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Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during
motor imagery tasks. �e proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition
(MEMD) in order to obtain the mu and beta rhythms from the nonlinear EEG signals. �en, the strong uncorrelating transform
complex common spatial patterns (SUTCCSP) algorithm is applied to the rhythms so that the complex data, constructed with
the mu and beta rhythms, becomes uncorrelated and its pseudocovariance provides supplementary power di�erence information
between the two rhythms.�e extracted features using SUTCCSP that maximize the interclass variances are classi	ed using various
classi	cation algorithms for the separation of the le
- and right-hand motor imagery EEG acquired from the Physionet database.
�is paper shows that the supplementary information of the power di�erence between mu and beta rhythms obtained using
SUTCCSP provides an important feature for the classi	cation of the le
- and right-hand motor imagery tasks. In addition, MEMD
is proved to be a preferred preprocessing method for the nonlinear and nonstationary EEG signals compared to the conventional
IIR 	ltering. Finally, the random forest classi	er yielded a high performance for the classi	cation of the motor imagery tasks.

1. Introduction

�e development of the brain computer interface (BCI)
system allows one to control and communicate with the sur-
rounding environment [1].�is includes applications ranging
from education and entertainment to environmental control
and communication through a noninvasive measurement of
electroencephalogram (EEG) [2–4]. In particular, measuring
EEG during di�erent motor imagery tasks (e.g., le
- and
right-hand motor imagery) is a widely used paradigm to
implement a BCI system.�eEEGdata acquired during these
motor imagery tasks is then classi	ed in order to control the
BCI system.

�e cornerstone to generate control signals that will
facilitate the classi	cation of di�erent mental tasks is to

extract the appropriate features from the obtained EEG
data. A number of di�erent methods were used to perform
feature extraction for various signals [5, 6], such as princi-
pal component analysis (PCA), which was used to classify
additional forward tasks and relaxation [7] as well as le
- and
right-handmotor imagery tasks [8]. Independent component
analysis (ICA) was also applied to motor imagery tasks (e.g.,
le
- and right-hand [9] or 	nger li
ing tasks [10]), which
produced a high classi	cation accuracy. Common spatial
patterns (CSP) algorithm is another widely used feature
extractionmethod,which is based on the fact that such neural
activities are spatially distributed on the cortex areas [11, 12].
Recently, a complex version of the CSP algorithm has been
proposed to analyze two di�erent EEG signals simultaneously
in a complex form, which provides features containing the
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power sum information of the real and imaginary parts. �e
complex CSP algorithm was also combined with the strong
uncorrelating transform (SUT) in order to cater for general
complex signals considering the noncircularity (noncircular
signals are not invariant to rotations, which may have power
di�erence between real and imaginary parts of the complex
form) of the data andmaximizing the variance-ratio between
two motor imagery tasks [13].

In addition, the power sum of the mu and beta rhythms
gained from the complex version of CSP is closely related
to the event-related phenomena, indicating the changes of
the frequency components in the EEG data. Due to the
synchronization in neuronal activities, the phenomena of
a decrease (event-related desynchronization, ERD) [14, 15]
or an increase (event-related synchronization, ERS) [16] in
power of frequency components were found [17]. �e brain
lateralization of ERD [18] of the EEG activity during motor
imagery tasks of the le
- and right-hand is also well known
[13, 19].

�ere have been further attempts to analyze EEG signals
by investigating the di�erent frequency band components
of EEG separately, such as the mu (8–13Hz) and beta (13–
25Hz) rhythms. �is is based on the fact that the beta
rhythm has distinct topographies and responses to the limb
movements, compared to the mu rhythm, and thus the mu
and beta rhythms should be individually considered [20, 21].
Brinkman et al. showed that the oscillatory power of the
mu rhythm in the sensorimotor cortex ipsilateral to the
tasks increased, while that of the beta rhythm in the con-
tralateral sensorimotor cortex decreased simultaneously [22].
However, many of the previous studies on motor imagery
responses analyzed the data considering all frequency com-
ponents as a whole, which ignores the di�erence between
the mu and beta rhythms [11, 13, 23]. In order to utilize
the di�erent information from the mu and beta rhythms
for improved performance of motor imagery classi	cation,
we propose the application of SUTCCSP by constructing a
complex formed data of these two rhythms.

Furthermore, considering the multichannel, nonlinear,
and nonstationary property of EEG signals, recent stud-
ies have proved that the empirical mode decomposition
(EMD) based algorithm is more e�ective than the conven-
tional Fourier analysis in preprocessing physiological signals
including motor imagery EEG signals [23–26]. In addition
to the preprocessing method, various nonlinear classi	ers
have been applied to the classi	cation of motor imagery
tasks during the last decade [18]. �e most commonly used
classi	cation method used in this area of the BCI research is
the linear discriminant analysis (LDA) [27]. However, recent
studies suggest that nonlinear classi	ers are more practical
by taking into account nonlinear relationships between data
and the robustness against noise and outliers [28, 29].
Recent studies show that the well known machine learning
based nonlinear classi	er, random forest (RF) produces a
high classi	cation rate in the application of motor imagery
classi	cation [28, 30].

In this paper, we propose to classify the motor imagery
EEG signals by analyzing themu and beta rhythms separately

in a complex form of data using SUTCCSP. EEG signals
from the Physionet database [31, 32] are preprocessed using
MEMD in order to decompose the signals into mu and
beta rhythms. �e two distinct signals are then utilized to
produce a complex data, which is composed of mu and beta
rhythms in its real and imaginary terms for the analysis of
SUTCCSP. Taking into account the functional disassociation
of mu and beta rhythms, the extracted features using this
method contain valuable information of the power di�erence
between these two distinct rhythms. In addition, random
forest (RF) is used in order to classify the le
- and right-hand
motor imagery tasks. As a result, the SUTCCSP algorithm
results in a higher classi	cation accuracy (80.05%) compared
to the conventional CSP algorithm (78.04%) that does not
account for the di�erence between the two distinct rhythms.

2. Methods

2.1. Motor Imagery EEG Datasets. �e proposed algorithms
were applied to the EEG data from the Physiobank
Motor/Mental Imagery (MMI) database [31–33]. �e data-
base consists of a total of 109 subjects who performed the le
-
and right-handmotor imagery tasks. Each subject performed
a total average of 46.62 ± 0.96 trials for the le
- and right-
handmotor imagery tasks.�e average numbers of trials were
23.62 ± 0.61 and 23.00 ± 0.62 for the le
- and right-hand
motor imagery data, respectively. �e EEG data was sampled
at 160Hz for all subjects yielding 640 samples for each single
trial. However, in this study, we excluded the data of 4 subjects
including S088, S092, S100, S104, since these subjects had
damaged recordings (S088, S092, and S100) and too little
samples (S104) in their le
- and right-hand motor imagery
datasets [34]. �erefore, a total of 105 pieces of subject data
out of 109 were used for the experiment.

Out of the 64 channels of EEG data recorded with the
10-10 system, 14 channels were chosen as shown in Figure 1
for the feasible implementation of BCI with small number
of channels [35]. �e channels were selected so that it could
cover all the regions of the scalp, including the frontal, central,
parietal, and occipital lobe. �en, signals were decomposed
using the MEMD in order to extract the mu and beta
rhythms. A
er the preprocessing procedure, SUTCCSP was
applied to complex formed data consisting of mu and beta
rhythms, in order to extract the features for the classi	cation
of the le
- and right-hand motor imagery tasks.

2.2. Multivariate Empirical Mode Decomposition (MEMD).
Multivariate empirical mode decomposition provides an
accurate data-driven time-frequency analysis for multichan-
nel, nonlinear, and nonstationary signals, and thus MEMD
was proved to be more e�ective in preprocessing the motor
imagery EEG signals in terms of the baseline 	ltering [23,
36]. With the help of MEMD, the multivariate signals were
decomposed into a linear combination of multiple common
oscillatory modes called intrinsic mode functions (IMFs)
[37], and the baseline 	ltering was done by eliminating
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Figure 1: Channel selection. EEG montage of the selected 14 channels from the 64 channels provided from the Physionet database.

irrelevant IMFs. �e original multivariate signal, S(�), is
represented with the decomposed IMFs as follows:

S (�) =
�
∑
�=1

�� (�) , (1)

where ��(�) represents �th IMF. When the original empirical
mode decomposition (EMD) algorithm was applied to each
channel of the data, the resulting IMFs of the same order
from di�erent channels did not have similar frequency
characteristics (modemixing problem) [38]. MEMD resolves
this problem by using the mean envelope of the projected
signals on a multidimensional projection space.

In this paper, the noise-assisted MEMD was applied to
the motor imagery EEG data in order to further reduce the
mode mixing problem by using an additional channel with
white Gaussian noise [23]. �erefore, we used the noise-
assisted MEMD to extract reliable frequency components.
�e IMFs that corresponded to the mu and beta rhythms
were selected by investigating the power spectra of the
IMFs calculated using the periodogram (Bartlett window)
[39]. Bartlett window was mainly used since it was easy to
implement and the aliasing problem was not as critical as the
much simpler rectangular window. �e averaged spectra of
the 105 pieces of subject data using all trials were investigated
and Figure 2 displays the averaged power spectra of the 	rst 6
IMFs out of all 11 IMFs (from �1(�) to �6(�)).�eparameters for
FFT points and window size were both set to 640. As shown
in Figure 2, �2(�), �3(�), and �4(�) cover the frequency bands
of the mu and beta rhythms, and thus �4(�) and �3(�) + �2(�)
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Figure 2: Average power spectra of all trials of 105 subjects. �e
power spectra show the 	rst six IMFs, 1st IMF to the 6th IMF out of
a total of 11 IMFs, which were decomposed in order using MEMD.
�2(�) and �3(�) + �4(�) correspond to the mu (8–13Hz) and beta
rhythms (13–25Hz), respectively.�e high peak at 60Hz, indicating
the power noise, was not to be considered.

of each trial were used as the real and imaginary parts of the
constructed complex data, respectively.

2.3. StrongUncorrelating TransformComplexCommon Spatial
Pattern. Falzon et al. 	rst proposed the complex version
of common spatial patterns in order to discriminate EEG
responses to mental tasks using analytic signal-based CSP
(ACSP) with Hilbert transform [40]. However, Hilbert trans-
form could only be applied to narrowband signals, and
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thus empirical mode decomposition was used to produce
more accurate narrowband signals compared to the Fourier
analysis [41, 42].

In addition to ACSP, there have been approaches that
consider the noncircularity of complex signals [13]. When a
complex random variable, � = �� + ��� is de	ned, covariance
(C) and pseudocovariance (P) are derived as follows [43]:

C = � [���] = � [(�� + ���) (�� − ���)
�]

= � [����� + �����] + �� [����� − �����]

= � [�2� + �2�] ≥ 0,

(2)

P = � [���] = � [(�� + ���) (�� + ���)]

= � [����� ] − � [�����] + �� [����� + �����]

= � [�2� − �2�] + 2�� [����] ,

(3)

where �[⋅] indicates the statistical expectation operator and

(⋅)� and (⋅)� denote the Hermitian and transpose of a vector,
respectively. Equation (2) shows that the covariance contains
the sum of power information of the mu and beta rhythms,
whereas (3) shows that the pseudocovariance includes the
power di�erence and the correlation information of the mu
and beta rhythms. When the given data is circular, (3) is
equivalent to zero, since �� and �� have the same variance

(�[����� ] − �[����� ] = 0) and are uncorrelated (�[����� +
����� ] = 0). However, most of the biological signals are

noncircular in the real world [13]. �erefore, the complex
form preserves the pseudocovariance information [44] and
the augmented form of complex CSP (ACCSP) that holds
both the covariance and pseudocovariance information can
be applied.

�en, the strong uncorrelating transform combined with
ACCSP is used in order to diagonalize the covariance and
pseudocovariance matrices simultaneously, assuring that the
multichannel complex data can no longer be correlated [13].
�e diagonalization process leaves the sum of power and the
power di�erence information of mu and beta rhythms from
the augmented covariance and pseudocovariancematrix.�e
steps for SUTCCSP is described below:

When given the number of channels (�) and sample size
(�), A� and A	 are both � × � matrices that hold the zero-
mean data of the two classes, le
-hand (�) and right-hand (�)
motor imagery tasks, respectively. In this paper, obtained �4(�)
and �3(�)+�2(�) that cover themu and beta rhythms of the EEG
data recorded duringmotor imagery tasks are used as the real
and imagery terms shown as A� or 	 = �4(�) + �(�3(�) + �2(�)).
(original CSP algorithm uses A� or 	 = �2(�) + �3(�) + �4(�).)

�en, the covariance and pseudocovariance matrices of
A� and A	 can be generated as follows:

C� = cov (A�) = � [A�A�� ] ,

C	 = cov (A	) = � [A	A�	 ] ,

P� = � cov (A�) = � [A�A��] ,

P	 = � cov (A	) = � [A	A�	] .
(4)

�en, a composite spatial covariance and pseudocovariance
matrices are calculated as

C
 = C� + C	 = � [A�A�� ] + � [A	A�	 ] ,

P
 = P� + P	 = � [A�A��] + � [A	A�	] .
(5)

Using the eigen decomposition, there exists a factorization
form of

C
 = U
 Λ 
U�
 , (6)

so thatC
 can be whitened by applying whiteningmatrixG =
Λ−1/2
 U

�

 , I = GC
G

�, and the pseudocovariance matrix is
then decomposed using Takagi’s factorization as follows [13]:

P
 = GP
G
� = YΛY�. (7)

�e SUT transform matrixQ is de	ned as

Q = Y
�
G. (8)

�erefore, SUTCCSP is a transformof thewhitened factoriza-
tion form of the covariance and pseudocovariance matrices.
�e process above allows both the covariance and pseudoco-
variance matrices to be diagonalized simultaneously as

QC
Q
� = QC�Q

� +QC	Q
� = I,

QP
Q
� = QP�Q

� +QP	Q
� = Λ.

(9)

Assuming S� = QC�Q
� and S	 = QC	Q

�, the SUT
transform yields an estimation of the eigenvectors from the
covariance matrix so that

Λ � = B
−1
S�B,

Λ 	 = B
−1
S	B.

(10)

�e estimation of the eigenvectors from the pseudocovari-
ance matrix is also obtained as follows:

Q̂ = Λ−1/2Y�G, (11)

Ŝ� = Q̂P�Q̂
�,

Ŝ	 = Q̂P	Q̂
�,

(12)

Q̂P
Q̂
� = Ŝ� + Ŝ	 = I, (13)

B̂
−1
Ŝ�B̂ = Λ̂�,

B̂
−1
Ŝ	B̂ = Λ̂	,

(14)

where B̂ and Λ̂ indicate the eigenvectors and eigenvalues of

Ŝ, respectively. �e derived equations (10) and (14) lead to
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Λ � + Λ 	 = I and Λ̂� + Λ̂	 = I, which is equivalent to Λ � =
I − Λ 	 and Λ̂� = I − Λ̂	. �erefore, if the values of Λ �
and Λ̂� are in descending order, values of Λ 	 and Λ̂	 will
be in the ascending order. �is is the main property of the
CSP algorithm, which illustrates that the variance of one
class is maximized, while the variance of the other class
is minimized, when applying the following covariance and
pseudocovariance spatial 	lter:

W = B
−1
G,

Ŵ = B̂
−1
Ĝ.

(15)

�e 	nal step to extract the features is to apply spatial 	lterW
to given data A as

V = WA,

V̂ = ŴA,
(16)

where V and V̂ are the covariance and pseudocovariance
spatial 	ltered data, respectively, and their power values are
used as features. �ese obtained features are then separated
using classi	ers to classify the le
- and right-hand motor
imagery tasks. To demonstrate the advantage using the
pseudocovariance information, we show the complex version
of CSP (CCSP), using the similar procedure to SUTCCSP,

only using the covariance information in W, except Ŵ.
�erefore, unlike SUTCCSP preserving both the power sum
and di�erence information, CCSP only preserves the power
sum information of the real and imaginary terms of the
complex variable. In this way, we show how features contain-
ing the power di�erence information a�ect the classi	cation
accuracy of the motor imagery tasks.

2.4. Classi
ers. In this study, 	ve machine learning algo-
rithms, including the random forest (RF), logistic model tree
(LMT), model tree (MT), �-nearest neighbor (KNN), and
logitboost (LB) [30, 45–49], were implemented usingWEKA
and utilized for the benchmark test of classi	ers [27, 28].
�ese 	ve classi	ers have frequently been used to classify
various motor imagery tasks [45, 50–53]. �ese classi	ers are
mainly based on bagging or boosting (random forest, logistic
model tree, model tree, and logitboost) [30, 46, 47, 49]. In
addition to the classi	ers based on bagging and boosting,
the well known �-nearest neighbor algorithm, which uses the
neighboring distance measures of features, was also used for
the comparison of the classi	cation methods [48]. Both bag-
ging and boosting are based on an ensemble method, using a
combination ofmultiple learningmethods to produce a better
prediction. Particularly, random forest, an extended version
of bagging, has been proven to be an e�ective classi	cation
algorithm for the classi	cation of motor imagery tasks and
emotional dimensions using EEG signals [28, 45]. �is is
due to the characteristics of random forest, the robustness
against outliers and noise, and the useful internal estimates of
the error, correlation, and variable importance [30]. Breiman
introduces the de	nition of the random forest as follows [30]:

De
nition 1. Random forest is an ensemble of tree-structured
classi	ers ℎ(�, ��) (� ∈ N), where random vectors {��} gen-
erated at �th tree are independent and identically distributed
and each tree votes for the most popular class ( ∈ {1, −1}),
given input � from the training set.

In addition, all parameters of each classi	er including the
random forest were set with the default parameters ofWEKA.
�e number of trees for random forest was set as 100 and
the maximum depth of the trees was set as unlimited. For
model tree, which uses a regression model for every class
value [47], the minimum number of instances per leaf was
set as 4. Logitboost performs an additive logistic regression
[49] and the percentage of the weight mass used for base
training was set as 100 with a total of 10 iterations. Logistic
model tree is also based on the linear logistic regression
models. However, it uses logitboost and regression functions
as base learners [46] and the number of iterations for early
heuristic stopping was set as 50. Finally, index � from �-
nearest neighbor algorithm was set as 1.

3. Results

3.1. Classi
cation of the Le�- and Right-Hand Motor Imagery
EEG Data. �e classi	cation performance using the original
CSP, CCSP, and SUTCCSP of signi	cant subjects was com-
pared using 	ve machine learning algorithms implemented
using WEKA. Machine learning algorithms include random
forest, logisticmodel tree,model tree, �-nearest neighbor, and
logitboost. �e classi	cation performances of all classi	ers
were calculated using a 	ve-cross validation (30 iterations
for di�erent random selected training sets for each subject)
and the similar analyses from [13] were applied. Speci	cally,
signi	cant subjects were chosen when their classi	cation
accuracies were above a certain percentage, which was set
with a con	dence limit of 95% (cf. [54]). �e average
percentage limit for 45 trials of the motor imagery tasks
was approximately 64%, and thus subjects with classi	cation
rates over 64% were categorized as signi	cant subjects. �e
rationale of using only signi	cant subjects was to exclude the
subjects with too low classi	cation accuracies. Since Ahn and
Jun claimed that the subjects who had performed poorly with
tasks had little brain activity across the di�erent regions of the
brain or less brain network, these subjectswere excluded from
the evaluation [55].�e bar chart of the number of signi	cant
subjects for CSP, CCSP, and SUTCCSP is shown in Figure 3.
Note that the number of signi	cant subjects of CCSP and
SUTCCSP are bigger than those of CSP.

All subjects, who were marked signi	cant subjects using
either CSP, CCSP, or SUTCCSP, were included in the signi	-
cant subject pool in order to calculate the average classi	ca-
tion rate across the subjects. As a result, a total of 24 subjects
were chosen as signi	cant subjects, and the classi	cation
rates calculated using the 	ve classi	ers are shown in Table 1.
Overall, SUTCCSP produced the highest classi	cation rate
among the CSP algorithms when classi	ed using random
forest as shown in Table 1. Additionally, error bars for these
results are displayed in Figure 4, which show that SUTCCSP
yields higher classi	cation rates among the CSP algorithms.
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Figure 3: Bar chart indicating the number of signi	cant subjects.
Note that CCSP and SUTCCSP produce two more signi	cant
subjects compared to CSP.
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Figure 4: Errorbar of classi	cation rates of the signi	cant subjects
for CSP, CCSP, and SUTCCSP. Note that SUTCCSP produces higher
classi	cation rates compared to CSP and CCSP, con	rmed by
Student’s �-test in Table 3.

Table 1: Comparison of classi	cation accuracies among di�erent
classi	cation algorithms with signi	cant subjects.

Classi	ers CSP (%) CCSP (%) SUTCCSP (%)

RF 78.04 ± 2.31 78.97 ± 2.11 80.05 ± 2.10

LMT 77.16 ± 2.33 77.62 ± 1.97 77.75 ± 2.02

MT 76.89 ± 2.18 76.07 ± 2.04 76.02 ± 2.13

KNN 77.36 ± 2.35 77.49 ± 2.22 77.02 ± 2.28

LB 76.88 ± 2.17 75.98 ± 2.11 76.25 ± 2.25

�e classi	cation accuracies for the insigni	cant subjects
were also shown in Table 2 to compare with those for the
signi	cant subjects in Table 1. Table 2 shows that the perfor-
mances of the insigni	cant subjects were close to 50%, which
were consistentwithwhat randomchancemight produce. For
this, subjects yielding low performance were not appropriate
for the evaluation, and, thus, the insigni	cant subjects were
excluded in the main analysis [55].

In addition, the scatterplots of the classi	cation rates of
the signi	cant subjects are displayed in Figure 5 to compare
the results of SUTCCSP with CSP (a) and CCSP (b). �e
diagonal lines in Figure 5 represent the cases where the
classi	cation rates of CSP or CCSP and SUTCCSP are the
same. An additional study of the one-way analysis of the
variance, Student’s �-test, was conducted, where classi	cation
accuracies of SUTCCSP were compared with CSP (�1) and
CCSP (�2). Note that most dots in both scatterplots lie above

Table 2: Comparison of classi	cation accuracies among di�erent
classi	cation algorithms with insigni	cant subjects.

Classi	ers CSP (%) CCSP (%) SUTCCSP (%)

RF 51.70 ± 0.78 50.87 ± 0.62 51.25 ± 0.71

LMT 49.72 ± 0.81 49.50 ± 0.79 50.59 ± 0.80

MT 49.71 ± 0.83 49.87 ± 0.78 50.70 ± 0.74

KNN 51.56 ± 0.57 51.03 ± 0.53 51.74 ± 0.55

LB 51.32 ± 0.63 50.79 ± 0.64 51.49 ± 0.67

Table 3: Student’s �-test results, which compare classi	cation accu-
racies of SUTCCSP with CSP (�1) and CCSP (�2).

Classi	ers �1 �2
RF 0.0075 0.0037

LMT 0.5055 0.7437

MT 0.2539 0.8798

KNN 0.6405 0.3620

LB 0.4736 0.5437

the line, meaning that SUTCCSP outperforms both CSP and
CCSP (�1 < 0.01 and �2 < 0.005).

Table 3 shows the results of Student’s �-test performed
for the other classi	ers including the random forest, which
compares the classi	cation rates of SUTCCSP with CSP (�1)
andCCSP (�2). In detail, signi	cant� values of random forest
(�1 < 0.01 and �2 < 0.005) reassure that SUTCCSP out-
performs CSP and CCSP. �e other classi	cation algorithms
except the random forest gave no signi	cance in terms of �
values in Table 3 (�1, �2 > 0.05), and their classi	cation rates
did not vary across CSP, CCSP, and SUTCCSP in Table 1.

It is noted that the results of SUTCCSP outperformed
those of CCSP, whose features include only the information
of the power sum of the mu and beta rhythms. �is suggests
that the power di�erence information of them preserved
by SUTCCSP can be considered as an important factor for
the classi	cation between the le
- and right-hand motor
imagery tasks. �erefore, results in Tables 1 and 3 prove that
SUTCCSP outperforms CSP and CCSP, with random forest,
a preferred classi	cation method with CSP based feature
extraction algorithms, particularly SUTCCSP.

In order to marginalize the performance di�erence that
comes from the classi	ers, the average across the per-
formance of di�erent classi	ers was calculated for CSP
(77.27%), CCSP (77.22%), and SUTCCSP (77.41%). As a
result, SUTCCSP resulted in a slightly higher performance
compared to the other CSP algorithms by 0.15 (%).

In addition, an additional experiment using both the CSP
features and features of the power di�erence information of
mu and beta rhythms (CSP+PD)was conducted to show that
the performance improvement is coming from SUTCCSP
and not solely from the random forest classi	er. If our best
result is yielded only from the classifying technique of the
random forest classi	er andnot SUTCCSP, the result of CSP+
PD should be comparable to that of SUTCCSP when feeding
the classi	er with the same amount of power di�erence
information. However, despite using the same classi	er, CSP



Computational Intelligence and Neuroscience 7

p1 = 0.018

(p1 < 0.05)

50

60

70

80

90

100
SU

T
C

C
SP

 (
%

)

70 80 90 10050

CSP (%)

60

(a) SUTCCSP versus CSP

p2 = 0.002

(p2 < 0.01)

50

60

70

80

90

100

SU
T

C
C

SP
 (

%
)

60 70 80 90 10050

CCSP (%)

(b) SUTCCSP versus CCSP

Figure 5: Scatterplots of the classi	cation rates comparing SUTCCSP with CSP (a) and CCSP (b). �e dots are marked red where the
classi	cation rates of SUTCCSP are larger than those of CSP or CCSP and marked blue in opposite cases. �e enhanced performance using
SUTCCSP is con	rmed by � value of Student’s �-test.

Table 4: Classi	cation rates of signi	cant subjects.

Preprocessing method CSP (%) CCSP (%) SUTCCSP (%)

IIR 75.92 ± 2.04 76.06 ± 1.98 76.98 ± 1.90

MEMD 78.04 ± 2.31 78.97 ± 2.11 80.05 ± 2.10

Table 5: Student’s �-test results for IIR and MEMD, which compare
classi	cation accuracies of SUTCCSP with CSP (�1) and CCSP (�2).

Preprocessing method �1 �2
IIR 0.1115 0.0229

MEMD 0.0075 0.0037

Table 6: Student’s �-test results for MEMD versus IIR 	lter for all
105 subjects using the di�erent CSP algorithms.

Feature extraction � < 0.00001
CSP 0.000003

CCSP 0.0000005

SUTCCSP 0.000008

+ PD achieved a 78.63 ± 1.93 (%) classi	cation accuracy,
which is slightly higher than that of CSP but still below the
best classi	cation accuracy using SUTCCSP (80.05%) by 1.42
(%). �is states that the performance improvement of the
best classi	cation accuracy is coming from the preservation
of unique power di�erence information using SUTCCSP and
does not solely come from the random forest classi	er.

Additional studies comparing MEMD with IIR 	ltered
results are presented in Tables 4–6 in order to prove that
MEMD is more e�ective for the dataset of motor imagery
EEG signals. Table 4 shows the classi	cation results of the
preprocessed data using MEMD, which outperforms those
using the 5th-order Butterworth IIR 	lter by approximately
1.1%, 2.9%, and 3.0% for CSP, CCSP, and SUTCCSP fea-
tures, respectively. Note the largest di�erence between the
performance of IIR and MEMD for SUTCCSP features.
�e classi	cation accuracies using MEMD and the IIR 	lter
were calculated with the average classi	cation rate of the
signi	cant subjects among the 105 subjects.

Student’s �-test was also utilized to compare the variances
between the classi	cation performances of MEMD and IIR
pre	ltered data of the signi	cant subjects in Table 5. Results
display �-test performed for two cases: �-test for the original
CSP versus SUTCCSP (�1) and CCSP versus SUTCCSP (�2).
Results show that the IIR 	lter gave no signi	cant � value for
�1 (> 0.05) and a relatively high value for�2 (< 0.05), whereas
MEMD gave signi	cantly low � values for both �1 (< 0.01)
and �2 (< 0.005).

Table 6 also shows the results of Student’s �-test per-
formed for MEMD versus IIR 	lter for all 105 subjects
using the di�erent CSP algorithms. All CSP methods show
signi	cant � values (<0.00001), which suggest that MEMD
is more competent than the IIR 	lter for the preprocessing
of EEG. As Park et al. have shown that MEMD is e�ective
in preprocessing motor imagery EEG signals due to the
nonlinear and nonstationary characteristics of the data [23],
Tables 4–6 demonstrate that MEMD is more e�ective than
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Figure 6: Spatial patterns of the top three subjects in descending order, who had the best classi	cation rates: subject 34 (96.13%), 72
(95.51%), and 7 (94.89%). �e le
 two topographies show the spatial patterns for the covariance matrices (W) of the le
 and right-hand

tasks, respectively, while the right two topographies show the spatial patterns for the pseudocovariance matrices (Ŵ). Note that the patterns

ofW and Ŵ are prominently di�erent, meaning Ŵ can produce additional information toW.

the IIR 	lter for this le
- and right-handmotor imagery EEG
dataset.

3.2. Spatial Pattern Topographies. Figure 6 illustrates the
spatial pattern topographies for the top three subjects in
descending order who had the best classi	cation rates out of
the 24 signi	cant subjects: subject 34 (96.13%), 72 (95.51%),
and 7 (94.89%). �e le
 and right two topographies of
Figure 6 correspond to the spatial patterns of covariance (W)

and pseudocovariance (Ŵ) matrices, respectively.
Figure 7 also shows the spatial pattern topographies of the

three subjects, who gave the worst classi	cation rates: subject
2 (68.18%), 103 (68.04%), and 33 (65.47%).Overall, the typical
spatial patterns during the motor imagery tasks, the syn-
chronization on the ipsilateral hemisphere, and desynchro-
nization on the contralateral hemisphere [19] can be noted
for the covariance spatial patterns. A prominent ipsilateral
power di�erence is also shown for the spatial patterns of the
pseudocovariance of subject 33. �is is also seen in Figure 8,
illustrating spatial patterns of average covariance (W) and

pseudocovariance (Ŵ) matrices of all 24 signi	cant subjects.
Furthermore, the di�erence between the covariance and

pseudocovariance spatial patterns suggests that the pseu-
docovariance spatial 	lters provide additional information

about the power di�erence between themu and beta rhythms
of EEG recorded during motor imagery tasks.

3.3. Asymmetries of the Power Dierence and Sum of Mu
and Beta Rhythms. Figures 6–8 have shown that the spatial
patterns of the le
- and right-hand motor imagery tasks
for each individual subject are distinguishable. Additional
calculations of the asymmetry of the power di�erence and
sum from the symmetric channels (FC5-FC6, FC1-FC2, C3-
C4, CP5-CP6, and P1-P2) would give a clear explanation
for these results. Figure 9 displays the asymmetries of the
average power di�erence (a) and sum (b) of the mu and
beta rhythms for all trials of the signi	cant subjects. Outliers
were excluded with criteria of ±5 standard deviation cuto�
[56]. �e asymmetries of all the symmetric channels were
calculated using the following equation:

Asymmetry = CH� − CH	
CH� + CH	

, (17)

where CH� and CH	 indicate the symmetric channels of the
le
 and right hemispheres, respectively. �erefore, when the
power di�erence or sum from the le
 hemisphere is greater
than the right, the resulting asymmetry will be positive and
vice versa. Figures 9(a) and 9(b) use the power di�erence
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Figure 7: Spatial patterns of the worst three subjects in descending order, who gave the worst classi	cation rates: subject 2 (68.18%), 103
(68.04%), and 33 (65.47%). �e le
 two topographies show the spatial patterns for the covariance matrices (W) of the le
- and right-hand

tasks, respectively, while the right two topographies show the spatial patterns for the pseudocovariance matrices (Ŵ). Note that the patterns
of the le
- and right-hand motor imagery are prominently di�erent even for the subjects who had poor classi	cation rates.
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Figure 8: Spatial patterns of the average covariance and pseudocovariance matrices of all 24 signi	cant subjects are shown.

and sum of the mu and beta rhythms, respectively, from the
symmetric channels. Figure 9(a) shows a marked di�erence
for the channels of the central area compared to Figure 9(b).
Since the motor cortex responsible for all voluntary move-
ments is located in the central region of the human brain,
these asymmetry results can explain why the spatial pattern
topographies of the le
- and right-hand motor imagery tasks
are prominently di�erent in Figures 6–8. In particular, in
channels C3 and C4, the power di�erence asymmetries of the

le
- and right-hand tasks have di�erent signs, meaning that
the power di�erence of the mu and beta rhythms is greater in
C3 during the le
-hand task, whereas the power di�erence is
greater in C4 during the right-hand task. Since this di�erence
is only shown in Figure 9(a) and not in Figure 9(b), this could
explain why the features containing the power di�erence
between the mu and beta rhythms in the pseudocovariance
matrix result in a better classi	cation performance than those
without the power di�erence information.
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Figure 9: Asymmetries of the power di�erence and sum of symmetric channel EEG of motor imagery tasks. (a) Asymmetry of the power
di�erence between mu and beta rhythms from the symmetric channels. (b) Asymmetry of the power sum of mu and beta rhythms from the
symmetric channels. Note that the asymmetry of the power di�erence shows more prominent di�erence between the le
- and right-hand
motor imagery tasks with the di�erent signs of values, compared to the asymmetry of the power sum.

Table 7: Comparison of the classi	cation accuracies of CSP algo-
rithms using only motor cortex channels.

CSP (%) CCSP (%) SUTCCSP (%)

75.82 ± 2.24 76.62 ± 2.09 77.70 ± 2.09

Table 8: Student’s �-test results, which compare classi	cation accu-
racies of SUTCCSP with CSP (�1) and CCSP (�2) using only motor
cortex channels.

�
1

�
2

0.0144 0.0090

4. Discussion

4.1. Motor Cortex Channels. In this study, the channel data
that covers all the brain regions was used. �erefore, an
additional experiment using only the motor cortex channels
was conducted, since the motor cortex is originally known
to be responsible for the motor movement or imagery tasks
[57]. �e same data analysis methods from the original study
were used. As shown in Table 7, the performances of all CSP
algorithms were lower than those of Table 1. A reasonable
explanation could be that supplementary information was
kept in the occipital and the nearby parietal region, due to
the perception of the visual stimulus guidance of the motor
imagery tasks. Other studies using the positron emission
tomography (PET) and the functional magnetic resonance
imaging (fMRI) also showed that other areas including the
parietal region, anterior cingulate gyrus, and the cerebellum
were activated [58, 59]. Additional pairwise Student’s �-tests
to calculate �1 and �2 were conducted as shown in Table 8.
�is shows that SUTCCSP results in a higher performance
even when using only motor cortex channels (�1 < 0.05 and
�2 < 0.01, resp.).

4.2. Proposed Algorithm. In this study, MEMD was applied
to the multichannel data, where channels were selected to
cover all the brain regions. �e nonlinear property of such
real-world EEG data makes it di�cult for the conventional
frequency analysis methods to decompose the signals into

the natural oscillations, such as Fourier transform based
on the 	xed sinusoidal functions. However, the data-driven
MEMD method obtains the frequency components without
any basis functions, and, thus, for the real-world physiological
data, such as electromyogram (EMG) or electrocardiogram
(ECG), MEMD has the potential to provide a highly accurate
frequency analysis.

In addition, it is known that the le
- and right-hand
imagery is associated with bilateral desynchronization of mu
rhythms, greater on the contralateral side, and themu rhythm
has prominent hemispheric asymmetry with the right-hand
imagery, while the beta rhythm is more prominent with
the le
-hand imagery [20, 60]. Recent studies have shown
the dissociation of mu and beta rhythms, which has not
been identi	ed in the previous studies [22]. Brinkman et
al. showed an increase in the oscillatory power of the mu
rhythm in the sensorimotor cortex ipsilateral to the tasks,
whereas that of the beta rhythm decreased in the contralat-
eral sensorimotor cortex simultaneously. �e disassociation
between mu and beta rhythms can explain why the comple-
mentary information of the power di�erence between mu
and beta rhythms from the pseudocovariance could provide
crucial information to classify the le
- and right-hand motor
imagery tasks. Also, the ipsilateral di�erence of the power
di�erence of the le
- and right-hand motor imagery EEG,
shown in Figure 9, demonstrates that the complementary
information of the power di�erence between mu and beta
rhythms is an important feature for the classi	cation of the
le
- and right-hand motor imagery tasks.

4.3. Processing Speed of CSP Algorithms. In order to cal-
culate the processing speed of the system as in real-time
applications, the computational complexity in terms of Big-
! notation and the actual processing time of the three
CSP algorithms were compared, since these algorithms were
directly applied to the data segments of the test set data. �e
so
ware used for calculation was MATLAB R2016a, since all
codes were implemented using this so
ware. �e hardware
speci	cations include a Windows 10 OS and an x64-based
Intel(R) Core(TM) i7-6700HQ CPU (2.60GHz) processor
with 16.0G of RAM.
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Table 9: Actual processing time for CSP, CCSP, and SUTCCSP.

CSP (ms) CCSP (ms) SUTCCSP (ms)

11.227 9.894 30.272

2 3 41

Data length (sec)

55
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Figure 10: �e errorbar of RF conducted with features from CSP,
CCSP, and SUTCCSP when varying the data length. Note that the
performance decreases as the data length reduces.

When the computational complexity of the three CSP
algorithms was calculated using Big-! notation, multiplica-

tionwas calculated as!("3) sinceMATLABuses the blocked-
matrix multiplication method. �e computational complex-
ity of each algorithm was !("4) for all CSP algorithms.
Although it may seem that there were no di�erences among
the three methods, the actual processing time would be dif-
ferent, since the coe�cients for SUTCCSP were much larger
than those of CSP and CCSP due to more multiplication
during processing a large number of features.

When calculating the actual computational time pro-
cessed with the speci	cations mentioned above, approxi-
mately six trials were used for the test set since our study
conducts a 	vefold cross validation. �e actual processing
time of the three methods is shown in Table 9. Note that the
unit of milliseconds (ms) would be of negligible di�erence
among the di�erent approaches for real-time processing.

4.4. Variation of Data Length. In order to search for perfor-
mance di�erences when varying the data length, an addi-
tional experimentwas conducted that shows the classi	cation
accuracies using data samples varying from 1 second (160
samples) to 4 seconds (640 samples). For benchmark testing,
the best classi	cation method, along with the signi	cant sub-
ject pool from theCSP algorithms, was selected, since it yields
the best results. �en, all experiments were processed from
the preprocessing step with MEMD, feature extraction with
CSP methods, and then classi	cation. Results are displayed
in Figure 10.

Figure 10 clearly shows that the data using a full data
length of 640 samples increases the classi	cation accuracy for
all CSP algorithms.�erefore, it proves that the performance
decreases when reducing the data length.

5. Conclusion

In this paper, we have used SUTCCSP to extract the dif-
ferent responses of mu and beta rhythms of EEG to the
motor imagery tasks. Results showed improved classi	cation
performance using SUTCCSP with consideration of the
power di�erence between mu and beta rhythms, compared
to the original CSP algorithm. �e functional disassociation
between the mu and beta rhythms can explain the con-
tribution of the supplementary information of the power
di�erence to the motor imagery classi	cation. Finally, our
investigation of preprocessing and classi	cation methods for
the motor imagery EEG analysis has con	rmed that MEMD
and the random forest classi	er are the optimal algorithms
for this purpose.
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