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*is paper proposes a novel classification framework and a novel data reduction method to distinguish multiclass motor imagery
(MI) electroencephalography (EEG) for brain computer interface (BCI) based on the manifold of covariance matrices in a
Riemannian perspective. For method 1, a subject-specific decision tree (SSDT) framework with filter geodesic minimum distance
to Riemannianmean (FGMDRM) is designed to identify MI tasks and reduce the classification error in the nonseparable region of
FGMDRM. Method 2 includes a feature extraction algorithm and a classification algorithm. *e feature extraction algorithm
combines semisupervised joint mutual information (semi-JMI) with general discriminate analysis (GDA), namely, SJGDA, to
reduce the dimension of vectors in the Riemannian tangent plane. And the classification algorithm replaces the FGMDRM in
method 1 with k-nearest neighbor (KNN), named SSDT-KNN. By applyingmethod 2 on BCI competition IV dataset 2a, the kappa
value has been improved from 0.57 to 0.607 compared to the winner of dataset 2a. Andmethod 2 also obtains high recognition rate
on the other two datasets.

1. Introduction

Brain computer interface (BCI) based on motor imagery
(MI) is used to analyze human intention by electroen-
cephalogram (EEG) signals generated by human brain
electrophysiological activity [1, 2]. Based on BCI technology,
exoskeletons can be used to help people with physical dis-
abilities regain their motor ability, and BCI also has wide
applications in smart home, entertainment, military, and
other fields [3–6].

Common spatial pattern (CSP) is widely used in motor
imagery to extract EEG features [7]. CSP has excellent
performance in two classification tasks, but the drawback is
that it needs a lot of electrodes [8].

Despite its short history, the use of the Riemannian
geometry in BCI decoding is currently attracting increasing
attention [9–13]. Covariance matrices lie in the space of
symmetric positive definite (SPD) matrices, which can be
formulated as a Riemannian manifold [14]. In the BCI field,
the connections of the CSP algorithm and the tools of
information geometry have been investigated, considering

several divergence functions in alternative to the Rie-
mannian distance [15–18]. Barachant et al. proposed a
simple data augmentation approach for improving the
performance of the Riemannian mean distance to mean
(MDM) algorithm [13]. Kumar et al. propose a single band
CSP framework for MI-BCI that utilizes the concept of
tangent space mapping in the manifold of covariance
matrices, and the proposed method obtains good results
when compared to other competing methods [19]. A hi-
erarchical MDM classifier for multiclass problem has been
tested in [20].

Advanced classifiers based on the tangent space on the
Riemannian manifold of positive matrices are also receiving
increasing attention. Barachant et al. map the covariance
matrices in the tangent space and apply feature selection and
linear discriminate analysis (LDA) in the tangent space [10].
For the application of the classifier in the tangent space, the
problem is that the curse of dimensionality. Traditional data
dimensionality reduction methods include two categories:
linear dimensionality reduction (LDR) and nonlinear di-
mensionality reduction (NLDR). Since most of the actual
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data are nonlinear, NLDR techniques such as locally linear
embedding (LLE) [21], isometric mapping (ISOMAP) [22],
maximum variance unfolding (MVU) [23], and t-distributed
stochastic neighbor embedding (t-SNE) [24, 25] are used to
tackle problems widely. Lee et al. used discrete wavelet
transform (DWT) and continuous wavelet transform
(CWT) to extract features of MI tasks, and Gaussian mixture
model (GMM) was used to construct GMM supervectors;
this method accelerates the speed of training and improves
the accuracy of motor imagery [26]. Sadatnejad et al. pro-
pose a new kernel to preserve the topology of data points in
the feature space, and the proposed kernel is strong, par-
ticularly in the cases where data points have a complex and
nonlinear separable distribution [8]. Xie et al. proposed a
framework for intrinsic submanifold learning from a high-
dimensional Riemannian manifold; the proposed method
exhibited strong robustness against a small training dataset
[27].

*ere is still another approach for overcoming the
problem of high dimensionality in SPD manifolds. And this
method maps from a high-dimensional SPD manifold to a
lower dimensional one while the geometry of SPDmanifolds
is preserved. And there are only two works of this way.
Davoudi et al. [14] proposed distance preservation to local
mean (DPLM) as dimensionality reduction technique,
combined with FGMDM, the best performance of this article
in terms of kappa value is 0.60. Harandi et al. [28] learned a
mapping that maximizes the geodesic distances between
interclass and simultaneously minimizes the distances be-
tween intraclass, and it is done via an optimization on
Grassmann manifolds.

In this paper, we proposed a novel SSDT-FGMDRM and
SSDT-KNN for the classification of multiclass MI tasks by
designing a simple yet efficient subject-specific decision tree
framework. Method 1 contains SSDT-FGMDRM to improve
the performance of FGMDRM. For each individual, method
1 first separates the two most discriminative classes from the
group. Furthermore, the remaining categories including the
misclassification samples of the previous nodes are reclas-
sified in the last node. Method 2 contains SSDT-KNN and a
NLDR method named SJGDA. SJGDA combines the ad-
vantage of semi-JMI and GDA, and method 2 performed
well on different datasets. *e aims of this article are as
follows:

(1) To verify the effectiveness of the proposed SSDT
framework through dataset 1

(2) To verify the superiority of SJGDA in feature ex-
traction, compared with semi-JMI and GDA

(3) To validate the generalization ability of method 2
through different datasets, in this paper

*e rest of the paper is organized as follows: Section 2
introduced the mathematical preliminaries of the Rieman-
nian geometry. Section 3 discussed the proposed methods in
detail. *ree datasets are introduced in Section 4. *e results
of our work are discussed in Section 5. And in Section 6, we
compared our methods with the state of the art. *is paper
concludes in Section 7.

2. Geometry of SPD Matrices

Let Xi represent a short segment of continuous EEG signals,
and Xi can be denoted as follows:

Xi � Xt+Ti
· · ·Xt+Ti+Ts−1[ ] ∈ Rn×Ts , (1)

where Xi corresponds to the ith trail of imaged movement
starting at time t�Ti. Ts denotes the number of sampled
points of the selected segment.

For the ith trail, the spatial covariance matrix (SCM)
Pi ∈ Rn×n can be calculated as follows:

Pi �
1

Ts − 1
XiX

T
i . (2)

Based on the SCM, there are two ways to classifyMI tasks
in the Riemannian manifold.

2.1. Filter Geodesic Minimum Distance to the Riemannian
Mean. *e Riemannian distance between two SPD matrices
P1 and P2 in P(n) is given by [29]

δR P1, P2( ) � log P−11 P2( ) F � ∑
i�1

n

log2 λi 1/2. (3)

Givenm SPDmatrices P1, . . . , Pm, the geometric mean in
the Riemannian sense is defined as

I P1, . . . , Pm( ) � argmin
P∈P(n)

∑
i�1

m

δ2R P, Pi( ). (4)

For algorithm mean Riemannian distance to Rieman-
nian mean (MDRM), we compute the Riemannian distance
between unknown class P to the Riemannian mean point of
each class and classify the unknown class into categories
corresponding to the shortest distance. Inspired by the
principal geodesics analysis (PGA) method [30], the liter-
ature [31] finds a set of filters by applying an extension of
Fisher linear discriminant analysis (FLDA) named Fisher
geodesic discriminant analysis (FGDA). And then, apply
these filters to MDRM to form filter geodesic minimum
distance to Riemannianmean (FGMDRM).More details can
be seen from [31].

2.2. Tangent SpaceMapping. As shown in Figure 1, the SPD
matrix of P is denoted by a differentiable Riemannian
manifold Z. Each tangent vector Si can be seen as the de-
rivative at t� 0 of the geodesic Γ(t) between P and the ex-
ponential mapping Pi�EXPP(Si), defined as follows:

ExpP Si( ) � Pi � P1/2 exp P−1/2SiP
−1/2( )P1/2. (5)

*e inverse mapping is given by the logarithmic map-
ping and can be defined as follows:

logP Pi( ) � Si � P1/2 log P−1/2PiP
−1/2( )P1/2. (6)

Using the Riemannian geodesic distance, the Rieman-
nian mean of I> 1 SPD matrices by
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I P1, . . . , PI( ) � argmin
P∈P(n)

∑I
i�1

δ2R P, Pi( ). (7)

Using the tangent space located at the geometric mean of
the whole set trials, PI � I(Pi, i � 1 . . . I), and then, each
SCM Pi is mapped into this tangent space, to yield the set of
m� n(n+ 1)/2 dimensional vectors:

Si � upper P−1/2
I

log Pi( )P−1/2
I

( ). (8)

Many efficient classification algorithms can be imple-
mented in the Riemannian space [10].

3. Methods

3.1. Subject-Specific Decision Tree Framework. Decision tree
is a common machine learning method. Each node of de-
cision tree can be defined as a rule. Guo and Gelfand [32]
proposed classification trees with neural network, and this
method embeds multilayer neural networks directly in
nodes. In the decision tree, one of the most important things
is to construct a proper binary tree structure; the upper
nodes have the greater impact of the accuracy of the whole
samples [33]. In order to solve the multiclassification
problem in this paper, we constructed a subject-specific
decision tree (SSDT) classification framework as shown in
Figure 2 according to the best separating principle [34]. As
can be seen from Figure 2, the SSDTproposed in this paper
trains a different classification model at different nodes of
the decision tree.

*e advantages of the SSDT framework are as follows:

(1) *is model separates the two MI tasks (e.g., C.1 and
C.2) with the highest recognition rate as far as
possible

(2) At the last node, we reclassify some samples to
enhance the classification ability of the classifier

3.2.Method 1: ADirect ClassificationMethod Based on SSDT-
FGMDRM. Firstly, we point out one problem of the multi-
class FGMDRM by using an example. Figure 3 gives a three-
class classification problem. Figure 3(a) shows the classifica-
tion progress by FGMDRM. We can see that three Rieman-
nian mean points (RMPs) are located on the manifold. Since
the classification criterion is decided by the distance calculated

between the test point and the RMP, it caused a wrong
classification. Figure 3(b) shows the example of the classifi-
cation results obtained by using the first node of the SSDT-
FGMDRM framework. It can be seen that the error classifi-
cation is corrected by using the decision tree framework.

Method 1 is used to classify four types of MI tasks di-
rectly.*e training and testing diagram is shown in Figure 4.

3.3. Feature Extraction Algorithm Based on the Riemannian
Tangent Space. In this paragraph, we propose a novel data
reduction method which combines semi-JMI and GDA,
namely SJGDA, to solve the dimension disaster problem
after tangent space mapping.

3.3.1. Semisupervised Joint Mutual Information.
Semisupervised dataset D�D{DL ∪DU} consists of two
parts, DL � xi, yi{ }NL

i�1 are labelled data and DU � xNL+i{ }NU

i�1
are unlabelled data. A binary random variable S is in-
troduced to determine the distribution of labelled dataset
and unlabelled dataset. When s � 1, we record the value of y,
otherwise not. In this way, the labelled set DL comes from
the joint distribution p(x, y|s � 1), while the unlabelled set
DU comes from the distribution p(x|s � 0). *e underlying
mechanism S turns out to be very important for feature
selection.

Feature selection method based on mutual information
theory is a common feature selection method [35]. In these
methods, we rank the features according to the score and
select the features with higher scores. For example, by
ranking the features according to their mutual information
with the labels, we get the sort of correlation that is related to
class labels. *e characteristics of the score are defined as
follows:

JJMI Xk( ) � ∑
Xj∈Xθ

Î Xk;
Y

Xj

( ), (9)

where Xθ represents the set of the features already selected
and Xk is the feature ranked by scores. Y represents the label
corresponding to feature Xk.
Semi-JMI is a method of using a semisupervised dataset

as a training set for JMI. More details can be seen from
Reference [36]. In this paper, the missingness mechanism is
class-prior-change semisupervised scenario (MAR-C) [37].
After feature ranking, we can obtain a feature vector as
follows:

f � f1, f2, . . . , fn[ ], (10)

where n is the length of the tangent vectors Si. Since in-
formation redundancy exists in f, we select the best vector
length m (m< n) of each subject by the classification rec-
ognition rate:

fSJ � f1, f2, . . . , fm[ ]. (11)

3.3.2. Generalized Discriminant Analysis. After variable se-
lection, this paper uses generalized discriminant analysis

TP

P

Z
Pi

Si

LogP (Pi)

ExpP (Si)

Γ(t)

Figure 1: *e tangent space at point P, and the geodesic Γ(t)
between P and Pi.
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(GDA) [38, 39], which is a nonlinear feature reduction
technique based on kernels to reduce the length of the feature
vectors fSJ and their redundancies. Mapping X (fSJ) into a
high-dimensional space F through a kernel function Φ:

Φ: Rd⟶ F,

xΦ|⟶ (x).
(12)

*e linear Fisher decision is performed in the F space,
and the criterion function for its extension is

J WΦ( ) � argmax
WΦ

WΦ( )TSΦBWΦ∣∣∣∣∣ ∣∣∣∣∣
WΦ( )

TSΦTW
Φ

∣∣∣∣∣ ∣∣∣∣∣ , (13)

where WΦ ∈ F and SB and SW are between-class scatter and
within-class scatter, respectively.

N.1

N.2

N.3

C.1

C.2

C.1 C.2 C.3 C.4

Training classifier in an OVR scheme. According to the ranking of classification
recognition rate, the highest recognition rate model is placed in this node

The second high recognition rate model is placed at this node

The classifier is trained in an OVO scheme this node

Figure 2: SSDT based on the best separating principle for four class. N. i represents node i, and C. i represents class i.
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Figure 3: *ree classification problems classified by FGMDRM (a); and a subjectspecific decision tree FGMDRM model (b).

K-fold cross validation is used to classify the data set into training set and test set

Obtain the test set label

By sorting the correct rate, they are named F.x (x = 1, 2, 3, 4)

Four FGMDRM models are obtained by training 
FGMDRM in OVR way

Train FGMDRM for 4 class MI tasks

N.1

N.2

N.3
C.1

C.2

C.1 C.2 C.3 C.4

F.1

F.2

Multiclass FGMDRM

The framework of SSDT-FGMDRM

Classify with 
SSDT-FGMDRM

Figure 4: Block diagram for method 1.
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For the convenience of the numerical calculation, kernel
functions are introduced to solve the problem:

k(x, y) �(Φ(x) ·Φ(y)). (14)

Gauss kernel, poly kernel, and sigmoid kernel are widely
used in GDA [40]. For test data z, its image Φ(z) in F space
projects on WΦ is as follows:

WΦi ·Φ(z)( ) �∑N
j�1

αij Φ xj( ) ·Φ(z)( ) �∑N
j�1

αijk xj, z( ).
(15)

*is paper uses ploy kernel to reduce the dimension.
After GDA, we can get a vector fG as follows:

fG � f1, f2, . . . , fd[ ], (16)

where d of fG is decided by the actual needs, and in this paper
we set d� 1. And then, SJGDA is applied to the dataset of this
paper, and the final feature vectors are constructed as
follows:

fSJGDA � fG, fSJ[ ]. (17)

3.4. Method 2: SJGDA and Subject-Specific Decision Tree
k-Nearest Neighbor. Method 2 is used to classify four types
of MI tasks after tangent space mapping. *e training and
testing diagram is shown in Figure 5.

4. Description of Data

4.1. Dataset 1. BCI competition IV dataset 2a is used to
evaluate the performance of the proposed two methods [41].
Dataset 2a collects 22 channel EEG data and 3 EOG channel
data. Four types of motor imagery were collected: left hand,
right hand, foot, and tongue. *e dataset contains nine
healthy subjects and each subject has two sessions, one
training session and one test session. Each session has 288
trails of MI data with 72 trails for each MI task. *e EEG
signals are bandpass filtered by a 5-th order Butterworth
filter in the 8–30Hz frequency band. *e selection of trial
period is important in MI classification; we select 2 s data
(0.5 s and 2.5 s) after the cue, instructing the user to perform
the MI tasks by the winner of the competition.

4.2. Dataset 2. BCI competition III dataset IIIa is used to
evaluate the performance of method 2. BCI III dataset IIIa
contains 3 subjects: K3b, K6b, and L1b, and collects 64
channel EEG data. *e EEG was sampled with 250Hz. Four
types of motor imagery were collected: left hand, right hand,
foot, and tongue. More details about this dataset can be seen
at Reference [42].

4.3. Dataset 3. In our own dataset, Emotiv Epoc+ is used to
collect EEG data of motor imagery. It is a portable EEG ac-
quisition device with a sampling rate of 128Hz. It has fourteen
electrode channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,
FC6, F4, F8, and AF4), two inference electrodes (CMS and

DRL), and the electrode placement follows the international
10–20 standard. Equipment and the Emotiv 14 electrodes are
located over 10–20 international system positions as shown in
Figure 6. *is experiment collected three kinds of EEG signals
of one joint: imagination of shoulder flexion (F), extension (E),
and abduction (A), as shown in Figure 7.

Seven subjects participated in this experimental study.
*ese subjects were in good health. During the experiment,
subjects were naturally placed with both hands, trying to avoid
body or head movement. During the experiment, subjects
carried out motor imagery under the outside cue, a single
experiment collected EEG signal for 5 seconds, and then took
5–7 seconds to have rest, each action repeated acquisition 20
times. *e experimental process is shown in Figure 8.

5. Results

5.1. Results of Method 1. We use SSDT-FGMDRM to classify
multiclassMI tasks as introduced in Section 3.1. Since there are
four classes, we can have four pairs of MI tasks: left vs rest (L/
RE), right vs rest (R/RE), foot vs rest (F/RE), and tongue vs rest
(T/RE). For each subject, the pair with the highest accuracy is
used to train N.1, and the pair with the second highest ac-
curacy is to train N.2. Table 1 gives the ten-folder cross-
validation results obtained using FGMDRM in OVR scheme.

Table 2 displays the kappa values obtained by method 1.
Compared with other methods, five subjects (A03, A06, A07,
A08, and A09) achieved higher kappa value of nine without
exploring the frequency domain information by method 1.
In the case of fixed frequency window, we have improved the
mean kappa value of 0.069 than MDRM (p � 0.4683), and
0.139 than FGMDM_fixed (p � 0.1423). Our approach also
shows significant improvement than FGMDM (p � 0.6607),
which has exploited subject-specific frequency information,
in terms of the kappa value of 0.039.

5.2. Results of Method 2. *e results in Figure 9 show the T/
RE feature distribution of the five features of subject A09.
Figure 9(a) shows the first five ranked features with semi-
JMI. After applying the semi-JMI, the first five best features
extracted have shown statistically significant improvement
in the separability with p values <0.05 except feature 2 with p
value 0.77. In Figure 9(b), the first five features extracted
from primitive feature vectors with p value of 0.13, 0.05,
0.87, 0.05, and 0.13. *e p values indicate that the pair T/RE
have no significance in the primitive feature vectors. *e
results show that with our semisupervised feature ranking
algorithm, the separable degree of the feature has been
greatly improved.

Figure 10 shows the evolution of the classification ac-
curacy with KNN (k� 5 in this paper) against the number of
ranked variables in OVR scheme. L/RE and T/RE are the two
pairs with the highest recognition rate, and they achieved the
highest recognition rate in 100 variables. But this is still a
curse of dimensionality for classifiers; GDA is used to an-
alyze the first 100 sorted variables in our study.

As the separation of characteristics cannot meet our
requirements, GDA is used to get more obvious variables.
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K-fold cross validation is used to classify the data set into training set and test set

SJGDA is used to construct 
training set features

SJGDA is used to construct 
test set features

Tangent space mapping

Obtain the test set label

By sorting the correct rate, they are named K.x (x = 1, 2, 3, 4)

Four KNN models are obtained by training KNN in OVR way

�e combined classi�er KNN is obtained in OVO scheme, 
which contains k (k – 1)/2 subclassi�ers

N.1

N.2

N.3
C.1

C.2

C.1 C.2 C.3 C.4

K.1

K.2

�e combined classi�er KNN

�e framework of SSDT-KNN

Classify with
SSDT-KNN

Figure 5: Block diagram for method 2.
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AF4

(b)

Figure 6: (a) Emotiv Epoc+ and (b) Emotiv 14 electrodes located over 10–20 international system positions.
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(a)
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 30°

(b)

 90°
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(c)

Figure 7: *ree movements of shoulder joint: (a) flexion, (b) extension, and (c) abduction.
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Figure 11 illustrates distributions for the first five most
discriminant variables with GDA and semi-JMI. It can be
seen from Figure 11 that L/RE is separated equally well by
using GDA.

Table 3 displays ten-folder cross-validation results ob-
tained using SJGDA and KNN in OVR scheme. It can be
seen that the vectors which are mapped to the tangent space
have better classification performance than that in the
Riemannian manifold directly.

Table 4 presents the results obtained by SJGDA in
pairwise way for multiclass MI tasks. We have six pairs of MI
tasks: left and right (L/R), left and foot (L/F), left and tongue
(L/T), right and foot (R/F), right and tongue (R/T), and foot
and tongue (F/T).

Table 5 displays the comparison of classification accu-
racy using SJGDA and KNN for L/R task in 10-folder cross
validation. References [8, 43–45] contain the classification of

Collect 3s EEG

Rest 5–7 seconds Rest 5–7 seconds

Collect 3s EEG

Figure 8: Timing for experimental process.

Table 1: Ten-folder cross-validation classification accuracy (%) for FGMDRM with OVR scheme applied on BCI competition dataset 2A.

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean Std

L/RE 84.40 67.39 93.05 77.64 66.96 74.34 86.33 93.83 94.09 82.00 10.90
R/RE 89.26 75.33 95.16 78.56 63.92 71.81 81.18 93.39 82.92 81.28 10.24
F/RE 77.80 83.44 89.20 80.88 71.56 78.22 88.89 79.18 84.4 81.51 5.65
T/RE 88.21 68.76 90.59 79.95 71.85 76.72 90.64 94.43 94.38 83.95 9.82

Table 2: Kappa value comparison by SSDT-FGMDRM with other published results.

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean p value

Method 1 0.66 0.39 0.78 0.47 0.25 0.41 0.72 0.79 0.83 0.589

MDRM [10] 0.75 0.37 0.66 0.53 0.29 0.27 0.56 0.58 0.68 0.52 0.4683
FGMDM [14] 0.72 0.50 0.64 0.38 0.28 0.34 0.64 0.68 0.75 0.55 0.6607
FGMDM_fixed [14] 0.69 0.35 0.60 0.28 0.21 0.30 0.46 0.62 0.53 0.45 0.1423
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Figure 9:*e box plot of five features of subject A09. (a) One-way ANOVA analysis on the first five features after applying semi-JMI. (b) One-
way ANOVA analysis on the first five features from primitive vectors.
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other publications. We have improved the accuracy com-
pared with Reference [44] (p� 0.85) and Reference [45]
(p � 0.45). Gaur et al. [43] (p � 0.95) explored the specific
frequency information for each subject, and Sadatnejad and
Shiry Ghidary [8] (p � 0.90) used a novel kernel for di-
mensionality reduction which is similar to SJGDA. Although
the results in the paper are not as high as those in Reference
[43], it can be concluded that there is no difference between
the results in Reference [43] and those in this paper because
of p � 0.95.

Table 6 presents the results in terms of the kappa value.
*e proposed method 1 achieved a mean performance of
0.589 which ranks this method to the first place of the
competition. And with our proposed method 2, we have
achieved a mean performance of 0.607, which makes
method 2 to acquire the best performance of the state of the
art.

Dataset 2 is used to verify the effect of method 2, and the
classification results are given directly in this paper. *e
results are shown in Table 7. As can be seen from Table 7,
method 2 obtained the second highest recognition rate in the
comparative literature. Compared with the recent reference
[47], method 2 achieved good classification results.

5.3. Results of Dataset 3. Dataset 3 is used to evaluate the
performance of method 2. Figure 12 shows the classification
error with KNN against the number of ranked variables in
OVR scheme. A/RE and F/RE are the two pairs with the
lowest classification error, and they all achieved the highest
recognition rate within 60 variables. In this paper, the first 60
ranked variables are used for the next analysis.

Figure 13 displays 5-folder cross-validation results ob-
tained by using SJGDA and KNN in OVR and OVO scheme.
*is Figure 13(a) illustrates three possible pairs of MI tasks
(F/RE, E/RE, and A/RE) for each subject. It can be learned

from the figure that flexion and abduction are the easiest
movement to distinguish in six subjects of seven, and the six
subjects are S1, S3, S4, S5, S6, and S7. However, due to
individual differences, the highest recognition rate of each
subject is different.

We also compared three possible pairs (F/E, F/A, and E/
A) in OVO scheme of seven subjects. Figure 13(b) depicts
the comparison results for each subject, and it can be seen
that the pair of F/A obtained the highest recognition rate in
seven subjects. Combined with the analysis results of
Figures 13(a) and 13(b), it can be considered that flexion and
extension are more obvious in the three MI tasks.

As SJGDA is a new method proposed in this paper, we
also compared the feature distribution of SJGDA, GDA, and
semi-JMI to illustrate the effectiveness of SJGDA. Figure 14
depicts the feature distribution of F/E MI tasks of seven
subjects. *e blue and red circles represent the two different
feature classes. As shown in Figure 14, the F/E MI tasks
learned by SJGDA have high separability than GDA and
semi-JMI.

*e performance of the proposed method 2 is evaluated
by using classification accuracy. Since there are three classes,
the chance level is 33.33%. Figure 15 demonstrates that the
proposed method achieves higher performance for six
subjects (S1, S2, S3, S4, S5, and S6) out of seven except S7
compared to semi-JMI and GDA methods. In addition, it
also can be seen that GDA obtains a better classification
accuracy for four subjects of seven (S1, S2, S5, and S7)
compared with semi-JMI. *e reasons for this phenomenon
can be attributed to as follows: In the process of feature
selection, we manually select feature dimensions suitable for
classifiers, which results in partial information loss. As a
feature dimensionality reduction technique, GDA is suitable
for the preservation of useful information from the primitive
vectors. And the proposed method SJGDA in this paper not
only preserves the advantages of GDA but also adds some
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Figure 11: Feature distribution for the most discriminant variables in tangent space of Subject A09.

Table 3: Ten-folder cross-validation results (%) obtained using SJGDA and KNN in OVR scheme applied on BCI competition dataset 2A.

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean Std

L/RE 90.29 74.62 93.05 75.02 75.31 78.15 85.08 92.35 95.14 84.33 8.12
R/RE 91.34 77.11 94.47 77.07 73.61 75.74 81.58 93.41 87.53 83.54 7.75
F/RE 85.06 83.70 84.77 77.11 75.36 77.09 88.17 82.30 85.44 82.11 4.24
T/RE 88.89 76.72 89.25 80.91 78.51 76.04 89.27 94.08 93.41 85.23 6.76
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high ranking features to strengthen the expressive ability of
the features.

6. Discussions

In this paper, we proposed a novel SSDT framework
combined with classifiers to improve the performance of
classifiers for multiclass MI tasks. We also proposed a novel
NLDR method named SJGDA, and this NLDR method
performs better than both semi-JMI and GDA on different
datasets. In the following paragraphs, we have discussed the
two methods in detail.

Method 1 indicates the drawback of FGMDRM, and
then the novel SSDT framework is used to improve the
accuracy for each individual. As shown in Table 2, compared
with other published results, method 1 gets a quite good
result in the case of processing the EEG signals of fixed
frequency segment (8–30Hz).

Table 4: Ten-folder cross-validation results (%) obtained using SJGDA and KNN in OVO scheme applied on BCI competition dataset 2A.

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean Std

L/R 90.95 67.29 94.52 63.87 64.48 70.33 70.29 97.95 95.00 79.41 13.85
L/F 95.19 87.43 93.93 81.84 68.10 77.14 98.57 88.29 93.81 87.14 9.29
L/T 96.52 64.24 96.57 83.24 73.67 69.91 97.95 97.23 99.29 86.51 13.16
R/F 95.90 87.52 95.05 84.84 66.71 72.88 97.24 93.18 87.43 86.75 10.01
R/T 99.33 79.82 96.48 79.12 72.22 71.48 97.24 95.05 92.29 87.00 10.61
F/T 83.94 84.17 86.62 75.10 62.62 74.21 88.31 93.10 90.33 82.04 9.10

Table 5: Comparison of classification accuracy (%) for L/R task with other published results using OVO scheme applied on BCI competition
dataset 2A.

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean Std p value

Method 2 90.95 67.29 94.52 63.87 64.48 70.33 70.29 97.95 95.00 79.41 13.85
Reference [43] 91.49 60.56 94.16 76.72 58.52 68.52 78.57 97.01 93.85 79.93 14.13 0.95
Reference [8] 88.89 59.03 90.28 78.47 62.50 75.00 72.92 93.06 87.50 78.63 11.63 0.90
Reference [44] 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75 78.01 16.04 0.85
Reference [45] 90.28 54.17 93.75 64.58 57.64 65.28 62.50 90.97 85.42 73.84 15.02 0.45

Table 6: Kappa value comparison with other published results.

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean p value

Method 2 0.77 0.38 0.76 0.47 0.27 0.42 0.73 0.81 0.85 0.607

Method 1 0.66 0.39 0.78 0.47 0.25 0.41 0.72 0.79 0.83 0.589 0.8632
Reference [43] 0.86 0.24 0.70 0.68 0.36 0.34 0.66 0.75 0.82 0.60 0.9586
TSLDA [10] 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76 0.567 0.6894
Winner 1 [46] 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57 0.7051
Reference [8] 0.71 0.46 0.76 0.44 0.26 0.37 0.79 0.75 0.61 0.57 0.7245
Reference [14] 0.75 0.49 0.76 0.49 0.34 0.36 0.68 0.76 0.76 0.60 0.9353

Table 7: Five-folder cross validation by method 2 applied on BCI III dataset IIIa.

Subject Method 2 Reference [47] Reference [48] Reference [49] Reference [50]

k3b 91.67 90.00 86.67 94.20 94.44

k6b 75.00 76.25 81.67 69.00 62.50
l1b 81.67 77.91 85.00 78.60 78.33
Mean 82.78 81.38 84.44 80.60 78.42
p value 0.96 0.42 0.94 0.73
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Figure 12: Classification accuracy corresponding to the number of
selected variables of S01.
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As shown in Table 6, Gaur et al. [43] proposed SS-
MEMDBF to select the subject-specific frequency to obtain
enhanced EEG signals which represent MI tasks related to µ
and β rhythms, then classification with the Riemannian
distance directly. TSLDA was proposed by Barachant et al.
[10], and the covariance matrices are mapped onto a higher
dimensional space where they can be vectorized and treated
as Euclidean objects. Ang et al. [46] is the winner of the
competition, FBCSP and multiple OVR classifiers were
used for MI tasks, and achieved the mean kappa value of
0.57. Sadatnejad and Shiry Ghidary [8] proposed a new
kernel for NLDR over the manifold of SPD matrices, the

kappa value is 0.576. Davoudi et al. [14] considered the
geometry of SPD matrices and provides a low-dimensional
representation of the manifold with high-class discrimi-
nation, and the best result of this method in terms of the
kappa value is 0.60.

In method 2, SJGDA is used to get more obvious vectors
from the tangent vectors, and a SSDT-KNN classifier is used
to identify different MI tasks. Combined with SJGDA and
SSDT-KNN, we have achieved a better performance com-
pared with method 1 (p � 0.8632), Reference [43]
(p � 0.9586), TSLDA (p � 0.6894), winner 1 (p � 0.7051),
Reference [8] (p � 0.7245), and Reference [14] (p � 0.9353).
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It is clear that the proposed method in this paper is effective
for MI tasks in a BCI system.

In order to prove the effectiveness of the proposed
method 2, we tested it on two other datasets. As shown in
Table 7 and Figure 15, method 2 achieves good classification
results on two datasets.

7. Conclusion

*e experimental results of method 1 show that the
proposed classification framework significantly improves
the classification performance of the classifier. *e ex-
perimental results of method 2 show that the SJGDA al-
gorithm proposed in this paper is superior to GDA and
semi-JMI in feature extraction, and method 2 has the
highest recognition rate in this paper. However, as the
classifiers in the SSDTframework is substitutable, the focus
of the next work is to combine more advanced classifiers
with SSDT to increase the recognition rate of the BCI
systems.
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