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ABSTRACT The robustness and computational load are the key challenges in motor imagery (MI) based on

electroencephalography (EEG) signals to decode for the development of practical brain-computer interface

(BCI) systems. In this study, we propose a robust and simple automated multivariate empirical wavelet

transform (MEWT) algorithm for the decoding of different MI tasks. The main contributions of this study

are four-fold. First, the multiscale principal component analysis method is utilized in the preprocessing

module to obtain robustness against noise. Second, a novel automated channel selection strategy is proposed

and then is further verified with comprehensive comparisons among three different strategies for decoding

channel combination selection. Third, a sub-band alignment method by utilizing MEWT is adopted to

obtain joint instantaneous amplitude and frequency components for the first time in MI applications. Four,

a robust correlation-based feature selection strategy is applied to largely reduce the system complexity and

computational load. Extensive experiments for subject-specific and subject independent cases are conducted

with the three-benchmark datasets from BCI competition III to evaluate the performances of the proposed

method by employing typical machine-learning classifiers. For subject-specific case, experimental results

show that an average sensitivity, specificity and classification accuracy of 98% was achieved by employ-

ing multilayer perceptron neural networks, logistic model tree and least-square support vector machine

(LS-SVM) classifiers, respectively for three datasets, resulting in an improvement of upto 23.50% in

classification accuracy as compared with other existing method. While an average sensitivity, specificity and

classification accuracy of 93%, 92.1% and 91.4% was achieved for subject independent case by employing

LS-SVM classifier for all datasets with an increase of up to 18.14% relative to other existing methods.

Results also show that our proposed algorithm provides a classification accuracy of 100% for subjects with

small training size in subject-specific case, and for subject independent case by employing a single source

subject. Such satisfactory results demonstrate the great potential of the proposed MEWT algorithm for

practical MI EEG signals classification.

INDEX TERMS Electroencephalography, multiscale principal component analysis, brain-computer

interface, multivariate empirical wavelet transform.

I. INTRODUCTION

Brain-Computer Interface (BCI) is a system being developed

to connect the brain and a computer by using individual brain

The associate editor coordinating the review of this manuscript and
approving it for publication was Samu Taulu.

signals [1]. BCI has attracted extensive research interests

over the past few years, and also largely improved the living

standards for the disabled by providing a communication

bridge between the human beings and the external devices,

e.g. wheelchair, robotic arm etc, [1], [2]. Motor Imagery (MI)
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is the most commonly used practical opt for BCI systems

for its robust nature [2], and various methods, e.g., positron

emission tomography (PET), functional magnetic resonance

imaging (fMRI), magnetoencephalography (MEG), electro-

corticography (ECoG) and electroencephalography (EEG)

[2], [3], have been developed to monitor the MI signals.

Among all those techniques, EEG based MI BCI systems

are the utmost used owing to their non-invasiveness, and

capability of providing excellent temporal information of

MI signals at a low cost [2], [4]. A big challenge for any real-

time BCI system, however, is to correctly decode differentMI

EEG signals automatically [5].

An unbiased automated EEG classification system

typically consists of three components, i.e., preprocess-

ing, feature extraction and signal classification. Specifi-

cally, preprocessing is responsible for noise removal of

the input signals, and those noise removal methods, e.g.,

independent component analysis (ICA), principal compo-

nent analysis (PCA), canonical correlation analysis [6] are

typically used for this purpose. In [7] various versions

of ICA-based methods are evaluated for MI EEG signals

classification in subject-to-subject transfer BCI systems

and results suggested that simplified infomax ICA based

approach have great potential for BCI applications. Another

handy new method for noise removal is multiscale princi-

pal component analysis (MSPCA), which has been widely

used for noise removal of non-stationary signals, like Elec-

trocardiography (ECG) [8], EEG [9], Electromyography

(EMG) [10], ect.

Feature extraction and classification are key components

of an automated system determining the classification results,

and a broad range of techniques have been proposed for such

purpose [11]. Fourier Transform (FT), autoregressive (AR)

and common spatial patterns (CSP) are techniques commonly

utilized for MI EEG signal feature extraction, yet they either

fail to provide temporal facts for EEG signals [11]–[13],

or are sensitive to noise [14], or even suffer from low clas-

sification success rates [15], [16]. The statistical cluster-

ing [17], iterative spatio-spectral patterns learning (ISSPL)

[18], as well as the cross-correlation [5] and optimal allo-

cation (OA) [19] based methods also suffer from the similar

issues.

Methods based on signal decomposition (SD) are gaining

popularity recently in the classification of MI EEG signals.

In study [20], comparison of three SD-based methods for the

classification of MI tasks, namely empirical mode decom-

position (EMD), discrete wavelet transformation (DWT) and

wavelet packet decomposition (WPD), showed thatWPD had

the best results. Some hybrid methods, like multivariate EMD

along with FT [21], the dual-tree complex wavelet transform

with machine learning classifiers [22], and intrinsic mode

function (IMF) with LS-SVM classifier [23], have also been

proposed for MI EEG signal classification. Although such

methods provide satisfactory results, they do not provide any

solution to selecting a suitable number of signal decomposi-

tion levels.

In [24], an instantaneous phase difference method was

implemented to obtain phase-based features by extraction

of phase synchrony information among different electrodes;

however, the success rate could be further improved with

more sophisticated extraction techniques. In literature dif-

ferent spectral signal representation techniques have been

used to explore discriminative features for MI EEG signal

classification and results suggest that power spectral den-

sity (PSD) provides reasonable success rates in comparison

with energy distribution, atomic decompositions and wavelet

based techniques [25]. The recurrent quantum neural network

filtering technique is implemented in BCI system with a

goal of filtering EEG signals before attributes detection and

identification to increase the classification outcome [26]. The

multilayer perceptron neural networks (MLP) with stochastic

gradient descent algorithm was utilize in [27] to recognize

the eye state. Researchers in [28] proposed various algo-

rithms to improve the convergence speed and classification

accuracy with neural networks, while many deep learning

based approaches have also been suggested in BCIwith driver

drowsiness detection applications [29].

A large number of channels may result in system com-

plexity due to the redundant information from the irrelevant

channels [18]. In previous studies, the sequential channel

selection methods have been proposed, and up to 20 channels

were chosen [30], [31]. However, such methods resulted in

low classification accuracy, and the number of channels is still

too many for practical applications. For the review of channel

selection methods, readers are referred to [32].

Furthermore, it is conventional to extract features from

different channels and time segments to build a large feature

vector, and then use it as an input to different machine learn-

ing classifiers for classification performance tests. To reduce

the dimension of such large feature vector, some fea-

ture reduction techniques e.g. PCA or ICA, were utilized

in [33], [34], yet the classification results still could not

be improved. In [35], [43], different feature combination

techniques were also tested to select the best combination

for classification performance enhancement, however, sev-

eral experiments were required for choosing the best fea-

tures combination. To address such issues, a feature selection

method was proposed in [36] to choose the suitable time

and spectral domain features, however, the computational

load of this method was very high, hindering the practical

applications of this method. For a comprehensive review of

the feature selection methods, readers are referred to [37] for

more details.

In our previous work [43], we proposed empirical wavelet

transform based algorithm and achieved reasonable results

for MI EEG signals classification yet there are certain lim-

itations in it. First, no noise removal algorithm proposed

however, EEG signals contaminated with several environ-

mental and cognitive noises. Second, we performed univari-

ate analysis however EEG electrodes are closely placed to

each other’s and EEG signals exhibits nonlinear and non-

stationary behavior so to analyze multi-channel information
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TABLE 1. Abbreviations utilized in the paper.

dependency and information available in different frequency

bands, multivariate analysis of data is obligatory. Third,

we selected 18 channels manually based on the physiologi-

cal knowledge and these numbers of channels are still high

for certain BCI applications. Fourth, different combinations

of features was tested by performing several experiments,

no automated feature selection criteria was proposed to select

the suitable combination of features and number of features

for each subject was too many. Last, we utilized only one

dataset and previous study was only limited for subject-

specific case.

Improving the accuracy of theMI EEG signal classification

while reducing the BCI system complexity introduced by the

number of channels utilized, we evaluate, for the first time

to our knowledge, the effectiveness of multivariate empirical

wavelet transform (MEWT) [40] for both channel selection

and feature extraction for the multi-channel, non-stationary

and nonlinearMI EEG signals. The main contributions of this

paper are as follows,

• MSPCA is adopted for EEG signals noise removal.

• The automated channel selection strategy is proposed

and analyzed for decoding channel selection.

• The sub-band alignment method is adopted to obtain

joint instantaneous amplitude (JIA) and joint instanta-

neous frequency (JIF) components.

• A correlation-based feature selection algorithm is imple-

mented to get rid of redundant information while

improving classification outcomes.

To achieve the above listed goals, experiments are per-

formed on three publicly available benchmark datasets

IVa, IVb and IVc from BCI competition III web-

site for both subject-specific and subject independent

cases.

Some of the abbreviations (Abb.) utilized in this paper are

listed in Table 1.

The rest of the paper is arranged accordingly. Section II

presents the MI EEG datasets used in this study. Section III

describes the details of our proposed method.

Section IV gives the results while section V describes the

discussions, and section VI concludes this work.

FIGURE 1. Block diagram of the proposed methodology for
subject-specific MI EEG signal classification.

II. MATERIALS

The key challenge in BCI application is to provide good

classification results even by using small training data. In this

study, we used the publicly available dataset IVa from

BCI competition III [41], for performance comparisons, and

offline experimentations were conducted to obtain a stable

assessment of the proposed approach.

The dataset IVa consists of the right hand (RH) and right

foot (RF) MI tasks. This dataset was recorded from five

healthy subjects (named as ‘‘aa’’, ‘‘al’’, ‘‘av’’, ‘‘aw’’ and

‘‘ay’’) by placing 118 electrodes according to the 10/20 inter-

national system instructions [42]. There were, in total,

280 trials for each subject, with half of them for class 1 tasks

and the other half for class 2 tasks. To perform different

MI tasks, subjects were shown different visual cues for

3.5 seconds. The original dataset was recorded at a sampling

rate of 1000 Hz [41].

The datasets IVb and IVc consists of the two MI tasks,

i.e., left hand (LH, class1) and right foot (RF, class2) [41].

They were recorded from a single healthy subject labelled as

ivb and ivc in our study with 118 electrodes placed on subject

according to the extended international 10/20 system. These

datasets have 7 initial sessions without feedback. 210 trials

from 118 electrodes were recorded for both MI tasks, and

those signals were filtered by a band-pass filter with its lower

and upper frequencies being 0.05Hz and 200Hz respectively.

The key challenge in dataset IVb is to achieve maximum

classification accuracy for continuous EEG data with no cue

information, whereas for dataset IVc the main target is to

provide successful classification outcome on test data that is

recorded after many hours of training data recordings. Further

information for all three datasets are available on BCI com-

petition III website (http://www.bbci.de/competition/iii/).

III. METHODS

The proposed automated MEWT algorithm comprises of six

distinct modules as shown in Fig. 1, each of which is briefly

described as follows.

A. MODULE 1: DATA PRE-PROCESSING

1) DATASETS PREPARATION

We used the same training trials for experiments as we used

in our previous study [43] based on the information available

in [19], [35], [44]. Particularly, the 100 Hz downsampled

version of all three datasets is used in this study. These

datasets consists of both labeled and unlabeled data as an

VOLUME 7, 2019 171433
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TABLE 2. Dataset IVa information.

example data is shown for dataset IVa in Table 2. In this

work, we considered labeled data only as class labels for

each data segment that is pre-requisite to implement the

proposed algorithm.We considered only those EEG segments

containing MI tasks information only, and position markers

are used to obtain MI data [20]. As discussed, each MI task

is 3.5 seconds, and thus, we have 3.5 × 100 = 350 samples

for each EEG segment of the individual class.

2) MSPCA FOR NOISE REMOVAL

EEG signals suffered with several types of noises and arti-

facts, and they could be described with a linear model as

below,

R = P+ Q (1)

where P represents the EEG data matrix with a clear source

and Q denotes the noise information.

The basic aim of any noise removal algorithm is to

remove Q from P. For this purpose, PCA has been widely

used as it de-correlates correlated variables by providing a

linear association between different observations [6]. More-

over, since EEG is a non-stationary and nonlinear sig-

nal, the wavelet transform is adopted for signal analysis.

By combining the benefits of PCA and wavelets together,

the MSPCA, which is illustrated in Fig. 2, can be described

by the following steps [9].

• For a data matrix of X , decompose each column at a

decomposition level J by using the wavelet transform.

• For 1 ≤ m ≤ J , run PCA of the detailed matrices GmX

to choose the meaningful principal components, whose

eigenvalues are greater than the mean of all eigenvalues

by using the Kaiser rule [45] or reject the detail.

• Run PCA of the approximation matrix HJX to select

useful principal components, whose eigenvalues are

greater than the mean of all eigenvalues by using the

Kaiser rule [45].

• Perform invert wavelet transform W T to obtain a new

matrix from the reduced detail and approximation

matrices.

• Perform the PCA of that new matrix to get Ẋ .

By employing such an MSPCA method explained above,

noise could be removed from EEG signals.

B. MODULE 2: CHANNEL SELECTION

A large number of channels for the BCI system results in

system complexity since a huge number of features have to be

FIGURE 2. Multiscale principal component analysis for signal
pre-processing [9], [45].

extracted. The foremost objective of this work is to improve

the classification accuracy among different MI tasks while

minimizing the hardware resources and system complexity.

Hence, we performed different experiments by using three

different channel selection strategies to select the most suit-

able channels for the proposed algorithm.

1) STRATEGY 1

In brain science, the motor cortex is well known as

a specific region of the brain which is responsible for

MI tasks. According to the standard 10-20 systems [42], only

18 electrodes are actually placed around the sensor motor

cortex, which gives satisfactory results in EEG signals clas-

sification as reported in [46]. Therefore, in the strategy 1 we

manually selected 18 channels from the overall 118 channels

for all subjects in dataset IVa and label these elec-

trodes according to the standard 10-20 systems [42] to be

C5,C3,C1,C2,C4,C6,CP5,CP3,CP1,CP2,CP4,CP6,P5,

P3,P1,P2,P4 and P6, respectively.

2) STRATEGY 2

The electrodes C3,CZ , and C4 are placed around the sensory

motor cortex region according to the standard 10-20 system to

record the MI information [42]. In strategy 2, we considered

these 3 electrodes for our study since these electrodes contain

the most discriminative information related to the hands and

foot movements. It is important to mention that the MI move-

ment of RH is usually observed above the left motor cortex

around the C3 electrode and MI foot movements perceived

around the CZ electrode [20].

3) STRATEGY 3

In strategy 3, an automated subject dependent channel

selection criteria is used to select the best group of

channels for each subject separately. We have Cn
k =

[Cn
1 ,Cn

2 ,Cn
3 , · · · ,Cn

118] with n representing class 1 or class 2

tasks, then the Fisher score for mean spectrum power of Cn
k

is calculated using the equation below,

F(K ) =
| pn1(K ) − pn2(K ) |2

v(pn1(K )) + v(pn2(K ))
(2)

where pn1(K ) and pn2(K ) represents the mean power spectrum

of the Kth channel for class 1 and class 2, respectively, while

v(pn1(K )) and v(pn2(K )) represent the variances of the Kth

channel for class 1 and class 2, respectively. By doing so,

F(K ) for all channels are calculated, and in our case we
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TABLE 3. Channel selection by using strategy 3 for dataset IVa.

selected 3 channels for each subject based on the top three

values. The best channel group for each subject in dataset IVa

is given in Table 3 as,

C. MODULE 3: MULTIVARIATE EWT BASED EEG SIGNALS

DECOMPOSITION

1) EMPIRICAL WAVELET TRANSFORM

The Empirical Wavelet Transform (EWT) is a fully data-

adaptive approach used for the analysis of non-stationary

and nonlinear signals, and it decomposes any signal into

distinct sub-bands according to the information available in

the signal. The brief overview of the EWT is described as

follows,

Step 1: Run fast Fourier Transform (FFT) for examined

signals to obtain the Fourier spectra of the signals within 0 to

π range.

Step 2:Divide the obtained Fourier spectra intoN adjacent

segments by employing the scale-space boundary detection

method described in [40]. For this purpose, N + 1 boundary

frequencies {vk | k = 0...M} are needed. The v0 = 0 and

vM = π represents the first and last boundary frequencies,

respectively, and the remaining N − 1 boundary frequen-

cies are calculated by using the scale-space representation of

Fourier spectra [40].

Step 3: Construct and apply empirical Meyer’s wavelets

based bandpass filter (BPF) [47] for segmented Fourier spec-

tra. The expressions of empirical scaling and wavelet func-

tions are given by Eq. (3) and Eq. (4) respectively,

Ŝk (v) =



























1, If |v| ≤ (1 − β)vk

cos

(

πφ(β, vk )

2

)

, If (1 − β)vk

≤ |v| ≤ (1 + β)vk

0, otherwise

(3)

Ŵk (v) =































































1, If (1 + β)vk

≤ |v| ≤ (1 − β)vk+1

cos

(

πφ(β, vk+1)

2

)

, If (1 − β)vk+1 ≤ |v|

≤ (1 + β)vk+1

sin

(

πφ(β, vk )

2

)

, If (1 − β)vk ≤ |v|

≤ (1 + β)vk

0, otherwise

(4)

φ(β, vk ) = α

(

(| v | −(1 − β)vk)

2βvk

)

(5)

where the parameter β is responsible for avoiding any overlap

between functions defined in Eq. (3) and Eq. (4) respectively

and it provides a tight frame. For a tight frame Eq. (6) should

be met [40],

β < mink

(

vk+1 − vk

vk+1 + vk

)

(6)

where the arbitrary function α(z) is expressed by Eq. (7) [40],

α(z) =











0, if z ≤ 0

α(z) + α(1 − z) = 1, for all z[0 1]

1, if z ≥ 1

(7)

The detail and approximation coefficients are determined

by the dot product of the analyzed signal with the empirical

scaling function and the empirical wavelet function, respec-

tively. Readers are referred to [40] for more details.

2) EWT EXTENSION FOR MULTIVARIATE ANALYSIS

EWT extension for multivariate analysis is further divided

into three sub-steps,

Step 1: Sub-bands Alignment: To achieve multivariate

analysis, all channels should have the equal number of sub-

bands, and the same indexed sub-bands for different channels

should have the same frequency range. To accomplish these

two requirements, we executed mean spectrum magnitude

of signals (let say ẋ(t) = [ẋ1(t), ẋ2(t), · · · ẋk (t)]) obtained

from channel selection strategies 1, 2 and 3 for each subject

separately, and it is given as,

Ẋ (f ) =
1

Nc

Nc
∑

n=1

| Ẋn(f ) | (8)

where Ẋn(f ) is the Fourier transform of the n − th channel

signal ẋn(t) and Nc is the total number of signal channels.

Afterward boundary detection method as described in [40]

is applied onto Ẋ (f ) to obtain adaptive wavelet filters. All

channel signals from strategies 1, 2 and 3 are decomposed

by using the filter bank to obtain aligned sub-bands.

Step 2: Hilbert Transform for Instantaneous Compo-

nents Extraction:Hilbert transform is applied onto each nar-

row sub-band signal to extract the instantaneous components

and the analytical representation is given as below [48],

ẋn+(t) = ẋn(t) + jH (ẋn(t)) (9)

The instantaneous amplitude of ẋn+(t) can be computed as,

Ȧẋn (t) =
√

(ẋn(t))2 + (H (ẋn(t)))2 (10)

While the instantaneous phase of ẋn+(t) can be expressed

as follows,

2̇ẋn (t) = arctan

(

H (ẋn(t))

ẋn(t)

)

(11)

The instantaneous frequency of ẋn+(t) is obtained by the

rate of change of the instantaneous phase as 2̇ẋn (t),

Ḟẋn (t) =
d

dt

(

2̇ẋn (t)
)

(12)
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Step 3: Joint Instantaneous Components: Instantaneous

components of all sub-bands in channel selection strategies 1,

2 and 3 are combined to obtain joint instantaneous amplitude

(JIA) and joint instantaneous frequency (JIF) components,

which are mathematically formulated as below [49], [50],

ȦJointẋn
(t) =

√

√

√

√

N
∑

n=1

[Ȧẋn (t)]
2 (13)

ḞJointẋn
(t) =

∑N
n=1[Ȧẋn (t)]

2Ḟẋn (t)
∑N

n=1[Ȧẋn (t)]
2

(14)

We randomly picked channels from strategy 2 for the sub-

ject ‘‘aa’’ of data set IVa to represent our proposed method-

ology graphically. To distinguish between different classes,

the blue color is used to represent class 1 signals, whereas the

red color is used to represent class 2 signals. Furthermore,

to show the comparisons clearly, the sub-figures in the same

row are kept within the same X-axis and Y-axis ranges.

Fig. 3(a) represents a typical signal pattern from electrodes

C3, Cz and C4 for RH and RF classes of subject ‘‘aa’’ in

dataset IVa. From Fig. 3(b) and Fig. 3(c), we can see a

significant difference between the JIA and JIF components

for two classes, and therefore, there are good chances to

achieve satisfactory classification accuracy due to the statis-

tical independence between them [5].

D. MODULE 4: FEATURE EXTRACTION

To classify two MI classes, we extracted both entropy [51]

and energy [52] based features from JIA components of

each subject in dataset IVa obtained in channel selection

strategies 1, 2 and 3, respectively. The description of these

features are followed as,

1) MEAN ENERGY

The mean energy (ME) of the EEG signal has been widely

used in different SD methods for classification purposes,

which provides satisfactory classification results [49], [53].

We adopted this feature in our study, and the mathematical

formulation of ME is defined as below,

MEẋ = log(
1

T

∑

t

| ẋn(t)
2 |) (15)

2) MEAN TEAGER-KAISER ENERGY

The mean Teager-Kaiser energy (MTKE) is a nonlinear

attribute sensitive to track even little fluctuations in non-

stationary signals. By using MTKE, meaningful informa-

tion from small fluctuations of amplitude and frequency of

EEG signal could be obtained. In this study, we obtained sig-

nificant values of JIA for all sub-bands of channel selection

strategies 1, 2 and 3, and the mathematical expression for

MTKE is given as [52], [53],

MTKEẋ = log(
1

T

∑

t

| ẋn(t)
2−ẋn(t+1) ∗ ẋn(t−1) |) (16)

FIGURE 3. Graphical representation of proposed methodology for
channel selection strategy 2. (a) Plot for signals C3, CZ and C4 for RH
and RF MI classes. (b) JIA for RH and RF MI classes. (c) JIF for RH
and RF MI classes.
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3) SHANNON WAVELET ENTROPY

Without requiring any parameters during its execution pro-

cess, Shannon wavelet entropy (ShWE) has been widely

utilized for EEG signal classifications for its simplicity and

effectiveness both in noise suppression and fine changes for

non-stationary signals. In this study, ShWE is also adopted

to reduce computational load while achieving satisfactory

results, and it can be expressed as [54],

MEẋ =
∑

t

ẋn(t) log(ẋn(t)) (17)

4) LOG ENERGY ENTROPY

EEG signal amplitude changes with time instances. The sim-

plest way to obtain complete information of such a signal is

to take its square, as it consequently helps achieve better dis-

crimination between different MI classes [55]. The formula

for Log energy entropy (LEn) is given as below [55], [56],

LEnẋ =
∑

t

log(ẋn(t)
2) (18)

E. MODULE 5: FEATURE SELECTION

A typical feature selection algorithm use a search technique

for finding suitable feature subsets and perform evaluation

measure to rank the different feature subsets. In literature,

different feature selection methods are available, including

those scheme independent methods (e.g. wrapper meth-

ods [38]), which are very slow, and those fast attribute

selection methods (e.g. ranking based [39]), which may

eliminate the irrelevant attributes yet failed to eliminate

redundant attributes. In this study, we used the best first

method for searching [57] together with a scheme indepen-

dent attribute selection method named Correlation-based fea-

ture selection (CfsSubsetEval) for appropriate feature subset

selection. An attribute subset is considered too good if its

attributes are highly correlated with the class attribute yet are

less correlated with each other. The mathematical representa-

tion is given as follows, [58],

Appropriate attribute subset

=

∑

allattributesf C(f , class)
√

∑

allattributesf

∑

allattributesg C(f , g)
(19)

where C provides the correlation between two attributes

and entropy-based metric called ‘‘symmetric uncertainty’’ is

used [58].

F. MODULE 6: CLASSIFICATION

To segregate different MI tasks, six well-known classifiers as

below are used.

1) LOGISTIC REGRESSION

The logistic regression (LR) is a popular and powerful classi-

fier been widely used in BCI applications [35], which uses the

logit transform to predict class probabilities directly. The logit

transform of the LRmodel can be mathematically formulated

as,

logit(q) = ln = ά0 +

N
∑

n=1

άnfn (20)

where ά0 is intercept while ά1, ά2...άn are regression coef-

ficients associated with independent variables f1, f2...fn and

q is considered as a dependent variable belonging to

class (y) 0 or 1.

Suppose q belongs to class 0, then mathematically as,

q(y = 0 | f1, f2...fn) =

(

eά0+
∑N

n=1 άnfn

1 + eά0+
∑N

n=1 άnfn

)

(21)

Similarly, if q belongs to the class 1, it can be calculated

as 1 − q(y = 0 | f1, f2...fn) [59].

2) MULTILAYER PERCEPTRON NEURAL NETWORK

The multilayer perceptron neural network (MLP) is another

typical classifier used for EEG signal classification [59]

which produces nonlinear decision boundaries, and the

weights of the MLP classifier is determined by the backprop-

agation algorithm.

A simple neural network for linear solution consists of

input and output layers, while for nonlinear solution addi-

tional layers are used between input and output layers. These

additional layers are known as hidden layers because they do

not interact with the external environment, and the number

of such layers depends on the system nonlinearity and com-

plexity. Each layer contains some processing elements known

as neurons, and the number of them for the input and output

layers are the same as those of the attributes in the feature

vector and the classes, respectively. The number of neurons

in the hidden layer is determined empirically as follows [59].

#of neurons in hidden layer=
#of features+#of classes

2
(22)

The initialization of neurons in MLP classifier is deter-

mined by the backpropagation algorithm.

3) LEAST-SQUARE SUPPORT VECTOR MACHINE

The least-square support-vector machine (LS-SVM) has been

used in BCI applications for its simplicity and effectiveness in

dealing with both linear and nonlinear problems [5], and the

mathematical formulation of the LS-SVM decision function

can be expressed as,

q(f ) = sign

(

d
∑

i=1

qiliKer(f , fi) + b

)

(23)

where for ith input feature vector fi, the class label is qi,

d represents the total dimension of the feature vector,

b represents the bias term, while li indicates the Lagrange

multipliers. The decision accuracy of the LS-SVM classifier

is dependent on the kernel choice. In this study, the Radial
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basis function (RBF) kernel is empirically selected and can

be represented as,

Ker(f , fj) = e
−(||f−fj||)

2

2σ2 (24)

wherein the RBF kernel has two important parameters,

i.e., the regularization parameter γ and the bandwidth σ 2. The

values of both parameters should be carefully chosen to avoid

over-fitting while achieving maximum accuracy [5].

4) LOGISTIC MODEL TREE

The logistic model tree (LMT) is a simple, compact and

precise classifier recently being used for EEG signal classi-

fications [60], [61]. Suppose a feature vector is represented

by f , then for S input feature vectors and C classes, a pos-

terior probability for respective class can be formulated

as [60], [61],

p(c | f ) =
e(Fc(f ))

∑C
n=1 e

(Fc(f ))
(25)

where Fc(f ) is the linear regression function to be fitted, e is

the natural logarithm and c is the number of classes.

5) Naïve BAYES

The naïve Bayes (NB) is a straightforward classifier recently

being used forMI EEG signals classification [21]. In NB clas-

sifier, the class with maximum value of posterior probability

is considered as the resulting class, while the prediction of an

input feature vector class f = [f1, f2, · · · , fi] is performed by

computing the highest probability of respective class (c), and

it is formulated as below [19],

p(c | f ) =
p(c)

∏

p(fi | c)

p(f )
(26)

IV. RESULTS

In this study, both subject-specific and subject independent

experiments are performed as detailed in case 1 and case 2

respectively.

A. CASE 1: RESULTS FOR SUBJECT-SPECIFIC

EXPERIMENTS

1) EXPERIMENTAL RESULTS FOR DATASET IVa

a: PERFORMANCE METRICS

The 10-fold cross-validation method is used in the experi-

ments to avoid over-fitting while obtaining the fair output.

A feature vector set of each subject is divided into 10mutually

exclusive subsets with an approximately equal size by using

the common standard 10 fold cross-validation technique, and

the process is repeated 10 times (folds). One of the subsets is

used as a test set each time while the other 9 subsets are put

together to create a training set. Finally, the average accuracy

is calculated throughout all sets [5]. The number of trials

for each subject in the experiments are unequal, which are

intended to check the performances of the proposed algorithm

for different amount of training trials. The performances of

MEWT based experiments are measured by average sensitiv-

ity (Sen), specificity (Spe), classification accuracy (Acc), and

area under the receiver operating characteristics (AUC) [62],

and they are defined as follows,

Sen =
TP

P
(27)

Spe =
TN

N
(28)

Acc =
TP+ TN

P+ N
(29)

where TP is a true positive represents the amount of accu-

rately calculated MI tasks for the RH class, and TN is true

negative refer to the number of accurately calculatedMI tasks

for the RF class, whereas P and N describe the number of RH

and RF classes in total, respectively. AUC ranges from 0 to 1,

depicting a classifier classification capacity. The higher the

AUC is, the better the capability of the classifier to identify

two different tasks [62]. All experiments were performed on a

personal computer with Intel R Core (TM) i7-7500U CPU@

2.70 GHz processor, 64-bit OS and 8 GB RAM using

MATLABR2018a. The EWT toolbox v.3.4, and the LS-SVM

toolbox v.1.8 have been used for experiments.

b: PARAMETERS SELECTION

1. MSPCA: The parameters for MSPCA were chosen empir-

ically. The Kaiser rule was selected in our experiments [45],

which retains only those principal components whose eigen-

values are greater than the mean of all Eigenvalues. The

wavelet decomposition levels were empirically chosen to be 5

in our experiments.

2. EWT: The parameters for EWT were chosen in hit

and trial manners, and 10 signal decomposition levels were

chosen in this study. While for Fourier boundary detection,

the scale-space method as described in [40] was selected.

3. LR: LR is the simplest classifier since there is no need

to tune any parameter as required in support vectors machine

classifier. The parameters of LR classifier were automatically

selected by the employed built-in maximum likelihood esti-

mation (MLE) method.

4. MLP: The number of neurons in the hidden layer of

MLP classifier was selected by choosing the default parame-

ter settings available in Waikato Environment for Knowledge

Analysis (WEKA) software, wherein the following formula

is utilized to select the number of neurons in the hidden layer

of MLP classifier.

#of neurons =
#of features+ #of classes

2
(30)

To show the number of neurons in a hidden layer in this

study, we randomly took channel selection strategy 3 with

FS2 as an example. In this case, we considered only a single

hidden layer and two neurons for each subject.

5. LS-SVM: The parameters of the RBF kernel employed

in LS-SVM were estimated in two steps for each fold

in all experiments. In the first step, the initial values of

parameters were searched out using coupled simulating
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TABLE 4. Tuned parameter values for each fold of LS-SVM classifier by employing FS2 in channel selection strategy 3.

TABLE 5. P values for strategies 1, 2 and 3.

annealing (CSA) [63] method, wherein the search limit

was fixed in the range of [exp(−10), exp(10)]. The values

obtained in the first step were provided as input to the grid

search method for best results. The parameter values for

each fold of channel selection strategy 3 with FS2 are shown

in Table 4 for illustration purposes.

6. LMT: The default parameter settings available in

WEKA were utilized for the LMT classifier.

7. NB: Like the LR classifier, the parameters for the

NB classifier were selected by the MLE method automati-

cally, and thus, there is no need of parameters tuning.

c: STATISTICAL SIGNIFICANCE OF FEATURES FOR CHANNEL

SELECTION STRATEGIES 1, 2 AND 3

The significance of features extracted in channel selec-

tion strategies 1, 2 and 3 for different MI tasks were

evaluated by using Kruskal Wallis (KW) test, which

is a non-parametric test without requiring input data

to follow the normal distribution [51]. The probability (P)

values for all features obtained by the KW test are pre-

sented in Table 5. For simplicity, all features are repre-

sented by notations as F1=ME, F2=MTKE, F3=ShanEnt,

F4=Len.
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TABLE 6. Feature selection for channel selection strategies 1, 2 and 3.

d: FEATURE SELECTION FOR CHANNEL SELECTION

STRATEGIES 1, 2 AND 3

The feature selection method explained in section III is used

for each subject in dataset IVa. In Table 6, the features pre-

sented in bold font are the appropriate features, which show

the strongest correlation with the class and lowest correlation

among each other, being selected by CfsSubsetEval for dif-

ferent cases.

e: THE MI CLASSIFICATION RESULTS FOR THREE CHANNEL

SELECTION STRATEGIES BY ALL FEATURES IN DATASET IVa

Table 7 and Fig. 4 represents the classification outcomes

obtained by all features (FS1) for different channel selec-

tion strategies. It is apparent that for the three strategies,

notable classification accuracies could be achieved by using

all classifiers. Our experimental results evidently show that

MLP and LS-SVM classifiers achieved the highest results,

succeeding by LR, LMT and NB classifiers for different

MI tasks in three strategies. Moreover, we observed in Table 7

that except NB, we obtained 100% sensitivity, specificity, and

classification accuracy figures by using all classifiers for the

subject ‘‘aw’’.

For strategy 1 with FS1, we observed few variations among

different subject classification accuracies for all classifiers,

and in most of the cases specificity numbers (detection capa-

bilities of classifiers for RF class) are higher as compared to

the sensitivity values (detection capabilities of classifiers for

RH class). Moreover, fewer scores were achieved for subject

‘‘ay’’ by using all classifiers, concluding that strategy 1 is less

stable and less unbiased.

For strategy 2 with FS1, the average classification accu-

racies for all classifiers are slightly better as compared to

the strategy 1 with a significant decrement in variations

among different subject accuracies obtained by all classi-

fiers. Meanwhile, less difference in numbers among RH and

RF class detection capabilities could also be observed, which

illustrates that strategy 2 is more stable and more unbiased

relative to strategy 1.

In comparison with strategies 1 and 2, strategy 3 showed

remarkable results with the maximum sensitivity, specificity

and classification accuracies, which result in more stable

and less biased towards detection among different classes,

proving strategy 3 to be a suitable choice for MI EEG signal

classification.

FIGURE 4. Comparison of different classifiers with FS1 for three channel
selection strategies.

f: THE MI CLASSIFICATION RESULTS FOR CHANNEL

SELECTION STRATEGIES 1, 2 AND 3 BY FEATURE

SELECTION STRATEGY

In this section, we discuss the results achieved by employing

a feature selection (FS2) strategy discussed in Section III.

As indicated in Table 8 and Fig. 5, the classification accu-

racies for different classifiers increased, this is because in

this situation the redundant features were removed and only

relevant features for a specific subject in different channel

strategies were chosen. These results also suggest that by

employing appropriate features for an individual subject,

the classification accuracy of LMT could be improved by a

significant amount.

For strategies 1 and 2, MLP along with LS-SVM clas-

sifier ranked the first in terms of separation abilities,

LMT ranked the second, the LR ranked the third and

NB the last. For strategy 3, MLP, LS-SVM and LMT classi-

fiers topped as they providemaximum classification accuracy

of 97% with a standard deviation of 2.7%. LR provides

a maximum classification accuracy of 96% with variations

of 2.2% only, whereas NB achieved a classification accuracy

of 93% among different MI classes with the least variations.

In terms of sensitivity, strategy 3 achieved 97% average

amount among different subjects by using MLP, LS-SVM,

LMT and LR classifiers, whereas NB classifier provides

92% on average. Likewise, for specificity outcomes, strategy

3 obtained 97% average amount among five subjects by uti-

lizing MLP, LS-SVM and LMT classifiers where the average

value of 96% and 95% is obtained by employing the LR and

NB classifiers.

Furthermore, we provide a comparison between three

strategies for FS1 and FS2 in Fig. 6 to show the impor-

tance of feature selection. As illustrated, for every classi-

fier, FS2 provides higher or equal classification accuracy as

compare with FS1, which concludes that FS2 is more useful

features in different cases and considered to be the relevant

information source to provide better discrimination abilities

among MI classes.
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TABLE 7. Classification outcome (%) for FS1 in strategies 1, 2 and 3.

From Tables 6-8 and Figs. 4-6 we conclude that the

strategy 3 with FS2 achieved better results by removing

redundant information as we obtained maximum classifica-

tion results for subjects ‘‘aa’’, ‘‘al’’, ‘‘av’’, ‘‘aw’’ and ‘‘ay’’

by using only two, one, two, one and one feature respectively.

The automated channel selection strategy, reduced set of

features, better results, fewer variations among different sub-

ject’s accuracies and unbiased nature for the detection of RH

and RF classes are the key highlights of strategy 3, demon-

strating its great potential for online clinical applications.

g: TIMING EXECUTION FOR THREE CHANNEL SELECTION

STRATEGIES FOR FS1 AND FS2 BY USING ALL CLASSIFIERS

To check the applicability of this study for real-time appli-

cations, we calculated the execution time, which includes

the time for channel extraction, EWT signal decomposition,

multivariate procedure, feature extraction (FS1 and FS2) as

well as the time required to build a model for each classifier

associated with each subject, of this method. The executed

time for those five subjects is shown in Fig. 7. As shown in all

three cases, the execution time for FS2 is shorter as compared

with FS1, which indicates the significance of relevant features

selection for reducing the computational time. Moreover, it is

evident that if more channels are used like in case 1 (18 chan-

nels), the time required to obtain a classification for both

FS1 and FS2 are much longer (around 20 seconds) compared

with that of strategies 2 and 3. This signifies the importance

of appropriate channel selection for reducing computational

load.

It is noteworthy that all implementation times were eval-

uated with all trials considered in dataset IVa, and hence the

implementation time of the algorithm would be much shorter
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TABLE 8. Classification outcome (%) for FS2 in strategies 1, 2 and 3.

for any single trial, showing that the proposed algorithm could

be used for online clinical application. It should also be noted

that in this research, experiments are performed in MATLAB

and the implementation period was evaluated without any

software optimization. However, in reality, if the software

implementation is optimized, this algorithm implementation

period could be decreased further. Moreover, since the exe-

cution time for all the other methods listed in Table 12 were

not provided in their studies, the time comparisons between

our proposed algorithm and those in the previous studies are

not shown in the study.

h: ROC CURVE FOR CHANNEL SELECTION STRATEGY

3 WITH FS2 BY USING ALL CLASSIFIERS

The AUC of channel selection strategy 3 obtained by

FS2 for different classifiers related to five subjects is shown

in Fig. 8. As noted, for most of the classifiers, the obtained

AUC value is near to 1, which indicates the better discrimi-

nation power of classifiers for different MI tasks. Precisely

we achieved an AUC value between 0.98 to 1 for all sub-

jects in the case of MLP and LS-SVM classifiers as shown

in Fig. 8.

i: ROBUSTNESS OF THE PROPOSED APPROACH AGAINST

NOISE

As mentioned earlier EEG signals contain several noises and

artifacts, it is necessary to remove those artifacts to obtain a

clean signal for further processing. To observe the influence

of noise on overall classification accuracy, we performed

experiments with and without MSCPA.

Fig. 9 presents the classification accuracy of channel selec-

tion strategy 3 by employing FS2 with and without MSPCA.
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FIGURE 5. Comparison of different classifiers with FS2 for three channel
selection strategies.

FIGURE 6. Comparison of different classifiers with FS1 and FS2 for three
channel selection strategies.

As seen, without MSPCA we obtained 88%, 90%, 88%,

90% and 90% classification accuracies for subjects ‘‘aa’’,

‘‘al’’, ‘‘av’’, ‘‘aw’’ and ‘‘ay’’ respectively and the average

classification accuracy was 89.2%. When MSPCA is applied

for the noise removal, the classification accuracy of each

subject increased drastically and we obtained 95%, 95%,

95%, 100% and 100% classification accuracies for subjects

‘‘aa’’, ‘‘al’’, ‘‘av’’, ‘‘aw’’ and ‘‘ay’’ respectively, while the

average classification accuracy was 97%. The classification

accuracy improvement of 7.8% with MSPCA demonstrated

that our proposed method is robust against noise.

2) APPLICABILITY OF PROPOSED MEWT METHOD FOR

DIFFERENT DATASETS (IVb AND IVc)

To show the applicability of proposed method for different

subjects, we have performed the experiments on datasets IVb

FIGURE 7. Timing execution with FS1 and FS2 among three channel
selection strategies with all classifiers, for five subjects respectively.

FIGURE 8. ROC Area of different classifiers with FS2 for channel selection
strategy 3.

and IVc, which are openly available on BCI competition III

website (http://www.bbci.de/competition/iii/). The results

obtained for these two datasets are available in Table 9 respec-

tively for both all and selected features.

As seen in Table 9, an average sensitivity, specificity

and classification accuracy of 100%, 100% and 100% was

achieved by employing FS2 (F4) and all classifiers with the

channel selection strategy 3 (C3,CCP5,C4) for dataset IVb,

while similar measures of 97% was achieved for dataset IVc
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TABLE 9. Classification outcomes of datasets IVb and IVc for subject-specific case.

FIGURE 9. Robustness check of MEWT based method against noise with
FS2 for channel selection strategy 3.

with channel section strategy 3 (C3,CCP3,C4) for FS2

(F4). In addition, the AUC value for most of the cases is

equal or near to 1 which indicates the better classification

performance for different classifiers. These results conclude

that proposed MEWT based approach is versatile and can

be used for subjects with different mental and physical

nature.

B. CASE 2: RESULTS FOR SUBJECT INDEPENDENT

EXPERIMENTS

1) EXPERIMENTAL RESULTS FOR DATASET IVa

Due to the nonlinear and non-stationary properties of EEG

signals, classifiers are trained and tested using the same

subject data, and thus, subject-specific MI EEG signal

classification algorithms have been proposed in litera-

ture [5], [15]–[20], [46], [64]–[66]. In practice, however, it is

extremely difficult and time-consuming for stroke patients to

do lengthy training sessions before using a specific device,

and thus, Joadder et al. [67] proposed a subject independent

(SI) algorithm for MI EEG signal classification recently.

Yet it is worth noting that the classification accuracy of

this method is low, a large number of channels and training

samples are also required as source subjects.

In this study, we also tried to explore the feasibility of

our proposed MEWT based algorithm for SI EEG signal

classification. The main building blocks of the SI algo-

rithm are shown in Fig. 10. As seen, there are two main

streams with source and target EEG data. In our study,

the source subject data was used for training, while the data

of target subjects was used as test data. The test data was

rotated by using cross-validation, and among all the five

subjects, any subject could be chosen to act as a target sub-

ject, while the other subjects could participate in the source

domain.
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FIGURE 10. Block diagram of the proposed methodology for subject
independent MI EEG signal classification.

To show the effectiveness of our proposed SIMEWT based

approach, we choose channel selection strategy 2, i.e.,C3,CZ
and C4 channels and LS-SVM classifier were utilized for

experimentation. From dataset IVa, we formed five sub-

datasets, each of which has four source subjects in the source

domain and one subject in the target domain. Since a subject

who participated in the target domain was not involved in the

source domain, each subject in the target domain corresponds

to 15 different source domains.

As shown in Table 10, subjects ‘‘aa’’ and ‘‘al’’ in target

domain achieved a highest classification accuracy of 100%

with source domain subjects of ‘‘al’’ and ‘‘aa’’, respectively.

The subject ‘‘av’’ in the target domain achieved a highest

classification accuracy of 95% corresponding to the most

of subjects in the source domain, especially with the single

source domain subjects of ‘‘aa’’ and ‘‘al’’. Likewise, subjects

‘‘aw’’ and ‘‘ay’’ in the target domain obtained a classification

accuracy of 85% and 70% with the source domain subjects

to be ‘‘aa+al+av+ay’’ and ‘‘aa+al+av+aw’’ respectively.

The overall classification accuracy for target domain is 90%,

which concludes that the MEWT based approach could also

be utilized for SI MI EEG signal classification.

2) EXPERIMENTAL RESULTS FOR DATASETS IVb AND IVc:

As seen in last two columns of Table 10, the classification

results of datasets IVb and IVc for subject independent case

are presented. We have considered dataset IVb and IVc sub-

ject as a target case and the different combination of subjects

FIGURE 11. The sensitivity and specificity values for three datasets in
subject independent case.

in dataset IVa was considered as a source subjects. As under-

stood in Table 10, a classification accuracy of 100% and 90%

was achieved for datasets IVb and IVc by considering several

source combinations as shown in first column.

3) THE STATISTICAL ANALYSIS FOR SUBJECT INDEPENDENT

CASE FOR THREE DATASETS

Like subject-specific case, we calculated the p values, sensi-

tivity, specificity and AUC for different subject independent

cases. Due to space constraints in following discussion, only

best cases are consider. These best cases are already repre-

sented by bold text in Table 10. The p values for best cases of

three datasets are shown in Table 11 and it could be observed

that in most of the cases the p values are very small, indicating

the significance of features utilized for those cases.

The sensitivity and specificity values for each subject

in three datasets as well as average of such measures for

all datasets are shown in Fig. 11. We have attained sen-

sitivity values of 100%, 100%, 95%, 87%, 77%, 100%

and 92% for subjects ‘‘aa’’, ‘‘al’’, ‘‘av’’, ‘‘aw’’ ‘‘ay’’,

‘‘ivb’’ and ‘‘ivc’’ by employing source subjects of ‘‘al’’,

‘‘aa’’, ‘‘aa’’, ‘‘aa+al+aw+ay’’, ‘‘aa+al+av+aw’’, ‘‘aa’’ and

‘‘aa+av+aw’’, and the overall sensitivity value is 93%. Simi-

larly, the specificity values are 100%, 100%, 95%, 85%, 75%,

100% and 90% for subjects ‘‘aa’’, ‘‘al’’, ‘‘av’’, ‘‘aw’’ ‘‘ay’’,

‘‘ivb’’ and ‘‘ivc’’ by employing source subjects of ‘‘al’’,

‘‘aa’’, ‘‘aa’’, ‘‘aa+al+aw+ay’’, ‘‘aa+al+av+aw’’, ‘‘aa’’ and

‘‘aa+av+aw’’ with an average specificity value of 92.1%

These results show that the variations among sensitivity and

specificity for each subject are very small, and demonstrate

that our proposed method is highly stable in detection of

class 1 and class 2 for three datasets.

To show the classification capability of LS-SVM classi-

fier for subject independent cases, the AUC are calculated

and shown in Fig. 12. The AUC values of 1, 1, 0.95, 0.9,
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TABLE 10. MI EEG signal classification accuracy (%) for different experiments in subject independent case.

0.85,1 and 0.97 are obtained for subjects ‘‘aa’’, ‘‘al’’, ‘‘av’’,

‘‘aw’’, ‘‘ay’’, ‘‘ivb’’ and ‘‘ivc’’ where an overall AUC value

for three datasets is 0.95, indicating that LS-SVM is a suitable

classifier for subject independent case.

V. DISCUSSIONS

The purpose of this research is to design a robust and compu-

tationally effective algorithm to improve the accuracy of iden-

tification among various MI tasks. In this research, the fol-

lowing objectives are achieved for this intent.

1) The MSPCA is applied to remove noise from

the EEG signals, which makes the proposed sys-

tem robust against noise. As described earlier,

MSPCA combines wavelets and PCA, instead of

using all principal components, and the principal

components were chosen by Kaiser rule to achieve the

maximum classification accuracy. It is worth mention-

ing that, for careful selection of the appropriate method

in the preprocessing module, we have also tested other

traditional methods BPF, temporal filtering, and spatial

filtering, and found that MSPCA provides the best

results in our case.

2) The next finding of this study is to decode appropri-

ate channels related to MI tasks, which helped us to

achieve the maximum classification accuracy. For this

purpose, three different channel selection strategies are

proposed. Especially, for the first two-channel selection

strategies, 18 and 3 respective channels are manually
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TABLE 11. P values of features for three datasets features in subject
independent case.

FIGURE 12. The area under the ROC curve for three datasets in subject
independent case.

selected by using physiological knowledge, whereas

for the third approach, an automated channel selection

method is proposed to obtain an effective combina-

tion of channels, and 3 channels are selected for each

subject in dataset IVa. All proposed channel selection

strategies provide adequate results in the classification

of various MI tasks.

3) We implement the multivariate extension of the EWT

algorithm to evaluate the complicated, nonlinear and

non-stationary nature of EEG signals. The MEWT

results in different sub-bands for each EEG channel

with the same indexed sub-bands are aligned in fre-

quency scale among three channel selection strategies.

It is important to mention that 10 subbands are chosen

empirically for each channel for further analysis. This

does not imply, however, that other sub-bands are not

physiologically important for each channel. The instan-

taneous components of empirically selected aligned

sub-bands are combined with different channels to

obtain joint instantaneous components, where from

each JIA component meaningful features are extracted

for better classification accuracy for different MI tasks.

4) A robust feature selection scheme named CfsSubsetE-

val is employed to select a suitable feature set for each

subject for three channel selection strategies. All these

selected features are tested on five classifiers, and the

best classifiers are highlighted.

5) The performances of our experiments are compared

with those of the other fourteen methods in terms

of classification accuracy with dataset IVa. As shown

in Table 12, it is clear that our proposed method

with automated channel selection strategy achieved an

average classification accuracy of 97% by employing

MLP, LS-SVM and LMT classifiers. Most importantly,

a classification success rate of 100% was achieved

for the subjects ‘‘aw’’ and ‘‘ay’’. As compared with

the results obtained by using the cross-correlation and

clustering based techniques and the LS-SVM clas-

sifier [5], [17], the accuracy is improved while the

number of channels is largely reduced. Our results

demonstrate that the classification success rate of the

LS-SVM classifier can be improved by removing

noise from EEG signals, and utilizing subject-specific

channel combination with a robust feature extraction

strategy.

Further observing in Table 12, we conclude that our

proposed method ranked the number one in terms

of overall classification accuracy for different MI

tasks, while OA+NB method [19] ranked the second,

CS+SVMmethod [64] ranked the third, CC+LS-SVM

method [5] ranked the fourth whereas the SSFO based

method [66] ranked the last. In addition, those studies

reported in [19], [64], and [5], a number of 118, 33 and

118 channels were utilized respectively, which may

largely limit the applicability of those methods due to

high computational loads, noise and outliers. While in

our study, only 3 channels have been utilized to achieve

the highest classification accuracy as compared with

other studies. Results summarized that our proposed

method achieved a classification accuracy improve-

ment of 0.64%-23.50% as compared with the other

fourteen methods applied on dataset IVa for MI EEG

signal classification.

In addition, we compared the proposedMEWTmethod

with other methods implemented on datasets IVb and

IVc for subject-specific case. Siuly et. al utilized

dataset IVb in studies CC-LSSVM [5], CC-LR [44],

OA [19], Modified CC-LR [35] and achieved 97.88%,

93.6%, 97.39% and 91.97% classification outcomes.

Those studies were developed on 118 number of chan-

nels with 6,6,11 and 11 features respectively whereas in

our proposed study we use only 3 channels with single

feature to obtain 100% classification accuracy with

dataset IVb. The proposed method yields classification

improvement of up to 8.03% in comparison with other

studies. For dataset IVc, few methods [72] and [73] are

available in literature for comparison, and overall clas-

sification accuracy of 73.71% and 96.07% is obtained
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TABLE 12. Comparison of subject-specific case in term of classification accuracy (%) with other works.

whereas our proposed method with 3 channels and

single feature results in 97% of classification accuracy.

6) There are quite a few studies on the subject independent

experiments using dataset IVa available in the litera-

ture. In this study, we showed a comparison between

our proposed MEWT based approach with those in

studies [68]–[70], which adopted different variations of

the CSP method to explore the inter-subject informa-

tion for enhancing the MI EEG signal classification.

Results in Fig. 13 show that, among those methods,

the proposed SI MEWT based algorithm achieved an

average classification accuracy of 90% and ranked the

number one in terms of overall performances. Specif-

ically, although authors in [67]–[71] had proposed

algorithms to transfer inter-subject information, those

methods involved learning from multiple source sub-

jects to decode MI information of a single subject, and

thus, data acquisition from multiple subjects is time-

consuming. It is also restricted by the availability of

the subjects. On the contrary, in our study, the MI

information of a single subject is decoded by using a

single source and multiple source subjects respectively.

The overall classification accuracy of 100%, 100%,

and 95% were achieved for subjects ‘‘aa’’, ‘‘al’’ and

‘‘av’’ by employing a single source subject only. Com-

pared with studies [68]–[71], our proposed algorithm

improves the average classification accuracy by up to

18.14%. It is alsoworth noting that a number of 68, 118,

22 and 118 channels were utilized in studies [68]–[71],

whereas in our study, only 3 channels were utilized to

achieve the best classification accuracy. Such results

FIGURE 13. Comparison of subject independent case in term of
classification accuracy (%) with other works.

convincingly demonstrate that our proposed algorithm

could be used for subject independent MI EEG signal

classification. It is important to note that datasets IVb

and IVc were not used for subject independent case

in literature according to the best of our knowledge,

so we are unable to provide comparison for subject

independent case for those datasets.

Consequently, the advantages of the proposed subject spe-

cific method is to use three subject-specific channels with

less number of features for each subject, which thus result

in less computational time, making it suitable for online

applications. Another interesting fact is that our algorithm
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provides stable classification outcomes for each subject by

using three different classifiers, whereas, in most of the stud-

ies mentioned in Table 12, only one classifier is utilized to

achieve themaximum classification outcomes. It is alsoworth

mentioning that since the time complexity of those methods

listed in Table 12 is not available, we are unable to compare

the time complexities among different algorithms. For subject

independent case, our proposed algorithm provide highest

classification accuracy by employing 3 channels and single-

source subject only. In future an automated mode selection

criteria will make this study more interesting.

VI. CONCLUSION

In summary, we proposed a simple and robust MEWT based

algorithm for different MI EEG signal classification. With

the MSPCA method adopted for noise removal, while the

subject-specific automated channel selection method and the

sub-bands alignment in frequency scale for feature extraction,

the proposed method achieves higher classification accuracy

with a reduced number of channels and features. Specifically,

for subject-specific case, remarkable success rates for sub-

jects with small training trials were obtained, while for sub-

ject independent cases, much higher classification accuracies

were also achieved by employing only single-source subject.

The simple classifiers and low computational load, and thus

less processing time make our system a perfect candidate

for online clinical applications, and our future work is to

implement this method for online applications.
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