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Motivic invariants of arc-symmetric sets and

blow-Nash equivalence

Goulwen Fichou

Abstract

We define invariants of the blow-Nash equivalence of Nash function germs, in a similar
way to the motivic zeta functions of Denef and Loeser. As a key ingredient, we extend the
virtual Betti numbers, which were known for real algebraic sets, to a generalized Euler
characteristic for projective constructible arc-symmetric sets. Actually we prove more: the
virtual Betti numbers are not only algebraic invariants, but also Nash invariants of arc-
symmetric sets. Our zeta functions enable one to distinguish the blow-Nash equivalence
classes of Brieskorn polynomials of two variables. We prove moreover that there are no
moduli for the blow-Nash equivalence in the case of an algebraic family with isolated
singularities.

Introduction

In the study of real analytic function germs, the choice of a good equivalence relation between germs
is a crucial topic. Whereas the topological equivalence is too coarse and the C1-equivalence too fine,
the blow-analytic equivalence, a notion introduced by T.-C. Kuo in 1985 (see [Kuo85], and [FKK98]
for a survey) seems to behave better, especially with respect to finiteness properties. In this paper,
we will focus on a particular case of blow-analytic equivalence, called blow-Nash equivalence, for
which we add algebraicity assumptions.

Let f, g : (Rd, 0) −→ (R, 0) be Nash function germs. Then f and g are said to be blow-Nash

equivalent if there exist two algebraic modifications

πf : (Mf , π−1
f (0)) −→ (Rd, 0) and πg : (Mg, π

−1
g (0)) −→ (Rd, 0),

and a Nash isomorphism φ : (Mf , π−1
f (0)) −→ (Mg, π

−1
g (0)), that is an analytic isomorphism with

semi-algebraic graph, which respects the multiplicity of the jacobian determinants of πf and πg

and which induces a homeomorphism h between neighbourhoods of 0 in Rd such that f = g ◦ h.
Here, by a modification π of f , we mean a proper birational map which is an isomorphism over
the complement of the zero locus of f and such that f ◦ π and jac π have simultaneously only
normal crossings. One can define such a relation on Nash sets, and Koike [Koi97, Koi00] proved
that finiteness properties hold in this setting. In the case of germs of functions, the question of
moduli is still open in general. However, in § 4, we prove that there are no moduli for a Nash family
with isolated singularities under some algebraic assumptions on the modifications. In particular, an
algebraic family of isolated singularities does not admit moduli for the blow-Nash equivalence.

A common issue for blow-analytic equivalence and blow-Nash equivalence is to prove that,
when it is the case, two given germs of real analytic functions are not equivalent. The difficulty
arises in the lack of invariants known for these relations. Up to now, just two kinds of invariants
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have been known: the Fukui invariants and the zeta functions of Koike and Parusiński [KP03].
With an analytic function germ f , the Fukui invariants associate the set of possible orders n of series
f ◦ γ(t) = antn + · · · , an �= 0, for γ : (R, 0) −→ (Rd, 0) an analytic arc [Fuk97, IKK02]. There exists
also a version of the Fukui invariants related to the sign of f . Using motivic integration combined
with the construction of a computable motivic invariant for arc-symmetric sets, the virtual Betti
numbers, we introduce in this paper zeta functions Z(T ) and Z±(T ) of a real analytic function germ
that belong to Z[u, u−1][[T ]], and take into account not only the orders of the series f ◦γ(t) but also
the geometry of the sets Xn(f) of arcs γ that realize a given order n (for precise definitions, see § 3.1).
These zeta functions are similar to the motivic zeta functions of Denef and Loeser [DL01], and also
to those of Koike and Parusiński, defined using the Euler characteristic with compact supports.

We prove that our zeta functions are invariants of the blow-Nash equivalence. The proof is
directly inspired by the work of Denef and Loeser via their formulae for the zeta functions in terms
of a modification of the zero locus of the given function germ (Propositions 3.2 and 3.5). It uses the
powerful machinery of motivic integration, a theory introduced by Kontsevich in 1995 [Kon95] and
developed further by Denef and Loeser [DL98, DL99, DL01, DL02], in particular the fundamental
change of variables formula (Proposition 3.10).

In order to dispose of computable invariants, motivic integration requires computable measures,
or in other words generalized Euler characteristics. A generalized Euler characteristic is an additive
and multiplicative invariant defined on the level of the Grothendieck group of varieties. In our
setting of the blow-Nash equivalence, we need invariants of the Zariski constructible sets over real
algebraic varieties Xn(f) (real algebraic variety in the sense of [BCR98]), and we ask them to be
respected by Nash isomorphisms. This leads naturally to the category of Nash varieties, and more
generally of arc-symmetric sets, a category introduced by Kurdyka [Kur88].

In § 2, we give conditions, inspired by a result of Bittner [Bit04], on an invariant defined on
connected components of compact non-singular real algebraic varieties such that it extends to an
additive invariant on the constructible category of arc-symmetric sets. Additive means that χ(A) =
χ(B)+ χ(A \B) for a closed inclusion B ⊂ A of arc-symmetric sets. As a fundamental example, we
prove that the Betti number bk with Z2 coefficients defined on connected components A of compact
non-singular real algebraic sets by bk(A) = dimHk(A, Z2) give such an additive invariant βk on
arc-symmetric sets for each k ∈ N (Corollary 2.5), called a k-virtual Betti number. We make them
multiplicative by putting β(A) =

∑dim A
k=0 βk(A)uk ∈ Z[u], called the virtual Poincaré polynomial

of A.

Let us emphasize the fact that the unique such additive invariant known up to now in the
real case is the classical Euler characteristic with compact supports, and in fact it is the unique
generalized Euler characteristic for semi-algebraic sets up to homeomorphism [Qua01].

The virtual Poincaré polynomial is not a topological invariant. It respects the dimension
(see Remark 2.11) whereas the Euler characteristic with compact supports may identify the
dimension. Note that the virtual Betti numbers have been proven recently to be additive invariants
of real algebraic varieties by McCrory and Parusiński in [MCP03] and independently by Totaro
[Tot02]; in this paper, we extend these numbers to the more general context of arc-symmetric sets,
and we prove the invariance not only under algebraic isomorphisms but also under Nash isomor-
phisms (see Definition 2.15).

1. Arc-symmetric sets

The category of arc-symmetric sets contains the real algebraic varieties and, in some sense, this
category has a better behaviour than that of real algebraic varieties, similar to complex algebraic
varieties. For example, a closed and irreducible arc-symmetric set is connected whereas a closed and
irreducible real algebraic variety may have as many connected components as one wants!
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In this section, we introduce arc-symmetric sets, with a definition slightly different from that
of Kurdyka, and we state their basic properties in relation to closure, dimension and irreducibility.
Then, we study in more detail the non-singular arc-symmetric sets and especially the resolution of
singularities for arc-symmetric sets.

1.1 Arc-symmetric sets and closure

We fix a compactification of Rn, for instance Rn ⊂ Pn.

Definition 1.1. Let A ⊂ Pn be a semi-algebraic set. We say that A is arc-symmetric if, for every real
analytic arc γ : ]−1, 1[ −→ Pn such that γ(]−1, 0[) ⊂ A, there exists ǫ > 0 such that γ(]0, ǫ[) ⊂ A.

This definition is due to Parusiński [Par04]. Note that a closed arc-symmetric set is neces-
sarily compact. This definition differs from that of Kurdyka [Kur88], who considers only closed
arc-symmetric sets in Rn. One can think of our arc-symmetric sets as being the projective con-
structible arc-symmetric sets of Kurdyka. We remark moreover that an arc-symmetric set need not
be an analytic variety (cf. [Kur88, Example 1.2]).

Example 1.2.

(i) A real algebraic variety is an arc-symmetric set. A connected component of a compact real
algebraic variety is also an arc-symmetric set.

(ii) The two-dimensional sheet of the Whitney umbrella of the equation zx2 = y2 is arc-symmetric.

We remark that the arc-symmetric sets form a constructible category of semi-algebraic sets in
the sense of [Par04], denoted AS, that is:

(a) AS contains the algebraic sets;

(b) AS is stable under set-theoretic operations ∪,∩, \;

(c) AS is stable by inverse images of AS-maps (i.e. whose graph is in AS) and by images of
injective AS-maps;

(d) each A ∈ AS has a well-defined fundamental class with coefficients in Z2.

In particular there is a notion of closure in AS (we refer to [Par04] for a proof).

Proposition 1.3. Every A ∈ AS admits a smallest arc-symmetric set, denoted by A
AS

, containing
A and closed in Pn.

Remark 1.4. Arc-symmetric sets are not stable under the euclidean closure. Consider for example
the regular part A of the Whitney umbrella zx2 = y2. The closure of A in AS is the entire Whitney
umbrella.

We can define irreducible arc-symmetric sets in the usual way: A ∈ AS is irreducible if the
existence of a decomposition A = B ∪ C, with B and C closed in A and arc-symmetric, implies
that either B ⊂ C or C ⊂ B. We remark that an irreducible arc-symmetric set is not necessarily
connected, with our definition of arc-symmetric sets (as an example, consider a hyperbola in the
plane). Nevertheless, as proved in [Kur88], an arc-symmetric set A admits a unique decomposition
into a finite union of irreducible arc-symmetric sets closed in A.

Proposition 1.5. If A ∈ AS is irreducible, then so is A
AS

.

Proof. Assume that A
AS

can be decomposed into A
AS

= B ∪ C with B and C arc-symmetric and

closed in A
AS

. Then B and C are closed and A splits into

A = A ∩ A
AS

= (A ∩ B) ∪ (A ∩ C),
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with A∩B and A∩C arc-symmetric and closed in A. But A is irreducible so either A∩B ⊂ A∩C or
the reverse inclusion holds. By symmetry, one can assume that A∩B ⊂ A∩C. Then A equals A∩C,

so A is included in C and finally A
AS

is equal to C because C is arc-symmetric and closed.

Define the dimension of an arc-symmetric set to be its dimension as a semi-algebraic set. Then,
it equals the dimension of its Zariski closure in the projective space [Kur88] (recall that we consider
real algebraic varieties in the sense of [BCR98]) and therefore

dim A = dim A
AS

= dimA
Z

for A ∈ AS. The following result relates the dimension of an arc-symmetric set to the dimension
of its arc-symmetric closure. It will be useful in the sequel when dealing with proofs by induction,
e.g. for Theorems 2.3 and 2.16.

Proposition 1.6. Let A ∈ AS. Then A
AS

= A ∪ A \ A
AS

. In particular dimA
AS

\ A < dim A.

Proof. Note that, as a union of arc-symmetric sets, F = A ∪ A \ A
AS

is arc-symmetric. Moreover
F can be decomposed into

F = A ∪ (A \ A) ∪
(
A \ A

AS)
= A ∪ A \ A

AS
,

and thus F is closed. So the inclusion A
AS

⊂ F holds.

Moreover A is included in A
AS

because A
AS

is closed. Thus A \ A
AS

⊂ A
AS

, and so F ⊂ A
AS

.

Consequently F = A
AS

.

We can adapt Proposition 1.5 of [Kur99] to our definition of arc-symmetric sets. It is another
example of the good behaviour of irreducible arc-symmetric sets.

Proposition 1.7. Let A ∈ AS be irreducible, and B ⊂ A be a closed arc-symmetric subset of A
of the same dimension. Then B = A.

Proof. A can be decomposed into the union of two arc-symmetric sets closed in A as follows:

A = B ∪ (A \ B
AS

∩A). Then, by irreducibility of A, either B ⊂ A \ B
AS

∩A or A \ B
AS

∩A ⊂ B.

In the second case B is equal to A, and in the first one B is included in (A \ B
AS

) \ (A \ B).
But this cannot happen, for the dimension of this arc-symmetric set is strictly less than dimB by
Proposition 1.6.

1.2 Nonsingular arc-symmetric sets

Let us define a non-singular arc-symmetric set with relation to its Zariski closure in the projective
space.

Definition 1.8. An arc-symmetric set A is non-singular if A ∩ Sing(A
Z
) = ∅.

Lemma 1.9 [Kur99]. A non-singular and connected arc-symmetric set is irreducible.

Let us state a definition of an isomorphism between arc-symmetric sets.

Definition 1.10. Let A,B ∈ AS. Then A is isomorphic to B if and only if there exist Zariski open

subsets U and V in A
Z

and B
Z

containing A and B respectively, and an algebraic isomorphism
φ : U −→ V such that φ(A) = B.
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Remark 1.11. At this point, we are only interested in the algebraic point of view, because we have in
mind to study algebraic singularities of arc-symmetric sets, and to use Hironaka’s desingularization
theorem. In § 2.2 we will give another definition of an isomorphism between arc-symmetric sets (see
Definition 2.15).

Proposition 1.12. Let A ∈ AS be compact and non-singular. Then A is isomorphic to a union of
connected components of some compact non-singular real algebraic variety.

Proof. Let X = A
Z

be the Zariski closure of A in the projective space, and let π : X̃ −→ X be a
resolution of the singularities of X. We remark that the three spaces A, X and X̃ have the same
dimension and that A is isomorphic to the subset π−1(A) = Ã of X̃ because A ⊂ Reg(X) and
Reg(X) is a Zariski open subset of X isomorphic to π−1(Reg(X)) ⊂ X̃.

Now, denote by X̃ =
⋃

i∈I Ci the decomposition of X̃ into connected components. Each Ci,
i ∈ I, is a connected and non-singular arc-symmetric set of dimension dimX, hence irreducible by
Lemma 1.9. Therefore Ã∩Ci, whose dimension equals dimCi by the non-singularity of Ã, is either
equal to Ci or empty because of Proposition 1.7, and so Ã is a union of connected components of
X̃ as claimed.

1.3 Arc-symmetric sets and resolution of singularities

The following proposition is an adaptation of Theorem 2.6 of [Kur88] to our definition of arc-
symmetric sets. It asserts that, up to desingularization, we can think of an irreducible arc-symmetric
set as being a connected component of a real algebraic variety.

Proposition 1.13. Let A ∈ AS be irreducible. Let X be a compact real algebraic variety containing
A with dim X = dim A, and π : X̃ −→ X a resolution of singularities for X (cf. [Hir64]). Then,
there exists a unique connected component Ã of X̃ such that π(Ã) = Reg(A).

Proof. Let Ã0 be an irreducible arc-symmetric component of dimension dim A of π−1(A). Such

an Ã0 exists because the dimensions of π−1(A) and A coincide. Then Ã0 is contained in some

connected component Ã of X̃. Actually Ã0
AS

is irreducible (because so is Ã0, cf. Proposition 1.5) and

closed, and therefore it is connected by Proposition 1.12. Now Ã0
AS

is included in some connected

component of X̃, and is equal to this component by Proposition 1.7. We can put Ã = Ã0
AS

. Note

moreover that the euclidean closure Ã0 of Ã0 also equals Ã by the non-singularity of Ã.

Let us prove that the announced equality π(Ã) = Reg(A) holds. In fact, it suffices to prove that

dim π(Ã)
AS

\ π(Ã) < dim A,

which will be done in the next lemma.

This is sufficient for the following reasons. Note first that π(Ã)
AS

is included in A
AS

because

π(Ã) = π(Ã0) ⊂ π(Ã0) ⊂ A ⊂ A
AS

.

Then, on the one hand, π(Ã)
AS

is equal to A
AS

by Proposition 1.7, so dim A
AS

\ π(Ã) < dimA.

Now Reg(A) ∩ (A
AS

\ π(Ã)) is an open subset of A
AS

of dimension strictly less than dimA, so

Reg(A) ∩ (A
AS

\ π(Ã)) = ∅. This implies the inclusion Reg(A) ⊂ π(Ã).

On the other hand, if E denotes the exceptional divisor of the resolution, then π(Ã \ E) is

included in Reg(A
AS

). However Reg(A
AS

) is included in Reg(A) because dim A
AS

\ A < dim A by
Proposition 1.6.

Thus the inclusions π(Ã \ E) ⊂ Reg(A) ⊂ π(Ã) hold and give the conclusion by taking the
closure.
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Lemma 1.14. Let A and Ã be as in the proof of Proposition 1.13. Then

dim π(Ã)
AS

\ π(Ã) < dim A.

Proof. Let us prove that the inclusion π(Ã)
AS

⊂ π(Ã) ∪ π(E)
AS

holds. Denote by F the set

π(Ã) ∪ π(E)
AS

. We remark that if F is closed and arc-symmetric, the lemma is proved.

As π is proper, π(Ã) is closed and so is F . Now, let γ : ]−ǫ, ǫ[ −→ Pn be a real analytic arc such
that int γ−1(F ) �= ∅. Then

(a) either int γ−1(π(E)
AS

) �= ∅ and γ(]−ǫ, ǫ[) ⊂ π(E)
AS

(b) or int γ−1(π(Ã) \ π(E)
AS

) �= ∅.

In the latter case, there exists a unique analytic arc γ̃ : ]−ǫ, ǫ[ −→ Pm such that π ◦ γ̃ = γ.
One has int γ̃−1(Ã) �= ∅, and therefore γ̃(]−ǫ, ǫ[) ⊂ Ã because Ã is arc-symmetric. Finally
γ(]−ǫ, ǫ[) ⊂ π(Ã) ⊂ F , and thus F is arc-symmetric.

Remark 1.15. Denote by D the singular locus of X and by E the exceptional divisor of the resolution

of Proposition 1.13. Then π : Ã\E −→ A
AS

\D is an isomorphism of arc-symmetric sets (restriction
of an algebraic isomorphism). If we add the assumption that A is non-singular, then the conclusion of
Proposition 1.13 becomes simply π(Ã) = A. Moreover π : Ã\ (Ã \π−1(A)) −→ A is an isomorphism
between arc-symmetric sets, and Ã is close to A is the sense that dim Ã \ π−1(A) < dimA.

Actually, it is easy to prove that the symmetric difference of A and π(Ã) consists of a semi-
algebraic set of dimension strictly less than dimA. More precisely, we have the following proposition.

Proposition 1.16. Let A and Ã be as in Proposition 1.13. Then

A \ (π(Ã) ∩ A) = {x ∈ Sing(A); dimx A < dim A},

π(Ã) \ (A ∩ π(Ã)) = {x ∈ A
AS

\ A; dimx A
AS

= dimA}.

Let us finish this section by stating the particular case of the ‘blowing-up’ of a real algebraic
variety along a closed non-singular arc-symmetric set. By virtue of Proposition 1.12, it is just the
blowing-up of a non-singular real algebraic variety along a non-singular centre.

Proposition 1.17. Let Y ⊂ X be compact non-singular algebraic varieties such that dim Y <
dimX, and let A ⊂ X be a connected component of X. Denote by π : X̃ −→ X the blowing-up of
X along Y . Then π is surjective and π−1(A) is a connected component of X̃.

2. Virtual Betti numbers

In the theory of motivic integration, generalized Euler characteristics play the role of a measure for
certain subsets of the arc space of a variety. In § 2.1, we give a new example of such a generalized
Euler characteristic of arc-symmetric sets, constructed from the Betti numbers of compact non-
singular arc-symmetric sets.

This example, called the virtual Poincaré polynomial, was already known for real algebraic
varieties; it has been introduced independently by McCrory and Parusiński [MCP03] and by Totaro
[Tot02]. Here we define the virtual Poincaré polynomial for the larger category of arc-symmetric
sets. The way to perform this is, following an idea of Bittner [Bit04], to extend an invariant of
the compact non-singular arc-symmetric sets to the whole category of arc-symmetric sets. The key
ingredients are the resolution of singularities, which enables us to define the invariant for all arc-
symmetric sets, and the weak factorization theorem, which simplifies the proof of the independence
of the choices we have to make.
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Moreover we prove, in § 2.2, that the virtual Betti numbers are invariants of the arc-symmetric
sets not only under algebraic isomorphisms, but also under Nash isomorphisms. This result will
be useful when studying the blow-Nash equivalence of germs of real analytic functions in the next
section.

2.1 Generalized Euler characteristics of arc-symmetric sets

Definition 2.1. An additive map on AS with values in an abelian group is a map χ defined on
AS such that

(i) for arc-symmetric sets A and B that are isomorphic, χ(A) = χ(B),

(ii) for a closed arc-symmetric subset B of A, χ(A) = χ(B) + χ(A \ B).

If moreover χ takes values in a commutative ring and satisfies χ(A × B) = χ(A) · χ(B) for
arc-symmetric sets A and B, then we say that χ is a generalized Euler characteristic on AS.

Remark 2.2.

(i) One can construct a universal generalized Euler characteristic with values in the Grothendieck
ring of arc-symmetric sets [DL01]. But this ring is rather complicated, and we are interested
in more computable invariants.

(ii) The Euler characteristic with compact supports is a generalized Euler characteristic on AS,
and maybe the simplest one. In fact, it is unique if we consider just semi-algebraic sets, with
isomorphisms replaced by homeomorphisms [Qua01]. However, for complex algebraic varieties,
a lot of such generalized Euler characteristics exist, for example deduced from mixed Hodge
structures [DL01, Loo02].

The following theorem gives sufficiently good conditions, on an invariant χ over the closed
(i.e. compact) and non-singular arc-symmetric sets, such that χ extends to an additive map on
AS. We state the theorem in terms of connected components of real algebraic varieties thanks
to Proposition 1.12. The method is inspired by that of Bittner [Bit04], who proves the result for
algebraic varieties over a field of characteristic zero.

Theorem 2.3. Let χ be a map defined on connected components of compact non-singular real
algebraic varieties with values in an abelian group and such that:

(P1) χ(∅) = 0;

(P2) if A and B are connected components of compact non-singular real algebraic varieties that
are isomorphic as arc-symmetric sets, then χ(A) = χ(B);

(P3) with the notations and assumptions of Proposition 1.17,

χ(π−1(A)) − χ(π−1(A) ∩ π−1(A ∩ Y )) = χ(A) − χ(A ∩ Y ).

Then χ extends uniquely to an additive map defined on AS.

Remark 2.4. Property (P3) of Theorem 2.3 is a kind of additivity property for non-singular
arc-symmetric sets.

Before giving the proof of the theorem after Remark 2.11, let us state some consequences. First,
this result enables us to give another example of such an additive map by considering the homology
with coefficients in Z2. For i ∈ N, denote by bi the ith Betti number with coefficients in Z2, defined
by bi(·) = dimHi(·, Z2).

Corollary 2.5. There exist additive maps on AS with values in Z, denoted βi and called virtual
Betti numbers, such that βi coincides with the classical Betti number bi on the connected components
of compact non-singular real algebraic varieties.
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Remark 2.6. McCrory and Parusiński [MCP03] have proven the same result for real algebraic
varieties. In particular, they have defined the virtual Betti numbers of real algebraic varieties.
The proof below is inspired by their arguments.

Proof of Corollary 2.5. We adopt the notations of property (P3) of Theorem 2.3. One checks in a
similar way to [MCP03] that there exist exact sequences of the form

0 −→ Hi(π
−1(A) ∩ π−1(A ∩ Y )) −→ Hi(A ∩ Y ) ⊕ Hi(π

−1(A)) −→ Hi(A) −→ 0,

where the homology is considered with coefficients in Z2. Therefore

bi(π
−1(A)) − bi(π

−1(A) ∩ π−1(A ∩ Y )) = bi(A) − bi(A ∩ Y ),

and we can apply Theorem 2.3.

It turns out to be easy to adapt Theorem 2.3 in order to obtain not only additive maps but also
generalized Euler characteristics.

Theorem 2.7. Let χ be as in Theorem 2.3. Assume moreover that χ takes values in a commutative
ring, and that for connected components of compact non-singular real algebraic varieties A and B,
the relation χ(A×B) = χ(A)χ(B) holds. Then the unique extension of χ on AS of Theorem 2.3 is
a generalized Euler characteristic.

The proof of this theorem is given at the end of this subsection. The following corollary is an
immediate consequence of the Künneth formula.

Corollary 2.8. Let β be defined by β(A) =
∑dimA

i=0 βi(A)ui for A ∈ AS. Then β is a generalized
Euler characteristic on AS, called the virtual Poincaré polynomial.

Remark 2.9.

(i) The name ‘virtual Poincaré polynomial’ is inspired by [Ful93], where Fulton studies such
a virtual Poincaré polynomial for complex algebraic varieties. It is related to the weighted
characteristic associated with mixed Hodge structures.

(ii) By uniqueness in Theorem 2.7, one recovers the Euler characteristic with compact supports
by evaluating β at u = −1.

(iii) The virtual Poincaré polynomial is not a topological invariant [MCP03].

Example 2.10.

(i) If Pk denotes the real projective space of dimension k, which is non-singular and compact, then
β(Pk) = 1 + u + · · · + uk. Now, compactify the affine line A1

R
in P1 by adding one point at

infinity. By additivity β(A1
R
) = β(P1) − β(point) = u, and so β(Ak

R
) = uk.

(ii) Let W be the Whitney umbrella, and L be the line included in W . Then the additivity property
implies β(W ) = β(W \L)+β(L). Moreover W \L is isomorphic, via the blowing-up of W along
L, to the strict transform of W minus a parabola P . Therefore β(W \L) = β(A1

R
×P )−β(P ) =

(β(A1
R
) − 1)β(P ) = (u − 1)u. Finally β(W ) = u2.

Remark 2.11. The virtual Poincaré polynomial satisfies dim(A) = deg(β(A)) for an arc-symmetric
set A. In particular, it respects the dimension.

Proof of Theorem 2.3. We prove Theorem 2.3 by induction on the dimension; the rank-n inductive
hypothesis claims that χ is defined on arc-symmetric sets of dimension less than or equal to n, is
invariant under isomorphisms between arc-symmetric sets, and is additive.

For n = 0 the arc-symmetric sets are just finite unions of points and the result is clearly true.
Assume that the inductive hypothesis is true at rank n − 1. We prove the result at rank n in two
steps:
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(1) If χ is an additive map on the non-singular elements of AS of dimension less than or equal to
n, then χ extends to an additive map on all arc-symmetric sets of dimension less than or equal
to n.

(2) If χ satisfies properties (P1), (P2) and (P3), then χ extends to an additive map on the
non-singular elements of AS of dimension less than or equal to n.

Step 1. Let A ∈ AS of dimension n. There exists a stratification A
Z

=
⋃

S∈S S of A
Z

with
non-singular algebraic strata, i.e. A

Z
is a disjoint union of locally closed algebraic varieties (note

in particular that we do not ask the strata to be connected). Then S ∩ A, for each S ∈ S, is a
non-singular arc-symmetric set, and thus χ(S ∩A) is defined. Put χ(A) =

∑
S∈S χ(S ∩A). One has

to check that χ(A) is well-defined and satisfies the additivity property.

We show first that χ(A) is equal to
∑

S∈S χ(S ∩ A) in the case where A is non-singular, by
induction on the number of elements in S. Indeed, take N0 ∈ S; then

χ(A) = χ(A \ (A ∩ N0)) + χ(A ∩ N0) and χ(A \ (A ∩ N0)) =
∑

S∈S\{N0}

χ(S ∩ A)

by induction, so the result follows.

Now, if S1 and S2 are two stratifications of A
Z

, one can find a common refinement S of S1

and S2. The independence in the non-singular case implies that
∑

S∈S1

χ(S ∩ A) =
∑

S∈S

χ(S ∩ A) =
∑

S∈S2

χ(S ∩ A),

and thus χ does not depend on the choice of the stratification.

Let us show finally that χ is additive. Take A, B ∈ AS, with B ⊂ A, of dimension less than or

equal to n. One can choose a stratification
⋃

S∈S S of A
Z

such that B
Z

and A \ B
Z

are unions of
strata. Then

∑

S∈S

χ(S ∩ B) +
∑

S∈S

χ(S ∩ (A \ B)) =
∑

S∈S

(χ(S ∩ B) + χ(S ∩ (A \ B))),

and χ(S ∩ (A \ B)) + χ(S ∩ B) = χ(S ∩ A) because the strata are non-singular, so χ is additive.

Step 2. The second step constitutes the heart of the work. Define χ over the non-singular arc-
symmetric sets of dimension n in the following way.

(D1) If A =
⋃

i∈I Ai denotes the decomposition of A into irreducible components, put χ(A) =∑
i∈I χ(Ai).

(D2) If A ∈ AS is non-singular and irreducible, then define χ(A) by χ(A) = χ(Ã) − χ(Ã \

π−1(A)), where Ã is the connected component of a resolution of singularities π of A
Z

given by
Remark 1.15.

We have to prove that χ is well-defined, invariant under isomorphisms, and additive over the
non-singular elements of AS.

The following lemma will be useful in the sequel.

Lemma 2.12. Let A and B in AS be non-singular, irreducible and isomorphic. Suppose that A
Z

and

B
Z

are non-singular, and denote by Ã ⊂ A
Z

and B̃ ⊂ B
Z

the connected components containing A
and B respectively. Then

χ(Ã) − χ(Ã \ A) = χ(B̃) − χ(B̃ \ B).

Proof. By definition of an isomorphism between arc-symmetric sets, we know that A
Z

and B
Z

are birationally equivalent, and the weak factorization theorem [AKMW02, Wlo03] factors this
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birational isomorphism into a succession of blowings-up and blowings-down. In particular, we can

assume that the birational isomorphism between A
Z

and B
Z

is just a blowing-up π : A
Z
−→ B

Z

along a non-singular variety C such that C ∩ B = ∅. Note that π−1(B̃) = Ã by Proposition 1.17.
Now χ(B̃ \B) = χ(B̃∩C)+χ(B̃\(B∪C)) by the additivity inductive hypothesis because dim B̃ \B
is strictly less than dimB by Proposition 1.6. Moreover

χ(B̃) − χ(B̃ ∩ C) = χ(Ã) − χ(Ã ∩ π−1(C)) and χ(B̃ \ (B ∪ C)) = χ(Ã \ (A ∪ π−1(C)))

by property (P3), and the inductive hypothesis about invariance under isomorphisms respectively.
Therefore

χ(B̃) − χ(B̃ \ B) = χ(Ã) − χ(Ã ∩ π−1(C)) − χ(Ã \ (A ∪ π−1(C))),

which is equal to χ(Ã) − χ(Ã \ A) by the additivity inductive hypothesis.

Now we return to step 2 of the proof of Theorem 2.3. Let us check that the definition of χ, for
the non-singular and irreducible arc-symmetric sets of dimension n, does not depend on the choice
of the resolution of singularities of Remark 1.15.

Let A ∈ AS be non-singular and irreducible, and let πi : X̃i −→ A
Z
, for i ∈ {1, 2}, be resolutions

of singularities of A
Z
. Let Ãi be the connected components of X̃i given by Proposition 1.13. One has

to show that: χ(Ã1) − χ(Ã1 \ π−1
1 (A)) = χ(Ã2) − χ(Ã2 \ π−1

2 (A)).

But π−1
1 (A) and π−1

2 (A) are isomorphic irreducible non-singular arc-symmetric sets because πi

is an isomorphism on a Zariski open subset of X̃i containing π−1
i (A), for i ∈ {1, 2}. Therefore

Lemma 2.12 applies and χ is well-defined.

Now let us show that χ is invariant under isomorphisms between arc-symmetric sets. The proof
is very similar to the last one. Let A and B in AS be non-singular, irreducible and isomorphic.

Then there exist Zariski open subsets U and V in A
Z

and B
Z

respectively, and an algebraic
isomorphism φ : U −→ V such that φ(A) = B. Choose resolutions of singularities

πA : X̃ −→ A
Z

and πB : Ỹ −→ B
Z

for A
Z

and B
Z

respectively. Then π−1
A (A) and π−1

B (B) are isomorphic as arc-symmetric sets, and
then by Lemma 2.12: χ(π−1

A (A)) = χ(π−1
B (B)).

Moreover χ(π−1
A (A)) equals χ(A) because both are equal to χ(Ã) − χ(Ã \ π−1

A (A)), where Ã

is the connected component of X̃ given by Proposition 1.13. In the same way χ(π−1
B (B)) is equal

to χ(B), hence the equalities χ(A) = χ(π−1
A (A)) = χ(π−1

B (B)) = χ(B) hold.

In the case where A and B are not irreducible, it suffices to decompose A and B into irreducible
components, and to apply the property (D1) because an isomorphism between arc-symmetric sets
respects the irreducible components.

Finally, let us check that χ is additive. Let B ⊂ A be an inclusion of non-singular arc-symmetric
sets. Note that, by definition of χ, we need to prove the result only in the case where A is irreducible.

If A and B have the same dimension, then B
AS

= A
AS

by Proposition 1.7, and so B
Z

= A
Z
.

Now choose a resolution of singularities π : X̃ −→ A
Z

for A
Z
. If Ã denotes the connected component

of X̃ given by Proposition 1.13 for A, then it is also the component associated to B, and therefore
χ(B) = χ(Ã) − χ(Ã \ π−1(B)).

Now χ(Ã \ π−1(B)) = χ(Ã \ π−1(A)) + χ(π−1(A) \ π−1(B)) by the inductive hypothesis on
additivity. As a consequence χ(B) equals χ(A) − χ(A \B) because χ(π−1(A) \ π−1(B)) is equal to
χ(A \ B) by the invariance under isomorphisms in dimension smaller that n.

If dimB < dim A, choose a resolution of singularities π : X̃ −→ A
Z

for A
Z
. It is also a resolution

of singularities of A \ B
Z

= A
Z

and so χ(A \ B) equals the difference χ(Ã) − χ(Ã \ π−1(A \ B)).
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Now

χ(Ã \ π−1(A \ B)) = χ((Ã \ π−1(A)) ∪ π−1(B)) = χ(Ã \ π−1(A)) + χ(π−1(B))

by the inductive assumption, and once more by the inductive assumption χ(π−1(B)) is equal
to χ(B). Finally χ(A \ B) = χ(A) − χ(B), which completes the proof of step 2, and thus the
proof of Theorem 2.3.

As was the case for the previous proof, we are going to prove Theorem 2.7 by induction on the
dimension. The following relations will be useful:

(1) χ(
⊔k

i=1 Ai) =
∑k

i=1 χ(Ai), where the union of the arc-symmetric sets Ai, i = 1, . . . , k, is disjoint;
and

(2) χ(A) = χ(Ã) − χ(Ã \ A), where A is a non-singular arc-symmetric set whose arc-symmetric
closure Ã is non-singular.

Proof of Theorem 2.7. Assume, as an inductive hypothesis at rank n, that χ is multiplicative for
all arc-symmetric sets of dimension strictly less than or equal to n.

We remark that we can restrict our attention to the non-singular case because, by considering
stratifications of arc-symmetric sets with non-singular strata, we prove the multiplicativity directly
with formula (1) above.

Assume therefore that A and B are non-singular arc-symmetric sets of dimension less than or
equal to n; suppose that dimA = n for instance.

In the case where A is compact, the result follows from another induction, which is finite, on

the dimension of B: indeed, resolving the singularities of B
Z
, one can assume that B ⊂ B̃, where

B̃ is the non-singular arc-symmetric closure of B. Then, by formula (2), χ(A × B) is equal to
χ(A × B̃) − χ(A × (B̃ \ B)). However, χ(A × B̃) = χ(A)χ(B̃), for they are compact and non-
singular, and χ(A× (B̃ \B)) = χ(A)χ(B̃ \B), as we can see by stratifying B̃ \B with non-singular
strata and using the inductive assumption of the second induction, because dim B̃ \ B < dim B by
Proposition 1.6. Consequently

χ(A × B) = χ(A)(χ(B̃) − χ(B̃ \ B)) = χ(A)χ(B).

If A is no longer compact, then compactify A and B in Ã and B̃ respectively, and assume that Ã, B̃
are non-singular, even if it means resolving singularities, as before.

Then, by additivity, χ(A × B) = χ(Ã × B) − χ((Ã \ A) × B̃) + χ((Ã \ A) × (B̃ \ B)).

The multiplicativity of the first two terms comes from the preceding case (for the second term,
stratify the possibly singular set Ã \ A), and the multiplicativity of the third is obtained by the
inductive assumption for max(dim Ã \A,dim B̃ \B) < n by Proposition 1.6. Therefore χ(A×B) =
χ(Ã)χ(B) − χ(Ã \ A)χ(B̃) + χ(Ã \ A)χ(B̃ \ B) = χ(A)χ(B), and Theorem 2.7 is proved.

2.2 Virtual Betti numbers and Nash isomorphisms

The definition of an isomorphism between arc-symmetric sets, which we gave in § 1, is algebraic,
via birational morphisms. But arc-symmetric sets are also closely related to analytic objects. As an
example, the following proposition emphasizes the good behaviour of the virtual Poincaré polyno-
mial β with respect to the compact algebraic varieties that are non-singular as analytic varieties.
Recall that by bi(X) we denote the ith Betti number of X with coefficients in Z2, and let us put
b(X) =

∑dim X
i=0 bi(X)ui.

Proposition 2.13. Let X be a compact algebraic variety that is non-singular as an analytic space.
Then the virtual Poincaré polynomial β evaluated at X is equal to b(X).
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Proof. One can desingularize the algebraic singularities of X by a sequence of blowings-up with
smooth centres [BM97, Hir64]. At each step of the desingularization, one has the following relations,
where BlCX designates the blowing-up of X along the non-singular subvariety C, and E is the
exceptional divisor: β(BlCX) − β(E) = β(X) − β(C), because the blowing-up is birational, and
b(BlCX) − b(E) = b(X) − b(C), because X and C are smooth and the blowing-up is a degree-one
morphism (cf. Corollary 2.5).

We remark that β(E) and β(C) are equal to b(E) and b(C) respectively by definition of β,
because E and C are non-singular and compact arc-symmetric sets. The same is true for X̃, the
desingularization of X. Then β(X) and b(X) can be expressed by the same formulae in terms of
β for the former, and b for the latter, where the spaces involved are non-singular and compact.
Therefore, for each of these spaces, β and b coincide, and then β(X) is equal to b(X).

Remark 2.14.

(i) Note that a real algebraic variety that is non-singular as an analytic space is not necessarily
non-singular as an algebraic variety (cf. [BCR98, Example 3.3.12.b]).

(ii) We will see in the proof of Theorem 2.16 that the assumption ‘X is an algebraic variety’ can
be replaced by the weaker ‘X is a semi-algebraic set’.

In order to relate the analytic aspect of arc-symmetric sets to the behaviour of the virtual
Poincaré polynomial β, we propose the following definition of a Nash isomorphism between
arc-symmetric sets.

Definition 2.15. Let A,B ∈ AS. Assume that there exist compact analytic varieties V1, V2 con-
taining A,B respectively, and also an analytic isomorphism φ from V1 to V2 such that φ(A) = B.
If moreover one can choose V1, V2 to be semi-algebraic sets and φ to be a semi-algebraic map, then
we say that A and B are Nash isomorphic.

Theorem 2.16. Nash isomorphic arc-symmetric sets have the same value under the virtual Poincaré
polynomial.

Proof. Once more, we are going to prove the result by induction on the dimension. As a first step,
let us generalize the result of Proposition 2.13.

Step 1. Let A be a compact arc-symmetric set that is also a non-singular analytic subspace of the
Zariski closure X of A. Then β(A) is equal to b(A).

In order to prove this claim, one would want to apply the same method as in the proof of
Proposition 2.13. But, if C is a smooth centre of blowing-up for X, it is not true in general that
C ∩ A is still non-singular, so the equality β(C ∩ A) = b(C ∩ A) no longer holds. In order to
solve this problem, consider the algebraic normalization X̃ of X. There exists Ã ⊂ X̃ the analytic
normalization of A (see [Loj91]), which is analytically isomorphic to A because A is non-singular as
an analytic space. Then b(A) is equal to b(Ã) because b is invariant under homeomorphisms.

Moreover β(A) is equal to β(Ã); in fact, the algebraic normalization is a birational map; hence
it is an algebraic isomorphism outside compact subvarieties E and D of X̃ and X respectively, of
dimension strictly less than dimX = dimA. Thus β(Ã \ E) is equal to β(A \ D) by Corollary 2.5,
and the algebraic normalization, restricted to Ã ∩ E, is an analytic isomorphism onto A ∩ D, so
β(Ã ∩ E) is equal to β(A ∩ D) by the inductive assumption.

Note that X̃ is locally analytically irreducible as a normal space, and therefore Ã is a union of
connected components of X̃ . Now it is true that C ∩ Ã is non-singular when C is non-singular, and
the method of the proof of Proposition 2.13 applies; therefore β(Ã) is equal to b(Ã). It follows that
β(A) = β(Ã) = b(Ã) = b(A), and then step 1 is completed.
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Step 2. Let A1 and A2 be Nash isomorphic arc-symmetric sets. Let us prove the theorem in the
particular case where A1 and A2 are non-singular arc-symmetric sets and moreover, with the
assumptions of the definition of a Nash isomorphism, the compact analytic varieties V1 and V2

are supposed to be smooth as analytic spaces.

(i) First we show that β(A2
AS

) = β(A1
AS

). We remark that A2
AS

is a union of connected com-

ponents of V2 by Proposition 1.7. Thus A2
AS

is also non-singular as an analytic variety and

β(A2
AS

) is equal to b(A2
AS

) by step 1.

Moreover A2
AS

is isomorphic to A1
AS

by φ. Indeed, φ−1(A2
AS

) is a closed arc-symmetric set

because φ has an arc-symmetric graph and φ is continuous, and it contains A1, so A1
AS

⊂

φ−1(A2
AS

). The reverse inclusion comes from the fact that the image of an arc-symmetric
set by an injective map with arc-symmetric graph is still an arc-symmetric set (recall that

AS forms a constructible category, cf. § 1). Consequently, A1
AS

is non-singular as an analytic

variety because so is A2
AS

and φ is an analytic isomorphism; hence β(A1
AS

) equals b(A1
AS

)
by step 1.

We remark also that b(A2
AS

) is equal to b(A1
AS

) because φ is a homeomorphism between
these two smooth compact topological varieties.

These equalities imply that β(A2
AS

) equals β(A1
AS

).

(ii) Then, we remark that β(A1
AS

\ A1) is equal to β(A2
AS

\ A2). Indeed this follows from the

inductive hypothesis, for A1
AS

\A1 and A2
AS

\A2 are Nash isomorphic arc-symmetric sets of
dimension strictly less than dimA2.

(iii) Finally β(A1) is equal to β(A2). Actually β(A1) = β(A1
AS

) − β(A1
AS

\ A1) and β(A2) =

β(A2
AS

) − β(A2
AS

\ A2), and we have proved that the second members are equal, so β(A1)
equals β(A2) by additivity of the virtual Poincaré polynomial β.

Step 3. Reduction of the problem to step 2. Let A1 and A2 be Nash isomorphic arc-symmetric sets.
By definition of a Nash isomorphism, there exist compact analytic varieties V1 and V2 containing A
and B respectively, and an analytic isomorphism φ : V1 −→ V2 such that φ(A1) = A2, and moreover
V1 and V2 are semi-algebraic sets and φ is a semi-algebraic map.

Denote by X1 and X2 the Zariski closures of V1 and V2 respectively.

As a first step, we are going to obtain a regular morphism rather than a semi-algebraic map
between V1 and V2. Denote by Γ the graph of φ. This graph is semi-algebraic and analytic, thus arc-

symmetric. Then the projection pi from Z = Γ
Z

onto Xi, for i ∈ {1, 2}, is a regular morphism whose
restriction to Γ is an analytic isomorphism onto Vi. Moreover, the preimages by these restrictions of
A1 and A2 coincide, so one can put B = p−1(A), where A = Ai ⊂ Vi = V ⊂ Xi = X for i ∈ {1, 2}
and p : Z −→ X denotes the natural projection. Therefore B is an arc-symmetric set that is Nash
isomorphic to A, and the issue is now to prove that β(B) equals β(A).

In order to do this, we want to come down to non-singular objects.

Desingularize X by a sequence of blowings-up with respect to coherent algebraic sheaves of ideals
(this is possible by [BM97, Hir64]). By blowing-up Z with respect to the corresponding inverse image
ideal sheaves with respect to p, at each step one has a regular morphism which lifts the projection
p : Z −→ X to the corresponding blowing-up by the universal property of algebraic blowing-up.
Let πX : X̃ −→ X denote a resolution of singularities of X and πZ : Z̃ −→ Z the corresponding
composition of blowings-up of Z. If p̃ denotes the morphism obtained between Z̃ and X̃ by the
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universal property, one has the diagram

Z̃
p̃

��

πZ

��

X̃

πX

��

Z p
�� X

which is commutative. Moreover p̃ restricted to the analytic strict transform Γ̃ of Γ is an analytic
isomorphism onto the strict transform Ṽ of V because so is p between Γ and V (here we consider
the blowing-up as an analytic one).

Now we reduce the problem to the case where A and B are non-singular by the inductive
hypothesis. In fact, the singular parts of A and B are not necessarily exchanged by p|Γ, but

Sing(A) ∪ p−1
|Γ (Sing(B)) and Sing(B) ∪ p|Γ(Sing(A))

are exchanged by p|Γ and its inverse, and thus are Nash isomorphic. Moreover the dimension of
these arc-symmetric sets is strictly less than dim A = dimB, so they have the same image by β due
to the inductive hypothesis. Let us denote by A′ and B′ the respective complements of these sets
in A and B. Now A′ and B′ are non-singular.

As A′ is non-singular, it is isomorphic to its preimage in the desingularization X̃ of X, in the sense
of Definition 1.10. Consequently B′ is also isomorphic to its preimage in Γ̃ by commutativity of the
diagram. As a consequence β(A′) and β(B′) are equal to β(π−1(A′)) and β(π−1(B′)) respectively,
and we have reduced the problem to step 2. The proof of Theorem 2.16 is complete.

3. Zeta functions

The zeta functions of a real analytic function germ, which we consider in this section, are directly
inspired by the work of Denef and Loeser [DL01] on their motivic zeta functions. In particular,
our zeta functions are defined by considering the image, under the virtual Poincaré polynomial, of
certain constructible real algebraic subsets of the arc space of an affine space.

In the case where the function germ is Nash (that is, semi-algebraic and analytic), we connect
these zeta functions with the blow-analytic equivalence in § 4.

In this section, after the definition and some examples of zeta functions, we focus on the Denef
and Loeser formulae. These formulae enable one to compute the zeta functions in terms of a mod-
ification of the Nash function germ we consider. It gives some possibilities to compute these zeta
functions more easily, and it is also a key ingredient for the application to blow-Nash equivalence
in § 4.

Note that we state also a Thom–Sebastiani formula for analytic germs of the same sign, but we
do not obtain such a formula in the general case.

3.1 Zeta functions and the Denef and Loeser formula

We first define the zeta functions for a germ of real analytic functions. Then we give a formula to
compute these zeta functions in terms of a modification in the case when the germ is Nash.

Denote by L the space of arcs at the origin 0 ∈ Rd, defined by

L = L(Rd, 0) = {γ : (R, 0) −→ (Rd, 0) : γ formal},

and by Ln the space of arcs truncated at the order n + 1,

Ln = Ln(Rd, 0) = {γ ∈ L : γ(t) = a1t + a2t
2 + · · · + antn, ai ∈ Rd},
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for n � 0 an integer. Let πn : L −→ Ln and πn,i : Ln −→ Li, with n � i, be the truncation
morphisms.

Consider f : (Rd, 0) −→ (R, 0) a real analytic function germ. We define the naive zeta function
Zf (T ) of f as the following element of Z[u, u−1][[T ]]:

Zf (T ) =
∑

n�1

β(Xn)u−ndT n,

where

Xn = {γ ∈ Ln : ord(f ◦ γ) = n} = {γ ∈ Ln : f ◦ γ(t) = btn + · · · , b �= 0}.

Similarly, we define zeta functions with sign, by

Z+
f (T ) =

∑

n�1

β(X+
n )u−ndT n and Z−

f (T ) =
∑

n�1

β(X−
n )u−ndT n,

where

X+
n = {γ ∈ Ln : f ◦ γ(t) = +tn + · · · } and X−

n = {γ ∈ Ln : f ◦ γ(t) = −tn + · · · }.

We remark that Xn and X±
n , for n � 1, are Zariski constructible subsets of Rnd, and hence

belong to AS.

Example 3.1. Let f : (R, 0) −→ (R, 0) be defined by f(x) = xk, k � 1. Then

Xn =

{
{γ = amtm + · · · + antn; am �= 0} ≃ R∗ × Rn−m if n = mk,

∅ otherwise.

Therefore β(Xn) = (u − 1)un−m if n = mk and 0 otherwise hence

Zf (T ) =
∑

m�1

(u − 1)umk−m

(
T

u

)mk

= (u − 1)
T k

u − T k
.

To compute the zeta functions with sign, we have to consider the cases k = 2p and k = 2p + 1.

If k = 2p, then X−
n = ∅ and

X+
n =

{
{γ = ±tm + · · · + antn; am �= 0} ≃ {±1} × Rn−m if n = mk,

∅ otherwise,

so

Z+
f (T ) =

∑

m�1

2umk−m

(
T

u

)mk

= 2
T k

u − T k
.

If k = 2p + 1, then

X±
n =

{
{γ = ±tm + · · · + antn; am �= 0} ≃ {±1} × Rn−m if n = mk,

∅ otherwise,

and thus

Z+
f (T ) = Z−

f (T ) =
∑

m�1

umk−m

(
T

u

)mk

=
T k

u − T k
.

It may be convenient to express the zeta functions of a germ f in terms of a modification of f , that
is a proper birational map, which is an isomorphism over the complement of the zero locus of f , and
such that f , being composed with the modification, becomes a function with only normal crossings.
Similarly to [DL99], the following proposition, called the Denef and Loeser formula, enables one to
do this in the case where the germ is Nash.

669

https://doi.org/10.1112/S0010437X05001168 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001168


G. Fichou

Proposition 3.2 (Denef and Loeser formula). Let f : (Rd, 0) −→ (R, 0) be a Nash function germ.
Let σ : (M,σ−1(0)) −→ (Rd, 0) be a modification of Rd such that f ◦σ and the jacobian determinant
jac σ have only normal crossings simultaneously, and assume moreover that σ is an isomorphism
over the complement of the zero locus of f .

Let (f ◦ σ)−1(0) =
⋃

j∈J Ej be the decomposition into irreducible components of (f ◦ σ)−1(0),

and assume that σ−1(0) =
⋃

k∈K Ek for some K ⊂ J .

Put Ni = multEi
f ◦ σ and νi = 1 + multEi

jacσ, and for I ⊂ J denote by E0
I the set

(
⋂

i∈I Ei) \ (
⋃

j∈J\I Ej). Then

Zf (T ) =
∑

I �=∅

(u − 1)|I|β(E0
I ∩ σ−1(0))

∏

i∈I

u−νiTNi

1 − u−νiTNi
.

Remark 3.3. We have to assume that f is Nash, and not only analytic, in order for the sets E0
I to

be arc-symmetric.

Example 3.4. Let fk : (R2, 0) −→ (R, 0) be defined by fk(x, y) = xk + yk, k � 2. The blowing-up
at the origin gives a suitable modification σ for f . Here (f ◦σ)−1(0) consists of just the exceptional
divisor P1 in the case k even, and furthermore, in the case k odd, of the strict transform of f which
is a smooth curve crossing transversally the exceptional divisor. Then

Zfk
=





(u2 − 1)u−2 T k

1 − u−2T k
if k is even,

(u − 1)
u−2T k

1 − u−2T k

(
u + (u − 1)

u−1T

1 − u−1T

)
if k is odd.

Note in particular that, for k �= k′, the zeta functions Zfk
and Zfk′

are different.

When we are dealing with signs, one has to define coverings Ẽ0,±
I of E0

I , where ± denotes either
+ or −, in order to state the corresponding Denef and Loeser formula.

Let U be an affine open subset of M such that f ◦ σ = u
∏

i∈I yNi

i on U , where u is a unit.
Let us put

R±
U =

{
(x, t) ∈ (E0

I ∩ U) × R; tm = ±
1

u(x)

}
,

where m = gcd(Ni). Then the R±
U glue together along the E0

I ∩ U (cf. Lemma 3.12) to give Ẽ0,±
I .

Proposition 3.5. With the assumptions and notations of Proposition 3.2, one can express the zeta
functions with sign in terms of a modification as

Z±
f (T ) =

∑

I �=∅

(u − 1)|I|−1β
(
Ẽ0,±

I ∩ σ−1(0)
) ∏

i∈I

u−νiTNi

1 − u−νiTNi
.

Propositions 3.2 and 3.5 will be proven in § 3.2.

Example 3.6.

(i) The case of a normal crossings function is particularly simple to handle. Let f : (Rd, 0) −→
(R, 0) be defined by f(x) = u(x)

∏k
i=1 xNi

i , with Ni ∈ N. Then

Zf (T ) = (u − 1)k
k∏

i=1

u−1TNi

1 − u−1TNi
.
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Now, if there exists at least one Ni odd, then

Z+
f (T ) = Z−

f (T ) =
1

u − 1
Zf (T ).

On the other hand, if all the Ni are even, then Z−
f (T ) = 0 and

Z+
f (T ) =

2

u − 1
Zf (T )

if u is positive, the converse otherwise.

(ii) Let f : (R2, 0) −→ (R, 0) be defined by f(x, y) = x2 + y2. As f is a positive function, then

Z−
f (T ) = 0. We obtain a modification in the same way as in Example 3.4, and Ẽ0,+

I here is the

boundary of a Mobius band, hence homeomorphic to P1. Therefore

Z+
f (T ) = (u + 1)

u−2T 2

1 − u−2T 2
=

1

u − 1
Zf (T ).

(iii) Let f : (R2, 0) −→ (R, 0) be defined by f(x, y) = x2 + y4. One can resolve the singularities of
f by two successive blowings-up, and then one obtains that the exceptional divisor E has two
irreducible components E1 and E2 with N1 = 2, ν1 = 2, N2 = 4, ν2 = 3. Therefore

Zf (T ) = (u − 1)2
u−2T 2

1 − u−2T 2

u−3T 4

1 − u−3T 4
+ (u − 1)u

u−2T 2

1 − u−2T 2
+ (u − 1)u

u−3T 4

1 − u−3T 4
.

Moreover in this case Ẽ0,+
{1} and Ẽ0,+

{2} are homeomorphic to a circle minus two points, so

Z+
f (T ) = 2(u − 1)

u−2T 2

1 − u−2T 2

u−3T 4

1 − u−3T 4
+ (u − 1)

u−2T 2

1 − u−2T 2
+ (u − 1)

u−3T 4

1 − u−3T 4
.

Note that in this particular case one has neither Zf (T ) = (u − 1)Z+
f (T ) nor Zf (T ) =

1
2(u − 1)Z+

f (T ), whereas this was the case in the previous examples.

Remark 3.7. It would be convenient to dispose of a Thom–Sebastiani formula in order to compute
the zeta functions of the function f ∗ g, which is defined by the formula f ∗ g(x, y) = f(x) + g(y),
from those of f and g, as is the case in [KP03, DL01, Loo02]. Unfortunately, I do not see how to
do this in general. However, in the particular case of two positive (respectively negative) functions,
one has the following formulae.

Proposition 3.8. Let f : (Rd1 , 0) −→ (R, 0) and g : (Rd2 , 0) −→ (R, 0) be two positive or two
negative real analytic function germs. Let us put Zf (T ) =

∑
n�1 anT n, Zg(T ) =

∑
n�1 bnT n and

moreover An = 1−
∑n

j=1 aj , Bn = 1−
∑n

j=1 bj . Then the naive zeta function of f ∗g : (Rd1+d2 , 0) −→
(R, 0) is Zf∗g(T ) =

∑
n�1 cnT n, where

cn = anBn + Anbn + anbn.

Example 3.9.

(i) Let h : R2 −→ R be defined by h(x, y) = x2 + y2. Recall that (cf. Example 3.4)

Zf (T ) = (u2 − 1)
∑

n�1

T 2n

u2n
.

Putting f(x) = g(x) = x2, then h = f ∗ g and by Example 3.1 we get that a2n = b2n =
(u − 1)/un and a2n+1 = b2n+1 = 0; hence A2n = A2n+1 = 1/un. Then, by Proposition 3.8, we
rederive c2n = (u2 − 1)/u2n and c2n+1 = 0.
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(ii) Let f and g be defined by f(x) = x2 and g(y) = y4, and consider f ∗ g(x, y) = x2 + y4.
The odd coefficients of the naive zeta function of f ∗ g are zero because f and g are positive,
and it is easy to verify that

a2n =
u − 1

un
, A2n =

1

un
and b4n =

u − 1

un
, b4n+2 = 0, B4n =

1

un
= B4n+2.

Therefore c4n = (u2 − 1)/u3n and c4n+2 = (u − 1)/u3n+1, which was not so clear for the
expression of the naive zeta function of f ∗ g computed with the Denef and Loeser formula, in
Example 3.6(iii).

Proof of Proposition 3.8. We remark first that und1An = β({γ ∈ Ln; ord(f ◦ γ) > n}). In fact, the
space Ln can be decomposed into the disjoint union

Ln = π−1
n,1(X1) ⊔ . . . ⊔ π−1

n,n(Xn) ⊔ {γ ∈ Ln; ord(f ◦ γ) > n}.

Hence, by additivity of β, one gets und1 =
∑n

j=1 aiu
nd1 + β({γ ∈ Ln; ord(f ◦ γ) > n}), and the

remark is proved.

Now take (γ1, γ2) in Ln(Rd1)×Ln(Rd2) = Ln(Rd1+d2). Then ord(f ◦ γ1 + g ◦ γ2) is greater than
n if and only if ord(f ◦ γ1) and ord(g ◦ γ2) are greater than n, because f and g are of the same sign.
Therefore we have to distinguish the three cases:

(i) ord(f ◦ γ1) = n and ord(g ◦ γ2) > n;

(ii) ord(f ◦ γ1) > n and ord(g ◦ γ2) = n;

(iii) ord(f ◦ γ1) = n and ord(g ◦ γ2) = n.

The computation gives

β(Xn(f ∗ g)) = β(Xn(f))und2Bn + und1Anβ(Xn(g)) + β(Xn(f))β(Xn(g)).

3.2 Motivic integration and the proof of the Denef and Loeser formula

The proof of the Denef and Loeser formula, which is a simplification of that of [DL98, Theorem 2.2.1],
to our setting, uses the theory of motivic integration on arc spaces for real algebraic varieties.
In particular, we will use the change of variables formula of Kontsevich.

For the convenience of the reader, we recall briefly these notions before proving Propositions 3.2
and 3.5.

Take σ : (M,σ−1(0)) −→ (Rd, 0) a real modification, and define the arc space associated to
(M,σ−1(0)) by

L(M,σ−1(0)) = {γ : (R, 0) −→ (M,σ−1(0)); γ is formal}.

The truncated arc space Ln consists of the arcs of L, but truncated at the order n+1, for an integer
n � 0.

Denote by πn : L −→ Ln the natural truncation morphism, for n ∈ N, where L denotes either
L(M,σ−1(0)) or L(Rd, 0). A subset A ⊂ L is called stable if there exist a constructible set C ⊂ Ln

and some n � 0 such that A = π−1
n (C). Then we can define the measure in Z[u, u−1] of such a

stable set A, with respect to the virtual Poincaré polynomial β, by

β(A) = u−(n+1)dβ(πn(A)),

for n large enough (note that β(πn(A)) is well-defined since Zariski constructible real algebraic
varieties are arc-symmetric sets). Indeed, β(A) does not depend on n because the natural projections
Ln+1 −→ Ln are locally trivial fibrations with fibre Rd.
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Let us recall now the definition of integrals. Let θ : A −→ Z[u, u−1] be a map with a finite image
and whose fibres are stable sets. Then the integral of θ over A with respect to β is defined by

∫

A
θ dβ =

∑

c∈Z[u,u−1]

cβ(θ−1(c)).

We can state the Kontsevich change of variables formula. Recall that jacσ denotes the jacobian
determinant of Jac σ.

Proposition 3.10 [Kon95, DL99]. Let A ⊂ L(Rd, 0) be stable, and suppose that the function
ordt jac σ is bounded on σ−1(A). Then

β(A) =

∫

σ−1(A)
u− ordt jac σ dβ.

Before giving the details of the proof of the Denef and Loeser formula, and notably a preliminary
lemma, we fix some notations. Recall that f is a Nash function germ. The modification σ induces
maps σ∗ (respectively σ∗,n) between L(M,σ−1(0)) and L(Rd, 0) (respectively Ln(M,σ−1(0)) and
Ln(Rd, 0)). Put

Zn(f) = π−1
n (Xn) and Zn(f ◦ σ) = σ−1

∗ (Zn(f)).

Moreover, for e � 1, put ∆e = {γ ∈ L(M,σ−1(0)); ordt jacσ(γ(t)) = e}, and finally define
Zn,e(f ◦ σ) = Zn(f ◦ σ) ∩ ∆e.

Lemma 3.11. Let σ : (M,σ−1(0)) −→ (Rd, 0) be a modification of Rd such that f ◦ σ and the
jacobian determinant jac σ have only normal crossings simultaneously, and assume moreover that
σ is an isomorphism over the complement of the zero locus of f .

Let (f ◦ σ)−1(0) =
⋃

j∈J Ej be the decomposition of (f ◦ σ)−1(0) into irreducible components,

and assume that σ−1(0) =
⋃

k∈K Ek for some K ⊂ J .

Put Ni = multEi
f ◦ σ and νi = 1 + multEi

jac σ, and for I ⊂ J denote by E0
I the set

(
⋂

i∈I Ei) \ (
⋃

j∈J\I Ej). Then there exists c ∈ N such that the naive zeta function Zf (T ) of f
equals

ud
∑

n�1

T n
∑

e�cn

u−e
∑

I �=∅

β({γ ∈ Ln(M,E0
I ) ∩ πn(∆e); ord f ◦ σ ◦ γ = n})

and the zeta functions with sign Z±
f (T ) equal

ud
∑

n�1

T n
∑

e�cn

u−e
∑

I �=∅

β({γ ∈ Ln(M,E0
I ) ∩ πn(∆e); f ◦ σ ◦ γ(t) = ±tn + · · · }).

Proof. Let us prove the lemma for Zf since the argument is the same for Z±
f .

For n � 1, Zn(f) is stable, so β(Zn(f)) is defined and equals u−(n+1)dβ(Xn), hence Zf (T ) =
ud

∑
n�1 β(Zn(f))T n.

Moreover Zn(f ◦ σ) equals the disjoint union
⋃

e�1 Zn,e(f ◦ σ), which is a finite union.

Take γ ∈ Zn(f ◦σ); there exists I ⊂ J such that π0(γ) ∈ E0
I . Then in a neighbourhood of γ(0), one

can choose such coordinates that

f ◦ σ = unit
∏

i∈I

yNi

i and jac σ = unit
∏

i∈I

yνi−1
i ,

where by unit we denote a non-vanishing analytic function.
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Let us write γ = (γ1, . . . , γd) and ki = ordt γi, for i = 1, . . . , d. Then the order ordt f ◦ σ(γ(t)) is
equal to

∑d
i=1 Niki = n and therefore

ordt jac σ(γ(t)) =

d∑

i=1

(νi − 1)ki � max
i

(
νi − 1

Ni

) d∑

i=1

Niki = max
i

(
νi − 1

Ni

)
n.

Let c = maxi((νi − 1)/Ni). Then we have shown that
⋃

e�1 Zn,e(f ◦ σ) =
⋃

e�cn Zn,e(f ◦ σ), where
the union is finite.

Now the Kontsevich change of variables formula implies that β(Zn(f)) is equal to the finite sum∑
e�cn u−eβ(Zn,e(f ◦ σ)), and then Zf (T ) = ud

∑
n�1 T n

∑
e�cn u−eβ(Zn,e(f ◦ σ)).

We are going to compute β(Zn,e(f ◦ σ)) using the fact that Zn,e(f ◦σ) equals the disjoint union⊔
I �=∅Zn,e(f ◦ σ) ∩ π−1

0 (E0
I ∩ σ−1(0)). Indeed, by additivity we find

β(Zn,e(f ◦ σ)) =
∑

I �=∅

β(Zn,e(f ◦ σ) ∩ π−1
0 (E0

I ∩ σ−1(0))).

Choose I �= ∅. Then πn(Zn,e(f ◦ σ) ∩ π−1
0 (E0

I ∩ σ−1(0))) is just the set

{γ(t) ∈ Ln(M,σ−1(0)); γ(0) ∈ E0
I ∩ σ−1(0), ordt f ◦ σ(γ) = n, ordt jacσ(γ) = e}.

The result follows directly from the additivity of β.

The proof of Propositions 3.2 and 3.5 just consists in computing the value of the virtual Poincaré
polynomial β on the sets that appear in the formulae of Lemma 3.11.

Proof of Proposition 3.2. Take γ ∈ πn(Zn,e(f ◦σ)∩π−1
0 (E0

I ∩σ−1(0))). In a neighbourhood of γ(0),
one can choose such coordinates that

f ◦ σ = unit
∏

i∈I

yNi

i and jacσ = unit
∏

i∈I

yνi−1
i ,

hence πn(Zn,e(f ◦ σ) ∩ π−1
0 (E0

I ∩ σ−1(0))) is isomorphic to
{

γ ∈ Ln(M,σ−1(0)); γ(0) ∈ E0
I ∩ σ−1(0),

∑

i∈I

kiNi = n,
∑

i∈I

ki(νi − 1) = e

}
,

where ki = ordt γi for i ∈ I. As a consequence πn(Zn,e(f ◦ σ) ∩ π−1
0 (E0

I ∩ σ−1(0))) is isomorphic to

⊔

k∈A(n,e)

(E0
I ∩ σ−1(0)) × (R∗)|I|

(∏

i∈I

Rn−ki

)
× (Rn)d−|I|,

where A(n, e) is the subset of k ∈ Nd defined by the equations
∑d

i=1 Niki = n and
∑d

i=1(νi−1)ki = e.

By taking the image by β, we obtain the equality

β(πn(Zn,e(f ◦ σ) ∩ π−1
0 (E0

I ∩ σ−1(0)))) =
∑

k∈A(n,e)

β(E0
I ∩ σ−1(0))(u − 1)|I|und−

∑d
i=1

ki .

Hence the naive zeta function of f satisfies

Zf (T ) =
∑

I �=∅

(u − 1)|I|β(E0
I ∩ σ−1(0))

∑

n�1

∑

e�cn

∑

k∈A(n,e)

u−e−
∑d

i=1
kiT n.

We remark that {k ∈ A(n, e); n � 1, e � cn} is in bijection with N|I|; therefore

∑

n�1

∑

e�cn

∑

k∈A(n,e)

u−e−
∑d

i=1
kiT n =

∑

k

∏

i∈I

(u−νiTNi)ki =
∏

i∈I

u−νiTNi

1 − u−νiTNi
,

and this ends the proof.
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The proof of Proposition 3.5 is a little bit more involved due to the fact that we have to intro-

duce a covering Ẽ0,±
I of E0

I in order to compute Z±
f (T ). Recall that if U is an affine open subset

of M such that f ◦ σ = u
∏

i∈I yNi

i on U , where u denotes a unit, then by R±
U we mean the set

R±
U = {(x, t) ∈ (E0

I ∩ U) × R; tmI = ±1/u(x)}, where mI = gcdi∈I(Ni). Then Ẽ0,±
I is the gluing

of the R±
U along the E0

I ∩ U .

Lemma 3.12. The R±
U glue together along E0

I ∩ U .

Proof. It suffices to prove that the definition of Ẽ0,±
I does not depend on the choice of the local

coordinates. Let zi be another local system of coordinates on U such that f ◦ σ = v
∏

i∈I zNi

i . Then
zi is proportional to yi for the indices i in I; therefore zi = αiyi for a non-vanishing analytic function
αi. So v(y)

∏
i∈I αNi

i = u(y) and therefore the sets {(x, t) ∈ (E0
I ∩ U) × R; tmI = ±1/u(x)} and

{(x, t) ∈ (E0
I ∩U)×R; tmI = ±1/v(x)} are isomorphic by the map (x, t) 
−→ (x, t

∏
i∈I α

Ni/mI

i ).

Proof of Proposition 3.5. Let U be an affine open subset of M such that f ◦ σ = u
∏

i∈I yNi

i on U ,
where u is a unit. What we have to compute is the value of β on

W± =

{
(x, y) ∈ (E0

I ∩ U) × (R∗)|I|; u(x)
∏

i∈I

yNi

i = ±1

}
.

Denote by m the greatest common divisor of the Ni, i ∈ I, and choose ni, i ∈ I, such that∑
i∈I niNi = m. Assume that I = {1, . . . , s}. We remark that W± is isomorphic to

W
′,± =

{
(x, y, t) ∈ (E0

I ∩ U) × (R∗)|I| × R∗; tm =
±1

u(x)
,

∏

i∈I

y
Ni/m
i = 1

}
,

by the map (x, y, t) 
−→ (x, tn1y1, . . . , t
nsys) from W

′,± to W±. The inverse is the morphism given
by

(x, y) 
−→

(
x,

(∏

i∈I

y
Ni/m
i

)−n1

y1, . . . ,

(∏

i∈I

y
Ni/m
i

)−ns

ys,
∏

i∈I

y
Ni/m
i

)
.

Now it is easier to compute β(W
′,±) because W

′,± ≃ R±
U × (R∗)|I|−1. This last isomorphism

comes from the fact that at least one Ni/m is odd. Therefore β(W±) = (u− 1)|I|−1β(R±
U ), and the

same computation as in the naive case gives the formula.

4. An invariant of the blow-Nash equivalence

In this section, we define the blow-Nash equivalence of Nash function germs, by analogy with the
blow-analytic equivalence due to Kuo [Kuo85]. He introduced this equivalence relation after noticing
that the Whitney family, which is topologically trivial but has infinitely many C1-equivalence classes,
is analytically trivial after one blowing-up.

For a survey on blow-analytic equivalence, we refer to [FKK98]. Note in particular that this equiv-
alence relation between real analytic function germs does not admit moduli for a family with isolated
singularities. Moreover, there exist efficient tools to prove that two given germs are blow-analytically
equivalent, for example via toric modifications. Note that there exist some recent invariants of this
equivalence relation which enable one to distinguish blow-analytic types [Fuk97, KP03].

We prove that similar triviality results hold for this new equivalence relation. Moreover, we state
and prove the main result of this section, which is the invariance of the zeta functions, constructed
in § 3, with respect to the blow-Nash equivalence. As an application, we finally state in § 4.2 the
blow-Nash equivalence classes of the two-variable Brieskorn polynomials.
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4.1 Blow-Nash equivalence

4.1.1 Definitions and remarks. To begin with, let us recall that by an algebraic modification of a
real analytic function germ f : (Rd, 0) −→ (R, 0), we mean a proper birational algebraic morphism
σf : (Mf , σ−1

f (0)) −→ (Rd, 0), between analytic neighbourhoods of 0 in Rd and the exceptional

divisor σ−1
f (0) in Mf , which is an isomorphism over the complement of the zero locus of f and for

which f ◦ σ is in normal crossing.

Definition 4.1.

(i) A map φ : (Rd, 0) −→ (Rd, 0) is blow-Nash if there exists a proper birational algebraic morphism
σ : (M,σ−1(0)) −→ (Rd, 0) such that φ ◦ σ is Nash (i.e. semi-algebraic and analytic).

(ii) Let f, g : (Rd, 0) −→ (R, 0) be two germs of Nash functions. They are said to be blow-Nash
equivalent if there exist two algebraic modifications

σf : (Mf , σ−1
f (0)) −→ (Rd, 0) and σg : (Mg, σ

−1
g (0)) −→ (Rd, 0),

such that f ◦ σf and jac σf (respectively g ◦ σg and jac σg) have only normal crossings simul-
taneously and a Nash isomorphism (i.e. a semi-algebraic map is an analytic isomorphism) Φ
between analytic neighbourhoods (Mf , σ−1

f (0)) and (Mg, σ
−1
g (0)) which preserves the multi-

plicities of the jacobian determinants of σf and σg along the components of the exceptional
divisor, and which induces a homeomorphism φ : (Rd, 0) −→ (Rd, 0) such that f = g ◦ φ, as
illustrated by the following commutative diagram.

(Mf , σ−1
f (0)) Φ

��

σf

��

(Mg, σ
−1
g (0))

σg

��

(Rd, 0)
φ

��

f
������������

(Rd, 0)

g
������������

(R, 0)

Remark 4.2.

(i) We do not know whether the blow-Nash equivalence is an equivalence relation or not. When
trying to adapt the corresponding proof for the blow-analytic equivalence [Kuo85], the problem
comes from the transitivity property. Namely, the fibre product of an algebraic map and a Nash
map need not be algebraic.

In the following, we consider the equivalence relation generated by this relation, which we still
call blow-Nash equivalence.

(ii) Apart from the fact that the blow-Nash equivalence only concerns Nash germs, the differences
between the blow-analytic equivalence (cf. [Kuo85]) and the blow-Nash equivalence are the
following. In the definition of blow-Nash equivalence, we ask for the following:

(a) the modifications to be algebraic, and not only analytic, and their jacobian determinant
to be in normal crossings,

(b) the isomorphism Φ upstairs to be Nash, and not only analytic,
(c) Φ to preserve the jacobian determinant orders of the modifications.

These additional assumptions are necessary in order to adapt techniques coming from motivic
integration to this more analytic framework, and in particular to obtain the central result of
this paper, Theorem 4.8.
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Note however that different definitions of a blow-analytic homeomorphism have occurred since
the original article of Kuo [Kuo85] appeared, and notably Fukui, Kuo and Paunescu pro-
pose in [FKP01] a definition closer to ours. They define a blow-analytic isomorphism to be a
homeomorphism such that there exists an analytic isomorphism upstairs which is moreover an
isomorphism between the critical loci of the modifications.

(iii) Another relation close to blow-analytic equivalence, called blow-analytic equivalence, is also
studied (cf. [FKK98]). It is defined in a similar way to blow-analytic equivalence, with the
difference that the real analytic modifications are required to be compositions of blowings-up
along smooth centres. Up to now, it is not known whether blow-analytic equivalence is an
equivalence relation or not when d > 2.

4.1.2 Properties. Here, we are concerned with triviality results and classification tools. First, it
is obvious that two real analytic function germs that are analytically equivalent are blow-analytically
equivalent! But note also that two Nash germs that are only analytically equivalent are also Nash
equivalent, as proven by Shiota [Shi98], and therefore blow-Nash equivalent. Thus blow-Nash equiv-
alence is a particular case of analytic equivalence between Nash germs.

Now, the question of moduli is a natural question when one studies an equivalence relation
between germs. The following theorem states that there are no moduli for a Nash family with
isolated singularities under some algebraicity assumptions on the modifications.

Theorem 4.3. Let F : (Rd, 0) × P −→ (R, 0) be Nash, where P is a Nash set diffeomorphic to an
open simplex in a euclidean space. Assume that F (·, p) : (Rd, 0) −→ R has an isolated singularity
at 0 for each p ∈ P , and assume moreover that F admits an algebraic resolution of singularities.

Then the family F (·, p), for p ∈ P , consists of a finite number of blow-Nash equivalence classes.

Remark 4.4.

(i) By an algebraic resolution of singularities for F , we mean a finite composition β : M −→ Rd×P
of blowings-up with smooth algebraic centres such that β is an isomorphism outside 0 × P ,
and F ◦ β is in normal crossing. Note that in the particular case where F is polynomial, such
a resolution exists by Hironaka’s desingularization theorem [Hir64].

(ii) The proof of Theorem 4.3, which is postponed to § 4.3, is inspired by [Kuo85] where Kuo
proved the finiteness of the number of blow-analytic equivalence classes for an analytically
parametrized family of isolated singularities. However, the key argument of integration along
a vector field no longer applies in the Nash category, so we need new arguments.

The following particular case, which is a consequence of the proof of Theorem 4.3, gives a tool to
prove blow-Nash triviality. It will help us in classifying the blow-Nash type of Brieskorn polynomials
(see § 4.2).

Corollary 4.5. Let ft : (Rd, 0) −→ (R, 0), t ∈ I, with I an interval of R, be a Nash parametrized
family of weighted homogeneous polynomials of the same weight with an isolated singularity at the
origin. Then the family {ft}t∈I is blow-Nash trivial.

Proof. It is well known (see [FKK98, FP00] for example) that, in that case, one can find a toric
modification β : (M,E) −→ (Rd, 0) of (Rd, 0), given by the weight of the weighted homogeneous
polynomials, such that β × id fulfils the assumptions of Proposition 4.17.

Example 4.6. Consider the Nash function germs xp + ykp and xp − ykp from (R2, 0) to (R, 0).
They are blow-Nash equivalent. Indeed,

ft(x, y) = xp +
1 − t2

1 + t2
pxyk(p−1) +

2t

1 + t2
ykp, t ∈ [−1, 1],
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is a weighted homogeneous polynomial of weight (k, 1) with an isolated singularity at the origin for
each t ∈ [−1, 1], and therefore Corollary 4.5 implies that f−1 and f1 are blow-Nash equivalent.

The counterpart is now to be able to distinguish blow-Nash types. Actually, it is a difficult issue
to find invariants with this kind of relation. More precisely, for the blow-analytic equivalence, only
the Fukui invariants [IKK02] and the zeta functions of Koike and Parusiński [KP03], defined with the
Euler characteristic with compact supports, are known. Note that by evaluating the virtual Poincaré
polynomial at u = −1 in the zeta functions defined in § 3, one recovers these zeta functions. Moreover
our zeta functions generalize the Fukui invariants. Indeed, it follows directly from Remark 2.11 that
the following proposition is true.

Proposition 4.7. The Fukui invariants are the exponents of the naive zeta function Zf (T ) with
non-zero coefficients. Similarly, the Fukui invariants with sign are the exponents of the zeta functions
with sign Z±

f (T ) with non-zero coefficients.

The following theorem is the main result of this paper.

Theorem 4.8. The naive zeta function Zf (T ) and the zeta functions with sign Z±
f (T ) of germs of

Nash functions are invariants of the blow-Nash equivalence.

Proof. Let f, g : (Rd, 0) −→ (R, 0) be two blow-Nash equivalent Nash function germs. By definition,
there exist modifications

σf : (Mf , σ−1
f (0)) −→ (Rd, 0) and σg : (Mg, σ

−1
g (0)) −→ (Rd, 0),

and a Nash isomorphism Φ : (Mf , σ−1
f (0)) −→ (Mg, σ

−1
g (0)) as in Definition 4.1. Then the assump-

tions of Propositions 3.2 and 3.5 are satisfied.

Now, it suffices to prove that the expressions of the zeta functions given by the Denef and Loeser
formulae coincide. But β is invariant under Nash isomorphisms by Theorem 2.16, and moreover Φ
preserves

(a) the multiplicities of f ◦ σf and g ◦ σg, because it is an isomorphism,

(b) the multiplicities of the jacobians of σf and σg along the components of the exceptional divisors,
by definition of blow-Nash equivalence.

Therefore the zeta functions of f and g coincide.

Remark 4.9.

(i) If the zeta functions generalize the Fukui invariants and the zeta functions defined with the
Euler characteristic with compact supports, they are invariants for a more restrictive relation
between germs.

(ii) However, our zeta functions are also invariants for the analytic equivalence of real analytic
germs. In fact, the constructible sets Xn and X±

n associated with two analytically equivalent
function germs f, g are isomorphic. Indeed, let h be a local analytic isomorphism such that f =
g◦h. Then, the map γ 
−→ πn(h(γ)) from Xn(f) to Xn(g) is an algebraic isomorphism because,
after truncation at the level of the space of arcs, the local analytic isomorphism becomes
algebraic. Therefore the naive zeta functions of f and g coincide. The proof in the case with
sign is similar.

4.2 Application to Brieskorn polynomials

We apply our zeta functions to sketch the classification of two-variable Brieskorn polynomials under
blow-Nash equivalence, and to give examples in three variables. Brieskorn polynomials in two or
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three variables are polynomials of the type

εpx
p + εqy

q (+ εrz
r), p � q � r ∈ N, εp, εq, εr ∈ {±1}.

We remark that, if p = 1, then εpx+εqy
q (+ εrz

r) is Nash isomorphic to x. Therefore we will restrict
our attention to the case p � 2.

The classification under blow-analytic equivalence has been done completely in the two-variable
case, and almost completely in the three-variable case in [KP03] using the zeta functions defined
with Euler characteristic with compact supports and the Fukui invariants (see [KP03, Theorem 7.3];
for the Fukui invariants, see [IKK02]). There exists only one case that cannot be decided, and the
following example shows that we can distinguish it under blow-Nash equivalence. However, this is
not sufficient to come to any conclusion in the blow-analytic context.

Example 4.10. Let fp,k be the Brieskorn polynomial defined by fp,k = ±(xp + ykp + zkp), with
p even, k ∈ N. We prove that for fixed p and different k, two such polynomials are not blow-Nash
equivalent.

In order to do this, we calculate directly the naive zeta function of fp,k. For n ∈ N, we have to
compute β(Xn). First, it is clear that Xn = ∅ when n is not a multiple of p. If n is a multiple of p,
write n = p(mk + r) where mk + r represents the euclidean division of n/p by k. If γ ∈ Ln, put
γ = (a1t + · · · + antn, b1t + · · · + bntn, c1t + · · · + cntn).

Then if r �= 0, the first non-zero term of f ◦ γ is given by the first component of γ; hence Xn

equals

{γ; amk+r �= 0, a1 = · · · = amk+r−1 = b1 = · · · = bm = c1 = · · · = cm = 0}.

In the case where r = 0, the three components of γ play a part, and Xn equals

{γ; (amk, bm, cm) �= 0, a1 = · · · = amk−1 = b1 = · · · = bm−1 = c1 = · · · = cm−1 = 0}.

Therefore

Xn ≃

{
R∗ × R(p−1)(mk+r) × (Rp(mk+r)−m)2 if r �= 0,

(R3)∗ × R(p−1)mk × (Rpmk−m)2 if r = 0,

and hence the coefficient of T n is

β(Xn)u−3n =





(u − 1)u−(mk+r)−2m if n = p(mk + r), 0 < r < k,

(u3 − 1)u−mk−2m if n = pmk,

0 otherwise.

Therefore the zeta function of fp,k looks like

Zfp,k
= (u − 1)(u−1T p + u−2T 2p + · · · + u−(k−1)T (k−1)p) + (u3 − 1)u−k−2T kp

+ (u − 1)(u−(k+3)T (k+1)p + u−(k+4)T (k+2)p + · · · + u−(2k+1)T (2k−1)p)

+ (u3 − 1)u−2(k−2)T 2kp + · · · .

Now it suffices to note that, for p fixed and k < k′, the pk coefficient of Zfp,k
is (u3 − 1)u−k−2

whereas that of Zfp,k′
is (u − 1)u−k.

Remark 4.11. The case of two-variable Brieskorn polynomials has been dealt with in [KP03], using
their zeta functions and the Fukui invariants. The only case where the equivalence class of Brieskorn
polynomials of two variables cannot be distinguished using only their zeta functions, and which
requires the use of the Fukui invariants, is the following: fk(x, y) = ±(xk + yk), k � 2 even.
We remark that we have seen in Example 3.4 that for k �= k′ the naive zeta functions Zfk

and
Zf ′

k
are different; therefore our zeta function distinguishes this case, with respect to the blow-Nash

equivalence.
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E(12;7)E(4;3)

Z

Figure 1. Resolution tree of x3 ± y4.

The fact, one can say more. Indeed, for two-variable Brieskorn polynomials the naive zeta
function determines the exponents p and q.

Proposition 4.12. Let g = ±xp ± yq be a two-variable Brieskorn polynomial. Then the exponents
p and q are uniquely determined by the naive zeta function Zg(T ) =

∑
n�1 gnT n. More precisely

p = min{n; gn �= 0},

and if l = min{n; gn �= anun}, where
∑

n�1 anT n denotes the naive zeta function of ±xp, then

q =

{
l − 1 if p is odd, p divides l − 1 and gl �= (u − 1)uk for any k ∈ N,

l otherwise.

Proof. The characterization of p is clear. Now, if p ∤ q, then q = l and gq = (u − 1)uk for some
k ∈ N.

If q = kp for some k ∈ N, then gkp = β({±ap ± bkp})u2kp−k−1 and thus

gkp = akpu
kp ⇐⇒ β({±ap ± bkp �= 0}) = u(u − 1) ⇐⇒ p odd.

In that case gkp+1 = (u − 1)2u2kp−k−2, so l = kp + 1.

Therefore, if p is even, then q = l; and if p is odd, then either q = l or q = l− 1. More precisely,
if gl = (u − 1)uk, then p ∤ q and q = l; whereas if gl = (u − 1)2uk, then p | l − 1 and q = l − 1.

To find the signs in front of xp and yq, the naive zeta function is not sufficient, as illustrated by
the following example.

Example 4.13. Let f± : (R2, 0) −→ (R, 0) be defined by f±(x, y) = x3 ± y4. One can resolve the
singularities of f± by a succession of four blowings-up. The resolution tree of this modification σ is
drawn in Figure 1, where Z± denotes the strict transform of f±, and E(N ; ν) denotes the irreducible
component of the exceptional divisor such that multE f±◦σ = N and 1+multE jac σ = ν. The Denef
and Loeser formulae imply that Zf+

is equal to Zf− , but f+ and f− are not blow-Nash equivalent
(they are not even blow-analytically equivalent; see [KP03, Theorem 6.1], for example).

The zeta functions with sign enable one to discuss the signs for two-variable Brieskorn
polynomials except in one case. The following proposition specifies the possibilities. Note that
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(x, y) −→ (±x,±y) gives an action on the blow-Nash classes; hence when the power p (or q) is odd,
the corresponding sign cannot be determined. By convention, in the case where p = q and the signs
are opposite, we consider xp − yp rather than −xp + yp.

Proposition 4.14. Let Z±
g (T ) =

∑
n�1 g±n T n be the zeta functions with sign of εpx

p + εqy
q, with

εp, εq ∈ {±1}. If p is even, then

εp =

{
+1 if g+

p �= 0,

−1 otherwise,

and if q is even, but not a multiple of an odd p, then

εq =

{
+1 if g−p = 0,

−1 otherwise.

The remaining case is when p is odd and q = kp with k even. But in example 4.6 we proved that
in that case xp +ykp and xp −ykp are blow-Nash equivalent, and therefore the following proposition
holds.

Proposition 4.15. For two Brieskorn polynomials in two variables, the following three statements
are equivalent:

(i) they are blow-Nash equivalent,

(ii) they are blow-analytically equivalent,

(iii) their naive zeta function and zeta functions with sign coincide.

4.3 Proof of Theorem 4.3

Kuo [Kuo85] proved the finiteness of the number of blow-analytic equivalence classes for an ana-
lytically parametrized family of real analytic germs with an isolated singularity. In that setting, he
used integration along vector fields to construct a trivialization of a modification of the zero set of
the family. Unfortunately, in the Nash situation, this efficient method is forbidden, for we go outside
of the Nash world.

Fortunately Fukui, Koike and Shiota have given an effective tool to show Nash triviality: the
Nash isotopy lemma [FKS98]. It gives a trivialization of Nash submanifolds, possibly with boundary,
with normal crossings, and also of their arbitrary intersections.

Theorem 4.16 (Nash isotopy lemma). Let M be a Nash manifold possibly with boundary and
N1, . . . , Nk be Nash submanifolds of M possibly with boundary which together with N0 = ∂M are
normal crossing. Assume that ∂Ni ⊂ N0 for i ∈ {1, . . . , k}. Let P be a Nash manifold diffeomorphic
to an open simplex in a euclidean space, and ω : M −→ P be a proper onto Nash submersion such
that the restrictions of ω,

ω : Ni1 ∩ · · · ∩ Nis −→ P,

for 0 � i1 < · · · < is � k, are also proper onto submersions.

Then there exists a Nash isomorphism

φ : (M ;N1, . . . , Nk) −→ (M ∩ ω−1(0);N1 ∩ ω−1(0), . . . , Nk ∩ ω−1(0)) × P

such that ω ◦ φ−1 : (M ∩ ω−1(0)) × P −→ P is the canonical projection.

This result does not totally replace integration along vector fields because it works just at the
level of manifolds, and not of functions. Therefore it enables us to obtain a Nash trivialization of
the zero set of our Nash parametrized family of Nash germs, but not of the non-zero levels of the
functions of the family. Now, in order to show the Nash triviality, we have recourse here to orthogonal
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projections between levels of functions (cf. Lemma 4.18) in order to force the trivialization. The point
is that, if this technique does not allow us to keep a Nash isomorphism, it gives us a blow-Nash
isomorphism, which is sufficient for the case we are considering.

Proof of Theorem 4.3. Following Kuo’s proof [Kuo85], we can subdivide P into a finite number
of Nash sets P ′, diffeomorphic to open simplices in a euclidean space, such that there exists an
algebraic modification β : M −→ Rd × P ′ which satisfies

(a) β is an isomorphism outside 0 × P ′,

(b) F ◦ β is in normal crossing,

(c) if r : Rd × P ′ −→ P ′ denotes the canonical projection, then r ◦ β maps the canonical strata of
(F ◦ β)−1(0) submersively onto P ′.

Now the Nash isotopy lemma enables us to apply Proposition 4.17 below, and thus to prove that
two germs F (·, p) and F (·, q) with p, q ∈ P ′ are blow-Nash equivalent.

So, thanks to the Nash isotopy lemma, we are led to study the particular case where the family
F : (Rd, 0)×P −→ R admits, as a resolution of singularities, a product β×idP , where β : (M,E) −→
(Rd, 0) is a proper birational morphism, which is an isomorphism outside 0, and F ◦ (β × idP ) has
only normal crossings. More precisely, we mean that, in that case, there exist local systems of
parameters (x1, . . . , xd) centred at a point in E × P such that

F ◦ (β × idP )(x1, . . . , xd, p) = up(x)
d∏

i=1

xri

i ,

where up is a non-vanishing Nash function.

In that setting, we have the following triviality result.

Proposition 4.17. Let F : (Rd, 0) × P −→ R be a Nash mapping, where P is a connected Nash
manifold, and assume that fp = F (·, p) : (Rd, 0) −→ R has an isolated singularity at 0 for each
p ∈ P . Assume moreover that there exists a proper birational morphism β : (M,E) −→ (Rd, 0),
with exceptional divisor E, such that the product β × idP is a resolution for F . Then the family
F (·, p) consists of a unique blow-Nash equivalence class.

Proof. We prove Proposition 4.17 in several steps. By assumption we dispose of a trivialization (the
identity map of M) of the zero sets of F (·, p) for p ∈ P . But there is no chance that this trivialization
respects the levels of F (·, p). Actually we are going to project the trivialization of the zero level in
order to force it also to trivialize the other levels.

Note that M , as a modification of an affine space, is affine, and so one can assume M ⊂ RN .
Denote d = dim M .

We show first that we can define locally the projection directly on M , without blowing-up. For
simplicity, denote F (·, p) by Fp.

Lemma 4.18. Take x ∈ M and p0 ∈ P . Then there exists ηx > 0 such that the orthogonal projection
φ(x, p) of x onto the level {Fp = Fp0

(x)} is well defined for |p − p0| < ηx.

Proof. If x ∈ E, then put φ(x, p) = x. Now, if x /∈ E, then Fp(x) �= 0 for all p in P . But for c �= 0,
there exists a Nash tubular neighbourhood (cf. [BCR98, Corollary 8.9.5]) of the level {Fp0

= c}.
Therefore, for p sufficiently close to p0, x belongs to the Nash tubular neighbourhood of {Fp0

=
Fp(x)}, and then φ(x, p) is defined as the unique orthogonal projection of x onto {Fp0

= Fp(x)}.
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∇

Figure 2. Local situation.

Remark 4.19. Such a construction does not seem to be so easy to perform in a global situation
because the width of the Nash tubular neighbourhood {Fp0

= c}, for a fixed function Fp0
, tends to

0 as c tends to 0. Therefore it does not seem to be reasonable to hope for a global strictly positive η.

Now let us perform the computation of the projection in the local case as illustrated in Figure 2.
To simplify the notation, we assume in the following that M is a hypersurface of RN , that is
N = d + 1. Take x0 ∈ E ⊂ M ⊂ RN , and p0 ∈ P . For simplicity assume also that p0 = 0.
There exist a system of parameters centred at x0 such that:

(i) M is locally the graph z = G(x1, . . . , xd) of a Nash function G,

(ii) if we extend F ◦ (β × idP ) to a function on RN in the trivial way, then F ◦ (β × idP ) is of the
form

F ◦ (β × idP )(x, z, p) = up(x)
d∏

i=1

fi(x)ri ,

where up is a Nash function in (x, p) which does not vanish and f1, . . . , fd are normal crossings
functions.

For (x, p) ∈ M × P , the orthogonal projection φ(x, p) = X satisfies

x = X + c∇XF − k∇XG,

z = Z + k,

F (x, z, 0) = F (X,Z, p),

(1)

where ∇XG (respectively ∇XF ) denotes the gradient vector of G (respectively F ) at X.

Lemma 4.20. The orthogonal projection φ is a blow-Nash isomorphism from a neighbourhood of
(0, 0) in Rd × P to a neighbourhood of (0, 0) in Rd × P .

Proof. Let us prove the result in two steps. As a first step we prove that φ is blow-Nash, and
afterwards we show that φ is a blow-Nash isomorphism.

First step. In order to prove the lemma, it suffices to show that the map

(X, p)
ψ

−−→ (X + c(X, p)∇XF − k(X, p)∇XG, p),
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which is by (1) the inverse of φ, is a blow-Nash isomorphism between two neighbourhoods of (0, 0) in
Rd ×P . As c and k are given by implicit formulae, we want to apply the implicit function theorem,
which makes sense in the Nash setting (cf. [BCR98]). However, the computation downstairs shows
us that we cannot apply this theorem directly, and we need to separate the divisors given by fi = 0
by several blowings-up, for each i such that ri �= 0.

To begin with, let us specify the members of the last equation of system (1) in coordinates.
The left one is

F (x, z, 0) = u0(X + c∇XF − k∇XG)

d∏

i=1

fi(X + c∇XF − k∇XG)ri (2)

and the right one is

F (X,Z, p) = up(X)

d∏

i=1

fi(X)ri .

We remark that the Taylor formula applied to fi implies that

fi(X + H) = fi(X) + 〈∇Xfi,H〉 + hi,X(H),

where hi is a Nash function such that ‖hi,X(H)‖ � K‖H‖2 in some neighbourhood of 0, for some
positive constant K.

Therefore fi(X + c∇XF − k∇XG) is equal to

fi(X) + c〈∇Xfi,∇XF 〉 − k〈∇Xfi,∇XG〉 + hi,X(c∇XF − k∇XG).

Assume now, for simplicity, that the number of divisors fi = 0 is equal to d (that is, ri > 0 for
all i). We separate these divisors fi = 0 by a succession of d blowings-up with respect to ideal sheaves
corresponding to blowing up the origin, then the total transform of one-dimensional intersections,
etc. By symmetry, it suffices to perform the computation in one chart, and therefore one can assume
this modification π to be given in the chart U by

(f1, f2, . . . , fd) = (Y1, Y1Y2, . . . , Y1Y2 · · ·Yd).

Let us denote by c′ and k′ the modified forms of c and k respectively. Put

ei =

d∑

j=i

rj , c̃(Y, p) =

( d∏

i=1

Y ei−2
i

)
c′, k̃(Y, p) =

k′

(
∏d

i=1 Yi)c̃(Y, p)

and

V =
d∑

i=1

ri

( d∏

j=i+1

Yj

)
∇π(Y )fi.

We remark that V cannot vanish since the fi form a system of coordinates.

Then, after the modification, the term c∇XF is transformed into

upc̃

( d∏

i=1

Yi

)
V + c̃

( d∏

i=1

Yi

)2

∇π(Y )up.
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As a consequence fi(X + c∇XF − k∇XG) becomes Y1 · · ·Yi + c̃(
∏d

i=1 Yi)Λi, where

Λi = up〈∇π(Y )fi, V 〉 + c̃

( d∏

i=1

Yi

)
〈∇π(Y )fi,∇π(Y )up〉 − k̃〈∇π(Y )fi,∇π(Y )G〉

+
hi,X(c̃(

∏d
i=1 Yi)(V + (

∏d
i=1 Yi)∇π(Y )up − k̃∇π(Y )G))

c̃(
∏d

i=1 Yi)
.

Therefore equation (2) is transformed into

r∑

l=1

c̃ l
∑

j1+···+jd=l
ji∈{1,...,ri}

d∏

i=1

(
ji

ri

)
Λji

i Y
j1+···+ji−1

i = v(c̃, k̃, Y ), (3)

with

v(c̃, k̃, Y ) =
up(π(Y ))

u0(π(Y ) + c̃(
∏d

i=1 Yi)(V − k̃∇π(Y )G))
− 1.

So c̃ and k̃ are given implicitly by

E1(c̃, k̃, Y1, p) =

r∑

l=1

c̃ l
∑

j1+···+jd=l
ji∈{1,...,ri}

d∏

i=1

(
ji

ri

)
Λji

i Y
j1+···+ji−1

i − v(c̃, k̃, Y ) = 0, (4)

E2(c̃, k̃, Y1, p) = k̃ −

(
G

(
π(Y ) +

( d∏

i=1

Yi

)
c̃(V − k̃∇π(Y )G)

)
− G ◦ π(Y )

)
= 0, (5)

where we consider Y2, . . . , Yd as parameters. Now we can apply the implicit function theorem. First,
remark that E1(0, 0, 0, 0) = 0 and E2(0, 0, 0, 0) = 0. Now, let us make explicit the coefficient of c̃ in
equation (4). This coefficient is just

∑d
i=1 ri(

∏d
j=i+1 Yj)Λi − a, where a is the contribution coming

from −v(c̃, k̃, Y ). Thus the coefficient of c̃ equals

up‖V ‖2 +

( d∏

i=1

Yi

)
〈V,∇π(Y )up〉 − k̃〈V,∇π(Y )G〉

+

∑d
i=1 ri(

∏d
j=i+1 Yj)hi,X(c̃(

∏d
i=1 Yi)(V + (

∏d
i=1 Yi)∇π(Y )up − k̃∇π(Y )G))

c̃(
∏d

i=1 Yi)
− a.

Note that a tends to zero as (Y1, p) tends to (0, 0).

Now, it is easy to compute the jacobian matrix of (E1, E2) with respect to the variables (c̃, k̃)
at the point (0, 0, 0, 0). The result is




∂E1

∂c̃
(0, 0, 0, 0)

∂E1

∂k̃
(0, 0, 0, 0)

∂E2

∂c̃
(0, 0, 0, 0)

∂E2

∂k̃
(0, 0, 0, 0)


 =

(
up(0)‖V ‖2 0

0 1 + ‖∇π(Y )G‖2

)
,

which is an invertible matrix because up and V do not vanish. Therefore c̃ and k̃ are defined and
blow-Nash in a neighbourhood of (0, 0) in M × P .

Now, let us come back to ψ. For a fixed p, write ψp(·) instead of ψ(·, p). Then ψp is defined in
a neighbourhood V(Rd) of 0 in Rd, and in restriction to a neighbourhood of Y1 = 0 in the chart U ,
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one has

ψp ◦ π(Y ) =

(
Y1 + c̃

( d∏

i=1

Yi

)
W1, Y1Y2 + c̃

( d∏

i=1

Yi

)
W2, . . . , Y1Y2 · · ·Yd + c̃

( d∏

i=1

Yi

)
Wd

)
,

where W is the vector W = V − k̃∇π(Y )G.

Then ψp lifts to a function ψ̃p

V(U)
ψ̃p

�����

π
��

V(U)

π
��

V(Rd)
ψp

�� V(Rd)

between neighbourhoods of Y1 = 0 in U , with ψ̃p being given in coordinates by

ψ̃p(Y ) =

(
Y1

(
1 + c̃

( d∏

i=2

Yi

)
W1

)
, Y2

1 + c̃(
∏d

i=3 Yi)W2

1 + c̃(
∏d

i=2 Yi)W1

, . . . , Yd
1 + c̃Wd

1 + c̃YdWd−1

)
.

Note that the denominators cannot vanish in a neighbourhood of (Y1, p) = (0, 0) because c̃ is small
for (Y1, p) sufficiently small.

Second step. It suffices to prove that the jacobian determinant of ψ̃ is non-zero for Y1 and p small
because ψ̃ is a bijection. Indeed, ψ̃ is a bijection outside E because so is ψ, and restricted to E, it
is just the identity.

Note that c̃ and ∂c̃/∂Yi, for i ∈ {2, . . . , d}, vanish when (Y1, p) = (0, 0). Therefore, evaluated at
(Y1, p) = (0, 0),

∂ψ̃i

∂Yi
= 1,

∂ψ̃i

∂Yj
= 0,

if i �= j and j �= 1. So the jacobian determinant of ψ̃ equals 1 at (Y1, p) = (0, 0) and thus is non-zero
for Y1 and p small.

Remark 4.21. The constructed projection is locally the minimal one because it is trivial if x ∈ E or
p = 0.

Now, we have to prove that these projections glue together.

Lemma 4.22. The projections of Lemma 4.20 glue together.

Proof. Cover E by a finite number of neighbourhoods of the kind in Lemma 4.20 using the com-
pactness of E. We can assume that the intersections two by two of these neighbourhoods are
connected. Then, we dispose of a finite number of projections φi defined in neighbourhoods of the
form V i × B(p0, ηi), with ηi > 0. Denote by η the minimal of the rays ηi and by U the union of
the neighbourhoods. We are going to prove that the projections φi glue together on U × B(p0, η).

Assume that there exists a point x in the intersection V1 ∩ V2. Then, in a neighbourhood of
(x, p0) in M × P , the three projections, φ1, φ2 and that of Lemma 4.18, coincide by minimality.
Therefore the analytic functions φ1 and φ2, which coincide on a non-isolated set of points, are equal
on the connected set V1 ∩ V2.

The proof of Proposition 4.17 now follows easily from these lemmas. In fact, it suffices to prove
that two germs Fp and Fq are blow-Nash equivalent for p and q sufficiently close to each other, and
the lemmas give a relevant blow-Nash isomorphism in that case.
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327–348.

DL02 J. Denef and F. Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs,
Topology 41 (2002), 1031–1040.

FKK98 T. Fukui, S. Koike and T.-C. Kuo, Blow-analytic equisingularities, properties, problems and

progress, in Real analytic and algebraic singularities, eds T. Fukuda, T. Fukui, S. Izumiya and
S. Koike, Pitman Research Notes in Mathematics Series, vol. 381 (Pitman, London, 1998), 8–29.

FKP01 T. Fukui, T.-C. Kuo and L. Paunescu, Constructing blow-analytic isomorphisms, Ann. Inst.
Fourier (Grenoble) 51 (2001), 1071–1087.

FKS98 T. Fukui, S. Koike and M. Shiota, Modified Nash triviality of a family of zero-sets of real

polynomial mappings, Ann. Inst. Fourier (Grenoble) 48 (1998), 1395–1440.

FP00 T. Fukui and L. Paunescu, Modified analytic trivialization for weighted homogeneous function-

germs, J. Math. Soc. Japan 52 (2000), 433–446.

Fuk97 T. Fukui, Seeking invariants for blow-analytic equivalence, Compositio Math. 105 (1997),
95–107.

Ful93 W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131 (Princeton
University Press, Princeton, NJ, 1993).

Hir64 H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero,
Ann. of Math. (2) 79 (1964), 109–326.

IKK02 S. Izumi, S. Koike and T.-C. Kuo, Computations and stability of the Fukui invariant, Compositio
Math. 130 (2002), 49–73.

Koi97 S. Koike, Modified Nash triviality theorem for a family of zero-sets of weighted homogeneous

polynomial mappings, J. Math. Soc. Japan 49 (1997), 617–631.

Koi00 S. Koike, Nash trivial simultaneous resolution for a family of zero-sets of Nash mappings, Math.
Z. 234 (2000), 313–338.

Kon95 M. Kontsevich, Lecture at Orsay, 7 December 1995.
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Ann. Inst. Fourier (Grenoble) 51 (2001), 43–68.

Shi98 M. Shiota, Relation between equivalence relations of maps and functions, in Real analytic and

algebraic singularities, eds T. Fukuda, T. Fukui, S. Izumiya and S. Koike, Pitman Research
Notes in Mathematics Series, vol. 381 (Pitman, London, 1998), 114–144.

Tot02 B. Totaro, Topology of singular algebraic varieties, in Proc. Int. Cong. Mathematicians, Beijing,
2002, vol. 2 (Higher Ed. Press, Beijing, 2002), 533–541.

Wlo03 J. Wlodarczyk, Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003),
223–331.

Goulwen Fichou goulwen.fichou@univ-rennes1.fr
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