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Abstract
We develop a theory of motivic integration for smooth rigid varieties. As an applica-
tion we obtain a motivic analogue for rigid varieties of Serre’s invariant for p-adic
varieties. Our construction provides new geometric birational invariants of degener-
ations of algebraic varieties. For degenerations of Calabi-Yau varieties, our results
take a stronger form.

1. Introduction
In the last years, motivic integration has been shown to be a quite powerful tool in
producing new invariants in birational geometry of algebraic varieties over a fieldk,
say, of characteristic zero (see [18], [1], [3], [10], [11], [12]). Let us explain the basic
idea behind such results. Ifh : Y → X is a proper birational morphism betweenk-
algebraic varieties, the induced morphismL (Y) → L (X) between arc spaces (see
[10]) is a bijection outside subsets of infinite codimension. By a fundamental change
of variable formula, motivic integrals onL (X) may be computed onL (Y) whenY
is smooth.

In the present paper we develop similar ideas in the somewhat dual situation
of degenerating families over complete discrete valuation rings with perfect residue
field, for which rigid geometry appears to be a natural framework. More precisely, let
R be a complete discrete valuation ring with fraction fieldK and perfect residue field
k. We construct a theory of motivic integration for smooth∗ rigid K -spaces, always
assumed to be quasi-compact and separated. LetX be a smooth rigidK -space of
dimensiond. Our construction assigns to a gauge formω on X, that is, a nowhere
vanishing differential form of degreed on X, an integral

∫
X ω dµ̃ with value in the

∗The extension to singular rigid spaces whenK is of characteristic zero will be considered in a separate publi-
cation.
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ring K0(Vark)loc. HereK0(Vark)loc is the localization with respect to the class of the
affine line of the Grothendieck group of algebraic varieties overk. In concrete terms,
two varieties overk define the same class inK0(Vark)loc if they become isomorphic
after cutting them into locally closed pieces and stabilizing by product with a power
of the affine line. More generally, ifω is a differential form of degreed on X, we
define an integral

∫
X ω dµ with value in the ring ̂K0(Vark), which is the completion

of K0(Vark)loc with respect to the filtration by virtual dimension (see Sec.3.4). The
construction is done by viewingX as the generic fibre of some formalR-schemeX .
To such a formalR-scheme, by means of the Greenberg functorX 7→ Gr(X ), one
associates a certaink-scheme Gr(X ) which parametrizes unramified sections ofX .
WhenR= k[[t]] andX is the formal completion ofX0⊗ k[[t]] for X0 an algebraic
variety overk, Gr(X ) is nothing else than the arc spaceL (X0). We may then use
the general theory of motivic integration on schemes Gr(X ), which is developed in
[25]. Of course, for the construction to work one needs to check that it is independent
of the chosen model. This is done by using two main ingredients: the theory of weak
Néron models developed in [7] and [9], and the analogue for schemes of the form
Gr(X ) of the change of variable formula, which is proven in [25]. In fact, the theory
of weak Ńeron models really pervades the whole paper, and some parts of the book
[7] were crying out for their use in motivic integration.∗

As an application of our theory, we are able to assign in a canonical way to every
smooth quasi-compact and separated rigidK -spaceX an elementS(X) in the quo-
tient ring K0(Vark)loc/(L − 1)K0(Vark)loc, whereL stands for the class of the affine
line. WhenX admits a formalR-model with good reduction,S(X) is just the class
of the fibre of that model. More generally, ifU is a weak Ńeron model ofX, S(X)

is equal to the class of the special fibre ofU in K0(Vark)loc/(L − 1)K0(Vark)loc. In
particular, it follows that this class is independent of the choice of the weak Néron
modelU . This construction applies, in particular, to analytifications of smooth pro-
jective algebraic varieties overK , yielding also for such a varietyX an invariantS(X)

in K0(Vark)loc/(L − 1)K0(Vark)loc.
Our invariantS(X) can be viewed as a rigid analogue of an invariant defined

by J.-P. Serre for compact smooth locally analytic varieties over a local field. To
such a varietyX̃, Serre associates in [26], using classicalp-adic integration, an in-
variants(X̃) in the ringZ/(q − 1)Z, whereq denotes the cardinality of the finite
field k. Counting rational points ink yields a canonical morphismK0(Vark)loc/(L −
1)K0(Vark)loc→ Z/(q − 1)Z, and we show that the image by this morphism of our
motivic invariantS(X) of a smooth rigidK -spaceX is equal to the Serre invariant of
the underlying locally analytic variety.

Unless making additional assumptions onX, one cannot hope to lift our invariant

∗See the remark at the bottom of [7, p. 105].
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S(X) to a class in the Grothendieck ringK0(Vark)loc which would be a substitute for
the class of the special fibre oftheNéron model when such a Néron model happens to
exist. In the particular situation whereX is the analytification of a Calabi-Yau variety
overK , that is, a smooth projective algebraic variety overK of pure dimensiond with
�d

X trivial, the following can be achieved: one can attach toX a canonical element
of K0(Vark)loc, which, if X admits a proper and smoothR-modelX , is equal to the
class of the special fibreX0 in K0(Vark)loc. In particular, ifX admits two such models
X andX ′, the class of the special fibresX0 andX ′

0 in K0(Vark)loc are equal, which
may be seen as an analogue of V. Batyrev’s result on birational Calabi-Yau varieties
[2].

The paper is organized as follows. Section2 is devoted to preliminaries on formal
schemes, the Greenberg functor, and weak Néron models. In Section 3 we review the
results on motivic integration on formal schemes obtained by J. Sebag in [25] which
are needed in the present work. We are then able in Section4 to construct a motivic in-
tegration on smooth rigid varieties and to prove the main results that are mentioned in
the present introduction. Finally, in Section5, guided by the analogy with arc spaces,
we formulate an analogue of the Nash problem, which is about the relation between
essential (i.e., appearing in every resolution) components of resolutions of a singular
variety and irreducible components of spaces of truncated arcs on the variety, for for-
mal R-schemes with smooth generic fibre. Recently, S. Ishii and J. Kollár [17] gave
an example where these two sets are not in bijection. In our setting, analogy suggests
there might be some relation between essential components of weak Néron models of
a given formalR-schemeX with smooth generic fibre and irreducible components
of the truncationπn(Gr(X )) of its Greenberg space forn � 0. As a very first step
in that direction, we compute the dimension of the contribution of a given irreducible
component to the truncation.

2. Preliminaries on formal schemes and Greenberg functor

2.1. Formal schemes
In this paperR denotes a complete discrete valuation ring with residue fieldk and
fraction field K . We assume thatk is perfect. We fix once for all a uniformizing
parameter$ , and we setRn := R/($)n+1 for n ≥ 0. In the whole paper, by
a formal R-scheme, we always mean a quasi-compact, separated, locally topolog-
ically of finite type formal R-scheme, in the sense of [16, Sec 10]. A formalR-
scheme is a locally ringed space(X , OX ) in topologicalR-algebras. It is equiva-
lent to the data, for everyn ≥ 0, of the Rn-schemeXn = (X , OX ⊗R Rn). The
k-schemeX0 is called thespecial fibreof X . As a topological space,X is iso-
morphic to X0 and OX = lim

←−
OXn . We haveXn = Xn+1 ⊗Rn+1 Rn, andX is



318 LOESER and SEBAG

canonically isomorphic to the inductive limit of the schemesXn in the category of
formal schemes. Locally,X is isomorphic to an affine formalR-scheme of the form
Spf A with A an R-algebra topologically of finite type, that is, a quotient of a re-
stricted formal series algebraR{T1, . . . , Tm}. If Y andX are R-formal schemes,
we denote by HomR(Y , X ) the set of morphisms of formalR-schemesY → X ,
that is, morphisms between the underlying locally topologically ringed spaces over
R (see [16, Sec. 10]). It follows from [16, Prop. 10.6.9] that the canonical morphism
HomR(Y , X )→ lim

←−
HomRn(Yn, Xn) is a bijection.

If k is a field, by a variety overk we mean a separated reduced scheme of finite
type overk.

2.2. Extensions
Let A be ak-algebra. We setL(A) = A whenR is a ring of equal characteristic and
L(A) = W(A), the ring of Witt vectors, whenR is a ring of unequal characteristic,
and we denote byRA the ring RA := R⊗̂L(k)L(A). WhenF is a field containingk,
we denote byKF the field of fractions ofRF . When the fieldF is perfect, the ring
RF is a discrete valuation ring, and, furthermore, the uniformizing parameter$ in R
induces a uniformizing parameter inRF . Hence, sincek is assumed to be perfect, the
extensionR→ RF has ramification index 1 in the terminology of [7, Sec 3.6].

2.3. The Greenberg functor
We recall some material from [13] and [7, Sec. 9.6]. Let us note that, whenR is a ring
of equal characteristic, we can view, once a lifting ofk to R is chosen,Rn as the set of
k-valued points of some affine spaceAm

k which we denote byRn, in a way compatible
with the k-algebra structure. WhenR is a ring of unequal characteristic,Rn can no
longer be viewed as ak-algebra. However, using Witt vectors, we may still interpret
Rn as the set ofk-valued points of a ring schemeRn, which, as ak-scheme, is isomor-
phic to some affine spaceAm

k . Note that we have canonical morphismsRn+1→ Rn.
Now, for everyn ≥ 0, we consider the functorh∗n which to ak-schemeT asso-

ciates the locally ringed spaceh∗n(T) which hasT as an underlying topological space
andH omk(T, Rn) as a structure sheaf. In particular, for every perfectk-algebraA,

h∗n(A) = Spec
(
Rn ⊗L(k) L(A)

)
.

Taking A = k, we see thath∗nT is a locally ringed space over SpecRn.
By a fundamental result of M. Greenberg [13] (which in the equal characteristic

case amounts to Weil restriction of scalars), forRn-schemesXn, locally of finite type,
the functor

T 7−→ HomRn

(
h∗n(T), Xn

)
from the category ofk-schemes to the category of sets is represented by ak-scheme
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Grn(Xn) which is locally of finite type. Hence, for every perfectk-algebraA,

Grn(Xn)(A) = Xn
(
Rn ⊗L(k) L(A)

)
,

and, in particular, settingA = k, we have

Grn(Xn)(k) = Xn(Rn).

Among basic properties, the Greenberg functor respects closed immersions, open
immersions, fibred products, and smooth andétale morphisms, and it also sends
affines to affines.

Now let us consider again a formalR-schemeX . The canonical adjunction mor-
phismh∗n+1(Grn+1(Xn+1))→ Xn+1 gives rise, by tensoring withRn, to a canonical
morphism ofRn-schemesh∗n(Grn+1(Xn+1)) → Xn, from which one derives, again
by adjunction, a canonical morphism ofk-schemes

θn : Grn+1(Xn+1) −→ Grn(Xn).

In this way we attach to the formal schemeX a projective system(Grn(Xn))n∈N of
k-schemes. The transition morphismsθn being affine, the projective limit

Gr(X ) := lim
←−

Grn(Xn)

exists in the category ofk-schemes.
Let T be ak-scheme. We denote byh∗(T) the locally ringed space that hasT

as an underlying topological space and lim
←−

H omk(T, Rn) as a structure sheaf. It is
a locally ringed space over SpfR which identifies with the projective limit of the
spacesh∗n(T) in the category of locally ringed spaces. Furthermore, one checks, sim-
ilarly as in [16, Prop. 10.6.9], that the canonical morphism HomR(h∗(T), X ) →

lim
←−

HomRn(h
∗
n(T), Xn) is a bijection for every formalR-schemeX .

Putting everything together, we get the following.

PROPOSITION2.3.1
LetX be a quasi-compact, locally topologically of finite type formal R-scheme. The
functor

T 7−→ HomR
(
h∗(T), X

)
from the category of k-schemes to the category of sets is represented by the k-scheme
Gr(X ).

In particular, for every fieldF containingk, there are canonical bijections

Gr(X )(F) ' HomR(SpfRF , X ) ' X (RF ).
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One should note that, in general, Gr(X ) is not of finite type, even ifX is a
quasi-compact, topologically of finite type formalR-scheme.

In this paper, we always consider the schemes Grn(Xn) and Gr(X ) with their
reduced structure.

Sometimes, by abuse of notation, we write Grn(X ) for Grn(Xn).

PROPOSITION2.3.2
(1) The functorGr respects open and closed immersions and fibre products, and

it sends affine formal R-schemes to affine k-schemes.
(2) Let X be a formal quasi-compact and separated R-scheme, and let(Oi )i∈J

be a finite covering by formal open subschemes. There are canonical isomor-
phismsGr(Oi∩O j ) ' Gr(Oi )∩Gr(O j ), and the schemeGr(X ) is canonically
isomorphic to the scheme obtained by gluing the schemesGr(Oi ).

Proof
Assertion (1) for the functor Grn is proved in [13] and [7], and it follows for Gr by
taking projective limits. Assertion (2) follows from (1) and the universal property
defining Gr.

Remark 2.3.3
Assume that we are in the equal characteristic case, that is,R = k[[$ ]]. For X an
algebraic variety overk, we can consider the formalR-schemeX⊗̂R obtained by
base change and completion. We have canonical isomorphisms Gr(X⊗̂R) ' L (X)

and Grn(X ⊗ Rn) ' Ln(X), whereL (X) andLn(X) are the arc spaces considered
in [10].

2.4. Smoothness
Let us recall the definition of smoothness for morphisms of formalR-schemes. A
morphism f : X → Y of formal R-schemes is smooth at a pointx of X0 of relative
dimensiond if it is flat at x and the induced morphismf0 : X0→ Y0 is smooth atx
of relative dimensiond. An equivalent condition (see [6, Lem. 1.2]) is that for every
n in N the induced morphismfn : Xn → Yn is smooth atx of relative dimensiond.
The morphismf is smooth if it is smooth at every point ofX0. The formalR-scheme
X is smooth at a pointx of X0 if the structural morphism is smooth atx.

Let X be a flat formalR-scheme of relative dimensiond. We denote byXsing

the closed formal subscheme ofX defined by the radical of the Fitting ideal sheaf
Fittd�X /R. The formalR-schemeX is smooth at a pointx of X0 (resp., is smooth)
if and only if x is not inXsing (resp.,Xsing is empty).



MOTIVIC INTEGRATION ON SMOOTH RIGID VARIETIES 321

2.5. Greenberg’s theorem
The following statement, which is an adaptation of a result of N. Schappacher [24],
is an analogue of Greenberg’s theorem (see [14, Th. 1]) in the framework of formal
schemes. We refer to [25] for a more detailed exposition.

THEOREM-DEFINITION 2.5.1
Let R be a complete discrete valuation ring, and letX be a formal R-scheme. For
every n≥ 0, there exists an integer n′ ≥ n such that, for every perfect field F con-
taining k, and every x inX (RF/$ n′+1), the image of x inX (RF/$ n+1) may be
lifted to a point inX (RF ). We denote byγX (n) the smallest such n′. The function
n 7→ γX (n) is called theGreenberg functionof X .

2.6. Rigid spaces
For X a flat formal R-scheme, we denote byXK its generic fibre in the sense of
M. Raynaud [23]. By Raynaud’s theorem (see [23], [5]), the functorX 7→ XK

induces an equivalence between the localization of the category of quasi-compact flat
formal R-schemes by admissible formal blow-ups and the category of rigidK -spaces
that are quasi-compact and quasi-separated. Furthermore,X is separated if and only
if XK is separated (see [5, Prop. 4.7]). Recall that for the blow-up of an ideal sheafI

to be admissible means thatI contains some power of the uniformizing parameter
$ . In the paper all rigidK -spaces are assumed to be quasi-compact and separated.

2.7. Weak Ńeron models
We denote byRsh a strict Henselization ofR, and we denote byK sh its field of
fractions.

Definition 2.7.1
Let X be a smooth rigidK -variety. A weak formal Ńeron model∗ of X is a smooth
formal R-schemeU , whose generic fibreUK is an open rigid subspace ofXK , and
which has the property that the canonical mapU (Rsh)→ X(K sh) is bijective.

The construction of weak Ńeron models, using Ńeron’s smoothening process pre-
sented in [7], carries over almost literally fromR-schemes to formalR-schemes, and
it gives, as explained in [9], the following result.

THEOREM 2.7.2
LetX be a quasi-compact formal R-scheme whose generic fibreXK is smooth. Then
there exists a morphism of formal R-schemesX ′

→ X which is the composition of

∗We follow here the terminology of [9], which is somewhat different from that of [7].
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a sequence of formal blow-ups with centers in the corresponding special fibres, such
that every Rsh-valued point ofX factors through the smooth locus ofX ′.

One deduces the following omnibus statement.

PROPOSITION2.7.3
Let X be a smooth quasi-compact and separated rigid K -space, and letX be a
formal R-model of X, that is, a quasi-compact formal R-schemeX with generic fibre
X. Then there exists a weak formal Néron modelU of X which dominatesX and
which is quasi-compact. Furthermore, the canonical mapU (Rsh) → X (Rsh) is a
bijection, and for every perfect field F containing k, the formal RF -schemeU ⊗̂RRF

is a weak Ńeron model of the rigid KF -space X̂⊗K KF . In particular, the morphism
U → X induces a bijection between points ofGr(U ) andGr(X ).

Proof
We choose a formal modelX of X such that we are in the situation of Theorem2.7.2.
The smooth locusU of X ′ is quasi-compact and is a weak Néron model ofXK

since, by [9, Lem. 2.2(ii)], everyK sh-valued point ofXK extends uniquely to aRsh-
valued point ofX . Also, it follows from [7, §3.6, Cor. 6] that, ifU is a weak Ńeron
model of the rigidK -spaceX, then for every perfect fieldF containingk, the formal
RF -schemeU ⊗̂RRF is a weak Ńeron model of the rigidKF -spaceX⊗̂K KF .

Example 2.7.4
Let X be a regular scheme of finite presentation over SpecR, and letU be the
open subscheme of smooth points. Then̂U , the formal completion ofU along the
special fibre, is a weak Ńeron model of the rigidK -space associated tôX , the formal
completion ofX along the special fibre.

3. Motivic integration on formal schemes
The material in this section is borrowed from [25], to which we refer for details.

3.1. Truncation
For X a formal R-scheme, we denote byπn,X or πn the canonical projection
Gr(X )→ Grn(Xn) for n in N.

Let us first state the following corollary of Theorem2.5.1.

PROPOSITION3.1.1
Let X be a formal R-scheme. The imageπn(Gr(X )) of Gr(X ) in Grn(Xn) is a
constructible subset ofGrn(Xn). More generally, if C is a constructible subset of
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Grm(Xm), πn(π
−1
m (C)) is a constructible subset ofGrn(Xn) for every n≥ 0.

Proof
Indeed, it follows from Theorem2.5.1 that πn(Gr(X )) is equal to the image of
Grγ (n)(Xγ (n)) in Grn(Xn). The morphism Grγ (n)(Xγ (n))→ Grn(Xn) being of finite
type, the first statement follows from Chevalley’s theorem. For the second statement,
one may assumem= n, and the proof proceeds as before.

PROPOSITION3.1.2
LetX be a smooth formal separated R-scheme (quasi-compact, locally topologically
of finite type over R) of relative dimension d.
(1) For every n, the morphismπn : Gr(X )→ Grn(Xn) is surjective.
(2) For every n and m inN, the canonical projectionGrn+m(Xn+m)→ Grn(Xn)

is a locally trivial fibration for the Zariski topology with fibreAdm
k .

We say that a mapπ : A→ B is a piecewise morphism if there exists a finite partition
of the domain ofπ into locally closed subvarieties ofX such that the restriction ofπ
to any of these subvarieties is a morphism of schemes.

3.2. Away from the singular locus
Let X be a formalR-scheme, and consider its singular locusXsing defined in Section
2.4. For all integerse≥ 0, we view Gre(Xsing,e) as contained in Gre(X ), and we set

Gr(e)(X ) := Gr(X ) \ π−1
e

(
Gre(Xsing,e)

)
.

We say that a mapπ : A→ B betweenk-constructible setsA andB is a piece-
wise trivial fibration with fibreF if there exists a finite partition ofB in subsetsS
which are locally closed inY such thatπ−1(S) is locally closed inX and isomorphic,
as a variety overk, to S× F , with π corresponding under the isomorphism to the
projectionS× F → S. We say that the mapπ is a piecewise trivial fibration over
some constructible subsetC of B if the restriction ofπ to π−1(C) is a piecewise
trivial fibration ontoC.

PROPOSITION3.2.1
Let X be a flat formal R-scheme of relative dimension d. There exists an integer
c ≥ 1 such that, for all integers e and n inN such that n≥ ce, the projection

πn+1
(

Gr(X )
)
−→ πn

(
Gr(X )

)
is a piecewise trivial fibration overπn(Gr(e)(X )) with fibreAd

k .



324 LOESER and SEBAG

3.3. Dimension estimates
LEMMA 3.3.1
Let X be a formal R-scheme whose generic fibreXK is of dimension less than or
equal to d. Then we have the following.
(1) For every n inN,

dimπn
(

Gr(X )
)
≤ (n+ 1)d.

(2) For m ≥ n, the fibres of the projectionπm(Gr(X )) → πn
(

Gr(X )) are of
dimension less than or equal to(m− n)d.

LEMMA 3.3.2
LetX be a formal R-scheme whose generic fibreXK is of dimension d. LetS be a
closed formal R-subscheme ofX such thatSK is of dimension less than d. Then, for
all integers n, i , and̀ such that n≥ i ≥ γS (`), whereγS is the Greenberg function
of S defined in Theorem-Definition2.5.1, πn,X (π−1

i,X Gri (S )) is of dimension less
than or equal to(n+ 1) d − `− 1.

3.4. Grothendieck rings
Let k be a field. We denote byK0(Vark) the abelian group generated by symbols
[S], for S a variety overk, with the relations[S] = [S′] if S andS′ are isomorphic
and [S] = [S′] + [S \ S′] if S′ is closed inS. There is a natural ring structure on
K0(Vark), the product being induced by the Cartesian product of varieties,∗ and to any
constructible setS in some variety, one naturally associates a class[S] in K0(Vark).
We denote byK0(Vark)loc the localizationK0(Vark)loc := K0(Vark)[L−1

] with L :=
[A1

k]. Let us note that the canonical morphism

K0(Vark)/(L − 1)K0(Vark) −→ K0(Vark)loc/(L − 1)K0(Vark)loc

is an isomorphism.
We denote byFmK0(Vark)loc the subgroup generated by[S]L−i with dim S−

i ≤ −m, and we denote by ̂K0(Vark) the completion ofK0(Vark)loc with respect to
the filtration F ·. (It is still unknown whether the filtrationF · is separated or not.)
We also denote byF · the filtration induced on ̂K0(Vark). We denote byK0(Vark)loc

the image ofK0(Vark)loc in ̂K0(Vark). We put on the ring ̂K0(Vark) a structure of
a non-Archimedean ring by setting||a|| := 2−n, wheren is the largestn such that
a ∈ Fn ̂K0(Vark) for a 6= 0 and||0|| = 0.

∗By the Cartesian product of two varietiesSandS′ overk, we mean the fibre productS×k S′ endowed with its
reduced structure.
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3.5. Cylinders
Let X be a formalR-scheme. A subsetA of Gr(X ) is cylindrical of leveln ≥ 0
if A = π−1

n (C) with C a constructible subset of Grn(X ). We denote byCX the
set of cylindrical subsets of Gr(X ) of some level. Let us note thatCX is a Boolean
algebra, that is, contains Gr(X ), ∅, and is stable by finite intersection, finite union,
and by taking complements. It follows from Proposition3.1.1that if A is cylindrical
of some level, thenπn(A) is constructible for everyn ≥ 0.

A basic finiteness property of cylinders is the following.

LEMMA 3.5.1
Let Ai , i ∈ I , be a denumerable family of cylindrical subsets ofGr(X ). If A :=⋃

i∈I Ai is also a cylinder, then there exists a finite subset J of I such that A:=⋃
i∈J Ai .

Proof
Since Gr(X ) is quasi-compact, this follows from [16, Th. 7.2.5].

3.6. Motivic measure for cylinders
Let X be a flat formalR-scheme of relative dimensiond. Let A be a cylinder of
Gr(X ). We say thatA is stable of leveln if it is cylindrical of leveln and if, for every
m≥ n, the morphism

πm+1
(

Gr(X )
)
−→ πm

(
Gr(X )

)
is a piecewise trivial fibration overπn(A) with fibre Ad

k . We denote byC0,X the set
of stable cylindrical subsets of Gr(X ) of some level.

It follows from Proposition3.1.2that every cylinder in Gr(X ) is stable whenX
is smooth. WhenX is no longer assumed to be smooth,C0,X is in general not a
Boolean algebra but is an ideal ofCX : C0,X contains∅, it is stable by finite union,
and the intersection of an element inCX with an element ofC0,X belongs toC0,X .
In general, Gr(X ) is not stable, but it follows from Proposition3.2.1that Gr(e)(X )

is a stable cylinder of Gr(X ), for everye≥ 0.
From first principles, one proves the following (see [10], [25]).

PROPOSITION-DEFINITION 3.6.1
There is a unique additive morphism

µ̃ : C0,X −→ K0(Vark)loc

such thatµ̃(A) = [πn(A)]L−(n+1)d when A is a stable cylinder of level n.

One deduces from Lemmas3.3.1and3.3.2(see [10], [25]) the following.
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PROPOSITION3.6.2
(1) For any cylinder A inCX , the limit

µ(A) := lim
e→∞

µ̃
(
A∩Gr(e)(X )

)
exists in ̂K0(Vark).

(2) If A belongs toC0,X , then µ(A) coincides with the image of̃µ(A) in
̂K0(Vark).

(3) If A in CX is the disjoint union of a denumerable family of subsets Ai , i ∈ I ,
which all belong toCX , then

µ(A) =
∑
i∈I

µ(Ai ).

(4) For A and B inCX , ||µ(A ∪ B)|| ≤ max(||µ(A)||, ||µ(B)||). If A ⊂ B,
||µ(A)|| ≤ ||µ(B)||.

3.7. Measurable subsets ofGr(X )

For A andB subsets of the same set, we use the notationA4B for (A∪ B) \ A∩ B.

Definition 3.7.1
We say that a subsetA of Gr(X ) is measurableif, for every positive real numberε,
there exists anε-cylindrical approximation, that is, a sequence of cylindrical subsets
Ai (ε), i ∈ N, such that (

A4A0(ε)
)
⊂

⋃
i≥1

Ai (ε)

and||µ(Ai (ε))|| ≤ ε for all i ≥ 1. We say thatA is strongly measurableif, moreover,
we can takeA0(ε) ⊂ A.

THEOREM 3.7.2
If A is a measurable subset ofGr(X ), then

µ(A) := lim
ε→0

µ
(
A0(ε)

)
exists in ̂K0(Vark) and is independent of the choice of the sequences Ai (ε), i ∈ N.

For A a measurable subset of Gr(X ), we callµ(A) the motivic measureof A. We
denote byDX the set of measurable subsets of Gr(X ).

One should note that obviouslyCX is contained inDX .
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PROPOSITION3.7.3
(1) DX is a Boolean algebra.
(2) If Ai , i ∈ N, is a sequence of measurable subsets ofGr(X ) with

lim i→∞ ||µ(Ai )|| = 0, then
⋃

i∈N Ai is measurable.
(3) Let Ai , i ∈ N, be a family of measurable subsets ofGr(X ). Assume that

the sets Ai are mutually disjoint and that A:=
⋃

i∈N Ai is measurable. Then∑
i∈N µ(Ai ) converges in ̂K0(Vark) to µ(A).

(4) If A and B are measurable subsets ofGr(X ) and if A⊂ B, then||µ(A)|| ≤

||µ(B)||.

Remark 3.7.4
In the situation of Remark2.3.3, one can check that the notions of cylinders, stable
cylinders, and measurable subsets of Gr(X⊗̂R) coincide with the analogous notions
introduced in [12] for subsets ofL (X).

3.8. Order of the Jacobian ideal
Let h : Y → X be a morphism of flat formalR-schemes of relative dimensiond.

Let y be a point of Gr(Y ) \ Gr(Ysing) defined over some perfect field extension
F of k. We denote byϕ : SpfRF → Y the corresponding morphism of formal
R-schemes. We define ord$ (Jach)(y), the order of the Jacobian ideal ofh at y, as
follows.

From the natural morphismh∗�X |R → �Y |R, one deduces, by taking thedth
exterior power, a morphismh∗�d

X |R→ �d
Y |R and hence a morphism

(ϕ∗h∗�d
X |R)/(torsion) −→ (ϕ∗�d

Y |R)/(torsion).

Since L := (ϕ∗�d
Y |R)/(torsion) is a free ORF -module of rank 1, it follows

from the structure theorem for finite-type modules over principal domains that
the image ofM := (ϕ∗h∗�d

X |R)/(torsion) in L is either zero, in which case
we set ord$ (Jach)(y) = ∞, or $ nL for somen ∈ N, in which case we set
ord$ (Jach)(y) = n.

3.9. The change of variable formula
If h : Y → X is a morphism of formalR-schemes, we still writeh for the corre-
sponding morphism Gr(Y )→ Gr(X ).

The following lemmas are basic geometric ingredients in the proof of the change
of variable formula (see Ths.3.9.3and3.9.4).

LEMMA 3.9.1
Let h : Y → X be a morphism between flat formal R-schemes of relative dimension
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d. We assume thatY is smooth. For e and e′ in N, we set

1e,e′ :=
{
ϕ ∈ Gr(Y )

∣∣ ord$ (Jach)(y) = e and h(ϕ) ∈ Gr(e
′)(X )

}
.

Then there exists c inN such that, for every n≥ 2e, n≥ e+ ce′, for everyϕ in 1e,e′ ,
and for every x inGr(X ) such thatπn(h(ϕ)) = πn(x), there exists y inGr(Y ) such
that h(y) = x andπn−e(ϕ) = πn−e(y).

LEMMA 3.9.2
Let h : Y → X be a morphism between flat formal R-schemes of relative dimension
d. We assume thatY is smooth. Let B be a cylinder inGr(Y ), and set A= h(B).
Assume thatord$ (Jach) is constant with value e<∞ on B and that A⊂ Gr(e

′)(X )

for some e′ ≥ 0. Then A is a cylinder. Furthermore, if the restriction of h to B is
injective, then for n� 0 the following hold.
(1) If ϕ andϕ′ belong to B andπn(h(ϕ)) = πn(h(ϕ′)), thenπn−e(ϕ) = πn−e(ϕ

′).
(2) The morphismπn(B) → πn(A) induced by h is a piecewise trivial fibration

with fibreAe
k.

For a measurable subsetA of Gr(X ) and a functionα : A→ Z ∪ {∞}, we say that
L−α is integrable or thatα is exponentially integrable if the fibres ofα are measurable
and if the motivic integral∫

A
L−α dµ :=

∑
n∈Z

µ(α−1(n))L−n

converges in ̂K0(Vark).
When all the fibresα−1(n) are stable cylinders andα takes only a finite number

of values onA, it is not necessary to go to the completion ofK0(Vark)loc and one may
directly define ∫

A
L−α dµ̃ :=

∑
n∈Z

µ̃
(
α−1(n)

)
L−n

in K0(Vark)loc.

THEOREM 3.9.3
Let h : Y → X be a morphism between flat formal R-schemes of relative dimension
d. We assume thatY is smooth. Let B be a strongly measurable subset ofGr(Y ).
Assume that h induces a bijection between B and A:= h(B). Then, for every expo-
nentially integrable functionα : A → Z ∪ ∞, the functionα ◦ h + ord$ (Jach) is
exponentially integrable on B and∫

A
L−α dµ =

∫
B

L−α◦h−ord$ (Jach) dµ.
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We also need the following variant of Theorem3.9.3.

THEOREM 3.9.4
Let h : Y → X be a morphism between flat formal R-schemes of relative dimension
d. We assume thatY andXK are smooth and that the morphism hK : YK → XK

induced by h iśetale (see [8]). Let B be a cylinder inGr(Y ). Assume that h induces a
bijection between B and A:= h(B) and that A is a stable cylinder ofGr(X ). Then
the fibres B∩ ord$ (Jach)−1(n) are stable cylinders,ord$ (Jach)−1(n) takes only a
finite number of values on B, and∫

A
dµ̃ =

∫
B

L−ord$ (Jach) dµ̃

in K0(Vark)loc.

4. Integration on smooth rigid varieties

4.1. Order of differential forms
Let X be a flat formalR-scheme equidimensional of relative dimensiond. Consider
a differential formω in �d

X |R(X ). Let x be a point of Gr(X ) \ Gr(Xsing) defined
over some perfect field extensionF of k. We denote byϕ : SpfRF → X the cor-
responding morphism of formalR-schemes. SinceL := (ϕ∗�d

X |R)/(torsion) is a
freeORF -module of rank 1, it follows from the structure theorem for finite-type mod-
ules over principal domains that its submoduleM generated byϕ∗ω is either zero, in
which case we set ord$ (ω)(x) = ∞, or $ nL for somen ∈ N, in which case we set
ord$ (ω)(x) = n. We may assume thatX is affine.

Since there is a canonical isomorphism�d
XK

(XK ) ' �d
X |R(X )⊗R K (see [8,

Prop. 1.5]), ifω is in �d
XK

(XK ), we writeω = $−nω̃, with ω̃ in �d
X |R(X ) and

n ∈ N, and we set ord$,X (ω) := ord$ (ω̃) − n. Clearly, this definition does not
depend on the choice of̃ω.

LEMMA 4.1.1
Let h : Y → X be a morphism between flat formal R-schemes equidimensional of
relative dimension d. Letω be in�d

X |R(X ) (resp., in�d
XK

(XK )). Let y be a point
in Gr(Y ) \Gr(Ysing), and assume that h(y) belongs toGr(X ) \Gr(Xsing). Then

ord$ (h∗ω)(y) = ord$ (ω)
(
h(y)

)
+ ord$ (Jach)(y),

respectively,

ord$,Y (h∗K ω)(y) = ord$,X (ω)
(
h(y)

)
+ ord$ (Jach)(y).
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Proof
The proof follows directly from the definitions.

THEOREM-DEFINITION 4.1.2
Let X be a smooth rigid variety over K of pure dimension d. Letω be a differential
form in�d

X(X).
(1) Let X be a formal R-model of X. Then the functionord$,X (ω) is expo-

nentially integrable onGr(X ) and the integral
∫

Gr(X )
L−ord$,X (ω) dµ in

̂K0(Vark) does not depend on the modelX . We denote it by
∫

X ω dµ.
(2) Assume furthermore thatω is a gauge form, that is, that it generates�d

X at
every point of X, and assume that some open dense formal subschemeU of
X is a weak Ńeron model of X. Then the functionord$,X (ω) takes only a
finite number of values and its fibres are stable cylinders. Furthermore, the
integral

∫
Gr(X )

L−ord$,X (ω) dµ̃ in K0(Vark)loc does not depend on the model
X . We denote it by

∫
X ω dµ̃.

Proof
Let us prove (2). Writeω = $−nω̃ with ω̃ in �d

X |R(X ) andn ∈ N. SinceU is

smooth,�d
U |R is locally free of rank 1 and̃ωOU ⊗ (�d

U |R)−1 is isomorphic to a
principal ideal sheaf( f )OU with f in OU . Furthermore, the function ord$,X (ω̃)

coincides with the function ord$ ( f ) which to a pointϕ of Gr(U ) = Gr(X ) asso-
ciates ord$ ( f (ϕ)). The fibres of ord$ ( f ) are stable cylinders. Sinceω is a gauge
form, f induces an invertible function onX; hence, by the maximum principle
(see [4]), the function ord$ ( f ) takes only a finite number of values. To prove that∫

Gr(X )
L−ord$,X (ω) dµ̃ in K0(Vark)loc does not depend on the modelX , it is enough

to consider the case of another modelX ′ obtained fromX by an admissible formal
blow-up h : X ′

→ X . We may also assume thatX ′ contains as an open dense
formal subscheme a weak Néron modelU ′ of X. The equality∫

Gr(X ′)

L−ord$,X ′ (ω) dµ̃ =

∫
Gr(X )

L−ord$,X (ω) dµ̃

then follows from Lemma4.1.1and Theorem3.9.4. Statement (1) follows similarly
from Lemma4.1.1and Theorem3.9.3.

Remark 4.1.3
A situation where gauge forms naturally occur is that of reductive groups. LetG
be a connected reductive group overk. B. Gross constructs in [15], using Bruhat-Tits
theory, a differential form of top degreeωG onG which is defined up to multiplication
by a unit in R. One may easily check that the differential formωG induces a gauge
form on the rigidK -groupGrig

:= (G⊗̂R)K .
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LEMMA 4.1.4
Let X be a smooth rigid variety over K of pure dimension d, and letω be a gauge
form on X. LetO = (Oi )i∈J be a finite admissible covering, and set OI :=

⋂
i∈I Oi

for I ⊂ J . Then ∫
X

ω dµ̃ =
∑
∅6=I⊂J

(−1)|I |−1
∫

OI

ω|OI dµ̃.

If ω is assumed to be a differential form only in�d
X(X), then∫

X
ω dµ =

∑
∅6=I⊂J

(−1)|I |−1
∫

OI

ω|OI dµ.

Proof
Let us prove the first statement, the proof of the second one being similar. It is enough
to consider the case of|J| = 2. Choose anR-modelX containing a weak Ńeron
modelU of X as an open dense formal subscheme and such that the coveringX =
O1 ∪ O2 is induced from a coveringX = O1 ∪O2 by open formal subschemes. It is
sufficient to prove that∫

Gr(X )

L−ord$,X (ω) dµ̃ =

∫
Gr(O1)

L−ord$,O1(ω|O1) dµ̃+

∫
Gr(O2)

L−ord$,O2(ω|O2) dµ̃

−

∫
Gr(O1∩O2)

L−ord$,O1∩O2(ω|O1∩O2) dµ̃,

which follows from the fact that for every open formal subschemeO of X the func-
tion ord$,X (ω) restricts to ord$,O(ω|OK ) on Gr(O) and the equalities Gr(X ) =

Gr(O1)∪Gr(O2) and Gr(O1)∩Gr(O2) = Gr(O1 ∩O2), which follow from Proposi-
tion 2.3.2.

PROPOSITION4.1.5
Let X and X′ be smooth rigid K -varieties of pure dimension d and d′, and letω and
ω′ be gauge forms on X and X′. Then∫

X×X′
ω × ω′ dµ̃ =

∫
X

ω dµ̃×

∫
X′

ω′ dµ̃.

If ω andω′ are assumed to be differential forms only in�d
X(X), then∫

X×X′
ω × ω′ dµ =

∫
X

ω dµ×

∫
X′

ω′ dµ.
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Proof
Let us prove the first assertion, the proof of the second one being similar. Choose
R-modelsX andX ′ of X andX′, respectively, containing a weak Néron modelU
of X andU ′ of X′ as an open dense formal subscheme. Also, writeω = $−nω̃ and
ω′ = $−n′ω̃′, with ω̃ andω̃′ in �d

X |R(X ) and�d′
X ′|R(X ′), respectively. It is enough

to check that̃µ(ord$,X ×X ′(ω̃ × ω̃′) = m) is equal to
∑

m′+m′′=m µ̃(ord$,X (ω̃) =

m′) × µ̃(ord$,X ′(ω̃′) = m′′), which follows from the fact that on Gr(X ×X ′) '

Gr(X ) × Gr(X ′) = Gr(U ) × Gr(U ′), the functions ord$,X ×X ′(ω̃ × ω̃′) and
ord$,X (ω̃)+ ord$,X ′(ω̃′) are equal.

4.2. Invariants for gauged smooth rigid varieties
Let d be an integer greater than or equal to zero. We defineK0(GSRigd

K ), the
Grothendieck group of gauged smooth rigidK -varieties of dimensiond, as follows:
as an abelian group it is the quotient of the free abelian group over symbols[X, ω]

with X a smooth rigidK -variety of dimensiond andω a gauge form onX by the
relations

[X′, ω′] = [X, ω]

if there is an isomorphismh : X′→ X with h∗ω = ω′, and

[X, ω] =
∑
∅6=I⊂J

(−1)|I |−1
[OI , ω|OI ],

when(Oi )i∈J is a finite admissible covering ofX, with the notationOI :=
⋂

i∈I Oi

for I ⊂ J. One puts a graded ring structure onK0(GSRigK ) :=
⊕

d K0(GSRigd
K ) by

requiring that
[X, ω] × [X′, ω′] := [X × X′, ω × ω′].

Forgetting gauge forms, one defines similarlyK0(SRigd
K ), the Grothendieck group

of smooth rigid K -varieties of dimensiond, and the graded ringK0(SRigK ) :=⊕
d K0(SRigd

K ). There are natural forgetful morphisms

F : K0(GSRigd
K ) −→ K0(SRigd

K )

and
F : K0(GSRigK ) −→ K0(SRigK ).

PROPOSITION4.2.1
There is a unique ring morphism

µ̃ : K0(GSRigK )→ K0(Vark)loc

which assigns to the class of a gauged smooth rigid K -variety(X, ω) the integral∫
X ω dµ̃.



MOTIVIC INTEGRATION ON SMOOTH RIGID VARIETIES 333

Proof
This follows from Lemma4.1.4and Proposition4.1.5.

4.3. A formula for
∫

X ω dµ̃

Let X be a smooth rigid variety overK of pure dimensiond. Let U be a weak Ńeron
model of X contained in some modelX of X, and letω be a form in�d

X |R(X )

inducing a gauge form onX. We denote byU i
0, i ∈ J, the irreducible components of

the special fibre ofU . By assumption, eachU i
0 is smooth andU i

0∩U j
0 = ∅ for i 6= j .

We denote by ordU i
0
(ω) the unique integern such that$−nω generates�d

X |R at the

generic point ofU i
0. More generally, ifω is a gauge form in�d

XK
(XK ), we write

ω = $−nω̃ with ω̃ in �d
X |R(X ) andn ∈ N, and we set ordU i

0
(ω) := ordU i

0
(ω̃)− n.

PROPOSITION4.3.1
Let X be a smooth rigid variety over K of pure dimension d. LetU be a weak
Néron model of X contained in some modelX of X, and letω be a gauge form
in �d

XK
(XK ). With the above notation, we have∫

X
ω dµ̃ = L−d

∑
i∈J

[U i
0]L
−ord

Ui
0
(ω)

in K0(Vark)loc.

Proof
Denote byU i

0 the irreducible component ofX with special fibreU i
0. Since Gr(X ) is

the disjoint union of the sets Gr(U i
0 ), we may assume thatX is a smooth irreducible

formal R-scheme of dimensiond. Let ω be a section of�d
X |R(X ) which generates

�d
X |R at the generic point ofX and induces a gauge form on the generic fibre. Let

us note that the function ord$,X (ω) is identically equal to zero on Gr(X ). Indeed,
after shrinkingX , we may writeω = f ω0 with ω0 a generator�d

X |R at every point
and f in OX (X ). By hypothesis,f is a unit at the generic point ofX . Assume that,
at some pointx of Gr(X ), ord$ f (x) ≥ 1; it would follow that the locus off = 0
is nonempty inX , which contradicts the assumption thatω induces a gauge form on
the generic fibre. Hence we get

∫
Gr(X )

L−ord$,X (ω) dµ̃ = L−d
[X0], and the result

follows.

4.4. Application to Calabi-Yau varieties over K
Let X be a Calabi-Yau variety overK . By this we mean a smooth projective algebraic
variety overK of pure dimensiond with �d

X trivial. We denote byXan the rigid
K -variety associated toX. SinceX is proper,Xan is canonically isomorphic to the
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generic fibre of the formal completion of any properR-model ofX. In particular,Xan

is smooth. By GAGA (see [21, Th. 2.8]),�d
Xan(Xan) = �d

X(X) = K .
Now we can associate to any Calabi-Yau variety overK a canonical element in

the ringK0(Vark)loc which coincides with the class of the special fibre whenX has a
model with good reduction.

THEOREM 4.4.1
Let X be a Calabi-Yau variety over K , letU be a weak Ńeron model of Xan, and let
ω be a gauge form on Xan. We denote by Ui0, i ∈ J , the irreducible components of the
special fibre ofU , and we setα(ω) := inf ordU i

0
(ω). Then the virtual variety

[X] :=
∑
i∈J

[U i
0]L

α(ω)−ord
Ui

0
(ω)

(4.4.1)

in K0(Vark)loc depends only on X. When X has a proper smooth model with good
reduction over R,[X] is equal to the class of the special fibre.

Proof
Let ω be a gauge form onXan. By Proposition4.3.1, the right-hand side of (4.4.1) is
equal toLd+α(ω)

∫
Xan ω dµ̃, which does not depend onω.

In particular, we have the following analogue of Batyrev’s result on birational projec-
tive Calabi-Yau manifolds (see [2], [10]).

COROLLARY 4.4.2
Let X be a Calabi-Yau variety over K , and letX andX ′ be two proper and smooth
R-models of X with special fibresX0 andX ′

0 . Then

[X0] = [X
′

0]

in K0(Vark)loc.

Remark 4.4.3
Calabi-Yau varieties overk((t)) with k of characteristic zero were considered in [19].

4.5. A motivic Serre invariant for smooth rigid varieties
We can now define the motivic Serre invariant for smooth rigid varieties.

THEOREM 4.5.1
There is a canonical ring morphism

S : K0(SRigK ) −→ K0(Vark)loc/(L − 1)K0(Vark)loc
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such that the diagram

K0(GSRigK )

F
��

µ̃ // K0(Vark)loc

��
K0(SRigK )

S // K0(Vark)loc/(L − 1)K0(Vark)loc

is commutative.

Proof
Since any smooth rigidK -variety of dimensiond admits a finite admissible cover-
ing by affinoids(Oi )i∈J , with �d

Oi
trivial, the morphismF is surjective. Hence it

is enough to show the following statement: letX be a smooth formalR-scheme of
relative dimensiond with �d

X |R trivial, and letω1 andω2 be two global sections of

�d
X |R inducing gauge forms on the generic fibreXK ; then

∫
Gr(X )

(L−ord$,X (ω1) −

L−ord$,X (ω2)) dµ̃ belongs to(L − 1)K0(Vark)loc. To prove this, we takeω0 a global
section of�d

X |R such that�d
X |R ' ω0OX . If ω is any global section of�d

X |R,
write ω = f ω0 with f in OX (X ). By the maximum principle, the function ord$ ( f )

takes only a finite number of values on Gr(X ). It follows that we may write Gr(X )

as a disjoint union of the subsets Gr(X )ord$ ( f )=n, where ord$ ( f ) takes the valuen.
These subsets are stable cylinders, and only a finite number of them are nonempty.
Hence the equality∫

Gr(X )

(L−ord$,X (ω)
− L−ord$,X (ω0)) dµ̃ =

∑
n

(L−n
− 1)µ̃

(
Gr(X )ord$ ( f )=n

)
holds inK0(Vark)loc, and the statement follows.

Remark 4.5.2
The ringK0(Vark)loc/(L − 1)K0(Vark)loc is much smaller than the ringK0(Vark)loc

but still quite large. Let̀ be a prime number distinct from the characteristic ofk.
Then théetale`-adic Euler characteristic with compact supports

X 7−→ χc,`(X) :=
∑

(−1)i dim H i
c,ét(X, Q`)

induces a ring morphismχc,` : K0(Vark)loc/(L − 1)K0(Vark)loc→ Z.
Similarly, assume that there is a natural morphismH : K0(Vark)loc → Z[u, v]

which to the class of a varietyX overk assigns its Hodge polynomialH(X) for de
Rham cohomology with compact support. Such a morphism is known to exist when
k is of characteristic zero. Then if one setsH1/2(X)(u) := H(X)(u, u−1), one gets a
morphismH1/2 : K0(Vark)loc/(L − 1)K0(Vark)loc→ Z[u] sinceH(A1

k) = uv.
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Now we can give the following formula for the motivic Serre invariantS in terms of
a weak Ńeron model.

THEOREM 4.5.3
Let X be a smooth rigid variety over K of pure dimension d. LetU be a weak Ńeron
model of X, and denote by U0 its special fibre. Then

S([X]) = [U0]

in K0(Vark)loc/(L − 1)K0(Vark)loc.
In particular, the class of[U0] in K0(Vark)loc/(L − 1)K0(Vark)loc does not de-

pend on the weak Ńeron modelU .

Proof
By taking an appropriate admissible cover, we may assume that there exists a gauge
form on X, in which case the result follows from Proposition4.3.1 since[U0] =∑

i∈J[U
i
0]. (In fact, one can also prove Th.4.5.1that way, but we preferred to give a

proof that is quite parallel to that of Serre in [26].)

4.6. Relation with p-adic integrals on compact locally analytic varieties
Let K be a local field with residue fieldk = Fq. Let us consider the Grothendieck
group K0(SLocAnd

K ) of compact locally analytic smooth varieties overK of pure
dimensiond, which is defined similarly toK0(SRigd

K ), replacing smooth rigid va-
rieties by compact locally analytic smooth varieties and finite admissible covers by
finite covers. Also, a nowhere vanishing locally analyticd-form on a smooth com-
pact locally analytic varietyX of pure dimensiond is called agauge formon X,
and one defines the Grothendieck groupK0(GSLocAndK ) of gauged compact locally
analytic smooth varieties overK of pure dimensiond similarly to K0(GSRigd

K ).
There are canonical forgetful morphismsF : K0(SRigd

K ) → K0(SLocAnd
K ) and

F : K0(GSRigd
K ) → K0(GSLocAndK ) induced from the functor that to a rigid va-

riety (resp., gauged variety) associates the underlying locally analytic variety (resp.,
gauged variety). If(X, ω) is a gauged compact locally analytic smooth variety, thep-
adic integral

∫
X |ω| belongs toZ[q−1

] (see [26]), and by additivity ofp-adic integrals,
one gets a morphism intp : K0(GSLocAndK )→ Z[q−1

].
On the other hand, there is a canonical morphismN : K0(Vark) → Z which to

the class of ak-varietySassigns the number of points ofS(Fq), and which induces a
morphismN : K0(Vark)loc → Z[q−1

]. We also denote byN the induced morphism
K0(Vark)loc/(L − 1)K0(Vark)loc→ Z[q−1

]/(q − 1)Z[q−1
] ' Z/(q − 1)Z.
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PROPOSITION4.6.1
Let K be a local field with residue field k= Fq. Then the diagram

K0(GSRigd
K )

F
��

µ̃ // K0(Vark)loc

N
��

K0(GSLocAndK )
intp // Z[q−1

]

is commutative.

Proof
One reduces to showing the following: letX be a smooth formalR-scheme of di-
mensiond, and let f be a function inOX (X ) which induces a nonvanishing function
onXK ; then

N
( ∫

Gr(X )

L−ord$ ( f ) dµ̃
)
=

∫
X (R)

q−ord$ ( f ) dµ̃p

with dµ̃p the p-adic measure onX (R). It is enough to check thatN
(
µ̃(ord$ ( f ) =

n)
)

is equal to thep-adic measure of the set of pointsx of X (R) with ord$ ( f )(x) =

n, which follows from Lemma4.6.2.

LEMMA 4.6.2
Let K be a local field with residue field k= Fq. LetX be a smooth formal R-scheme
of dimension d. Let A be a (stable) cylinder inGr(X ). Then N(µ̃(A)) is equal to the
p-adic volume of A∩Gr(X )(k).

Proof
Write A = π−1

n (C) with C a constructible subset of Grn(X ). By definition,µ̃(A) =

L−d(n+1)
[C]. On the other hand,X being smooth, the morphismA∩Gr(X )(k)→

C(k) is surjective and its fibres are balls of radiusq−d(n+1). It follows that thep-adic
volume ofA∩Gr(X )(k) is equal to|C(k)|q−d(n+1).

Let us now explain the relation with the work of Serre in [26]. Serre shows in [26]
that any compact locally analytic smooth variety overK of pure dimensiond is iso-
morphic tor Bd with r an integer greater than or equal to 1 andBd the unit ball of
dimensiond and that, furthermore,r Bd is isomorphic tor ′Bd if and only if r andr ′

are congruent moduloq−1. We denote bys(X) the class ofr in Z/(q−1)Z. It follows
from Serre’s results thats induces an isomorphisms : K0(SLocAnd

K )→ Z/(q−1)Z
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and that the diagram

K0(GSLocAndK )

��

intp // Z[q−1
]

��
K0(SLocAnd

K )
s // Z/(q − 1)Z

is commutative. The following result then follows from Proposition4.6.1.

COROLLARY 4.6.3
Let K be a local field with residue field k= Fq. Then the diagram

K0(SRigd
K )

F
��

S // K0(Vark)loc/(L − 1)K0(Vark)loc

N

��
K0(SLocAnd

K )
s // Z/(q − 1)Z

is commutative.

5. Essential components of weak Ńeron models

5.1. Essential components and the Nash problem
Since we proceed by analogy with [22], let us begin by recalling some material from
that paper. We assume in this subsection thatk is of characteristic zero and thatR =
k[[$ ]]. For X an algebraic variety overk, we denote byL (X) its arc space as defined
in [10]. In fact, in the present section, we use notation and results from [10], even
when they happen to be special cases of ones in this paper. As noted in Remark2.3.3,
L (X) = Gr(X⊗̂R), and there are natural truncation morphismsπn : L (X) →

Ln(X) with Ln(X) = Grn(X ⊗ Rn).
By a desingularization of a varietyX, we mean a proper and birational morphism

h : Y −→ X,

with Y a smooth variety, inducing an isomorphism betweenh−1(X \ Xsing) andX \
Xsing. (Some authors omit the last condition.)

Let h : Y → X be a desingularization ofX, and letD be an irreducible compo-
nent ofh−1(Xsing) of codimension 1 inY. If h′ : Y′→ X is another desingularization
of X, the birational mapφ : h′−1

◦ h : Y 99K Y′ is defined at the generic pointξ of
D sinceh′ is proper; hence we can define the image ofD in Y′ as the closure ofφ(ξ)

in Y′. One says thatD is an essential divisor with respect toX if, for every desin-
gularizationh′ : Y′ → X of X, the image ofD in Y′ is a divisor and thatD is an
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essential component with respect toX if, for every desingularizationh′ : Y′ → X of
X, the image ofD in Y′ is an irreducible component ofh′−1(Xsing). In general, ifD
is an irreducible component ofh−1(Xsing), we say thatD is an essential component
with respect toX if there exists a proper birational morphismp : Y′ → Y, with Y′

smooth, and a divisorD′ in Y′ such thatD′ is an essential component with respect to
X andp(D′) = D. It follows from the definitions and Hironaka’s theorem that essen-
tial components of different resolutions of the same varietyX are in natural bijection;
hence we may denote byτ(X) the number of essential components in any resolution
of X.

Let W be a constructible subset of an algebraic varietyZ. We say thatW is
irreducible inZ if the Zariski closureW of W in Z is irreducible.

In general, letW =
⋃

1≤i≤n W′i be the decomposition ofW into irreducible
components. Clearly,Wi := W′i ∩W is nonempty, irreducible inZ, and its closure in
Z is equal toW′i . We call theWi ’s the irreducible componentsof W in Z.

Let E be a locally closed subset ofh−1(Xsing). We denote byZE the set of arcs
in L (Y) whose origin lies onE but which are not contained inE. In other words,
ZE = π−1

0 (E) \ L (E). Let us note that ifE is smooth and connected,πn(ZE) is
constructible and irreducible inLn(Y). Now we setNE := h(ZE). Sinceπn(NE) is
the image ofπn(ZE) under the morphismLn(Y)→ Ln(X) induced byh, it follows
thatπn(NE) is constructible and irreducible inLn(Y).

The following result, proved in [22], follows easily from the above remarks and
Hironaka’s resolution of singularities.

PROPOSITION5.1.1 (see J. Nash [22])
Let X be an algebraic variety over k, a field of characteristic zero. SetN (X) :=

π−1
0 (Xsing) \ L (Xsing). For every n≥ 0, πn(N (X)) is a constructible subset of

Ln(X). Denote by W1
n , . . . , Wr (n)

n the irreducible components ofπn(N (X)). The
mapping n 7→ r (n) is nondecreasing and bounded by the numberτ(X) of essential
components occurring in a resolution of X.

Up to renumbering, we may assume thatWi
n+1 maps toWi

n for n � 0. Let us call
the family (Wi

n)n�0 a Nash family. Nash shows, furthermore, that for every Nash
family (Wi

n)n�0 there exists a unique essential componentE in a given resolution
h : Y→ X of X such thatπn(NE) = Wi

n for n� 0.
Now, we can formulate the Nash problem.

PROBLEM 5.1.2 (Nash [22, p. 36])
Is there always a corresponding Nash family for an essential component? In general,
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how completely do the essential components correspond to Nash families? What is
the relation betweenτ(X) and lim r (n)?

Recently, Ishii and Kolĺar [17] proved that the correspondence between essential com-
ponents and Nash families is one-to-one for toric singularities but fails in general. In
fact, they showed that the 4-dimensional hypersurface singularityx3

1+x3
2+x3

3+x3
4+

x6
5 = 0 has two essential components and only one Nash family.

Let W be a constructible subset of some varietyX. We denote the supremum of
the dimension of the irreducible components of the closure ofW in Y by dimW.

Let h : Y → X be a proper birational morphism withY a smooth variety. Let
E be a codimension 1 irreducible component of the exceptional locus ofh in Y. We
denote byν(E) − 1 the length of�d

Y/h∗�d
X at the generic point ofE. Here�d

X
denotes thedth exterior power of the sheaf�1

X of differentials onX.

PROPOSITION5.1.3
Let X be a variety of pure dimension d over k, a field of characteristic zero. Let
h : Y→ X be a proper birational morphism with Y a smooth variety, and let U be a
nonempty open subset of a codimension 1 irreducible component E of the exceptional
locus of h in Y . Then

dimπn(NU ) = (n+ 1) d − ν(E)

for n� 0.

Proof
By [10, Th. 6.1], the image of[πn(NU )]L−(n+1)d in ̂K0(Vark) converges toµ(NU ) in

̂K0(Vark). Since dimπn(NU ) ≤ (n+1)d by [10, Lem. 4.3], one deduces the fact that
dimπn(NU )−(n+1) d has a limit. To conclude, we first note thatπn(NU ) = πn(NE)

for any nonempty open subsetU in E. Hence we may assume that(h∗�d
X)/torsion is

locally free on a neighborhood ofU . It then follows from [10, Prop. 6.3.2], or rather
from its proof, that

µ(NU ) = L−d
[U ](L − 1)

∑
`≥1

L−`ν(E)

in ̂K0(Vark). Henceµ(NU ) belongs toFν(E) and not toFν(E)+1, and the result fol-
lows.

5.2. Essential components of weak Néron models
We return now to the setting of the present paper. We fix a flat formalR-schemeX
of relative dimensiond with smooth generic fibreXK . By a weak Ńeron model of
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X , we mean a weak Ńeron modelU of XK together with a morphismh : U →
X inducing the inclusionUK ↪→ XK . As before, we denote byU i

0, i ∈ J, the
irreducible components of the special fibre ofU . Let ξ i denote the generic point of
U i

0. We sayU i
0 is an essential component with respect toX if, for every weak Ńeron

modelU ′ of X , the Zariski closure ofπ0,U ′(π
−1
0,U (ξ i )) is an irreducible component

of the special fibre ofU ′. Note that being an essential component is a property relative
to X . By their very definition, essential components in different weak Néron models
of X are in natural bijection.

We have the following analogue of Proposition5.1.1.

PROPOSITION5.2.1
Let X be a flat formal R-scheme of relative dimension d with smooth generic fibre
XK . Denote by W1

n , . . . , Wr (n)
n the irreducible components of the constructible subset

πn(Gr(X )) of Grn(X ). The mapping n7→ r (n) is nondecreasing and bounded by
the numberτ(X ) of essential components occurring in a weak Néron model ofX .

Proof
Clearly, the mappingn 7→ r (n) is nondecreasing. Leth : U → X be a weak
Néron model ofX with irreducible componentsU i , i ∈ J. SinceU i is smooth and
irreducible,πn,U (Gr(U i )) is also smooth and irreducible; hence the Zariski closure
of h

(
πn,U (Gr(U i ))

)
= πn,X (Gr(U i )) in Grn(X ) is irreducible. Since Gr(X ) is

the union of the subschemes Gr(U i ), it follows that r (n) is bounded by|J|. Now
if U i is not an essential component, there exists some weak Néron model ofX ,
h′ : U ′ → X , such that, if we denote byWi the image of Gr(U i ) in Gr(U ′),
πn,U ′(Wi ) is contained in the Zariski closure ofπn,U ′(Gr(U ′) \Wi ). It follows that
πn,X (Gr(U i )) is contained in the closure ofπn,X (Gr(U ) \ Gr(U i )). The bound
r (n) ≤ τ(X ) follows.

As previously, we may, up to renumbering, assume thatWi
n+1 maps toWi

n for n� 0.

We still call the family(Wi
n)n�0 a Nash family. Letξ i

n be the generic point ofWi
n. By

construction,ξ i
n+1 maps toξ i

n under the truncation morphism Grn+1(X )→ Grn(X );
hence to the inverse system(ξ i

n)n�0 corresponds a pointξ i of Gr(X ). Let h : U →
X be weak Ńeron model ofX with irreducible componentsU j , j ∈ J. There is
a unique irreducible componentU j (i ) such that the pointξ i belongs to Gr(U j (i )).
Furthermore,h

(
πn(Gr(U j (i )))

)
= Wi

n for n � 0, and it follows from the proof of

Proposition5.2.1thatU j (i )
0 is essential.

We have the following analogue of the Nash problem.
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PROBLEM 5.2.2
In general, how completely do the essential components correspond to Nash families?
What is the relation betweenτ(X ) and lim r (n)?

For E a locally closed subset of the special fibre ofU , we setZE := π−1
0,U (E) and

NE := h(ZE). Note that, for everyn, πn(ZE) andπn(NE) are constructible subsets
of Grn(U ) and Grn(X ), respectively. Indeed,πn(ZE) is constructible sinceU is
smooth; henceπn(NE) = h(πn(ZE)) also. We denote byν(U i

0) − 1 the length of
�d

U |R/h∗�d
X |R at the generic pointξ i of U i

0.
We also have the following analogue of Proposition5.1.3.

PROPOSITION5.2.3
Let X be a flat formal R-scheme of relative dimension d with smooth generic fibre
XK . Let h : U → X be a weak Ńeron model ofX , and let E be an open dense
subset of an irreducible component Ui

0 of the special fibre ofU . Then

dimπn(NE) = (n+ 1) d − ν(U i
0)

for n� 0.

Proof
Fix an integere≥ 0. By Lemma3.9.2, for n� e,

dimπn(NE ∩Gr(e) X ) = dimπn
(
h−1(NE ∩Gr(e) X )

)
− ν(U i

0)

= (n+ 1) d − ν(U i
0).

On the other hand, it follows from Lemma3.3.2that

dimπn
(
NE ∩ (X \Gr(e) X )

)
< (n+ 1) d − ν(U i

0)

whenn� e� ν(U i
0).

References

[1] V. V. BATYREV , “Stringy Hodge numbers of varieties with Gorenstein canonical
singularities” inIntegrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997),
World Sci., River Edge, N.J., 1998, 1 – 32.MR 2001a:14039315

[2] , “Birational Calabi-Yaun-folds have equal Betti numbers” inNew Trends in
Algebraic Geometry (Warwick, U.K., 1996), London Math. Soc. Lecture Note
Ser.264, Cambridge Univ. Press, Cambridge, 1999, 1 – 11.MR 2000i:14059
317, 334

[3] , Non-Archimedian integrals and stringy Euler numbers of log-terminal pairs,
J. Eur. Math. Soc. (JEMS)1 (1999), 5 – 33.MR 2001j:14018 315

http://www.ams.org/mathscinet-getitem?mr=2001a:14039
http://www.ams.org/mathscinet-getitem?mr=2000i:14059
http://www.ams.org/mathscinet-getitem?mr=2001j:14018


MOTIVIC INTEGRATION ON SMOOTH RIGID VARIETIES 343

[4] S. BOSCH, U. G̈UNTZER,andR. REMMERT, Non-Archimedean Analysis: A Systematic
Approach to Rigid Analytic Geometry, Grundlehren Math. Wiss.261, Springer,
Berlin, 1984.MR 86b:32031 330

[5] S. BOSCHandW. LÜTKEBOHMERT, Formal and rigid geometry, I: Rigid spaces, Math.
Ann. 295(1993), 291 – 317.MR 94a:11090321

[6] , Formal and rigid geometry, II: Flattening techniques, Math. Ann.296(1993),
403 – 429.MR 94e:11070320

[7] S. BOSCH, W. L̈UTKEBOHMERT,andM. RAYNAUD , Néron Models, Ergeb. Math.
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CEDEX 05, France;Francois.Loeser@ens.fr; http://dma.ens.fr/˜loeser/

Sebag
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