4, p. 93] (see also [4]), it is sufficient to show that
for any point x ∈ X(C) there exists an open neighborhood U′ of p such that for any
open subset U of U′ the map q−1(U) → U is a weak equivalence. This map is clearly
isomorphic to the map qU : hp(Q(C)U) → U where Q(C)U is the pull-back of the square
Q(C) to a square over U.

Using the fact that etale morphisms define local homeomorphisms on the spaces
of C-points one can show that for any x ∈ X(C) there exists U′ such that Q(C)U′ is
isomorphic to a square of the form(∐

i

(U′ − Z(C) ∩ U′)
)

� (U′ − Z(C) ∩ U′) −−−→
(∐

i

(U′ − Z(C) ∩ U′)
)

� U′

⏐⏐� ⏐⏐�
U′ − Z(C) ∩ U′ −−−→ U′

Then the same is true for Q(C)U for any U ⊂ U′ which easily implies that the maps qU

are homotopy equivalences. �

Lemma 3.39. — Functor tC commutes with the smash products.

Proof. — One can easily see that for any X,Y ∈ �opRad(C+) there is a natural map
TC(X)∧TC(Y) → TC(X∧Y). Since the class of weak equivalences of pointed simplicial
sets is �̄-closed it is sufficient to check that it is a weak equivalence for X = X′

+, Y = Y′
+

where X′,Y′ ∈ C. In this case our map is an isomorphism because both π∗ and Sing∗
commute with direct products. �

One can easily see that there are canonical isomorphisms:

tC(S1
s ) = S1(64)

tC(S1
t ) = S1(65)

Let H(R − mod) be the homotopy category of simplicial R-modules.
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Proposition 3.40. — The functor Ttr
C takes (Nis,A1)-equivalences to weak equivalences of

simplicial R-modules and therefore defines a functor

ttr
C : HNis,A1(Cor(C,R)) → H(R − mod)(66)

Proof. — Let φ be the forgetting functor from R-modules to sets. Then by construc-
tion we have

φ ◦ Ttr
C = TC�r

R

The functor φ reflects weak equivalences. The functor �r
R respects (Nis,A1)-equivalences

by Theorem 1.7. The functor TC respects equivalences by Proposition 3.37. We conclude
that Ttr

C respects equivalences. �

Let

HR : �opSets• → �opR − mod

be the functor which takes a pointed simplicial set X to the free R-module HR(X) gen-
erated X.

Proposition 3.41. — The square

HNis,A1(C+)
tC−−−→ Htop

•

L�l
R

⏐⏐� HR

⏐⏐�
HNis,A1(Cor(C,R))

ttrC−−−→ H(R − mod)

(67)

commutes up to a natural isomorphism.

Proof. — We may interpret HNis,A1(C+) as a localization of �opC#
+ and con-

sider �l instead of L�l . By definition, HRTC(X) is the free R-module generated by
the pointed simplicial set �Sing∗(X(C)) and Ttr

C�l
R(X) is the simplicial R-module

�Sing∗(π
∗�r

R,ab�
l
R(X)). The natural transformation X(C) → π∗�r

R,ab�
l
R(X) together

with the universal property of free R-modules provide us with a natural transformation
of the form

HRTC → Ttr
CL�l

R(68)

Since the forgetting functor ψ from R-modules to Abelian groups reflects equivalences
and one has

ψHRTC(X) = (ψHZTC(X)) ⊗ R
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and

ψTtr
C�l

R(X) = (ψTtr
C�l

Z(X)) ⊗ R

its is enough to consider the case R = Z. Since both sides of (68) commute with the
simplicial suspension (because of Theorem 3.34(1)) and the suspension on H(Z − mod)

reflects isomorphisms, it is enough to verify that for X ∈ �opC#
+ the morphism

φHZ�Sing∗π
rad
+ (�1

s X) → �Sing∗π rad
+ �r

Z�l
Z(�1

s X)

is a weak equivalence. Consider the commutative square

φHN�Sing∗π
rad
+ (�1

s X) −−−→ �Sing∗π rad
+ S∞(�1

s X)⏐⏐� ⏐⏐�
φHZ�Sing∗π

rad
+ (�1

s X) −−−→ �Sing∗π rad
+ �r

Z�l
Z(�1

s X)

(69)

where HN(−) is the free Abelian monoid functor. The left hand side vertical arrow in this
square is a weak equivalence by Lemma 3.12.

Let i : SN/C → QP/C be the embedding of the subcategory of semi-normal
schemes. By Lemma 3.42 we have π rad

+ = π rad
+ Lirad

+ irad,+. The morphism irad,+S∞(�1
s X)→

irad,+�r
Z�l

Z(�1
s X) is a Nis-equivalence by Proposition 3.5 and Lemma 3.8. Therefore

Lirad,+irad,+S∞(�1
s X) → Lirad,+irad,+�r

Z�l
Z(�1

s X) is a Nis-equivalence and we conclude
by Proposition 3.37 that the right hand side vertical arrow of (69) is a weak equivalence.

It remains to verify that the morphism

φHN�Sing∗π
rad
+ (�1sX) → �Sing∗π

rad
+ S∞(�1

s X)(70)

is a weak equivalence for any X ∈ �op(QP/C)#
+. Since the class of weak equivalences

of simplicial sets is �̄-closed it is sufficient to consider the case of X ∈ (QP/C)+. By
Theorem 3.34(1,2,3) we conclude that for such an X one has

π rad
+ (S∞(�1

s X)) = S∞(�1
s (X(C)))

where on the right �1
s (X(C)) is considered as a simplicial topological space. The fact

that the morphism (70) is a weak equivalence follows now from Proposition 3.35 and the
Dold-Thom theorem in the form which asserts that for a simplicial topological space X
whose terms are CW-complexes, the maps

HN�Sing∗(�
1
s X) → �Sing∗(S

∞(�1
s X))

is a weak equivalences. �

Lemma 3.42. — Let i : SN/C → QP/C be the embedding of semi-normal schemes. Then

the morphism π rad
+ Lirad

+ irad,+ → π rad
+ is a projective equivalence.
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Proof. — It is clearly sufficient to consider the non-pointed case. Let sn : QP/C →
SN/C be the semi-normalization functor which is the left adjoint to i. Then the adjunc-
tion between sn and i shows that there is a natural isomorphism irad = snrad. Since irad

respects projective equivalence so does snrad and therefore irad = Lsnrad. By Lemma 3.36
we have π rad = Lπ rad. Combing these observations together we get:

π radLiradirad = Lπ radLiradLsnrad = L(π ◦ i ◦ sn)rad = Lπ rad

The last equality holds by Theorem 3.34(4) since the morphism i ◦ sn → Id is a universal
homeomorphism. �

Proposition 3.43. — The functor ttr
C commutes with (derived) tensor products.

Proof. — Note first that there is a natural transformation on the level of simplicial
objects of the form

Ttr
C(X) ⊗R Ttr

C(Y) → Ttr
C(X ⊗ Y)

Since the class of weak equivalences of simplicial R-modules is �̄-closed it is enough
to verify that it is a weak equivalence for X,Y ∈ Cor(C,R) i.e. for X = �l(X′

+), Y =
�l(Y′

+) where X′,Y′ ∈ C. In this case the claim follows from Proposition 3.41 and the
Künneth isomorphism theorem for topological homology. �

Proposition 3.41, isomorphisms (64), (65) and Proposition 3.43 imply that there are a
canonical isomorphism

ttr
C(A ⊗L,Z ln) = (A ⊗L,Z R)[n](71)

and in particular ttr
C(Ln) = R[2n]. Using the definition of motivic cohomology given at

the beginning of Section 3.2 in combination with Proposition 3.41, isomorphisms (71) for
R = Z and the suspension isomorphisms in the topological cohomology we get canonical
maps:

H̃p,q
un (X,A) → H̃p(tC(X),A)

For an R-module A let K(A, p) and K(A, p, q)QP/C be the topological and the motivic
Eilenberg-MacLane spaces representing the functors H̃p(−,A) and H̃p,q

un (−,A) respec-
tively.

Lemma 3.44. — For p ≥ q there is a canonical isomorphism

tC(K(A, p, q)QP/C) → K(A, p).
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Proof. — We have

tC(K(A, p, q)) = tC�r
Z(A ⊗L,Z �p−qlq) = φttr

C(A ⊗L,Z �p−qlq)

= φ(A[p]) = K(A, p). �

Remark 3.45. — The statement of Lemma 3.44 is false for p < q at least when A is
not a torsion Abelian group. For example, K(Z,0,1) = pt while K(Z,0) = Z.

Remark 3.46. — Note that in the case of R = Z/l we get ttr
C(Ln) = Z/l[2n] while it

would be more natural to have ttr
C(Ln) = μl[2n] where μl is the group of l-roots of unity

in C. The reason that we get Z/l instead of μl is that the isomorphism (65) defines an
identification of μl , which is the fiber of the l-th power map on S1

t , with Z/l which is
the fiber of the l-th power map on the circle. If the circle is oriented counter clock-wise
then this identification corresponds to the choice of the l-th root of unity with the smallest
argument.

In the next section we will need to work with K(A, p, q)SmQP/C instead of K(A, p, q)QP/C.
Let j : SmQP/C → QP/C be the embedding of smooth quasi-projective schemes to all
quasi-projective schemes. By Lemma 3.18 we have an equivalence

jrad,+K(A, p, q)QP/C = K(A, p, q)SmQP/C

which, by adjunction, defines a morphism

ψ(A, p, q) : Lirad
+ K(A, p, q)SmQP/C → K(A, p, q)QP/C

Proposition 3.47. — For p ≥ q the morphism tC(ψ(A, p, q)) is a weak equivalence.

Proof. — Note first that the category SmQP/C has direct products (fiber prod-
ucts over the point) and that the functor j respects these products. This implies that
Ljrad

+ commutes with direct products up to a canonical equivalence. Therefore both
tC(Ljrad

+ (K(A, p, q)SmQP/C)) and tC(K(A, p, q)QP/C) are H-spaces with an inverse map. A
morphism of such H-spaces is a weak equivalence if it defines a weak equivalence on
homology i.e. it is sufficient to show that

HZtC(Ljrad
+ (K(A, p, q)SmQP/C)) → HZtC(K(A, p, q)QP/C)

is a weak equivalence of simplicial Abelian groups. By Proposition 3.41 this is equivalent
to the showing that

ttr
C(L�l

ZLjrad
+ (K(A, p, q)SmQP/C)) → ttr

C(L�l
Z(K(A, p, q)QP/C))(72)

is an isomorphism. For q ≤ 1 there are models of K(A, p, q)QP/C which lie in
�op(SmQP/C)+ and therefore ψ(A, p, q) itself is a weak equivalence. Therefore we may
assume that p > 0. Then (72) is an isomorphism by Theorem 3.32 since L�l

ZLjrad
+ =

Ljrad
tr L�l

Z. �
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Corollary 3.48. — Let

tSm,C = �Sing∗L(π ◦ j)rad
+

be the topological realization functor on HNis,A1((SmQP/C)+). Then for p ≥ q, there are canonical

weak equivalences

tSm,C(K(A, p, q)SmQP/C) = tC(K(A, p, q)QP/C) = K(A, p).

3.4. Application to stable operations.

In this section we will show that over a field k of characteristic zero the algebra
of all stable operations in motivic cohomology with coefficients in Fl coincides with the
motivic Steenrod algebra. Since motivic Steenrod operations have been defined only in
cohomology of smooth schemes we will work with smooth schemes over k. Let H∗,∗ =
H∗,∗(Spec(k),Fl). Let Kn be the motivic Eilenberg-MacLane space K(Z/l,2n, n)Sm/k and
Ktop

2n be its topological counterpart K(Z/l,2n). The Abelian group of all stable operations
is given by

M∗,∗ = lim← n H∗+2n,∗+n(Kn,Fl)

where the homomorphisms of the system are defined by the morphisms

�1
TKn → Kn+1(73)

Let A∗,∗ be the motivic Steenrod algebra. Since operations from A∗,∗ are stable with
respect to �T they act on M∗,∗. Denote by ι the element in M∗,∗ whose restriction to Kn

is the canonical class ιn. Acting by elements of A∗,∗ on ι we get a map

u : A∗,∗ → M∗,∗

which is a homomorphism of left H∗,∗-modules.

Theorem 3.49. — Let k be a field of characteristic zero. Then u is an isomorphism.

Proof. — The proof of this theorem occupies the rest of this section and ends right
before Remark 3.57. �

Let Mn = L�l
Z(Kn) be the class of Kn in HNis,A1(Cor(Sm/k,Fl)). In view of Corol-

lary 3.33 there exist objects M′
n in SPT such that Mn = �n

TM′
n. Morphisms (73) define

a sequence

M′
0 → M′

1 → M′
2 → ·· ·
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Let M be its homotopy colimit. By Corollary 2.71 the distinguished triangle which defines
M splits. Therefore the motivic cohomology of M coincide with M∗,∗ and by the same
corollary M ∈ SPT.

Let (eα)α∈A be the basis of A∗,∗(k) over H∗,∗ which consists of admissible monomials
(see [33, pp. 40–41]). Let pα, qα be defined by the condition that eα ∈ Apα,qα . Set A =⊕

α∈A Fl(qα)[pα]. The bi-degrees of admissible monomials are such that pα ≥ 2qα i.e.
A ∈ SPT.

Lemma 3.50. — The motivic cohomology of A is canonically isomorphic to A∗,∗ and there is

a unique morphism

ũ : M → A

which defines on the motivic cohomology homomorphism u.

Proof. — The definition of an admissible monomial given in [33, p. 40] implies
immediately that for any q ≥ 0 the set A∗,≤q of α ∈ A such that qα ≤ q is finite. Let
H∗,∗(q)[p] be the free bi-graded module over H∗,∗ with the generator in bi-degree (p, q).
Then we have

H∗,∗(A) =
gr∏

α∈A

H∗,∗(qα)[pα] =
gr⊕

α∈A

H∗,∗(qα)[pα] = A∗,∗

where
∏gr and

⊕gr are the direct product and the direct sum in the category of bi-graded
modules and the middle equality holds because the sets A∗,≤q are finite. This proves the
first assertion of the lemma.

The condition that ũ defines homomorphism u on motivic cohomology is equiv-
alent to the condition that the composition of u with the projection to the summand
corresponding to eα is u(eα). The uniqueness and existence of such ũ follows from the
finiteness of the sets A∗,≤q and Proposition 2.64. �

To prove Theorem 3.49 we need to show that ũ is an isomorphism. Since both M and
A belong to SPT we may apply Corollary 2.70(2) and assume from now on that k is an
algebraically closed field.

Let us choose a primitive l-th root of unity in k and let τ be the corresponding
element of H0,1 = H0,1(Spec(k)). Then by [24, Cor. 4.3, p. 254] we have

H∗,∗ = Fl[τ ].(74)

For a module A over F[τ ] we will write A ⊗0 F (resp. A ⊗1 F) for the tensor product of A
with Fl with respect to the homomorphism F[τ ] → F which takes τ to 0 (resp. to 1).
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Lemma 3.51. — u : M∗ → N∗ a homomorphism of non-negatively graded free modules over

F[τ ] where F is a field and gr(τ ) = 1. Assume that u1 = u ⊗1 Id is surjective and u0 = u ⊗0 Id
injective. Then u is an isomorphism.

Proof. — If x ∈ Mn and u(x) = 0 then the image of x in M∗ ⊗0 F is zero i.e. x = τx′.
Then 0 = u(τx′) = τu(x′) and since N∗ is free we have u(x′) = 0. A simple induction on n

implies now that u is injective.
Let us show that u is surjective. Let x ∈ Nn. Since u1 is surjective we have x =

u(z) + (τ − 1)y for some z ∈ M∗ and y ∈ N∗. Let m be the smallest integer ≥ n such that
z ∈ M≤m and y ∈ N≤m. Then xm+1 = 0 and zm+1 = 0 and therefore τ ym = 0. Since N∗ is
free we conclude that ym = 0. Suppose that m > n. Then u(zm) = −τ ym−1.

The condition that u0 is a monomorphism shows that if u(zm) = −τ ym−1 then there
exists z′

m−1 such that zm = τz′
m−1 and, since N∗ is a free module u(z′

m−1) = −ym−1. Set
z′′ = z − zm + z′

m−1 and y′′ = y − ym−1. Then one has again x = u(z′′) + (τ − 1)y′′. By
induction we conclude that we may assume that m = n. Then (τ − 1)y = x − u(z) implies
that yn = 0 and x = u(zn) + τ yn−1. By obvious induction on degree we may assume that
yn−1 is in the image of u. Then x ∈ Im(u). �

Lemma 3.52. — Let X ∈ �opRad((QP/C)+) be such that L�l
Fl
(X) is a direct sum of

objects of the form � i lj . Then the natural homomorphisms

H̃p,∗
un (X,Z/l) ⊗1 Fl → H̃p(tC(X),Fl)(75)

are isomorphisms.

Proof. — By Proposition 3.41 we have

H̃p(tC(X),Fl) = HomH(Fl−mod)(HFl
tC(X),Fl[p])

= Hom(ttr
CL�l

Fl
(X),Fl[p])

and the homomorphism H̃p,∗
un (X,Z/l) → H̃p(tC(X),Fl) which defines (75) is the homo-

morphism (⊕
q>p

HomHNis,A1 (�
q−pY,Fl(q)[q])

)
⊕

( ⊕
p≥q≥0

HomHNis,A1 (Y,Fl(q)[p])
)

↓
HomH(Fl−mod)(t

tr
C(Y),Fl[p])

(76)

for Y = L�l
Fl
(X). Therefore, it is sufficient to verify that (76) defines an isomorphism for

Y = � i lj i.e. that the maps

H̃p−i−j,∗−j
un (Spec(k)+,Z/l) ⊗1 Fl → H̃p

un(S
i+j,Fl)
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are isomorphisms. This is equivalent to (74). �

The motivic Adem relations demonstrated in [33] imply that for any k of characteristic
zero there is a homomorphism

A∗,∗(k) → A∗(77)

which sends Pi to Pi and β to β and which is of the form

H∗,∗(k) → H∗,∗(k̄) = Fl[τ ] τ �→1→ Fl

on H∗,∗. The same relations imply immediately the following result.

Lemma 3.53. — Let k be an algebraically closed field of characteristic 0. Then (77) defines an

isomorphism

A∗,∗(k) ⊗1 Fl → A∗(78)

Lemma 3.54. — The square

A∗,∗ ιn−−−→ H̃∗,∗(Kn)⏐⏐� ⏐⏐�
A∗ ι2n−−−→ H̃∗(Ktop

2n )

(79)

commutes.

Proof. — We will only give a sketch of the argument. From general functoriality it
is sufficient to verify that the image Pi,n (resp. βPi,n) of the motivic class Piιn (resp. βPiιn)
in H̃∗(Ktop

2n ) is Piι2n (resp. βPiι2n). Knowing the Cartan formula and Adem relations for
the motivic reduced powers we can deduce that the family of operations defined by the
classes Pi,n and βPi,n satisfy the list of properties which uniquely characterize the reduced
power operations (see e.g. [23]). �

Proposition 3.55. — Let k be an algebraically closed field of characteristic zero. Then the

homomorphism

u ⊗1 Id : A∗,∗ ⊗1 Fl → M∗,∗ ⊗1 Fl(80)

is an isomorphism.

Proof. — Since both sides of (80) remain unchanged when we pass from an alge-
braically closed field to its algebraically closed extension we may assume that k = C.
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The vertical arrows of (79) factor as

A∗,∗ → A∗,∗ ⊗1 Fl → A∗

H̃∗,∗(Kn) → H̃∗,∗(Kn) ⊗1 Fl → H̃∗(Ktop
2n )

where the second arrows of both factorizations are isomorphisms—the first one by
Lemma 3.53 and the second one by Lemma 3.52. We conclude that the maps

A∗,∗ ⊗1 Fl → H̃∗,∗(Kn) ⊗1 Fl

are isomorphic to the maps

A∗ → H̃∗(Ktop
2n )

defined by the action of the topological Steenrod algebra on ι2n and one verifies easily
that these isomorphisms identify the maps defined by (73) with the similar maps defined
by the topological suspension morphisms

�2Ktop
2n → Ktop

2n+2.

We conclude that (80) is isomorphic to the map

A∗ → lim← n H̃∗+2n(Ktop
2n )(81)

defined by the action of the topological Steenrod algebra on the canonical cohomology
classes of Ktop

2n which is an isomorphism by [23]. �

Proposition 3.56. — Let k be an algebraically closed field of characteristic zero. Then the

homomorphism

u ⊗0 Id : A∗,∗ ⊗0 Fl → M∗,∗ ⊗0 Fl

is a monomorphism.

Proof. — Following the notations of [16] let PI denote the element of A∗,∗ cor-
responding to an admissible sequence I = (ε0, s1, . . . , sk, εk). We need to show that for
any non-trivial linear combination P = ∑

aIPI there exists n such that P(ιn) 	= 0 in
H̃∗,∗(Kn) ⊗0 Fl . Bi-stability of operations together with the universal property of ιn im-
ply that it is sufficient to find any X ∈ �op(Sm/k)#

+ and a class w ∈ H̃∗,∗(X) such that
P(w) 	= 0 in H̃∗,∗(X) ⊗0 Fl . Using the computation of the action of motivic Steenrod al-
gebra on the cohomology of Bμl and the proof of [23, Proposition VI.2.4] one can easily
see that it can be done by taking X = (Bμl)

N for some N (cf. [16, Proposition 11.4]). �

End of the proof of Theorem 3.49. — To prove the theorem we need to show that
the morphism ũ of Lemma 3.50 is an isomorphism. As was noted above, we may apply
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Corollary 2.70(2) and assume that k is an algebraically closed field. A morphism between
split Tate objects is an isomorphism if and only if it defines isomorphism on the motivic
cohomology. Applying Lemma 3.51 to the homomorphism

u : M∗,∗ → A∗,∗

considered as a homomorphism of graded modules over

H∗,∗(Spec(k),Fl) = Fl[τ ]
with respect to the “weight” grading we see that it is sufficient to show that u1 = u ⊗1 Id
is surjective and u0 = u ⊗0 Id is injective. This is done in Propositions 3.55 and 3.56. �

Remark 3.57. — An unstable analog of Theorem 3.49 appears to be false i.e. the
motivic cohomology of individual spaces Kn are not generated as algebras by elements of
the form PI(ιn). In particular, [32, Lemma 2.2] is probably false.

Let the base field be C. In view of the unstable analog of Proposition 3.55 for
any class a ∈ H̃∗,∗(Kn) there exist m such that τma can be represented as a polynomial of
PI(ιn). We claim that there are classes a for which the smallest m satisfying this condition
is > 0.

If we consider all the motivic Eilenberg-MacLane spaces then it is obvious. Indeed,
the motivic cohomology of weight zero of K(Z/l, n,0) are the same as the topological
cohomology of K(Z/l, n). On the other hand all the motivic power operations shift the
weight so applying PI to the canonical element in H̃n,0 we get elements in H̃p,q with q > 0.

Existence of such classes for the spaces Kn = K(Z/l,2n, n) is less obvious. They do
exist if the unstable motivic cohomology operations

Pi
KM : H̃p,q → H̃p+2i(l−1),lq

constructed in the context of the higher Chow groups by Kriz and May can be extended
to the motivic cohomology of objects such as Kn. In that case the first example I know
would be w = Sq16

KMSq7Sq3Sq1(ι3) for which one would expect

τw = Sq16Sq7Sq3Sq1(ι3)

but which can not be obtained as a polynomial of PI(ι3) itself. The complexity of the
example is due to the fact that one needs to find an admissible sequence with low excess
and high weight shift.

It is possible that the motivic cohomology classes of K(Z/l, p, q) for p ≥ 2q can be
represented as polynomials of classes obtained from the canonical one using both stable
and unstable power operations.
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Appendix A

A.1 Admissible categories

Definition A.1. — A full subcategory C of Sch/k is called admissible if

1. Spec(k) and A1 are in C
2. for X and Y in C the product X × Y is in C
3. if X is in C and U → X is etale then U is in C
4. for X and Y in C the coproduct X � Y is in C

If in addition C is closed under the formation of quotients with respect to actions of finite
groups it will be called f -admissible.

Lemma A.2. — The categories of all schemes of finite type, of smooth quasi-projective schemes

and of smooth quasi-affine schemes over any field are admissible.

Lemma A.3. — The categories of quasi-projective and quasi-affine schemes over any field are

f -admissible.

Lemma A.4. — The categories of normal quasi-projective and normal quasi-affine schemes over

a perfect field are f -admissible.

Proof. — The only non-trivial point is to check that the product of two normal
quasi-projective schemes over a perfect field is normal. This follows from [8, 6.8.5] and
[8, 17.15.14.2]. �

Lemma A.5. — The categories of quasi-projective and quasi-affine semi-normal schemes over a

perfect field are f -admissible.

Proof. — Let us consider for example the quasi-projective case. The product of two
semi-normal schemes over a perfect field is semi-normal by [7, Corollary 5.9]. The fact
that a scheme etale over a semi-normal one is semi-normal follows from the results of [7]
as well. Let us show that if X is semi-normal then X/G is semi-normal. Let p : U → X/G
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be the semi-normalization of X/G. Then the projection X → X/G factors through p by
the universal property of semi-normalizations and since p is a universal homeomorphism
and X is reduced we conclude that X → U is invariant under G-action. Hence we get an
inverse X/G → U. �

Remark A.6. — The categories of (semi-)normal quasi-projective and quasi-affine
schemes over a non-perfect field are not admissible since the product of the spectra of
two inseparable extensions need not be normal.

Remark A.7. — Using the references provided above it is easy to see that the small-
est admissible category over any field consists of disjoint unions of (smooth) schemes X
such that for some n there exists an etale morphism X → An. The smallest f -admissible
category over a perfect field consists of finite group quotients of X as above. I do not know
whether the same category is f -admissible over any field.

A.2 Finite group quotients in additive categories

We will need some computations which apply to categorical quotients for finite
group actions in any additive category A. In our case the category will be Cor(C,R). Let
X be an object with an action of a finite group G. For an element g ∈ G we let [g] denote
the corresponding automorphism X → X. For a subgroup H of G we let pH : X → X/H
denote the projection. Note that pH[hg] = pH[g] for any h ∈ H and g ∈ G.

If L and M are two subgroups of G and g ∈ G is such that gLg−1 ⊂ M then there is
a unique morphism

pL,M,g : X/L → X/M

such that

pL,M,gpL = pM[g](A.1)

We will write pL,M instead of pL,M,1. Also for any L ⊂ M in G there exists a unique mor-
phism

pM,L : X/M → X/L

such that for any choice of a set of representatives [L\M] of L\M in M one has

pM,LpM =
∑

g∈[L\M]
pL[g].(A.2)

These observations are obvious from the definition of categorical quotients. We will need
the following result.
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Proposition A.8. — For any X, G and H as above one has:

1. pH,GpG,H = |G|/|H| IdX/G

2. Let [H\G/H] ⊂ G be a set of representatives for double coset classes in G with respect to

H. Then one has

pG,HpH,G =
∑

x∈[H\G/H]
pH∩x−1Hx,H,xp

H,H∩x−1Hx(A.3)

Proof. — The first equality is between morphisms from X/G to itself. Therefore
it is sufficient to check that the compositions of these morphisms with pG coincide. We
have:

pH,G,1pG,HpG = pH,G,1

∑
g∈[H\G]

pH[g] =
∑

g∈[H\G]
pG[g] = |G|/|H|pG

where the first equality holds by (A.2), the second by (A.1) and the third because pG[g] =
pG for all g.

To prove the second statement let us choose a set of representatives of double coset
classes [H\G/H] ⊂ G. Let us further choose sets of representatives [(H∩x−1Hx)\H] ⊂ H
for all x ∈ [H\G/H]. Then an element g of G can be written in a unique way as the
product hxu where h ∈ H, x ∈ [H\G/H] and u ∈ [(H∩x−1Hx)\H]. In particular, elements
of the form xu for x ∈ [H\G/H] and u ∈ [(H ∩ x−1Hx)\H] give us a set of representatives
for H\G which we denote by A.

Since (A.3) is an equality between two morphisms from X/H to itself it is sufficient
to check that their compositions with pH coincide i.e. that

pG,HpH,G,1pH =
∑

x∈[H\G/H]
pH∩x−1Hx,H,xp

H,H∩x−1HxpH(A.4)

We have ∑
x∈[H\G/H]

pH∩x−1Hx,H,xp
H,H∩x−1HxpH

=
∑

x∈[H\G/H]
pH∩x−1Hx,H,x

∑
u∈[(H∩x−1Hx)\H]

pH∩x−1Hx[u]

=
∑

x∈[H\G/H]

∑
u∈[(H∩x−1Hx)\H]

pH[x][u] =
∑

x∈[H\G/H]

∑
u∈[(H∩x−1Hx)\H]

pH[xu]

where the first equality holds by (A.2), the second by (A.1) and the third because [x][u] =
[xu]. On the other hand

pG,HpH,G,1pH = pG,HpG =
∑
g∈A

pH[g] =
∑

x∈[H\G/H]

∑
u∈[(H∩x−1Hx)\H]

pH[xu].
�
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Corollary A.9. — If H is a normal subgroup in G and [H\G] is a set of representatives for

the left conjugacy classes of H in G then

pG,HpH,G =
∑

g∈[H\G]
pH,H,g(A.5)

Recall from [12, p. 149] that a fork diagram ∂0, ∂1 : X →→ Y
e→ Z in a category is

called a split fork diagram if e∂0 = e∂1 and there exist morphisms s : Z → Y and t : Y → X
such that es = Id and ∂0t = Id, ∂1t = se. As was shown in [12, p. 149], every split fork
diagram is an absolute coequalizer diagram.

Proposition A.10. — Let X, G, H be as in Proposition A.8 and assume in addition that the

index |G|/|H| of H in G is invertible in the Hom-groups of our category. Then the fork diagram

∂0, ∂1 :
⊕
g∈G

X/(H ∩ g−1Hg)
→→ X/H

e→ X/G

where

∂0 =
⊕
g∈G

pH∩g−1Hg,H

∂1 =
⊕
g∈G

pH∩g−1Hg,H,g

and e = pH,G, is a split fork diagram and in particular an absolute coequalizer diagram.

Proof. — As in the proof of Proposition A.8 let us choose a set of representatives for
the double cosets [H\G/H] ⊂ G.

s = (|H|/|G|)pG,H

t = (|H|/|G|)
⊕

x∈[H\G/H]
pH,H∩x−1Hx

The relation es = Id follows from Proposition A.8(1) and by Proposition A.8(2) we have

se = (|H|/|G|)pH,GpG,H = (|H|/|G|)
∑

x∈[H\G/H]
pH∩x−1Hx,H,xp

H,H∩x−1Hx

We further have

∂0t = (|H|/|G|)
⊕

x∈[H\G/H]
pH∩x−1Hx,HpH,H∩x−1Hx

= (|H|/|G|)
∑

x∈[H\G/H]
(|H|/|H ∩ x−1Hx|)IdX/H

= (|H|/|G|)|H\G|IdX/H = IdX/H
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and

∂1t = (|H|/|G|)
⊕

x∈[H\G/H]
pH∩x−1Hx,H,xp

H,H∩x−1Hx = se.

�

Remark A.11. — The proof of Proposition A.10 shows that it remains valid if we re-
place the first term of the fork by

⊕
g∈[H\G/H] X/(H∩ g−1Hg) for any set of representatives

of double cosets [H\G/H] ⊂ G.

A.3 Radditive functors

In this appendix we reproduce for the convenience of the reader some definitions
and results of [38] which we use in this paper.

Let C be a small category with finite coproducts. A radditive functor on C is a
functor Cop → Sets (i.e. a presheaf of sets) such that F(X�Y) = F(X)×F(Y). We denote
the category of radditive functors by Rad(C). Representable functors are radditive by
definition of coproducts. The category Rad(C) is complete and cocomplete with limits,
filtered colimits and reflexive coequalizers (i.e. coequalizers of pairs of arrows f , g which
have a common section s, gs = fs = Id) being the same as for presheaves but with different
coproducts which are compatible for representable functors with coproducts in C (see [38,
Prop. 2009elprop]).

The category of radditive functors on an additive category A is naturally equiva-
lent to the category of additive contravariant functors from A to the category of Abelian
groups. If C has a final object pt and C+ is the full subcategory of the category of pointed
objects in C which consists of objects of the form (X � pt, ipt) then the category of raddi-
tive functors on C+ is naturally equivalent to the category of pointed radditive functors
on C (see [38, Lemma 2007pointed]). If C is a formal closure with respect of finite co-
products of a subcategory C′ then the category of radditive functors on C is naturally
equivalent to the category of presheaves on C′.

A morphism of simplicial radditive functors F : X → Y is called a projective
equivalence (resp. projective fibration) if for any U ∈ C the map of simplicial sets
FU : X(U) → Y(U) is a weak equivalence (resp. Kan fibration). The classes Wproj and
Fibproj of projective equivalences and projective fibrations generate a closed model struc-
ture on �opRad(C) which is called the projective closed model structure. Its homotopy
category is denoted by H(C).

For any set of morphisms E in �opRad(C) one defines in the usual way the class of
E-local objects and the class of E-local equivalences cll(E). The localization of H(C) by
cll(E) always exists and we denote it by H(C,E). If the projective closed model structure
is left proper then there exists a left Bousfield localization (see [10]) of the projective closed
model structure by E and cll(E) coincides with its class of weak equivalences. In the case
when the class of projective equivalences is closed under finite coproducts, which holds in
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all of the examples mentioned above, the projective closed model structure is left proper
and in addition the class of E-local equivalences is closed under coproducts for any E.

For any functor F : C → Rad(C′) where C and C′ are categories with finite co-
products the Kan extension F∗ of F takes radditive functors to radditive functors and
defines a Frad : Rad(C) → Rad(C′) which we call the radditive extension of F. The rad-
ditive extensions commute with filtered colimits and reflexive coequalizers. If F commutes
with finite coproducts then the right adjoint F∗ to F∗ takes radditive functors to radditive
functors and defines a right adjoint Frad to Frad which also commutes with filtered colimits
and reflexive coequalizers.

Let C# be the full subcategory of Rad(C) which consists of filtered colimits of
representable functors and C̄ the full subcategory of Rad(C) which consists of coproducts
of representable functors (the category C# is also known as the category of ind-objects
over C. See e.g. [1, Sec. 8.2.4, p. 70]). Since a finite coproduct of representable radditive
functors is representable we have C̄ ⊂ C#.

Proposition A.12 [38, Prop. 3.18 ]. — There are a functor L∗ : Rad(C) → �opRad(C)

and a natural transformation L∗ → ι where ι : Rad(C) → �opRad(C) is the natural embedding,

such that

1. for any X ∈ �opRad(C) the object L∗(X) belongs to �opC̄ and the morphism L∗(X) →
X is projective equivalence,

2. for any X ∈ �opC the morphism L∗(X) → X is a simplicial homotopy equivalence.

Proposition A.13 [38, Prop. 4.10 , Th. 4.8 ]. — One has:

1. the functor �opC# → H(C) is a localization,

2. for any F : C → Rad(C′), the functor Frad takes projective equivalences between objects of

�opC# to projective equivalences.

Proposition A.13 implies that any F : C → Rad(C′) defines a functor H(C) → H(C′)
which we denote by LFrad.

Proposition A.14 [38, Lemma 4.12 ]. — Let F : C → C′ be a functor which commutes

with finite coproducts. Then the functor Frad takes projective equivalences to projective equivalences and

the resulting functor RFrad : H(C′) → H(C) is right adjoint to LFrad.

Theorem A.15 [38, Th. 4.19 ]. — Let F : C → Rad(C′) be a functor and E, E′ be sets of

morphisms in �opC# and �opRad(C′) respectively such that for any f ∈ E and U ∈ C one has

Frad(f � IdU) ∈ cll(E′)

Then for any f ∈ cll(E)∩�opC# one has Frad(f ) ∈ cll(E′) and in particular LFrad defines a functor

H(C,E) → H(C′,E′).
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Theorem A.16 [38, Th. 4.20 ]. — Let F : C → C′ be a functor which commutes with

finite coproducts and E, E′ be sets of morphisms in �opC# and �op(C′)# respectively such that for

any f ∈ E and U ∈ C one has Frad(f � IdU) ∈ cll(E′) and for any f ′ ∈ E′ and U′ ∈ C′ one has

Frad(f
′ � IdU′) ∈ cll(E).

Then for any f ∈ cll(E)∩�opC# one has Frad(f ) ∈ cll(E′) and for any f ′ ∈ cll(E′) one has

Frad(f
′) ∈ cll(E) and the resulting functors LEFrad and REFrad between H(C,E) and H(C,E′) are

adjoint.

Proposition A.17 [38, Cor. 4.21 ]. — Under the assumptions of Theorem A.16 one has:

1. if F is a full embedding then LEFrad is a full embedding and REFrad is a localization,

2. if F is surjective on isomorphism classes of objects then REFrad reflects isomorphisms.

A morphism X → Y in Rad(C) is called a coprojection if it is isomorphic to the canonical
morphism of the form X → X � A. A morphism f in �opRad(C) is called a term-wise
coprojection if each term of fi of f is a coprojection.

A sequence X → Y → Z is called a term-wise coprojection sequence if X → Y is a
coprojection and Y → Z is isomorphic to Y → Y/X. For the general notion of a cofiber
sequence used below see [21] or [11].

Proposition A.18 [38, Th. 3.41, Cor. 3.53 ]. — If C is a pointed category then:

1. any term-wise coprojection sequence (X → Y → Z) in �opC# extends in a natural way to

a cofiber sequence (X → Y → Z, Z → X ∨L �(X)) in H(C),

2. any cofiber sequence (X → Y → Z, Z → X ∨L �(X)) in H(C) is isomorphic to the

cofiber sequence defined by a coprojection sequence X′ → Y′ → Z′ in �opC̄ where C̄ is the

full subcategory of coproducts of representable functors in Rad(C),

3. for any cofiber sequence (X
f→ Y

g→ Z, Z → X ∨L �(X)) in H(C) one has g ∈
cll({X → pt}) and (pt → Z) ∈ cll({f }).

The main technical tool which is used in the proofs of the results cited above is the
notion of a �̄-closed class defined as follows. Let D be a category which has coproducts
and filtered colimits. For a set K and an object X of D we let X ⊗ K = �KX denote the
coproduct of K copies of X. Similarly for a simplicial set K and an object X of �opD we
let X ⊗ K denote the simplicial object with terms Xn ⊗ Kn.

Let f , g : X → Y be two morphisms in �opD. An elementary simplicial homotopy
from f to g is defined in the usual way as a morphism h : X ⊗ �1 → Y such that f =
h ◦ (IdX ⊗ i0) and g = h ◦ (IdX ⊗ i1) where i0, i1 are the standard morphisms �0 → �1.
Let ∼ be the smallest equivalence relation on morphisms such that f ∼ g if there exists
an elementary simplicial homotopy from f to g. A morphism f : X → Y in �opD is said
to be a simplicial homotopy equivalence defined if there exists a morphism g : Y → X
such that f ◦ g ∼ IdY and g ◦ f ∼ IdX.
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A class of morphisms E in a category �opD is said to be closed under filtered
colimits if for any pair of filtered systems (Xi)i∈I, (Yi)i∈I and any morphism of systems
(fi) : (Xi) → (Yi) such that fi ∈ E one has f = colimi fi ∈ E.

Definition A.19. — A class of morphisms E in �opD is said to be �̄-closed if it
satisfies the following conditions:

1. simplicial homotopy equivalences are in E,
2. if f and g are morphisms such that the composition gf is defined and two out of

three morphisms f , g, gf are in E then the third is in E,
3. if f : B → B′ is a morphism of bisimplicial objects over D such that the rows or

columns of f are in E then the diagonal morphism �(f ) is in E,
4. E is closed under filtered colimits.

For any class of morphisms E there exists the smallest �̄-closed class which contains E
and we denote it by cl�̄(E).

Theorem A.20 [38, Th. 3.51, Cor. 3.52 ]. — Let C be a small category with finite coproducts

and E a set of morphisms in �opC#. Then one has

cll(E) ∩ �opC# = cl�̄(E � IdC)

and

cll(E) = cl�̄((E � IdC) ∪ Wproj)

where E � IdC is the set of morphisms of the form f � IdU for f ∈ E and U ∈ C.

The following somewhat technical result is used in the proof of Proposition A.22 below.
We denote by CofEnds the class of morphisms between objects in �opRad(C) which are
cofibrant in the projective closed model structure.

Proposition A.21 [38, Prop. 3.28 ]. — Let C be a small category with finite coproducts and

E a class of morphisms in �opRad(C) which satisfies the following conditions:

1. E contains Wproj,

2. E satisfies the 2-out-of-3 property,

3. E ∩ �opC# ∩ CofEnds is closed under coproducts,

4. for f ∈ E ∩ �opC# ∩ CofEnds and i ≥ 0 one has f ⊗ Id∂�i ∈ E,

5. for a morphism of push-out squares

(
f1 f2

f3 f4

)
:

⎛
⎜⎜⎝

X1 −−−→ X2

g

⏐⏐� ⏐⏐�
X3 −−−→ X4

⎞
⎟⎟⎠−→

⎛
⎜⎜⎝

X′
1 −−−→ X′

2

g′
⏐⏐� ⏐⏐�

X′
3 −−−→ X′

4

⎞
⎟⎟⎠
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such that all the objects are in �opC# ∩ CofEnds, the morphisms g, g′ are cofibrations and

term-wise coprojections and f1, f2, f3 are in E one has f4 ∈ E,

Then E is �̄-closed.

Let A be an additive category. The category Rad(A) of radditive functors on A is
easily seen to be equivalent to the category of additive functors from A to the category
of Abelian groups. In particular it is an Abelian category. The objects of the smallest
subcategory Ā of Rad(A) which contains A and is closed under direct sums are projec-
tive in Rad(A) and any object from Rad(A) can be epimorphically covered by an object
from Ā. In particular Ā has enough projectives. Let Cmpl−(Rad(A)) be the category of
complexes bounded from the above over Rad(A). We have the usual Dold-Kan corre-
spondence i.e. an adjoint pair of functors

N : �opRad(A) → Cmpl−(Rad(A))

K : Cmpl−(Rad(A)) → �opRad(A)

where N is the normalization functor and K is its right adjoint. As for any Abelian cate-
gory, the functor N is a full embedding and K is a localization. The composition N ◦ K
coincides with the canonical truncation functor τ≤0 which “removes” the negative coho-
mology objects of a complex.

Due to the fact that the representable functors are projective in Rad(C), a mor-
phism f in �opRad(A) is a projective equivalence if and only if N(f ) is a quasi-
isomorphism. Therefore N takes projective equivalences to quasi-isomorphisms and K
takes quasi-isomorphisms to projective equivalences. After passing to the corresponding
localizations we obtain a pair of adjoint functors

Nproj : H(A) → D−(Rad(A))

Kproj : D−(Rad(A)) → H(A)

such that Nproj is a full embedding.
For a class E of morphisms in a triangulated category let clvl(E) denote the (left)

Verdier closure of E i.e. the class of morphisms whose cones belong to the localizing
subcategory generated by cones of morphisms from E.

Proposition A.22. — Let E be a set of morphisms in �opRad(A). Then one has

Nproj(cll(E)) ⊂ clvl(Nproj(E))

(for simplicity we omit the natural projection � : �opRad(A) → H(A) from our notation).
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Proof. — By Theorem A.20 we have

cll(E) = cl�̄((E ⊕ IdA) ∪ Wproj)(A.6)

where we use ⊕ to denote coproducts in the additive context. Consider the class F =
N−1

proj(clvl(Nproj(E))). To prove that it contains cll(E) it is sufficient in view of (A.6) to prove
that it is �̄-closed and contains Wproj and E ⊕ IdA. The later is obvious. To prove that F
is �̄-closed we use [38, Prop. bdlchar] which implies easily that it is sufficient to establish
that F satisfies the diagonal condition of Definition A.19. Let us apply Proposition A.21
to F. the first three conditions of the lemma are obvious. The fourth condition follows
from the fact that N(X ⊗ ∂�i) ∼= N(X)[i − 1]. To prove the fifth condition observe that
for a push-out square

X1 −−−→ X2

g

⏐⏐� ⏐⏐�
X3 −−−→ X4

such that g is a monomorphism, the sequence of complexes

0 → N(X1) → N(X2) ⊕ N(X3) → N(X4) → 0

is exact. Since coprojections in an additive category are monomorphisms this implies
that in the context of the fifth condition of Proposition A.21 we get a morphism of exact
sequences of complexes

0 → N(X1) −−−→ N(X2) ⊕ N(X3) −−−→ N(X4) → 0

N(f1)

⏐⏐� N(f2)⊕N(f3)

⏐⏐� N(f4)

⏐⏐�
0 → N(X′

1) −−−→ N(X′
2) ⊕ N(X′

3) −−−→ N(X′
4) → 0

and therefore a distinguished triangle

cone(N(f1)) → cone(N(f2)) ⊕ cone(N(f3)) → cone(N(f4))

→ cone(N(f1))[1]
The fact that N(f4) ∈ F follows now from the standard properties of Verdier closure.
Proposition is proved. �
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