MOTIVIC INTEGRATION ON SMOOTH
RIGID VARIETIES AND INVARIANTS
OF DEGENERATIONS

FRANCOIS LOESER and JULIEN SEBAG

Abstract

We develop a theory of motivic integration for smooth rigid varieties. As an applica
tion we obtain a motivic analogue for rigid varieties of Serre’s invariant for p-adic
varieties. Our construction provides new geometric birational invariants of degenel
ations of algebraic varieties. For degenerations of Calabi-Yau varieties, our resull
take a stronger form.

1. Introduction

In the last years, motivic integration has been shown to be a quite powerful tool
producing new invariants in birational geometry of algebraic varieties over akfield
say, of characteristic zero (se&], [1], [3], [10], [1]], [17]). Let us explain the basic
idea behind such results.lif: Y — X is a proper birational morphism betwekn
algebraic varieties, the induced morphisf(Y) — Z(X) between arc spaces (see
[10)) is a bijection outside subsets of infinite codimension. By a fundamental chanc
of variable formula, motivic integrals a&’ (X) may be computed o (Y) whenY

is smooth.

In the present paper we develop similar ideas in the somewhat dual situati
of degenerating families over complete discrete valuation rings with perfect resid
field, for which rigid geometry appears to be a natural framework. More precisely, It
R be a complete discrete valuation ring with fraction figlcand perfect residue field
k. We construct a theory of motivic integration for smobtigid K -spaces, always
assumed to be quasi-compact and separatedXLie¢ a smooth rigidK -space of
dimensiond. Our construction assigns to a gauge fapnon X, that is, a nowhere
vanishing differential form of degreg on X, an integralfX wdi with value in the

*The extension to singular rigid spaces whers of characteristic zero will be considered in a separate publi-
cation.
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ring Ko(Var)oc. HereKo(Vary) oc is the localization with respect to the class of the
affine line of the Grothendieck group of algebraic varieties &véin concrete terms,
two varieties ovek define the same class Ky (Vary)|oc if they become isomorphic
after cutting them into locally closed pieces and stabilizing by product with a powe
of the affine line. More generally, ib is a differential form of degred on X, we
define an integrafx w du with value in the ringKo/(VEk), which is the completion

of Ko(Vark)oc With respect to the filtration by virtual dimension (see S&d). The
construction is done by viewing as the generic fibre of some formischemeZ".

To such a formaR-scheme, by means of the Greenberg functor— Gr(2"), one
associates a certakascheme Gr.2") which parametrizes unramified sections®f
WhenR = K[[t]] and.Z" is the formal completion oKo ® K[[t]] for Xo an algebraic
variety overk, Gr(£") is nothing else than the arc spag& Xp). We may then use
the general theory of motivic integration on scheme&%y, which is developed in
[25]. Of course, for the construction to work one needs to check that it is independe
of the chosen model. This is done by using two main ingredients: the theory of we
Néron models developed in][and [9], and the analogue for schemes of the form
Gr(Z") of the change of variable formula, which is proven ][ In fact, the theory

of weak Neron models really pervades the whole paper, and some parts of the bc
[7] were crying out for their use in motivic integration.

As an application of our theory, we are able to assign in a canonical way to eve
smooth quasi-compact and separated rigidpaceX an elementS(X) in the quo-
tient ring Ko(Vark)oc/ (L — 1) Ko(Var)oe, Wherel stands for the class of the affine
line. WhenX admits a formalR-model with good reduction$(X) is just the class
of the fibre of that model. More generally, % is a weak Neron model ofX, S(X)
is equal to the class of the special fibresfin Ko(Varg)oc/(L — 1) Ko(Vark)ge- In
particular, it follows that this class is independent of the choice of the weakriN
model% . This construction applies, in particular, to analytifications of smooth pro
jective algebraic varieties ovét, yielding also for such a varietf an invariantS(X)
in Ko(Variee/(L — 1)Ko(Vark)oc.

Our invariantS(X) can be viewed as a rigid analogue of an invariant definec
by J.-P. Serre for compact smooth locally analytic varieties over a local field. T
such a varietyX, Serre associates i2], using classicap-adic integration, an in-
variants(X) in the ringZ/(q — 1)Z, whereq denotes the cardinality of the finite
field k. Counting rational points ik yields a canonical morphisidg(Vark)oc/ (L —
1)Ko(Vark)ioc — Z/(q — 1)Z, and we show that the image by this morphism of our
motivic invariantS(X) of a smooth rigidk -spaceX is equal to the Serre invariant of
the underlying locally analytic variety.

Unless making additional assumptionsXnone cannot hope to lift our invariant

*See the remark at the bottom af p. 105].
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S(X) to a class in the Grothendieck ritp(Vark) o Which would be a substitute for
the class of the special fibre tife Néron model when such aéxon model happens to
exist. In the particular situation whebgis the analytification of a Calabi-Yau variety
overK, thatis, a smooth projective algebraic variety oieof pure dimensiom with

Q§ trivial, the following can be achieved: one can attachxta canonical element
of Ko(Vary)ioe, Which, if X admits a proper and smooBrmodel 2", is equal to the
class of the special fibr&gp in Ko(Vark)|qc. In particular, if X admits two such models
Z andZ”, the class of the special fibre&p and%o’ in Ko(Vary)qc are equal, which
may be seen as an analogue of V. Batyrev’s result on birational Calabi-Yau varieti
[2].

The paper is organized as follows. Sectitns devoted to preliminaries on formal
schemes, the Greenberg functor, and weakdN models. In Section 3 we review the
results on motivic integration on formal schemes obtained by J. Sebag]iwhich
are needed in the present work. We are then able in Settmoonstruct a motivic in-
tegration on smooth rigid varieties and to prove the main results that are mentionec
the present introduction. Finally, in Sectipguided by the analogy with arc spaces,
we formulate an analogue of the Nash problem, which is about the relation betwe
essential (i.e., appearing in every resolution) components of resolutions of a singu
variety and irreducible components of spaces of truncated arcs on the variety, for fi
mal R-schemes with smooth generic fibre. Recently, S. Ishii and JaK{ill7] gave
an example where these two sets are not in bijection. In our setting, analogy sugge
there might be some relation between essential components of végak hodels of
a given formalR-schemeZ” with smooth generic fibre and irreducible components
of the truncationt, (Gr(2")) of its Greenberg space for > 0. As a very first step
in that direction, we compute the dimension of the contribution of a given irreducibl
component to the truncation.

2. Preliminaries on formal schemes and Greenberg functor

2.1. Formal schemes

In this paperR denotes a complete discrete valuation ring with residue kKedthd
fraction field K. We assume thalt is perfect. We fix once for all a uniformizing
parameterw, and we sefR, := R/(w)"t! for n > 0. In the whole paper, by

a formal R-scheme, we always mean a quasi-compact, separated, locally topolc
ically of finite type formal R-scheme, in the sense off, Sec 10]. A formalR-
scheme is a locally ringed spa¢g’, ¢ 4-) in topological R-algebras. It is equiva-
lent to the data, for everg > 0, of the R,-schemeX, = (£, 02 ®r Rn). The
k-schemeXy is called thespecial fibreof 2°. As a topological space?” is iso-
morphic to Xg and 0y = Mﬁxn. We haveX, = Xny1 ®R,,.; Rn, @and 2" is
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canonically isomorphic to the inductive limit of the schem§sin the category of
formal schemes. Locally?" is isomorphic to an affine formdk-scheme of the form
SpfA with A an R-algebra topologically of finite type, that is, a quotient of a re-
stricted formal series algebi®{Ty, ..., Tm}. If # and 2" are R-formal schemes,
we denote by Hom(#, 2°) the set of morphisms of form&-schemes? — 27,
that is, morphisms between the underlying locally topologically ringed spaces ov
R (see [L6, Sec. 10]). It follows from 16, Prop. 10.6.9] that the canonical morphism
Homg(%', Z°) — limHomRn(%, Zn) is a bijection.

If k is a field, by a variety ovek we mean a separated reduced scheme of finite
type overk.

2.2. Extensions

Let A be ak-algebra. We sett (A) = AwhenR is a ring of equal characteristic and
L(A) = W(A), the ring of Witt vectors, whem is a ring of unequal characteristic,
and we denote bRa the ringRa := R@L(k)L(A). WhenF is a field containing,
we denote byKg the field of fractions ofRg. When the fieldF is perfect, the ring
Rr is a discrete valuation ring, and, furthermore, the uniformizing parameier R
induces a uniformizing parameter Rr. Hence, sinc& is assumed to be perfect, the
extensionR — Rg has ramification index 1 in the terminology &f [Sec 3.6].

2.3. The Greenberg functor
We recall some material fromd §] and [7, Sec. 9.6]. Let us note that, wh&is a ring
of equal characteristic, we can view, once a liftindkab R is chosenR, as the set of
k-valued points of some affine spa&f which we denote byz,, in a way compatible
with the k-algebra structure. WheR is a ring of unequal characteristiB, can no
longer be viewed as kralgebra. However, using Witt vectors, we may still interpret
R, as the set dk-valued points of a ring schemg,, which, as &-scheme, is isomor-
phic to some affine spads;'. Note that we have canonical morphisss 1 — Zn.
Now, for everyn > 0, we consider the functdt;; which to ak-schemeT asso-
ciates the locally ringed spabé(T) which hasT as an underlying topological space
andszZomg (T, %,) as a structure sheaf. In particular, for every perkeatgebraA,

hi(A) = Sped(Ry ®Lao L(A).

Taking A = k, we see thah} T is a locally ringed space over SpBg.

By a fundamental result of M. Greenberif] (which in the equal characteristic
case amounts to Weil restriction of scalars), Rarschemes,, locally of finite type,
the functor

T +—> Homg, (hj(T), Xn)

from the category ok-schemes to the category of sets is representedkagchheme
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Gry(X;) which is locally of finite type. Hence, for every perfdcalgebraA,
Grn(Xn)(A) = Xn(Ra QL L(A)),
and, in particular, setting = k, we have
Grn(Xn)(K) = Xn(Rn).

Among basic properties, the Greenberg functor respects closed immersions, o
immersions, fibred products, and smooth d@ndle morphisms, and it also sends
affines to affines.

Now let us consider again a formBlscheme?”. The canonical adjunction mor-
phismh;H(GrnH(XnH)) — Xn+1 gives rise, by tensoring witR,, to a canonical
morphism ofR,-schemed} (Gry4+1(Xn+1)) — X, from which one derives, again
by adjunction, a canonical morphismloschemes

On : Git1(Xnt1) —> G(Xn).

In this way we attach to the formal schemté a projective systenmiGr,(Xn))nen Of
k-schemes. The transition morphisgsbeing affine, the projective limit

exists in the category df-schemes.

Let T be ak-scheme. We denote by*(T) the locally ringed space that has
as an underlying topological space e}mMDm((T, Z%n) as a structure sheaf. It is
a locally ringed space over SBfwhich identifies with the projective limit of the
spacedy;,(T) in the category of locally ringed spaces. Furthermore, one checks, sir
ilarly as in [16, Prop. 10.6.9], that the canonical morphism Hgifi*(T), 27) —
(IiﬂHomRn(h;(T), Zn) is a bijection for every formaR-scheme%’".

Putting everything together, we get the following.

PROPOSITION2.3.1
Let 2" be a quasi-compact, locally topologically of finite type formal R-scheme. Th
functor

T +— Homg (h*(T), )

from the category of k-schemes to the category of sets is represented by the k-sch
Gr(Z).

In particular, for every field= containingk, there are canonical bijections

Gr(Z)(F) ~ Homr(SpfRE, 27) >~ Z (RE).



320 LOESER and SEBAG

One should note that, in general, (@f) is not of finite type, even if2" is a
guasi-compact, topologically of finite type form@tscheme.

In this paper, we always consider the schemeg(%&¢) and GK.2") with their
reduced structure.

Sometimes, by abuse of notation, we writg,Gt") for Gr,(X,).

PROPOSITION2.3.2

(1) The functorGr respects open and closed immersions and fibre products, an
it sends affine formal R-schemes to affine k-schemes.

2) Let 2" be a formal quasi-compact and separated R-scheme, and@jat ;
be a finite covering by formal open subschemes. There are canonical isomc
phismsGr(0iN0oj) ~ Gr(0;)NGr(0j), and the schem@r(.2") is canonically
isomorphic to the scheme obtained by gluing the sché&ngs ).

Proof

Assertion (1) for the functor Gris proved in [L3] and [7], and it follows for Gr by
taking projective limits. Assertion (2) follows from (1) and the universal property
defining Gr. O

Remark 2.3.3

Assume that we are in the equal characteristic case, th&t is,k[[z]]. For X an
algebraic variety ovek, we can consider the form#-schemeX®R obtained by
base change and completion. We have canonical isomorphis@&&®) ~ Z(X)
and GRr(X ® Ry) =~ £ (X), where.Z(X) and.#,(X) are the arc spaces considered
in [10].

2.4. Smoothness
Let us recall the definition of smoothness for morphisms of forRaichemes. A
morphismf : 2" — % of formal R-schemes is smooth at a pombf Xg of relative
dimensiond if it is flat at x and the induced morphisrfy : Xo — Yp is smooth ak
of relative dimensiorm. An equivalent condition (se&]Lem. 1.2]) is that for every
nin N the induced morphisni,, : X, — Y, is smooth ai of relative dimensiord.
The morphismf is smooth if it is smooth at every point &p. The formalR-scheme
Z is smooth at a point of Xg if the structural morphism is smooth xat

Let 2" be a flat formalR-scheme of relative dimensiah We denote byZing
the closed formal subscheme @f defined by the radical of the Fitting ideal sheaf
FittyQ2 9-/r. The formalR-schemeZ” is smooth at a point of Xo (resp., is smooth)
if and only if X is not in Zsing (resp.,Zsing is empty).
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2.5. Greenberg's theorem

The following statement, which is an adaptation of a result of N. Schappa2#ier [
is an analogue of Greenberg’s theorem (seg Th. 1]) in the framework of formal
schemes. We refer t@] for a more detailed exposition.

THEOREM-DEFINITION 2.5.1

Let R be a complete discrete valuation ring, and#tbe a formal R-scheme. For
every n> 0, there exists an integer = n such that, for every perfect field F con-
taining k, and every x 2’ (Rg /" +1), the image of x inZ (Re /&™) may be
lifted to a point in2"(Rg). We denote by ,-(n) the smallest such’nThe function

n = y,-(n) is called theGreenberg functionf 2.

2.6. Rigid spaces

For 2 a flat formal R-scheme, we denote bgk its generic fibre in the sense of
M. Raynaud P3]. By Raynaud’s theorem (se€, [5]), the functor 2" — Zk
induces an equivalence between the localization of the category of quasi-compact
formal R-schemes by admissible formal blow-ups and the category of Kg&pbaces
that are quasi-compact and quasi-separated. Furtheroie separated if and only

if Zk is separated (se&,[Prop. 4.7]). Recall that for the blow-up of an ideal she&af

to be admissible means that contains some power of the uniformizing parameter
@ . In the paper all rigidk -spaces are assumed to be quasi-compact and separatec

2.7. Weak [®ron models
We denote byRS" a strict Henselization oR, and we denote b, " its field of
fractions.

Definition 2.7.1

Let X be a smooth rigicK -variety. A weak formal Nron model of X is a smooth
formal R-schemeZ/, whose generic fibrézk is an open rigid subspace &k, and
which has the property that the canonical n7apRS") — X (K" is bijective.

The construction of weak &on models, using &on’s smoothening process pre-
sented in f], carries over almost literally fronR-schemes to formaR-schemes, and
it gives, as explained irg], the following result.

THEOREM2.7.2
Let 2" be a quasi-compact formal R-scheme whose genericfifirés smooth. Then
there exists a morphism of formal R-schem#s— 2" which is the composition of

*We follow here the terminology o], which is somewhat different from that of][
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a sequence of formal blow-ups with centers in the corresponding special fibres, st
that every RM-valued point 0f2" factors through the smooth locus 8f’.

One deduces the following omnibus statement.

PROPOSITION2.7.3

Let X be a smooth quasi-compact and separated rigid K-space, and”l&e a
formal R-model of X, that is, a quasi-compact formal R-schgmeith generic fibre
X. Then there exists a weak formagfdn model of X which dominates?” and
which is quasi-compact. Furthermore, the canonical napRs") — 27 (R®") is a
bijection, and for every perfect field F containing k, the formak$theme” ® R Rr
is a weak Neron model of the rigid I€-space Xk Kg. In particular, the morphism
% — % induces a bijection between pointsGf(% ) andGr(Z").

Proof

We choose a formal modet” of X such that we are in the situation of Theorgm.2

The smooth locus” of 2" is quasi-compact and is a wealetdn model ofZk

since, by P, Lem. 2.2(ii)], everyK Sh-valued point 0f2 extends uniquely to &"-
valued point of2". Also, it follows from [7, §3.6, Cor. 6] that, if is a weak Neron
model of the rigidK -spaceX, then for every perfect fiel&é containingk, the formal
Re-schemeZ ® g R is a weak Neron model of the rigid(,:-spaceX@K KEg. O

Example 2.7.4

Let 2 be a regular scheme of finite presentation over $heand let%Z be the
open subscheme of smooth points. TH&nthe formal completion o along the
special fibre, is a weak&ton model of the rigikK -space associated %, the formal
completion of2" along the special fibre.

3. Motivic integration on formal schemes
The material in this section is borrowed frofH], to which we refer for details.

3.1. Truncation
For 2 a formal R-scheme, we denote by, 4~ or =, the canonical projection
Gr(Z) — Gr(Xp) fornin N.

Let us first state the following corollary of Theoreib. 1.

PROPOSITION3.1.1
Let 2 be a formal R-scheme. The imagg(Gr(Z")) of Gr(Z") in Gr,(Xp) is a
constructible subset o6r,(X,). More generally, if C is a constructible subset of
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Grm(Xm), Tn (nn—ql(C)) is a constructible subset @r,(Xp) for every n> 0.

Proof

Indeed, it follows from Theoren2.5.1 that 7, (Gr(2")) is equal to the image of
Gry ) (Xymy) in G (Xp). The morphism Grny (X, m)) — Gm(Xn) being of finite
type, the first statement follows from Chevalley’s theorem. For the second stateme
one may assum@ = n, and the proof proceeds as before. O

PROPOSITION3.1.2
Let 2" be a smooth formal separated R-scheme (quasi-compact, locally topologica
of finite type over R) of relative dimension d.
(1)  Forevery n, the morphismy, : Gr(2") — Grh(Xp) is surjective.
(2)  Forevery n and m i, the canonical projectio®rm+m(Xn+m) = Grm(Xn)
is a locally trivial fibration for the Zariski topology with fibrAﬂm.

We say thatamap : A — B is a piecewise morphism if there exists a finite partition
of the domain ofr into locally closed subvarieties of such that the restriction of
to any of these subvarieties is a morphism of schemes.

3.2. Away from the singular locus
Let 2" be a formalR-scheme, and consider its singular loctigng defined in Section
2.4. For all integer® > 0, we view Gg(Zsinge) as contained in G(.2"), and we set

Gr®(Z) := Gr(Z) \ 75 *(Gre(Zsinge))-

We say that a map : A — B betweerk-constructible seté\ andB is a piece-
wise trivial fibration with fibreF if there exists a finite partition oB in subsetsS
which are locally closed il such thatr —1(S) is locally closed inX and isomorphic,
as a variety ovek, to S x F, with = corresponding under the isomorphism to the
projectionS x F — S. We say that the map is a piecewise trivial fibration over
some constructible subsé€t of B if the restriction ofr to 7 ~1(C) is a piecewise
trivial fibration ontoC.

PROPOSITION3.2.1
Let 2" be a flat formal R-scheme of relative dimension d. There exists an integ
¢ > 1 such that, for all integers e and n M such that n> ce, the projection

ﬂn+1(Gr(£)) —> ﬂn(Gr(%))

is a piecewise trivial fibration over,(Gr®(2")) with fibreAZ.
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3.3. Dimension estimates
LEMMA 3.3.1
Let 2" be a formal R-scheme whose generic fil#g is of dimension less than or
equal to d. Then we have the following.
(1) ForeveryninN,
dimm,(Gr(2)) < (n+ Dyd.

2 For m > n, the fibres of the projection,(Gr(2")) — nn(Gr(%)) are of
dimension less than or equal t; — n)d.

LEMMA 3.3.2

Let 2" be a formal R-scheme whose generic filifg is of dimension d. Let” be a
closed formal R-subscheme.®f such that¥k is of dimension less than d. Then, for
all integers n, i, and such that n> i > vy« (¢), wherey & is the Greenberg function
of .7 defined in Theorem-Definition 5.1, 7 o (”i,_glz' Gr; (.)) is of dimension less
thanorequalton+1)d — ¢ — 1.

3.4. Grothendieck rings

Let k be a field. We denote bio(Vary) the abelian group generated by symbols
[S], for S a variety ovelk, with the relationdS] = [S] if Sand S are isomorphic
and[S] = [S]+ [S\ S]if S is closed inS. There is a natural ring structure on
Ko(Vark), the product being induced by the Cartesian product of varieties] to any
constructible sef in some variety, one naturally associates a cI&sn Ko(Vark).
We denote byKg(Varg) e the localizationK o(Vark) e := Ko(Varg[L 1] with L :=
[Aﬁ]. Let us note that the canonical morphism

Ko(Vark)/(L — 1)Ko(Vark) — Ko(Vark)ioc/ (L — 1) Ko(Vark)ioc

is an isomorphism.

We denote byF MK (Vark)ioc the subgroup generated bgJL —' with dim S —
i < —m, and we denote b}(@k) the completion oKg(Vark),oc With respect to
the filtration F". (It is still unknown whether the filtratiofr " is separated or not.)
We also denote b¥ " the filtration induced oerk). We denote byKo(Vark)oc
the image ofKp(Var)ioc in K@k). We put on the ring(@k) a structure of
a non-Archimedean ring by setting@|| := 27", wheren is the largesth such that
a e F"Ko(Vary) for a % 0 and||0]| = O.

*By the Cartesian product of two varieti€&and S overk, we mean the fibre produ& xx S endowed with its
reduced structure.
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3.5. Cylinders
Let 2" be a formalR-scheme. A subseA of Gr(2") is cylindrical of leveln > 0
if A= nn—l(C) with C a constructible subset of @r2"). We denote byC 4 the
set of cylindrical subsets of G2") of some level. Let us note th@ty is a Boolean
algebra, that is, contains G2"), @, and is stable by finite intersection, finite union,
and by taking complements. It follows from Propositidi.1that if A is cylindrical
of some level, themr (A) is constructible for everp > 0.

A basic finiteness property of cylinders is the following.

LEMMA 3.5.1
Let A,i € I, be a denumerable family of cylindrical subsets®@f(.2"). If A :=
Uie A is also a cylinder, then there exists a finite subset J of | such that A

UieJ Ai.

Proof
Since G[.2") is quasi-compact, this follows fromi§, Th. 7.2.5]. O

3.6. Motivic measure for cylinders

Let 2" be a flat formalR-scheme of relative dimensiah Let A be a cylinder of
Gr(Z"). We say thatA is stable of levenh if it is cylindrical of leveln and if, for every
m > n, the morphism

m1(Gr(Z)) — mm(Gr(2))

is a piecewise trivial fibration over,(A) with fibre A‘k’. We denote b\Cp 4- the set
of stable cylindrical subsets of G2") of some level.

It follows from Propositior3.1.2that every cylinder in Gr2") is stable whenz
is smooth. WhenZ" is no longer assumed to be smoo@y, 2~ is in general not a
Boolean algebra but is an ideal ©fy-: Cg o containsy, it is stable by finite union,
and the intersection of an elementGry,- with an element oCp 4 belongs taCq 2.
In general, Gt2") is not stable, but it follows from Propositich2.1that G¥® (2")
is a stable cylinder of GiZ"), for everye > 0.

From first principles, one proves the following (s&€][ [29]).

PROPOSITIONDEFINITION 3.6.1
There is a unigue additive morphism
it : Co 27 —> Ko(Vark)ioc

such thatii(A) = [ (A)]L~™Dd when A is a stable cylinder of level n.

One deduces from Lemma&s3.1and3.3.2(see [L(], [25]) the following.
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PROPOSITION3.6.2
(8] For any cylinder A inC 4-, the limit

u(A) = lim A(ANGr®2))

exists inK@k).

(2) If A belongs toCgq 4, then u(A) coincides with the image ofi(A) in
Ko(Var).

(3) If Ain Cg4 is the disjoint union of a denumerable family of subsats & I,
which all belong taC -, then

WA = u(A).
iel
(4) For Aand B inCy, |ln(AUB)|| < max|lu(A)l. [In(B)I). If A C B,
(A< 1B

3.7. Measurable subsets &fr(2")
For A andB subsets of the same set, we use the notatiam for (AU B) \ AN B.

Definition 3.7.1
We say that a subsét of Gr(2") is measurabléf, for every positive real number,
there exists am-cylindrical approximation, that is, a sequence of cylindrical subset:
Ai(¢),i € N, such that

(AAAo(e)) | Aie)

i>1

and||u (A (e))]] < eforalli > 1. We say tha# is strongly measurablé, moreover,
we can takeAg(e) C A.

THEOREM3.7.2
If Ais a measurable subset &r(.2"), then

(A = a!iLnOM(AO(S))
exists inKmk) and is independent of the choice of the sequengés) A € N.
For A a measurable subset of Gt"), we call «(A) the motivic measuref A. We

denote byD 4 the set of measurable subsets of &1).
One should note that obviousyy is contained irD 4.



MOTIVIC INTEGRATION ON SMOOTH RIGID VARIETIES 327

PROPOSITION3.7.3

(1) Dy is aBoolean algebra.

(2) If Aj, i € N, is a sequence of measurable subsetsGi{2) with
limi o0 1L (AD | = O, then|J; .y A is measurable.

(3) Let A,i € N, be a family of measurable subsets ®f(.2"). Assume that
the sets Aare mutually disjoint and that A= | J; . A is measurable. Then
Y ien #(A) converges ierk) to w(A).

4) If A and B are measurable subsets®f(.2") and if Ac B, then||u(A)|| <
(B

Remark 3.7.4

In the situation of Remark.3.3 one can check that the notions of cylinders, stable
cylinders, and measurable subsets of X&R) coincide with the analogous notions
introduced in [L2] for subsets ofZ (X).

3.8. Order of the Jacobian ideal
Leth: # — 2 be a morphism of flat formaR-schemes of relative dimensiaohn
Lety be a point of G(%) \ Gr(%sing) defined over some perfect field extension
F of k. We denote byy : SpfRe — # the corresponding morphism of formal
R-schemes. We define qsdJag)(y), the order of the Jacobian ideal bfat y, as
follows.
From the natural morphisi*Q - r — Q/r, ONe deduces, by taking tiokh
exterior power, a morphisﬂm*Q‘jg{.IR — ngm and hence a morphism

(¢ﬂﬁ9$q@/amsmm-—»(p*ng@/amsm@.

Since L := (go*Q?le)/(torsion) is a free Or.-module of rank 1, it follows
from the structure theorem for finite-type modules over principal domains the
the image ofM := (<p*h*Q%ﬂR)/(torsion) in L is either zero, in which case
we set org;(Jag)(y) = oo, or w"L for somen < N, in which case we set
ord, (Jag)(y) = n.

3.9. The change of variable formula
If h: # — % is a morphism of formaR-schemes, we still writé for the corre-
sponding morphism G#) — Gr(Z").

The following lemmas are basic geometric ingredients in the proof of the chanc
of variable formula (see Ths.9.3and3.9.4).

LEMMA 3.9.1
Leth:  — 2 be a morphism between flat formal R-schemes of relative dimensic
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d. We assume tha is smooth. For e and’én N, we set
Aee = {p € GI(#) | ord, (Jag)(y) = e and h(p) € Gr(e')(%)}.

Then there exists ¢ iN such that, for every i 2e, n> e+ cé€, for everyp in Ag e,
and for every x irGr(.2") such thatr,(h(¢)) = mh(x), there exists y iGr(#") such
that h(y) = x andmn—e(¢) = mn—e(y)-

LEMMA 3.9.2

Leth:  — 2 be a morphism between flat formal R-schemes of relative dimensic

d. We assume tha¥ is smooth. Let B be a cylinder @r(#), and set A= h(B).

Assume thabrd,, (Jag,) is constant with value & oo on B and that AcC Gr(d)(%)

for some € > 0. Then A is a cylinder. Furthermore, if the restriction of h to B is

injective, then for > 0 the following hold.

(1) Ifpandy’ belongto B andrn(h(¢)) = mn(h(¢")), thenmn_e(p) = mn_e(®’).

(2)  The morphismr,(B) — mn(A) induced by h is a piecewise trivial fibration
with fibre AZ.

For a measurable subsatof Gr(2") and a functionx : A — Z U {0}, we say that
L ~* is integrable or that is exponentially integrable if the fibres @fare measurable
and if the motivic integral

/L “dp =) ple )L

nezZ

converges irKo(Vary).
When all the fibres:~1(n) are stable cylinders andtakes only a finite number
of values onA, it is not necessary to go to the completiorkaf(Vary)oc and one may

directly define
/ L™ di _ZM tm)L

neZ
in Ko(Vark)joc-

THEOREM3.9.3

Leth:  — 2 be a morphism between flat formal R-schemes of relative dimensic
d. We assume tha¥ is smooth. Let B be a strongly measurable subseBf?).
Assume that h induces a bijection between B ang=A(B). Then, for every expo-
nentially integrable functionx : A — Z U oo, the functionax o h + ord,, (Jag,) is
exponentially integrable on B and

/ L« du :/ L—aoh—ordw(\]a(h) du.
A B
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We also need the following variant of Theorén®.3

THEOREM3.9.4

Leth: # — 2 be a morphism between flat formal R-schemes of relative dimensic
d. We assume that and 2k are smooth and that the morphismg h % — 2k
induced by h igtale (see§]). Let B be a cylinder irGr(#/). Assume that h induces a
bijection between B and A= h(B) and that A is a stable cylinder d&r(2"). Then
the fibres BN ord,, (Jag)~1(n) are stable cylindersord,, (Jag)1(n) takes only a
finite number of values on B, and

/d/l:/ L_Ord’”(‘]aq‘)d/l
A B

in Ko(Var)gc-
4. Integration on smooth rigid varieties

4.1. Order of differential forms

Let 2 be a flat formalR-scheme equidimensional of relative dimensibrConsider

a differential forme in Qf‘%R(%). Let x be a point of G(2") \ Gr(Zsing) defined
over some perfect field extensidhof k. We denote by : SpfRg — 2" the cor-
responding morphism of formdR-schemes. Sincé := (¢*Q%|R)/(torsiom is a
free Or.-module of rank 1, it follows from the structure theorem for finite-type mod-
ules over principal domains that its submodMegenerated by*w is either zero, in
which case we set ogf(w)(X) = oo, or w "L for somen € N, in which case we set
ord, (w)(X) = n. We may assume that™ is affine.

Since there is a canonical isomorphiﬂ@k (2k) ~ Q%R(%) ®r K (see B,
Prop. 1.5)), ifw is in Q%K(%K), we writew = @ "@, with @ in Q%R(%') and
n € N, and we set org 2 (w) = ord; (@) — n. Clearly, this definition does not
depend on the choice daf.

LEMMA 4.1.1

Leth: # — 2 be a morphism between flat formal R-schemes equidimensional
relative dimension d. Leb be in Q%‘R(%) (resp., ian’%K (Zk)). Let y be a point

in Gr(#) \ Gr(%sing), and assume that(ly) belongs toGr(.2") \ Gr(Zsing). Then

ord,, (W*w)(y) = ordy (w) (h(y)) + ord, (Jag)(y),

respectively,

ord,; o (hk w)(y) = 0rdy, - (@) (h(Y)) + ordy, (Jag)(y).
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Proof
The proof follows directly from the definitions. O

THEOREM-DEFINITION 4.1.2

Let X be a smooth rigid variety over K of pure dimension d.d.&e a differential

form in Q% (X).

1) Let 2 be a formal R-model of X. Then the functiord,, 4 (w) is expo-
nentially integrable onGr(.2") and the integraIfGr(%») L=, 2 @) dy in

Ko/(\/ak) does not depend on the modgl. We denote it b)fx wdu.

(2)  Assume furthermore thait is a gauge form, that is, that it generaté& at
every point of X, and assume that some open dense formal subs¢herhe
Z is a weak Nron model of X. Then the functiand,, 2 (w) takes only a
finite number of values and its fibres are stable cylinders. Furthermore, th
integral [g, 4 L~ 9w 2 @) d 7 in Ko(Vark) e does not depend on the model
Z . We denote it by, wdji.

Proof

Let us prove (2). Writeo = @ "® with @ in Q‘j@lR(ﬁ”) andn € N. Since% is
smooth,Qd%lR is locally free of rank 1 andoy ® (Q%/‘R)—1 is isomorphic to a
principal ideal sheat f)Jy with f in 6y. Furthermore, the function ogdg- ()
coincides with the function ogg( f) which to a pointy of Gr(%) = Gr(Z") asso-
ciates org, (f (¢)). The fibres of org, (f) are stable cylinders. Sinee is a gauge
form, f induces an invertible function oiX; hence, by the maximum principle
(see H]), the function org, (f) takes only a finite number of values. To prove that
Jera L= 9. 2 @) d 7 in Ko(Vark)|oc does not depend on the mod#, it is enough
to consider the case of another mod&l obtained fromZ2" by an admissible formal
blow-uph : 27 — 2°. We may also assume th&" contains as an open dense
formal subscheme a wealékbn modelZ’ of X. The equality

/ L—ordw,%/(w)dﬂzf L~ 0. 2 (@) g
Gr(Z")

Gr(Z)
then follows from Lemmat.1.1and Theorens.9.4 Statement (1) follows similarly
from Lemma4.1.1and Theoren3.9.3 O
Remark 4.1.3

A situation where gauge forms naturally occur is that of reductive groupsGLet
be a connected reductive group okeB. Gross constructs irLp], using Bruhat-Tits
theory, a differential form of top degregss; on G which is defined up to multiplication
by a unit inR. One may easily check that the differential fows induces a gauge
form on the rigidK -groupG"9 := (G®R)k .
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LEMMA 4.1.4
Let X be a smooth rigid variety over K of pure dimension d, andlée a gauge
formon X. Lety’ = (Oj)icy be a finite admissible covering, and set & (), O;

forl c J. Then
/wdﬂ= > (—D"‘*lf |0, dfi.
X P CJ O

If w is assumed to be a differential form onlymi(X), then

/deu= > (—1)"'1/0I |0, du.

D#1Cd

Proof

Let us prove the first statement, the proof of the second one being similar. It is enou
to consider the case ¢f| = 2. Choose arR-model 2" containing a weak Bron
model% of X as an open dense formal subscheme and such that the coXeeng
01 U O is induced from a coveringg” = &1 U 0> by open formal subschemes. It is
sufficient to prove that

/ |~ Ofdey, 2 (@) diz =/ [~ Orts. ; (@0;) dii +/ |~ O, 6, (@)0,) dji
Gr(Z) Gr(01) Gr(02)

_ / [~ 9w, 6106, (@0;n0,) dji,
Gr(01N05)

which follows from the fact that for every open formal subschemef 2~ the func-
tion ord,, 2 (w) restricts to org, o (w|) on Gr&) and the equalities G2") =
Gr(01) U Gr(0») and GK01) N Gr(02) = Gr(0'1 N 0»), which follow from Proposi-
tion2.3.2 O

PROPOSITION4.1.5
Let X and X be smooth rigid K -varieties of pure dimension d aridathd letw and
o’ be gauge forms on X and XThen

/ wxw’dﬂ:/wdﬂx/w/d/l.
Xx X! X 4

If w andw’ are assumed to be differential forms onlyshi(X), then

/ wxw’du:/wdux/a)’du.
Xx X! X '
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Proof

Let us prove the first assertion, the proof of the second one being similar. Choc
R-models.2” and.2” of X and X/, respectively, containing a weakekbn model”

of X and%’ of X’ as an open dense formal subscheme. Also, write " and

o = "&, with®andad' in Q% r(Z) andQ9, ,r(2"), respectively. Itis enough

to check thafi(ord,, 2« 27(@ x @) = m) is equal to) "y, py—m (010, 27 (&) =

m’) x fi(0rd,, 2 (@) = m”), which follows from the fact that on G2~ x 27) ~
Gr(Z) x Gr(Z") = Gr(%) x Gr(%"), the functions org 2y 2 (® x &) and
ordy,. 2 (@) + ord,, (&) are equal. O

4.2. Invariants for gauged smooth rigid varieties
Let d be an integer greater than or equal to zero. We deIﬁa(aGSRigf(), the
Grothendieck group of gauged smooth rididvarieties of dimension, as follows:
as an abelian group it is the quotient of the free abelian group over syii¥als
with X a smooth rigidK -variety of dimensiord andw a gauge form orX by the
relations

[X', @] =[X, w]

if there is an isomorphism : X’ — X with h*ow = o', and
X, 0l= Y (~D'"HOr, w0,
B#£1cd

when(Oj)ie; is a finite admissible covering of, with the notationO; := (), O;
for I c J. One puts a graded ring structure Kp(GSRig ) := Py Ko(GSRigﬂ) by
requiring that

[X, w] x [X,0]:=[Xx X, 0 x o]
Forgetting gauge forms, one defines simiIaINy(SRig‘}i), the Grothendieck group
of smooth rigid K -varieties of dimensiord, and the graded ringo(SRigx) :=
Dy KO(SRigﬂ). There are natural forgetful morphisms

F : Ko(GSRid}) — Ko(SRid})
and

F : Ko(GSRig) — Ko(SRigy).
PROPOSITION4.2.1
There is a unique ring morphism

i Ko(GSRig) — Ko(Vark)ioc

which assigns to the class of a gauged smooth rigid K-varigtyw) the integral
fx wdfi.
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Proof
This follows from Lemmat.1.4and Propositiod.1.5 O

4.3. A formula forf, wdpt
Let X be a smooth rigid variety ove{ of pure dimensiom. Let % be a weak Mron
model of X contained in some mode?™ of X, and letw be a form inQ%{lR(%)

inducing a gauge form oX. We denote byJ(i), i € J, the irreducible components of

the special fibre ot/ . By assumption, eadu(‘) is smooth andU(i, mUCJ; =f@fori #j.
We denote by orlgi(i) (w) the unique integen such thato "w generateﬁzfémR at the

generic point ofU(i). More generally, ifw is a gauge form im‘}KK(%K), we write
o = "o with & in Qf’%lR(%) andn € N, and we set orlgi(i)(a)) = ordU(i)(c?)) —-n.

PROPOSITION4.3.1

Let X be a smooth rigid variety over K of pure dimension d. #etbe a weak
Néron model of X contained in some modgl of X, and letw be a gauge form
in Q%K (Zx). With the above notation, we have

f wdj = —d Z[U(i)]L_ordU(i)(w)
X

ied

in Ko(Var)oc-

Proof

Denote bﬂ/oi the irreducible component ot with special fibreU(i). Since G(.2") is
the disjoint union of the sets @a*/g), we may assume that” is a smooth irreducible
formal R-scheme of dimensiod. Let w be a section OQ%‘R(%) which generates
Q%R at the generic point of2” and induces a gauge form on the generic fibre. Let
us note that the function ogds- (w) is identically equal to zero on G#£). Indeed,
after shrinking2”, we may writew = f wp with wp a generatofzgg.lR at every point
andf in 04 (Z). By hypothesisf is a unit at the generic point ot". Assume that,
at some poink of Gr(2"), ord,, f(x) > 1; it would follow that the locus off =0
is nonempty inZ", which contradicts the assumption thainduces a gauge form on
the generic fibre. Hence we gft, ;- L= 2@ g = L~9[Xg], and the result
follows. O

4.4. Application to Calabi-Yau varieties over K

Let X be a Calabi-Yau variety ové<. By this we mean a smooth projective algebraic
variety overK of pure dimensiord with Qg’( trivial. We denote byX2@" the rigid

K -variety associated t&. Since X is proper,Xa"is canonically isomorphic to the
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generic fibre of the formal completion of any prog&model of X. In particular,Xa"
is smooth. By GAGA (se€fL, Th. 2.8]),2%a (X3 = Q% (X) = K.

Now we can associate to any Calabi-Yau variety d¢ea canonical element in
the ring Ko (Vary)oc Which coincides with the class of the special fibre whehas a
model with good reduction.

THEOREM4.4.1

Let X be a Calabi-Yau variety over K, I&t be a weak lron model of X", and let

o be a gauge form on ¥. We denote by {,J i € J,the irreducible components of the
special fibre ofz, and we setr(w) := infordu(i)(a)). Then the virtual variety

(X1 = 3 Ui (4.4.1)

ied
in Ko(Vary)oc depends only on X. When X has a proper smooth model with goc
reduction over R[X] is equal to the class of the special fibre.

Proof
Let w be a gauge form ox2". By Proposition/.3.], the right-hand side ofi(4.7) is
equal toL 9+%@ [ .. wdfi, which does not depend ean O

In particular, we have the following analogue of Batyrev’s result on birational projec
tive Calabi-Yau manifolds (se€]j [ 10]).

COROLLARY 4.4.2
Let X be a Calabi-Yau variety over K, and léf and 2" be two proper and smooth
R-models of X with special fibre&y and 2. Then

[20] = [20]

in Ko(Var)oc-

Remark 4.4.3
Calabi-Yau varieties oved((t)) with k of characteristic zero were consideredis]|

4.5. A motivic Serre invariant for smooth rigid varieties
We can now define the motivic Serre invariant for smooth rigid varieties.

THEOREM4.5.1
There is a canonical ring morphism

S: Ko(SRigg) — Ko(Vark)oe/ (L — 1)Ko(Vark)oc



MOTIVIC INTEGRATION ON SMOOTH RIGID VARIETIES 335

such that the diagram

Ko(GSRig) Ko(Vark)ioc

iF |

Ko(SRigq) —>— Ko(Var)iee/(L — 1)Ko(Var)iee

is commutative.

Proof

Since any smooth rigiK -variety of dimensiord admits a finite admissible cover-
ing by affinoids(G;)icg, with Q%i trivial, the morphismF is surjective. Hence it
is enough to show the following statement: &t be a smooth formaR-scheme of
relative dimensiom with Q%R trivial, and letw; andw, be two global sections of
Q%R inducing gauge forms on the generic fib#& ; thenfGr(%-)(L—ordwv%(wl) —

L~ 9. 2 (@2)) d 1 belongs taL — 1)Ko (Vark)ee. To prove this, we takeyg a global
section ofQf, ¢ such thatQ%,, ~ wo0y . If w is any global section of2%, .,
write w = fawgwith f in 04 (Z2"). By the maximum principle, the function asd f )
takes only a finite number of values on(Gr). It follows that we may write Gr2")

as a disjoint union of the subsets(@ )orq,, (f)=n, Where org, (f) takes the value.
These subsets are stable cylinders, and only a finite number of them are nonem
Hence the equality

f (L0 (@) | =0z @0y dj = % (L — 1)a( G2 ord, (1)=n)
Gr(Z) n
holds inKg(Vary)qc, and the statement follows. O

Remark 4.5.2

The ringKg(Vark)oc/(L — 1) Ko(Var)oc is much smaller than the rin§o(Vari)oc
but still quite large. Let be a prime number distinct from the characteristidkof
Then theétale¢-adic Euler characteristic with compact supports

X — xee(X) =Y (=D dimH{ 5(X, Qp)

induces a ring morphismac,¢ : Ko(Vark)oc/(L — DKo(Vark)igc = Z.

Similarly, assume that there is a natural morphidm Ko(Vark)oc — Z[u, v]
which to the class of a varieti{ overk assigns its Hodge polynomi&l (X) for de
Rham cohomology with compact support. Such a morphism is known to exist whe
k is of characteristic zero. Then if one sétg/2(X)(u) := H(X)(u, u~1), one gets a
morphismH, : Ko(Van)ee/(L — 1)Ko(Var)ee — Z[u] sinceH (A}) = uv.
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Now we can give the following formula for the motivic Serre invari&in terms of
a weak Neron model.

THEOREM4.5.3
Let X be a smooth rigid variety over K of pure dimension d.Zebe a weak [Eron
model of X, and denote byplits special fibre. Then

S([XT) = [Uol

in Ko(Varoe/ (L — 1) Ko(Var)ioc.
In particular, the class offUp] in Ko(Vark)qc/(L — 1) Ko(Vark)oc does not de-
pend on the weak@&on model7 .

Proof

By taking an appropriate admissible cover, we may assume that there exists a ga
form on X, in which case the result follows from Propositidr3.1 since [Ug] =
Yies [U(i)]. (In fact, one can also prove Th.5.1that way, but we preferred to give a
proof that is quite parallel to that of Serre i?d.) O

4.6. Relation with p-adic integrals on compact locally analytic varieties
Let K be a local field with residue field = Fq. Let us consider the Grothendieck
group KO(SLocArﬁ) of compact locally analytic smooth varieties ouerof pure
dimensiond, which is defined similarly td(o(SRigf(), replacing smooth rigid va-
rieties by compact locally analytic smooth varieties and finite admissible covers |
finite covers. Also, a nowhere vanishing locally analytiform on a smooth com-
pact locally analytic varietyX of pure dimensiord is called agauge formon X,
and one defines the Grothendieck grd(mIGSLocArﬂ) of gauged compact locally
analytic smooth varieties ovedf of pure dimensiord similarly to KO(GSRigﬂ).
There are canonical forgetful morphisrs : KO(SRig‘r{) — KO(SLocArﬁ) and
F . KO(GSRig‘<) — KO(GSLocArf() induced from the functor that to a rigid va-
riety (resp., gauged variety) associates the underlying locally analytic variety (res
gauged variety). It X, w) is a gauged compact locally analytic smooth variety,ihe
adic integralfy |w| belongs tZ[q~1] (see P€]), and by additivity ofp-adic integrals,
one gets a morphism ipt Ko(GSLocArf() — Z[g71).

On the other hand, there is a canonical morphidm Kq(Vary) — Z which to
the class of &-variety Sassigns the number of points 8fFq), and which induces a
morphismN : Ko(Vark)oc — Z[g~1]. We also denote biX the induced morphism
Ko(Var)ioe/ (L — D Ko(Var)iee — Z[a~4/(@ — DZ[q~H ~ Z/(q — 1Z.
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PROPOSITION4.6.1
Let K be a local field with residue field% Fq. Then the diagram

i

Ko(GSRid}) Ko(Vari)ioc

) 5

int
Ko(GSLocAr,) — > z[q~1]
is commutative.

Proof

One reduces to showing the following: 1€f be a smooth formaR-scheme of di-
mensiord, and letf be a function irv’2-(2") which induces a nonvanishing function
on Zx; then

N(/ L_Ord“’(f)d/l) :/ q_ordW(f)d/lp
Gr(Z) Z(R)

with d/ip the p-adic measure or?"(R). It is enough to check that (;l(ordw(f) =
n)) is equal to thep-adic measure of the set of point®f 2" (R) with ord,, (f)(x) =
n, which follows from Lemmat.6.2 O

LEMMA 4.6.2

Let K be alocal field with residue field¥ Fq. Let 2" be a smooth formal R-scheme
of dimension d. Let A be a (stable) cylindeiGn(.2"). Then Ni(A)) is equal to the
p-adic volume of A Gr(2") (k).

Proof

Write A = 7rn_l(C) with C a constructible subset of (r2"). By definition, i (A) =
L—4™+D[C]. On the other hand?” being smooth, the morphisi N Gr(.2") (k) —
C(k) is surjective and its fibres are balls of radgiz?"*+D It follows that thep-adic
volume of AN Gr(2") (k) is equal to/C(k)|q~d("+D, O

Let us now explain the relation with the work of Serre #6][ Serre shows inJ6]
that any compact locally analytic smooth variety o¥eof pure dimensior is iso-
morphic tor B9 with r an integer greater than or equal to 1 &ftithe unit ball of
dimensiond and that, furthermore,B¢ is isomorphic ta’B¢ if and only ifr andr’
are congruent modulp— 1. We denote bg(X) the class of inZ/(q—1)Z. It follows
from Serre’s results thatinduces an isomorphisen: KO(SLocArE() - 2/(q—-1Z
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and that the diagram

int
Ko(GSLocArf}) L Zlqg™4

| |

Ko(SLocArl) ——Z/(q — 1)Z

is commutative. The following result then follows from Propositibf. 1.

COROLLARY 4.6.3
Let K be alocal field with residue field% Fy. Then the diagram

Ko(SRig) —>— Ko(Varioe/ (L — 1)Ko(Varje

|F N

Ko(SLocArg) > Z/(q-1Z

iS commutative.
5. Essential components of weak 8fon models

5.1. Essential components and the Nash problem
Since we proceed by analogy with7], let us begin by recalling some material from
that paper. We assume in this subsection khiatof characteristic zero and thRt=
K[[=]]. For X an algebraic variety ovés, we denote by (X) its arc space as defined
in [10]. In fact, in the present section, we use notation and results fidgip ¢ven
when they happen to be special cases of ones in this paper. As noted in Retngrk
Z(X) = Gr(X®R), and there are natural truncation morphisms: Z(X) —
Zh(X) with £ (X) = Gri(X @ Ry).

By a desingularization of a variet§, we mean a proper and birational morphism

h:Y — X,

with Y a smooth variety, inducing an isomorphism betwbeh(X \ Xsing) and X \
Xsing- (Some authors omit the last condition.)

Leth : Y — X be a desingularization of, and letD be an irreducible compo-
nent ofh—l(Xsing) of codimension 1irY. If h" : Y/ — X is another desingularization
of X, the birational mag : W~1oh : Y --» Y’ is defined at the generic poitof
D sinceh’ is proper; hence we can define the imag®dh Y’ as the closure ap (¢)
in Y’. One says thab is an essential divisor with respect ¥oif, for every desin-
gularizationh’ : Y/ — X of X, the image oD in Y’ is a divisor and thaD is an
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essential component with respecttaf, for every desingularizatioh’ : Y’ — X of
X, the image oD in Y’ is an irreducible component bf ~1(Xsing). In general, ifD
is an irreducible component obrl(Xsing), we say thaD is an essential component
with respect toX if there exists a proper birational morphigmn: Y — Y, with Y’
smooth, and a divisab’ in Y’ such thatD’ is an essential component with respect to
X andp(D’) = D. It follows from the definitions and Hironaka’s theorem that essen-
tial components of different resolutions of the same varire in natural bijection;
hence we may denote by X) the number of essential components in any resolutior
of X.

Let W be a constructible subset of an algebraic varigtyWe say thatw is
irreducible inZ if the Zariski closuréV of W in Z is irreducible.

In general, letW = |J;-p, W/ be the decomposition ol into irreducible
components. ClearlyV; := VVT/ N W is nonempty, irreducible i, and its closure in
Z is equal towW/. We call theW;’s theirreducible componentsf W in Z.

Let E be a locally closed subset bf“l(Xsing). We denote byZg the set of arcs
in .2 (Y) whose origin lies orE but which are not contained iR. In other words,
Zg = ngl(E) \ Z(E). Let us note that ifE is smooth and connected,(Zg) is
constructible and irreducible i, (Y). Now we setNg := h(Zg). Sincer,(Ng) is
the image ofr,(Zg) under the morphisn#, (Y) — £n(X) induced byh, it follows
thatn(Ng) is constructible and irreducible ig, (Y).

The following result, proved inZ2], follows easily from the above remarks and
Hironaka'’s resolution of singularities.

PROPOSITIONS.1.1 (see J. Nasi2p))

Let X be an algebraic variety over k, a field of characteristic zero.. 8&iX) :=
no‘l(xsmg) \ Z(Xsing). For every n> 0, m,(#(X)) is a constructible subset of
Z(X). Denote by W, ..., Wh™ the irreducible components af, (.4 (X)). The
mapping n— r(n) is nondecreasing and bounded by the numbef) of essential
components occurring in a resolution of X.

Upto renumbering, we may assume wu,’b;H maps toW,i1 for n > 0. Let us call
the family (W{)ns0 @ Nash family Nash shows, furthermore, that for every Nash
family (W!)ns0 there exists a unique essential comporirin a given resolution
h:Y — X of X such thatr,(Ng) = Wi for n > 0.

Now, we can formulate the Nash problem.

PROBLEMS.1.2 (Nash22, p. 36])
Is there always a corresponding Nash family for an essential component? In gener
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how completely do the essential components correspond to Nash families? Wha
the relation between(X) andlimr (n)?

Recently, Ishii and Kolir [17] proved that the correspondence between essential con
ponents and Nash families is one-to-one for toric singularities but fails in general.
fact, they showed that the 4-dimensional hypersurface singulgtityx3 -+ x5 +x3 +
x56 = 0 has two essential components and only one Nash family.

Let W be a constructible subset of some varigty\We denote the supremum of
the dimension of the irreducible components of the closuM/daf Y by dimW.

Leth : Y — X be a proper birational morphism with a smooth variety. Let
E be a codimension 1 irreducible component of the exceptional lochsrol. We
denote byv(E) — 1 the length of2d/h*Q¢ at the generic point of. Here Q%
denotes thelth exterior power of the sheaﬂ( of differentials onX.

PROPOSITION5.1.3

Let X be a variety of pure dimension d over k, a field of characteristic zero. Le
h:Y — X be a proper birational morphism with Y a smooth variety, and let U be &
nonempty open subset of a codimension 1 irreducible component E of the exceptic
locus of hin Y. Then

dimmzn(Ny) =(n+1) d —v(E)

forn > 0.

Proof

By [10, Th. 6.1], the image ofra(Ny)IL ~™+Dd in Ko(Vary) converges ta(Ny) in
Kmk). Since dimry(Ny) < (n+ 1)d by [10, Lem. 4.3], one deduces the fact that
dimm,(Ny) — (n+1) d has a limit. To conclude, we first note thaf(Ny) = 7n(Ng)

for any nonempty open subdétin E. Hence we may assume thbt“sz‘)’()/torsion is
locally free on a neighborhood &f. It then follows from [LO, Prop. 6.3.2], or rather
from its proof, that

p(Ng) =L UL -1 Y L=®
=1

in Ko(Vary). Henceu(Ny) belongs toF "®) and not toF "+, and the result fol-
lows. O

5.2. Essential components of weakrdh models
We return now to the setting of the present paper. We fix a flat foRms¢theme2”
of relative dimensiord with smooth generic fibreZx . By a weak Neron model of
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Z ', we mean a weak &on modelz of Zk together with a morphisrh : % —
Z inducing the inclusionzx — Zx. As before, we denote bw), i € J, the
irreducible components of the special fibreZsf Let &' denote the generic point of
U(‘). We sayU(‘) is an essential component with respectXoif, for every weak Neron
model%’ of 2", the Zariski closure Oﬁo’q//(n&%/ (€')) is an irreducible component
of the special fibre of/’. Note that being an essential component is a property relativ
to 2. By their very definition, essential components in different weakdd models
of 2 are in natural bijection.

We have the following analogue of Proposition.. L

PROPOSITION5.2.1

Let 2 be a flat formal R-scheme of relative dimension d with smooth generic fibi
Zk . Denote by Vﬁ .. r(”) the irreducible components of the constructible subse
n(Gr(Z")) of Grn(%). The mapping n— r(n) is nondecreasing and bounded by
the number (2") of essential components occurring in a weakdh model of2".

Proof

Clearly, the mappingh — r(n) is nondecreasing. Léi : 7 — 2 be a weak
Néron model of2” with irreducible component#', i € J. Since%' is smooth and
irreducible,rrn,@(Gr(@/i )) is also smooth and irreducible; hence the Zariski closure
of h(mn 2 (GH%"))) = 7 2 (GH(#')) in G(Z) is irreducible. Since GZ) is
the union of the subschemes@f'), it follows thatr (n) is bounded by J|. Now
if %' is not an essential component, there exists some weakrNmodel of2’,
h : %' — 2, such that, if we denote bW' the image of Gi%') in Gr(%"),
.2/ (W') is contained in the Zariski closure of, 4/ (Gr(%') \ W'). It follows that
n, 2 (GK(%'")) is contained in the closure af,, o-(Gr(%) \ Gr(%")). The bound
rny < t(%) follows. O

As previously, we may, up to renumbering, assume\tbﬂg;l maps to\Wri‘ forn > 0.
We still call the family(Wj)ns.0 @ Nash family. Let;, be the generic point aNVi. By
constructiong 41 Maps to,f?n under the truncation morphismGr(2) — G (2);
hence to the inverse syste(m,)n»o corresponds a poit of Gr(2). Leth : % —
2 be weak Neron model of2” with irreducible component# i, j € J. There is
a unique irreducible componef# | 1) such that the poing’ belongs to Gz ™).
Furthermoreh(mn(Gr(# 11)))) = Wr', for n > 0, and it follows from the proof of
Propositions.2. 1thatU/ " is essential.
We have the following analogue of the Nash problem.
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PROBLEMb.2.2
In general, how completely do the essential components correspond to Nash familie
What is the relation between(2") andlimr (n)?

For E a locally closed subset of the special fibreZf we setZg = n&%(E) and
NEe := h(Zg). Note that, for every, 7n(Zg) andm,(Ng) are constructible subsets
of G (%) and Gr(4%"), respectively. Indeedr,(Zg) is constructible since” is
smooth; hencer,(Ng) = h(zn(Zg)) also. We denote by(U(i)) — 1 the length of
%R/ h*Qd%R at the generic poirg' of U'
We also have the following analogue of Propositiof.3

PROPOSITION5.2.3

Let 2 be a flat formal R-scheme of relative dimension d with smooth generic fibi
Zk.Leth: 7 — Z be a weak Mron model 0fZ", and let E be an open dense
subset of an irreducible componen& of the special fibre of/. Then

dimmn(Ng) = (N + 1) d — v(UY)

forn > 0.

Proof
Fix an integele > 0. By Lemma3.9.2, forn > e,

dimzn(Ng N Gr® 2) = dim, (™1 (Ng N Gr® 27)) — v(UY)
= (n+1d—vU}).
On the other hand, it follows from Lemnta3.2that
dimzn(Ne N (27 \ Gr® 2)) < (n+1)d — v(U))

whenn > e v(U)). O
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