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While walking was once thought to be a highly automated process, it requires higher-level

cognition with older age. Like other cognitive tasks, it also becomes further challenged

with increased cognitive load (e.g., the addition of an unrelated dual task) and often

results in poorer performance (e.g., slower speed). It is not well known, however, how

intrinsic neural network communication relates to walking speed, nor to this “cost”

to gait performance; i.e., “dual-task cost (DTC).” The current study investigates the

relationship between network connectivity, using resting-state functional MRI (rs-fMRI),

and individual differences in older adult walking speed. Fifty participants (35 females;

84 ± 4.5 years) from the MOBILIZE Boston Study cohort underwent an MRI protocol

and completed a gait assessment during two conditions: walking quietly at a preferred

pace and while concurrently performing a serial subtraction task. Within and between

neural network connectivity measures were calculated from rs-fMRI and were correlated

with walking speeds and the DTC (i.e., the percent change in speed between conditions).

Among the rs-fMRI correlates, faster walking was associated with increased connectivity

between motor and cognitive networks and decreased connectivity between limbic and

cognitive networks. Smaller DTC was associated with increased connectivity within the

motor network and increased connectivity between the ventral attention and executive

networks. These findings support the importance of both motor network integrity as well

as inter-network connectivity amongst higher-level cognitive networks in older adults’

ability to maintain mobility, particularly under dual-task (DT) conditions.
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INTRODUCTION

Walking speed is now widely accepted as a clinically meaningful

marker of general function and wellbeing in older adults

(Cesari et al., 2005; Afilalo et al., 2010; Verghese et al., 2011).

For this reason, it is frequently measured within the geriatric

clinic and has been referred to as the ‘‘sixth vital sign’’ (Fritz

and Lusardi, 2009; Middleton et al., 2015). However, many

factors contribute to declines in walking speed as we age

(Tiedemann et al., 2005). For instance, although walking slows

with musculoskeletal and peripheral nervous system disorders, it

also slows with central nervous system disorders (Hajjar et al.,

2009). Previous studies support the premise that walking engages

several neurocognitive and neurovascular processes, including

gait planning and initiation, sensory-motor integration, memory,

the ability to detect and accommodate altered peripheral

neuromusculoskeletal function and neurovascular coupling

(Halliday et al., 1998; Jahn et al., 2004, 2008; Seidler et al., 2010;

Sorond et al., 2011; Takakusaki, 2017).

The cognitive nature of walking is particularly important

for ‘‘real-world’’ mobility. With or without physical limitations,

successful mobility in living environments requires higher-level

cognitive processes like attention (Woollacott and Shumway-

Cook, 2002), executive functioning (Yogev-Seligmann et al.,

2008), self-reference (Sholl, 2001), motor control (Winter,

2009), and caution (Donoghue et al., 2013). A person

must constantly process the information within his or her

environment to navigate within it, often whilst performing

additional tasks, like talking or texting. When attempting to

perform these additional tasks, the brain must shift and prioritize

attention (Yogev-Seligmann et al., 2008). This typically results

in a ‘‘cost’’ of slower speed (or poorer task performance)

and has been associated with an increased risk of falls

(Beauchet et al., 2008), accidents (Neider et al., 2011), and

other adverse outcomes (Montero-Odasso et al., 2017). To

study this real-world phenomenon, both normal walking and

dual-task (DT) paradigms have been implemented within the

research laboratory (Verhaeghen et al., 2003) and several

studies have uncovered relationships between abnormal walking

characteristics and poorer cognition (Li et al., 2018), as measured

by cognitive and neuropsychological assessments.

Although these findings provide a clear basis for the premise

that higher levels of neurocognitive function underlie normal

gait, limitations exist in the actual study of brain function. Most

studies have either utilized wearable techniques, like functional

near-infrared spectroscopy (fNIRS), or have employed gait

imagery paradigms (Hamacher et al., 2015) to study gait, since

it is impossible to directly assess walking as a task within the MRI

scanner. In addition to brain areas traditionally associated with

locomotion (e.g., M1, SMA, premotor cortex, and cerebellum),

several studies implicate higher-order and frontoparietal areas

in walking (Hanakawa et al., 1999; Allali et al., 2013; Doi et al.,

2013; Blumen et al., 2014; Jor’dan et al., 2017). However, far

fewer studies have used fMRI to relate stable properties of

brain function and communication to individual differences in

walking speed. Yuan et al. (2015) were the first to investigate

resting-state fMRI (rs-fMRI) associations and found that the

connectivity within the sensorimotor, visual, vestibular, and left

frontoparietal (i.e., executive control) networks were associated

with normal walking and walking while talking. Additionally,

Lo et al. (2017) have shown walking relationships within the

frontoparietal and attention networks in cognitively impaired

older adults.

More studies are needed that explicitly characterize how

individual differences in connectivity within and across brain

networks relate to ‘‘normal’’ walking, DT walking, and associated

dual-task costs (DTCs). To address this need, we have

utilized rs-fMRI in community-dwelling older adults from the

MOBILIZE Boston Study to investigate normal walking and

walking during serial subtraction. We hypothesized that greater

within and between sensorimotor network connectivity would

be associated with faster preferred walking speed. DT walking

(and cost), however, would be further associated with the brain

network interactions that are related to executive function and

attention, as they are more engaged by walking while performing

the dual serial subtraction cognitive task.

MATERIALS AND METHODS

Participants
Seventy-six older adults (50 females, 84.5 ± 4.3 years) were

recruited from the Maintenance of Balance, Independent Living,

Intellect and Zest in the Elderly of Boston (MOBILIZE Boston

Study; MBS) cohort to undergo a gait assessment and MRI

protocol. Original recruits to theMBS were Boston area residents

70 + years of age (or >65 if living with an already enrolled

participant), able to walk 20 feet without personal assistance,

had no history of neurological, mental illness, or stroke, and

at least a 12th grade education. Mini-Mental State Examination

scores collected two years prior to MRI ranged from 19 to

30. A full description of the greater MBS protocol is provided

elsewhere (Leveille et al., 2008). To participate in the current

study, all participants were further required to perform a gait

assessment while simultaneously meeting eligibility criteria for a

60-min MRI. The Hebrew SeniorLife and VA Boston Healthcare

System institutional review boards approved this protocol and

written consent was required prior to study participation.

Study Design
Participants took part in two visits. The first visit to the Hebrew

SeniorLife Clinical Research Center included a medical history

evaluation and gait assessment, where participants were asked

to walk over a 16-foot GaitRite (CIR Systems Inc., Havertown,

PA, USA) mat during each of two conditions: quietly and

during a serial subtraction task. For the preferred walking

condition, participants made six separate passes at their preferred

pace without interruption, starting and ending approximately

4 feet from the mat. For the DT condition, participants walked

while verbally subtracting threes from a randomly given 3-digit

number. Walking speed for both conditions was derived from

the GaitRite-measured timing and location of individual steps

in meters per second (m/s). The primary outcomes were the

mean gait speed for each condition calculated by averaging

across passes and normalizing by participant height. DTC
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was calculated as the percent change in speed relative to the

quiet condition, such that the higher the cost, the slower the

serial subtraction walk. Serial-subtraction task accuracy was

not assessed.

Approximately 10 days later, participants completed an MRI

protocol at the VA Boston Healthcare System. During this

session, participants performed a resting-state scan, during

which they were asked to keep their eyes open. A gradient-echo

echo-planar sequence was performed with the following

parameters: TR = 3,000 ms, TE = 26 ms, flip angle = 90◦, 34 slices

at 1.5 mm, 64 × 64 matrix, and 120 volumes. A T1-weighted

MPRAGE scan (T1 = 1,000 ms, TR = 2.73 ms TE = 3.31 ms, flip

angle = 7◦, 128 slices at 1.3 mm thickness, 256 × 256 matrix)

was also collected for whole-brain high-resolution anatomy.

These neuroimaging sessions were performed with two 3T

Siemens MRI scanners (TIM Trio, n = 18; PrismaFit, n = 32)

using a 12-channel head coil. To account for potential inter-

scanner differences, scanner was included as a covariate in

statistical models.

Functional MRI
Functional data were processed using AFNI (Cox, 1996).

Pre-processing steps included: the removal of the first three

volumes, time-shifting, volume registration, alignment to

high-resolution anatomy, warping into Talairach space, 8-mm

kernel smoothing, resampling to 3 × 3 × 3 mm resolution, and

scaling to a percentage of the mean. Data were then band-pass

filtered from 0.01 to 0.08 Hz and entered into a general linear

model to remove the effects of 6◦ of motion, their derivatives,

nuisance CSF, white matter, and global signal. Time points were

censored and participants were excluded for excessive motion if

they demonstrated greater than 0.5 mm in sudden movement for

more than 20% of the scan.

A previously-defined cortical parcellation was then applied

to the whole-brain GLM residuals, representing the ‘‘cleaned’’

time series. Briefly, an atlas from Schaefer et al. (2018)

was used to parse the cortex into 100 regions that were

co-registered with the seven functionally-connected cortical

networks identified by Yeo et al. (2011). The seven included

the visual (VIS; 17 regions), sensorimotor (SOM; 14 regions),

dorsal attention (DAN; 15 regions), ventral attention (VAN;

12 regions), limbic (LIM; 5 regions), executive control (ECN;

13 regions), and default mode (DMN; 24 regions) networks.

The average time series were extracted from each brain region

and correlated in pairs for a total of 4,950 possible pairwise

correlations. To calculate both within and between functional

connectivity measures at the network-level, the above estimates

were Fisher’s z-transformed, grouped, and averaged according

to their within- and between-network pairs. This resulted in a

total of seven within- and 21 between-network estimates for use

in linear regression analyses.

Statistical Analyses
A matched-pairs t-test was conducted to evaluate the change

in walking speed between the normal and DT conditions.

Non-neural characteristics (e.g., age, sex, body mass index

(BMI), type 2 diabetes, hypertension, and arthritis) suspected to

influence walking outcomes were evaluated using simple linear

regression and rank sums tests. The significant covariates were

then included in multiple linear regression models to predict:

normal walking speed, DT speed, and the resulting cost from the

average network pairs, along with scanner assignment.

Since we performed 28 network-pair analyses for each of the

three conditions, we then utilized a permutation procedure to

determine the probability of our observed number of significant

gait-brain associations. This was done by randomization of

individual walking speeds and clinical characteristics, conducting

the multiple linear model for each network pair, and determining

the number of chance ‘‘significant’’ (i.e., p = 0.05) associations.

This was repeated for a total of 10,000 iterations for each

outcome. All analyses were performed using MATLAB (2014a;

Mathworks, Natick, MA, USA) and R (R Core Team, 2018).

RESULTS

Of the 76 participants that completed the MRI protocol,

50 were included in the analyses. Reasons for exclusion included

excessive motion (n = 8), missing data or incomplete scan

(n = 5), reported stroke or incidental findings (n = 6), and a

score of less than 25 on their most recent MMSE administration

(n = 7). Participant demographics, clinical characteristics, and

gait measurements for the final subset are listed in Table 1.

Gait Assessment
Though participants walked relatively fast at their preferred pace

(1.1 ± 0.3 m/s), they walked significantly slower during the

serial subtraction task (0.9 ± 0.3 m/s; matched pairs t(49) = 13.6,

p < 0.0001). This resulted in a DTC of 19 ± 11%.

Walking outcomes were then associated with clinical

characteristics for covariate consideration. As suspected,

participant age was associated with both preferred (β = −0.45,

p = 0.001) and DT walking speeds (β = −0.44, p < 0.002) and

tended to be associated with DTC (β = 0.26, p < 0.07). No other

TABLE 1 | Participant demographics and clinical characteristics.

Study Sample

N 50

Female (%) 70

Age (years) 84 ± 5

Mini-Mental State Exam† 27 ± 1

Body Mass Index (BMI) 25 ± 5

Hypertension (%) 48

High Cholesterol (%) 52

Diabetes (%) 6

Arthritis (%) 54

Walking Assessment‡

VelocityPref (m/s) 1.1 ± 0.3 (0.6, 1.8)

VelocityPref norm 0.017 ± 0.004 (0.007, 0.027)

VelocityDT (m/s) 0.9 ± 0.3 (0.3, 1.5)

VelocityDT norm 0.014 ± 0.004 (0.005, 0.023)

DT Cost (%) 19 ± 11 (2.9, 51.8)

Data are expressed in mean ± standard deviation or percentage. †Most recent scores

were collected within approximately 2 years of gait and MRI assessment. ‡Preferred

(Pref) and dual-task (DT) walking outcomes are reported as mean ± SD (range), with

and without normalizing by height (inches−1).
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significant associations with clinical variables (see ‘‘Materials

and Methods’’ section) were found.

Resting-State fMRI
Multiple uni-network linear regression analyses were then

performed to assess walking associations with within-network

(n = 7 networks) and between-network (n = 21 network pairs)

connectivity, after adjusting for the effects of scanner and

participant age. In two outcomes, the number of observed

significant gait-brain associations exceeded the probability

of chance based on the randomization procedure: 9 of 28

network-pair models were associated with preferred walking

(p = 0.0027) and 10 were associated with DT walking (p = 0.0011)

speeds. Only two models were associated with DTC (p = 0.36),

i.e., 36% of randomized iterations had two or more significant

correlations by chance. These models are characterized below.

Within-Network Associations

Normal walking was positively associated with sensorimotor

(SOM; βadj = 0.31, p = 0.02) and dorsal attention (DAN;

βadj = 0.29, p = 0.03) network connectivity, such that the greater

the within-network connectivity, the faster the participants

walked at preferred pace. However, preferred walking speed was

negatively associated with the visual network (VIS; βadj = −0.31,

p = 0.02). Walking while simultaneously performing the serial

subtraction task (i.e., dual task) was positively associated

with within-network SOM (βadj = 0.43, p = 0.003), DAN

(βadj = 0.34, p = 0.03), and ventral attention (VAN; βadj = 0.34,

p = 0.03) networks. DTC was associated with the SOM

(βadj = −0.31, p = 0.03) network, such that the greater the

within-network connectivity, the lower the cost (slowing) to

gait speed during the DT. These associations are depicted

in Figure 1.

Between-Network Associations

Figure 2 illustrates the associations of inter-network averages

with preferred (lower triangle) and DT (upper triangle) walking

speeds. These associations were found to be rather consistent

across the two conditions (see Figure 2), which is not surprising

since the walking speeds themselves were strongly correlated

(r = 0.92, p < 0.0001). In both conditions, faster walking

was associated with greater DAN connectivity with the SOM

(βadj > 0.26, p < 0.05) and the VAN (βadj > 0.27, p < 0.04).

Faster walking while performing the serial subtraction task

was further associated with greater communication between

the VAN and executive control network (ECN; βadj = 0.33,

p = 0.01). Interestingly, faster walking was also associated with

lesser between-network limbic connectivity with motor and

cognitive networks, including SOM, DAN, VAN, and ECN

(βadj < −0.29, p < 0.05). Lower DTC was solely associated

with increased VAN-ECN connectivity (βadj = −0.29, p = 0.04;

not shown). No other significant between-network associations

were found.

DISCUSSION

In the current study, we uncovered associations between

neural network connectivity and walking speed in a sample of

FIGURE 1 | Plot of within-network functional MRI (fMRI) associations with

walking outcomes. Standardized betas (95% CI) were extracted from multiple

linear regressions adjusted for age and scanner. Points are color-coded by

significance (red indicated p < 0.05).

FIGURE 2 | Heat map reflecting between-network fMRI connectivity

associations (standardized betas) with preferred walking (left of diagonal) and

walking while dual-tasking (right of diagonal). Tiles are color-coded by

strength (positive = blue, negative = red). Associations exceeding

p = 0.05 threshold (uncorrected) are presented with asterisk (∗).

community-dwelling older adults from the MOBILIZE Boston

Study. Specifically, we found that stronger cognitive and motor

network connectivity was associated with faster walking in older
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adults, while greater communication with the limbic network was

associated with slower walking. These findings were generally

evident with and without a simultaneous task.

When we investigated individual differences in brain

connectivity and preferred (i.e., quiet) walking speed, we

found that faster walking speed was associated with increased

connectivity within the motor and dorsal attention networks and

decreased connectivity within the visual network. These findings

align well with literature, as these networks include many of

the cortical regions observed in task-based fMRI activation

studies of gait speed, including the pre- and postcentral gyrus,

inferior frontal gyrus, superior parietal lobes, and occipital areas

(Hamacher et al., 2015). Further, stronger between-network

connectivity (i.e., between motor and dorsal as well as ventral

attention networks) was associated with faster walking. This

provides evidence that these networks do not work in isolation,

but rely upon one another in the engagement of motor, sensory

and visual functions, as well as a balance of top-down (i.e., dorsal)

and bottom-up (i.e., ventral) goal-directed attention (Corbetta

and Shulman, 2002; Kincade et al., 2005). While we did not

predict negative associations with the visual network, other

studies suggest that this network has altered connectivity with

older age (Goh, 2011; Geerligs et al., 2015), which could

impact motor control and gait. In our DT paradigm, where

individuals have to shift attention between serial subtraction and

walking, we observed ‘‘further relationships’’ with the ventral

attention network, suggesting a greater necessity for re-orienting

of attention (Corbetta and Shulman, 2002). Reorienting of

attention is potentially necessary for successful dual task

performance, as supported by recent studies where VAN-DAN

communication and VAN-DMN suppression were associated

with better distractor suppression during visual search (Kelly

et al., 2008; Poole et al., 2016). It should also be noted that the

VAN spatially overlaps with the vestibular network identified

in Yuan et al. (2015), which is also associated with walking

speed during resting state fMRI.

The current study also provides evidence that the executive

control network is associated with faster walking, especially

during the DT condition. Previously, abnormal executive

function, which is essential for attentional processes and the

ability to plan, organize, and multi-task, had been linked with

poorer dual tasking (Ohsugi et al., 2013), slower gait speed

(Cohen et al., 2016), and falls (Mirelman et al., 2012) in older

adults. While we have previously shown that walking speed is

associated with ECN brain activation and structural connectivity

(Jor’dan et al., 2017; Poole et al., 2018), we now suggest that how

this network interacts with other neighboring networks may be

essential to cognitive functioning in walking. To our knowledge,

we are the first to explore all of these network relationships in

cognitively healthy older adults.

On the other hand, slower walking was associated with

greater widespread connectivity of the limbic network with

motor and cognitive networks. The cortical areas contained

in this network are associated with memory, arousal, and

emotion (Agosta et al., 2012; Rolls, 2019). Prior imaging studies

have found the limbic network to be hyper-connected in

individuals with lesser motor expertise (Milton et al., 2004) and

increased cognitive impairment (Badhwar et al., 2017). Thus,

it is possible that increased communication with this network

may lead to interference with motor and/or cognitive processes.

It may also indicate active caution and/or fear while walking

(Pannekoek et al., 2013).

Clinical Implications and Future Directions
This study elucidates the underlying brain networks associated

with preferred and DT walking performance, which are

strong predictors of falls in older adults (Verghese et al.,

2002; Quach et al., 2011). These network interactions could

inform interventions that non-invasively target these brain

networks (i.e., non-invasive brain stimulation) or their functions

(i.e., motor-cognitive training) for individuals with mobility

impairments. Further investigation of these networks may

provide information on the progress of dysfunction, risk of falls,

or the efficacy of rehabilitation.

However, these findings do not confirm the specific neural

resources of utmost importance to mobility, especially in

cases of ‘‘cognitive reserve’’ when alternate brain regions are

recruited in the presence of structural degeneration (Stern, 2002;

Venkatraman et al., 2010). Therefore, future studies should

investigate the relative contributions of brain structure and

function, as well as consider other clinical predictors of slow gait

(Rosso et al., 2013). Furthermore, it is important to determine

the reliability and generalizability of these findings in other older

adult populations, in order to determine the best avenue for

early intervention.

Limitations
The current study has limitations. First, although thisMOBILIZE

Boston Study sample is a relatively small ‘‘representative’’ older

adult population living with several comorbidities, previously

collected Mini-Mental State Examination scores (administered

within approximately 2 years of gait and MRI) indicate a

range of cognitive health. To minimize the contributions of

overt cognitive impairment to declines in walking speed, we

only included those with a past MMSE of 25 or greater and

no self-reported diagnosis of dementia. However, these results

should be interpreted with caution since more recent cognitive

measures were not collected.

Another limitation is that accuracy during the serial

subtraction task was not explicitly emphasized in instructions,

neither was it measured to allow calculation of a cognitive DTC.

However, previous studies suggest a tendency for participants

to prioritize focus on the cognitive task at the expense of

the other (i.e., walking; Krampe et al., 2011). Nevertheless,

without performance measures, it is unclear the degree to which

serial subtraction task difficulty and attention prioritization

contributed to the observed declines in gait speed without a

baseline or report of math anxiety. As a result, we generally

attribute slower walking during serial subtraction to multi-

tasking, such that those with greater cognitive connections have

greater ability to maintain walking speed while performing an

additional task.

Finally, with regard to the rs-fMRI analysis, although many

approaches exist [e.g., seed-based connectivity, independent
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component analysis (ICA), principal component analysis

(PCA)], here we utilize a brain atlas from Schaefer et al. (2018) to

parse the brain into 100 regions. This atlas was derived from local

gradient and global similarity approaches and is co-registered

with a widely used cortical atlas of seven functionally-connected

networks (Yeo et al., 2011). The seven-network atlas, which was

derived from an independent sample of 1,000 healthy individuals,

is relatively coarse, but has been well characterized in health

and disease. By parsing the brain according to the Schafer atlas,

we are able to retain the ability to reduce the dimensionality

of rs-fMRI data, and estimate functional connectivity within

and across each brain network, while increasing the resolution

of the aforementioned seven networks (though averaged

into 28 within and between-network ‘‘pairs’’). This approach

also allowed us to emphasize network-level conclusions and

compare our results to other studies of older adult mobility.

However, future studies should consider using surface-based

approaches and complementary structure analyses to investigate

individual differences since volumetric approaches are not

sensitive to the heterogeneity in brain anatomy, especially

across older adults with varying degrees of brain atrophy

(Long et al., 2012).

CONCLUSION

This study reports associations between brain functional

connectivity and walking outcomes in a sample of community-

dwelling older adults. Rs-fMRI analyses revealed that walking

at faster preferred speed is associated with stronger connectivity

within and between sensorimotor and dorsal attention networks,

networks associated with motor control and goal-directed

attention. With an added serial subtraction dual task, we found

that stronger connectivity between attention and executive

networks is associated with faster walking speed. However,

stronger connectivity between these networks and the limbic

network is associated with slower walking during both tasks.
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