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Abstract

Brain-Computer Interfaces (BCIs) strive to decode brain signals into control commands for severely handicapped people
with no means of muscular control. These potential users of noninvasive BCIs display a large range of physical and mental
conditions. Prior studies have shown the general applicability of BCI with patients, with the conflict of either using many
training sessions or studying only moderately restricted patients. We present a BCI system designed to establish external
control for severely motor-impaired patients within a very short time. Within only six experimental sessions, three out of
four patients were able to gain significant control over the BCI, which was based on motor imagery or attempted execution.
For the most affected patient, we found evidence that the BCI could outperform the best assistive technology (AT) of the
patient in terms of control accuracy, reaction time and information transfer rate. We credit this success to the applied user-
centered design approach and to a highly flexible technical setup. State-of-the art machine learning methods allowed the
exploitation and combination of multiple relevant features contained in the EEG, which rapidly enabled the patients to gain
substantial BCI control. Thus, we could show the feasibility of a flexible and tailorable BCI application in severely disabled
users. This can be considered a significant success for two reasons: Firstly, the results were obtained within a short period of
time, matching the tight clinical requirements. Secondly, the participating patients showed, compared to most other
studies, very severe communication deficits. They were dependent on everyday use of AT and two patients were in a
locked-in state. For the most affected patient a reliable communication was rarely possible with existing AT.
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Introduction

Aiming to develop communication pathways, which are

independent of muscle activity, the research area of Brain-

Computer Interfaces (BCIs, [1,2]) has significantly emerged over

the last two decades. BCIs strive to decode brain signals into

control commands, such that even severely handicapped people

with no means of muscular control are enabled to communicate.

Different types of brain signals can be used to control a BCI and a

vast amount of studies have demonstrated the proof of concept,

showing that healthy users are able to control noninvasive BCIs

with a high accuracy and a communication rate of up to 100 bits/

min [3]. Translating brain signals into digital control commands,

BCI systems can be applied for communication [4], interaction

with external devices (e.g. steering a wheelchair) [5], rehabilitation

[6] or mental state monitoring [7,8]. While recent studies also

investigated the neuronal underpinnings of BCI control [9,10], the

main objective of BCIs has always been to provide an alternative

communication channel for patients that are in the locked-in state

[11–13].

Brain signals suitable for BCI can be acquired with numerous

acquisition technologies, such as electroencephalogram (EEG),

magnetoencephalogram (MEG), functional magnetic resonance

imaging (fMRI), functional near-infrared spectroscopy (fNIRS) or

electrocorticogram (ECOG) in an invasive and non-invasive

manner. While these different approaches are reviewed in
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[1,2,14], we focus on non-invasive BCI systems which are based

on EEG signals.

Based on experiments with healthy users, various improvements

in the experimental design [15,16], and on the algorithmic side

[17–21] have recently been presented. In particular, machine

learning methods have been developed to improve feature

extraction [18] and classification [22–26] of neuronal signals,

enabling the field to set up an online BCI paradigm for naive

healthy users within a single session. Until now, these improve-

ments have mostly been tested on offline data from healthy

subjects.

There are different types of BCI paradigms, which can generally

be differentiated in (I) self-driven paradigms and (II) stimulus-

driven paradigms. Stimulus-driven paradigms evaluate the neuro-

nal response to multiple stimuli which are presented consecutively.

The objective of the BCI is to detect to which stimulus the user is

attending. Numerous stimulus-driven paradigms were introduced,

with stimuli from the visual [3,27,28], auditory [29,30] or tactile

[31] domain and they have proven successful in end-users with

severe diseases leading to motor impairment [32,33]. Moreover,

several types of neuronal responses (e.g. evoked potentials and

steady-state potentials) enable to differentiate between the brain

responses of attended and non-attended stimuli. As these

paradigms are all relying on the user’s perception of those stimuli,

patients with sensory impairments may not be able to use such

BCI systems [34].

Self-driven BCI paradigms are not relying on the perception of

external stimuli, as these systems are based on brain signals which

are intentionally produced by the user. Here, ‘‘Motor Imagery’’

(MI) is a widely used paradigm, in which the BCI detects changes

of brain patterns (such as sensory motor rhythms), which are

associated with the imagination of movements. In a common MI

scenario, a computer can be controlled (e.g. moving a cursor on

the screen) through either imagination of movements of the left

hand/right hand/foot [35] or their attempted execution.

Although the proof-of-concept for noninvasive BCI technology

has already been shown more than twenty years ago, patient

studies are still very rare. Kübler (2013) [13] recently pointed out

that ‘‘fewer than 10% of the papers published on brain-computer

interfacing deal with individuals presenting motor restrictions,

although many authors mention these as the purpose of their

research’’. Moreover, within patient studies, those patients who

were chosen to participate were rarely in need of a BCI, since their

residual communication abilities with assisted technology (AT)

were higher than the best state-of-the-art BCI could ever provide.

Thus, there is a lack of studies with patients who are in a state that

allows the BCI to become the best available communication

channel. Some examples can be found in [4,11,34,36–44], also

being reviewed in [12,45,46]. However, recent clinical studies

have shown that it is even possible to set up BCI systems with

patients in the complete locked-in condition. De Massari (2013)

[47] introduced the idea of semantic conditioning as a potential

alternative paradigm with completely paralyzed patients, and [48]

applied a MI paradigm with patients diagnosed as being in the

vegetative state. Moreover, patients with disorders of conscious-

ness were trained to use BCI [49], however, no functional

communication could be achieved. These studies reveal that it

may be possible to obtain significant classification accuracies for

those patients, but it has not yet been shown that patients in

complete paralysis can ‘‘reliably’’ use a BCI system [50].

Our contribution describes the results of a MI-BCI study with

four patients who showed severe brain damage. While all four

patients had substantial difficulties with communication, two

patients had a communication rate with their individually adapted

AT of less than 5 bits/min. This means that for these participants,

a BCI has the chance to become their individually best available

communication channel, with all the beneficial implications for the

Quality-of-Life of these patients [51,52].

The objective of this study is to show that the application of

state-of-the-art machine learning methods allows to set up a MI-

BCI system for patients in need of communication solutions within

a very small number of sessions. We addressed this issue within a

BCI gaming paradigm, which was specifically adapted to the needs

of each patient according to user-centered design principles [53].

Both, the BCI system and the feedback application were optimized

in an iterative procedure in order to account for the users’

individual preferences. For the first time, automatically adapting

classifiers, as well as hybrid data processing and classification

approaches were applied online with (locked-in) patients. More-

over, a thorough psychological evaluation was done [51].

More precisely, we demonstrate that by following the principle

‘‘let the machine learn,’’ [54], patients gained significant BCI

control within six sessions or less.

Materials and Methods

2.1 Patient Participants
The BCI system was tested with four severely disabled users in

the information center of assistive technology, Bad Kreuznach,

Germany. The patients were diagnosed with different diseases

causing hemi- or tetraplegia. All patients were in a generally

constant condition with no primary progress in their disease. No

cognitive deficits were known. Table 1 summarizes disease- and

demographic-related information. All patients had severe com-

munication deficits and were using an AT solution on a daily basis.

They had been continuously provided with individually optimized

and cutting-edge AT (such as customized switches or eye-trackers)

for more than five years. Only patient 3 had previously

participated in BCI with MI training in a different study more

than ten years ago - without gaining significant control (see patient

KI in Kübler (2000) [55] and Kübler & Birbaumer (2008) [12]). It

should be noted that the patient numbering was ordered with

decreasing residual communication abilities. Two of the four

patients (patients 3 and 4) were in the locked-in state. Patients in

the locked-in state are restricted in their voluntary motor control

to such an extent that they are not able to communicate. This

definition however makes an exception for one remaining

communication channel. For most patients in the locked-in state,

eye movements are the last remaining form of muscular control. If

no remaining form of voluntary muscular activity is available

(including the control of eye gaze, blink or button press), patients

are considered to be in the ‘‘complete locked-in state’’.

Since different disagreeing definitions of the (complete) locked-

in state exist, Table 1 also provides the communication rate with

AT (measured as Information Transfer Rate (ITR) in bits/min

[56]) as an additional measure. Communication rates with AT

were empirically estimated by quantifying the time that the users

needed to answer yes/no questions or ratings on a visual analog

scale (VAS) in the evaluation process of this study. In the following

paragraphs, each individual patient and his current physical

condition is described in further detail.

Patient 1. Amongst all patients enrolled in this study, patient

1 had the least impaired communication ability – being able to

speak. Due to a stroke, his pronunciation is slurred, his language is

considerably slowed down and needs to be amplified in volume.

Although he has limited control over his left hand, he can reliably

control his right hand to write, type or steer an electric wheelchair.

Noninvasive BCI for Severely Motor-Impaired Patients
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Patient 2. Although lacking the ability to speak, patient 2 has

high residual communication abilities since he can voluntarily

control the left hand, left arm and his facial muscles. Thus, he can

gesture and also use a standard computer keyboard.
Patient 3. Patient 3 is communicating with trained caregivers

(partner-scanning) by controlling his eye gaze. He has been trying

to use numerous eye-tracking systems, without gaining sufficient

control. However, he can control a computer with a slow, weak

but reliable control of his right forearm through the press of a

button. Being highly motivated to use BCI technology, he already

participated in a BCI study more than ten years ago [55], which

tested the control via slow cortical potentials (SCP) of the EEG.

Unfortunately, he was not able to gain reliable control over the

SCP-based BCI system in any session. Due to highly limited means

of communication, a functioning BCI system would directly

improve the quality of life of patient 3.
Patient 4. Having the goal to provide communication

solutions for people who can hardly communicate with AT or

otherwise, patient 4 represents the ultimate end-user target group

for BCI technology. The one exclusively known voluntary

muscular control is a rather unreliable movement of his right

thumb. He thus uses his thumb to press a button (pinch grip),

which reflects the only available communication channel.

When starting the study, he had been in this condition for more

than nine years. His communication is very slow and unreliable to

the extent, that he is sometimes completely unable to communi-

cate at all for several hours. In principle, he uses the button press

in order to communicate an answer upon a question. A single

button press would represent a yes-answer/agreement, while

disagreements are expressed by two consecutive button presses.

He shows a high variation within and across days of his

attentiveness (he spontaneously falls asleep), of his mood, and of

his responsiveness. The median time for a single button press is

estimated to be 12 s, but delays of tens of seconds appear

frequently (approx. 40%). The variation of responsiveness is the

biggest communication hurdle: whenever patient 4 wishes to

provide a negative response or disagreement, the second button

press might be heavily delayed or not executed. Then the

caregiver erroneously assumes an agreement. Given this commu-

nication quality and a communication rate at its best of 2 bits/min,

patient 4 can be regarded to be close to the complete locked-in

condition.

2.2 Study Protocol
The study protocol was approved by the Ethical Review Board

of the Medical Faculty, University of Tübingen, Germany (case

file 398/2011BO2). Written informed consent was obtained from

each patient or their legally authorized representative. The study

consisted of six EEG sessions per patient. There was not more than

one EEG session per day and depending on the patient’s

condition, the session took 1–3 hours - including preparation

time. Additionally, one introductory interview was conducted

before the study and two interviews for evaluation were held after

the last BCI session. Fig. 1A depicts details of the individual

sessions. The psychological evaluation, with respect to the

interview and questionnaires, is described in a separate article

[51].

In the first EEG session, every patient was screened to explore

individual brain patterns and to select the two MI classes (left-

hand, right-hand and foot imagery) which resulted in highest and

most robust class-discriminability. Moreover, standard auditory

oddball ERP recordings and a labeled recording for eye-

movements, blinking artifacts and eyes open/closed measurements

were performed during this screening session. MI training with

feedback was not performed during this first EEG session, but only

during the following five BCI sessions.

Each feedback session (2–6) was split in two parts: patients first

executed a copy task (CopyTask), afterwards they received full

control of the application in the free game mode (FreeMode).

Patients 3 and 4 attempted to perform a motor action, while

patients 1 and 2 used motor imagery. In each trial, the task was

Table 1. Demographic and disease related data of all patients.

Patient 1 Patient 2 Patient 3 Patient 4

Age 47 48 45 45

Diagnosis Tetraparesis after
pons infarct

Hemiplegia after
cerebral bleeding

Infantile cerebral palsy Tetraparesis after
cerebral bleeding

Artificial Ventilation No No No No

Artificial Nutrition

(PEG)

No No No Yes

Wheelchair Yes Yes Yes Yes

Residual muscular

control

Eye-movement Speech
Residual movement of
right hand

Eye-movement Residual
movement of left arm,
hand and head Mimic

Eye movement (unreliable)
Mimic Residual movement
of right hand/arm

Eye-movement (highly
unreliable) Residual
movement of left thumb
(depending on physical state)

Computer input

device

Keyboard PC Keyboard PC Joystick/switch with hand
letterboard with eye
movements

Button press with thumb
(yes/no): yes: 1 button
press no: 2 button presses

Use of ICT on a

daily basis

Yes Yes Yes Yes

Experience with

AT since

2006 1982 1986 2000

ITR with AT ICT .30 bits/min .30 bits/min 1–5 bits/min 0–2 bits/min

Experience with

MI -BCI

No No Yes No

doi:10.1371/journal.pone.0104854.t001
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visually cued by an arrow, e.g. pointing rightwards or downwards

(for right-hand or foot imagery), see Fig. 1B. During both the

CopyTask and the FreeMode, patients received online feedback

(see Fig. 1C) of their targeted brain activation. However, in the

CopyTask the outcome of a trial did not initiate an action in the

game. In the FreeMode, the directional cue was replaced by a

question mark and the gaming application was fully controlled by

the BCI with two available actions: "select next column" and

"place coin". Each action was represented by one MI class. The

FreeMode was only started if the patient had reached sufficient

control (§70%) in the CopyTask (leading to less frequent and

shorter FreeMode phases for early sessions).

In order to reduce the number of unintended actions in the

FreeMode, an action (placement of a coin or selection of the next

column) was only performed if a predefined threshold had been

exceeded by the BCI classifier. This resulted in "noDecision" trials

if the threshold was not exceeded. Consequently no action was

elicited for these trials. Introducing "noDecision" trials lead to a

decreased fraction of incorrect decisions, yet at the same time to a

reduction of communication rate (here: actions per minute and

ITR). The ITR values reported throughout this paper were

calculated such that all pauses were taken into account [29].

Within the entire study, long durations of trials and inter-trial

pauses led to an approximate speed of 4 trials/minute. Since one

bit can be coded within one trial, the maximum achievable bit rate

with this system was about 4 bits/min (with 100% correct trials).

Although speeding up the communication rate by shortening the

durations of trials and pauses would have been possible, we did not

make use of this option in order to minimize the stress level and

workload. Moreover, it should be noted that a reliable slow control

might be preferable compared to a fast communication solution

which is less reliable.

2.3 Application
Gaming applications represent a playful way to practice and

improve the use of BCI systems, because they may provide long-

term and short-term motivation. Moreover, we considered the

frustration of erroneous actions in a game to be lower than

erroneous selections of letters in a spelling task. Therefore, a

computer version of the game ‘‘Connect-4’’ was used within all

sessions. ‘‘Connect-4’’ is a strategic game, in which two players

take turns in filling a matrix of free slots with coins. The objective

of the game is to connect four of one’s own coins of the same color

vertically, horizontally, or diagonally. The two players are

alternately placing their coins in one of the seven columns. The

gaming application can be controlled by a 2-class motor imagery

BCI, since only two actions are needed to play the game: (1) select

the next column, or (2) place the coin in the current column. The

software was implemented as a standalone java-application.

Fig. 1C shows a screen shot of the application.

2.4 EEG acquisition
Two different EEG systems were used within this study, both

systems utilized passive gel electrodes. In the screening session, a

63-channel EEG system was used with most electrodes placed in

motor-dense areas (cap: EasyCap, amplifier: BrainProducts, 2|32

channels, 1000 Hz sampling rate). One EOG channel was

recorded additionally below the right eye. In sessions 2–6, a 16-

channel EEG system was used (cap&amplifier: g.Tec, 1200 Hz

sampling rate), while electrodes were placed symmetrically in areas

close to the motor cortex. All EEG signals were referenced to the

nose. Impedances were kept below 10 kV, if possible. Data

analysis and classification was performed with MATLAB (The

MathWorks, Natick, MA, USA) using an inhouse BCI toolbox.

For online processing and offline analysis, the EEG data was low-

pass filtered to 45 Hz and down-sampled to 100 Hz.

2.5 BCI setup
This study focused on patients with severe brain injuries, thus

the EEG signals and class-discriminative features were expected to

be different to those known for healthy users. For this reason, the

BCI was designed such that it could be driven by a wide range of

Figure 1. The experimental design is shown in plot (A). Plot (B) depicts the architecture of the flexible BCI system which simultaneously
considers oscillatory features and slow potentials. Two classifiers are applied and the feedback application is receiving simultaneous output of both
classifiers and their weighted combination. A screen shot of the ‘‘Connect-4’’ application in mode FR (foot vs. right hand) is plotted in (C). In the top-
left corner, the cue is presented (an arrow pointing to the right) and based on the BCI output, the yellow bar is either extending rightwards or
downwards. The rightmost column is currently selected and visually highlighted.
doi:10.1371/journal.pone.0104854.g001
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features and their combinations. The incorporation of multiple

features of the EEG or from other modalities into the BCI system

is called a ‘‘hybridBCI’’ system, which is a rather recent line of

research [57–59]. Fig. 1B shows the architecture of the BCI

system used for this patient study. The BCI simultaneously

delivered three control signals to the application. Spectral features

(event related desynchronization (ERD) in m, b, d band or b

rebound) as well as slower movement-related potentials (i.e.

lateralized readiness potential, LRP) were processed and classified.

The two classifier outputs and their individually weighted sum

were received by the application. The experimenter could then

choose (based on a prior offline analysis of the data), which of the

three output signals should be used to control the application.

2.6 Feature extraction and classification
To extract oscillatory features, signals were band-pass filtered by

a Butterworth filter of order 5 in the individually defined spectral

band. After visual inspection of the channel-wise ERD, a

discriminative time interval was defined to compute optimized

spatial filters with the Common Spatial Patterns (CSP) method

[60] and to train the classifier, a shrinkage-regularized linear

discriminant analysis (LDA) [18]. In analogy to Blankertz and

colleagues (2008) [60], offline classification accuracy was estimated

using a (standard) cross-validation procedure, where the CSP

filters and LDA weights were computed on the training set, and

binary accuracy was assessed on the test set.

For the feature extraction of non-oscillatory slow potentials, raw

EEG was band-pass filtered with a Butterworth filter (0.2–4 Hz)

with a subsequent channel-wise baselining step (the interval of

300 ms duration before trial onset). In analogy to ERP classifica-

tion [18], the mean amplitude in a manually selected (class-

discriminative) time interval was taken from each channel in order

to form the feature vector of a trial. A binary classifier (again LDA)

was trained based on those features.

Both LDA classifiers were automatically adapted during the

CopyTask phase. As described in [22], the pooled covariance

matrix and the mean of the features was re-estimated after each

trial, using the known labels (adaptation rate of 0.03). This also

resulted in an implicit bias correction. In the FreeMode, no

adaptation was performed. Besides the internal adaptation, the

research team could recalibrate and fine-tune the classifiers

between and within sessions. This was important in order to

account for unstable features in the EEG data.

Results

3.1 Standard screening
The outcome of the standard screening (session 1) is depicted in

Fig. 2. For patients 3 and 4 we found very atypical EEG signatures

without any alpha or beta rhythms in the eyes-open and eyes-

closed condition. It should be noted that these patients were

unable to voluntarily open and close their eyes in response to an

instruction/cue. Thus, eye-closure was supported by the caregiver

who carefully moved the eyelids by hand.

3.2 ERD features and BCI performance
The BCI performance in this study was assessed for the two

experimental conditions: during the CopyTask, the labels are

known and the BCI performance can easily be evaluated using the

fraction of correct trials (called ‘‘binary accuracy’’ in the

following). A trial is correct, whenever the accumulated BCI

output is pointing to the correct direction at the end of the trial,

thus chance level is 50%.

For the FreeMode, labels are unknown, unless the patient is able

to report his intention with AT in each trial. Moreover, the

number of games which were won against a computer heuristic

can also be assessed as a complex and very high-level performance

measure for the FreeMode. Playing the game with random control

was simulated with the finding that a random player won 10% of

the games and 20% of the games ended with a draw. Thus, the

computer heuristic would win 70% of the games when playing

against a player with random control.

Offline analysis. One interesting question was whether or

not class discriminant features are found consistently across

sessions. Therefore, Fig. 3 shows the results of an offline analysis

of the CopyTask data. For all patients except patient 3, we found

at least one discriminative feature (e.g. b ERD) which was

consistently present in all sessions. Patients 3 did not present any

reliable feature with discriminative information. Notably, none of

the patients featured a consistent ERD component in the a band.

However, the spatial distribution of such features was observed to

be variable for some patients. Fig. S2 visualizes the spatial

distribution of class discriminative information for each patient

across all sessions as scalp maps. This finding underlines the

necessity of a flexible BCI system like it was used for this study. It

should also be noted that the offline accuracy described in Fig. 3

cannot be directly translated into online BCI performance, as the

cross-validation procedure was performed for each session

separately. The resulting online BCI performance can be lower,

if the features changed between sessions [61]. In a scenario of

rather stable features across sessions, the online performance can

also be higher, as the online classifier was trained with more data

(from previous sessions).

Online BCI control. Fig. 4 and Fig. 5 show the online

performance of the CopyTask for all four patients. All patients

except patient 3 could gain significant control over the BCI.

Excluding patient 3, we obtained 10/14 sessions with an online

binary accuracy being significantly better than chance. Again, one

should stress that this was done with a patient population and

there were no more than six EEG sessions with each patient, and

five of these with BCI feedback. Fig. S3 depicts the online accuracy

in the FreeMode, which could only be assessed for patient 1 and 2.

In the following, EEG features and the resulting BCI

performance for each of the four patients are discussed separately.

Text S1 elaborates on the exact parameterization of the classifiers,

which were used in the online study. After previously discussing

offline results, we will only discuss online performances in the

following.

Patient 1. Within the motor imagery study, a beta rebound as

well as an LRP were found to be class-discriminant features for

left-hand vs. right hand imagery, see Fig. 3. In the online

framework, the beta-rebound was used to drive the system in

session 4 and all following sessions. The LRP feature was not used,

because it was more prone to (eye) artifacts and the patient

featured involuntary eye-movements in the directions of the arrow.

Although the beta-rebound was found quite consistently, the

spatial distribution differed across sessions, see Fig. S2. Therefore,

it was required to retrain CSP filters and to use LDA with

adaptation. The user was then able to gain significant online

control over the BCI, as shown in Fig. 4A. One can also observe

that the BCI accuracy increased within sessions, resulting in the

most reliable control towards the end of each session. The level of

control was not perfect, but sufficient to drive the application in

the FreeMode (cp. Fig. S3). Patient 1 played the game Connect-4

five times in total, and he could win three of those games.

Patient 2. A beta ERD as well as a LRP were found to be

class-discriminant features for left-hand vs. foot imagery, see

Noninvasive BCI for Severely Motor-Impaired Patients
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Figure 2. Standard physiological screening of the four patients. The top row shows the spectra at electrode ‘Cz’ in the conditions eyes-open
and eyes-closed. The spatial distribution of the channel-wise spectral power in the alpha-band [8–12 Hz] is depicted in the scalp maps of the lower
row.
doi:10.1371/journal.pone.0104854.g002

Figure 3. Discriminative power of each feature across sessions, obtained with offine reanalysis of the CopyTask data. Global
parameters such as the frequency band and time interval were chosen individually for each patient after manually inspecting the data from all
sessions. For each session, the same global parameters were taken – which might be suboptimal. The classification accuracy was then estimated with
cross validation using the same parameters for each session. Note that the number of trails was varying across sessions with later sessions featuring
less trials. Moreover, a b rebound was defined to as a discriminative feature in the b band, which was observed more than 500 ms after the end of a
trial. As the b ERD of patient 4 was heavily delayed, it is also considered as b rebound in this analysis. Fig. S2 shows the corresponding spatial
distribution of discriminative information as scalp maps.
doi:10.1371/journal.pone.0104854.g003
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Fig. 3. Since the beta ERD had a more consistent spatial pattern

and was also less susceptible to artifacts, either the beta classifier or

the meta classifier (beta + LRP) was used in the online BCI

framework. However, although the ERD feature in the beta-band

was found in almost every session, one could observe a high

variation in class discrimination, spatial patterns as well as in BCI

performance across and within sessions (see Fig. 4B and Fig. S2).

Due to the adaptive methods mentioned above, patient 2 was

nevertheless able to control the game in the FreeMode at the end

of session 4 and all following sessions (Fig. S3). In total, he played

four games in the FreeMode (winning two of them).

Patient 3. In analogy to a previous study [55], reliable class

discriminant features could not be found in the EEG data of

patient 3 (cp. Fig. 3). He was thus not able to control the BCI

system, as shown in the CopyTask performance in Fig. 4C. For

the online framework, either the meta classifier or the LRP

classifier were applied. None of them performed reliably above

chance level. Recall, that this user displayed very atypical EEG

spectra at rest (Fig. 2): during the eyes-open and eyes-closed

conditions, no alpha or beta peaks were present. Due to the lack of

BCI control, patient 3 did not officially enter the FreeMode (see

study protocol). However, although featuring insufficient BCI

control, patient 3 insisted in attempting to play the BCI game in

the FreeMode (‘‘for the fun of it’’). He could neither gain control,

nor was the resulting data analyzed in the present evaluation.

Patient 4. A highly discriminative b ERD component was

present during each session of patient 4 (cp. Fig. 3). His motor-

related EEG patterns exhibited typical spatial distributions (see

Fig. 5A). This finding is even more surprising, since patient 4

revealed very atypically EEG signatures in the resting state –

stereotypical brain rhythms such as a and b were absent (cf.

Fig. 2).

Despite his physical condition, patient 4 achieved the best BCI

control amongst the four patients. Fig. 5A shows the online binary

Figure 4. Binary online accuracies (left column) and estimated bit rates (middle column) in the CopyTask for patients 1–3. Each bar
represents one block of at least 20 trials. Session numbers are specified in blue color (left column). Session numbers with a * mark sessions with
significant online BCI control across all trials (x2 test with p,0.05). For patient 2, results for session 3 had to be disregarded due to technical problems.
The right column depicts the scalp patterns of the most discriminant spectral features, based on data from all sessions. Results for Patient 4 are
shown in Fig. 5.
doi:10.1371/journal.pone.0104854.g004
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performance, revealing that he gained highly accurate online

control (up to 90% binary accuracy) over the BCI system within

the third EEG session (which was the second session with BCI

feedback), and all following sessions. Even when pooling across all

six sessions, his BCI control was highly significant (x2 test with

pv0:001). He exhibited very typical EEG activity during the

right-hand and foot tasks of attempted motor execution, even

though he had been unable to move his feet for more than nine

years.

For this patient we could directly compare the communication

rate of the BCI to his residual communication abilities with AT, by

asking him to execute a button-press as soon as the corresponding

Figure 5. BCI performance and scalp patterns of patient 4. Online binary accuracies, estimated bit rates (left, middle) of the CopyTask, and
CSP patterns (right) averaged across all sessions are depicted in the top row (A). Each bar represents one block of at least 20 consecutive trials. Middle
row (B) relates the continuous online BCI output to the residual muscle control (button press) for a representative time segment. Colored areas mark
trial periods where the patient was asked to initiate a motor action. The excerpt shown was extracted from session 6, revealing that the BCI can
detect the users intention far before a muscle contraction can be initiated. The lower row (C) depicts the motor related patterns in the b band for
each session individually.
doi:10.1371/journal.pone.0104854.g005
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cue appeared: we found, that the BCI-controlled feedback became

discriminant after 1–3 seconds, while the button-press had a delay

of 5–20 seconds — and sometimes the muscle contraction did not

occur at all. As an example for this unbalanced communication

behavior, a representative time window of 77 s was extracted for

Fig. 5B. The interval contains six trials (three hand and three foot

trials). The patient was requested to perform a button press in

hand movement trial (marked in light magenta), but not during

foot trials (marked in green). The BCI output and successful button

presses are visualized. Patient 4 could only initiate a thumb muscle

contraction successfully in two of the three trials. Moreover, any

resulting button presses during this test were considerably delayed

and occurred after the trial period of 7 s. The BCI, however,

indicated the correct decisions at the end of each trial and even

earlier in most cases. For the foot class, no motor action (i.e.

muscle movement) was available; nevertheless the BCI could

reliably detect the intention of a foot movement. Thus, to the best

knowledge of the authors, this is the first quantitative report that

shows that a BCI can uncover a patient’s intention quicker and

more reliable than the best available non-BCI AT.

Due to fatigue, temporal constraints and severe attention

deficits, patient 4 entered the FreeMode only twice (sessions 4

and 6). In these two FreeMode sessions, he was not able to stay

focused for more than 70 trials. As Table 1 reveals, he had the

most severe deficits in communication. In practice, this means that

he was mostly unable to communicate his intended action in the

FreeMode. As a result, labels of the trials were not available and a

data-driven evaluation of his BCI control in the FreeMode was

impossible.

Discussion

Four end-users with severe motor restrictions, who heavily

depended on AT for communication and interaction in their daily

life, agreed to participate in this study. Two of them were impaired

in their communication ability to an extent, that no available AT

would enable a reliable and – given their physical state – high

speed solution. For these two specific patients, a BCI-based

solution for control and communication would indeed introduce a

novel communication quality. The BCI could enable independent

communication and thus represent an added value compared to

the AT presently used.

During the course of six BCI sessions, we found that three out of

the four subjects could gain significant BCI control using motor

imagery. For the most severely impaired patient (patient 4), we

found evidence that the BCI outperformed his existing commu-

nication solution with AT in terms of accuracy and information

transfer – being discussed in a following section.

The chosen end-user environment posed severe limitations in

terms of user availability, their concentration span and the

communication quality with their standard AT. We responded

to these challenges with a flexible BCI framework, enabling us to

tailor three major components of the study to the individual needs

of the patient: (1) details of the experimental MI paradigm, (2) the

form of data processing and type of exploited brain signals, and (3)

the software application, which the user interacted with. Many of

the internal modules of the BCI system could flexibly be

exchanged and such changes remained invisible to the patients.

The result was an "out of the box" BCI system, which was

adapting itself to the features and needs of each user. Thus, our

BCI system was generic and adaptive to meet the extensive

requirements of such a pragmatic patient study.

4.1 Reducing the number of sessions using machine
learning
With our study we could show, that end-users are able to gain

significant online BCI control within six sessions or less. Compared

to other end-user studies [38] this is a very low number of sessions.

Such a purposeful study design was enabled by the intense

combined efforts of those users and the team, consisting of

caregivers, psychologists, programmers and data analysts. We

thereby followed the principles of user-centered design which

implies an iterative process between developers and end-users of a

product (see [53]). Thus, we used a setup which was flexible

enough to adapt to the user’s abilities and needs (e.g. choice of MI-

classes, temporal constraints or the type of EEG feature such as

ERD, b-rebound or LRP). Therefore, the system was designed to

accommodate a wide variety of end users. Far from downplaying

those individual contributions, the positive effect of advanced

machine learning (ML) methods, such as hybrid classifiers with

adaptation, should be mentioned. While motor-related BCI tasks

are known to require a larger number of user training sessions

compared to more salient ERP paradigms [38,44,62], we

managed to apply our BCI system successfully within less than 6

sessions in three cases. While for one participant, no BCI control

could be established, the remaining three participants gained

sufficient online control to play the game relatively early on.

(Patient 1: control from session three onwards, Patient 4: control

from session four, and Patient 2: control from session five on.) The

reduced time effort before BCI control was established represents

a crucial step for bringing BCIs closer to clinical application for

users in-need. In a comparable study with locked-in patients by

Kübler et al. (2005) [38], machine learning methods were not

applied. Reliable performance was achieved only after a substan-

tial number of sessions.

4.2 Patient 4
The case of patient 4 deserves special attention. While

displaying severely impaired communication abilities, his level of

BCI control was en par with very good unimpaired BCI users

performing motor imagery.

This is presumably the most exciting finding of the current

study, given that practically the full spectrum of AT solutions had

been tested for this patient over the past nine years by AT experts.

It should be noted that also ERP based paradigms were tested with

patient 4 after the presented MI study. Discriminant ERP

components could neither be found for a visual multi-class

paradigm (MatrixSpeller [63]) nor for an auditory ERP paradigm

[64]. The only applicable AT solution (the pinch-grip button press)

provided a limited one-class signal with low accuracy and high

temporal variability. Nevertheless, the BCI-controlled signal was

relatively robust (with up to*90% accuracy) and available after 7

seconds at the latest.

Evaluating the speed and accuracy of his BCI control, we found

evidence that the BCI could outperform his existing communica-

tion solution with AT in terms of accuracy and information

transfer: during the online CopyTask, patient 4 accomplished

commands which were presented visually through the software

interface. Interestingly, he used the same (attempted) motor

command for the right hand BCI class (i.e. the thumb movement)

as for a real button press. Thus, a comparison of temporal

dynamics and reliability of his BCI-responses with his button-press

responses revealed interesting insights, as shown in Fig. 5B.

Contrary to the CopyTask mode, we could not show that

patient 4 gained reliable control during the FreeMode. Even

though the exact reason for this problem could not be clarified

given the limited amount of data available for patient 4, the
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following – potentially accumulating – causes can be speculated:

(1) identification problem, (2) attention problems and fatigue, (3)

mental workload (4) self-initiation of actions. Text S2 discusses all

mentioned aspects in further detail.

Conclusions

We could show that patients with severe motor impairments –

even patients that are locked-in and almost completely locked-in –

were able to gain significant control a noninvasive BCI by motor

imagery. While applying state-of-the-art machine learning meth-

ods, this control was achieved within six or less sessions. The BCI

was then used to operate a gaming application.

These findings are encouraging, since providing communication

channels for patients in-need resembles the major goal of the

interdisciplinary research field of BCI. Moreover, our study

describes one patient (patient 4), whose communication abilities

with existing AT were on the same performance level (ƒ 2 bits/

min) than his BCI control. In a controlled CopyTask framework,

we found evidence that the BCI could even outperform his existing

AT solution in terms of accuracy, reaction times and information

transfer. Thus, we showed for this patient that neuronal pattern

detection of an attempted motor execution can indeed be faster

than the muscular output. Future studies may evaluate the BCI

control in follow-up sessions, also testing spelling applications.

Moreover, broader patient groups will considered in order to

further explore and evaluate the clinical usage of BCI.

Supporting Information

Figure S1 Description of the different classifiers used

within for online BCI. Across and within sessions, the classifier

was retrained on varying subsets of the data and different features.

One classifier is described by the set of two neighboring lines (back

and blue), a cross in magenta and the number in red. The black

lines mark the chosen frequency band, the blue lines mark the time

interval used to train and apply the classifier. The cross marks the

accuracy of the classifier, estimated with cross-validation on

training data. The number in red specifies the number of trails

which were used to train the classifier. Note that beginning with

the 6th session, the trial length for patient 1 was shortened to 3.5

seconds - resulting in a classification interval after the end of the

trail (b rebound). For all other patients the trial length was 5–7

seconds.

(TIF)

Figure S2 Class discriminant information for each

patient across sessions. For each session, the spatial pattern

of the most (left) and second-most (middle) discriminant CSP filter

is depicted. Therefore, the same frequency band as well as the

same time intervals were chosen for one subject and all sessions.

The same parameters were used to generate Figure 3. The right

scalpplot visualizes class discrimination of the LRP feature. The

classification accuracy of the spectral (CSP-based) classifier and the

LRP classifier is printed next the scalpplots. This classification

accuracy is estimated with a 5 fold cross validation and gives a

quantification of how separable the data was in the corresponding

session. In the online scenario, a different classifier was used which

was trained on more trails from preceding sessions. Note that the

sign of the scalpmaps is arbitrary, thus red and blue (as well as

their corresponding graduations) are exchangeable. Note that two

colorbars (for CSP patterns and LRP discrimination) are given in

the legend. The abbreviation ‘‘ssAUC’’ stands for a signed and

scaled modification of the area under the curve (AUC).

(TIF)

Figure S3 BCI performance in the FreeMode. Patient 1

and patient 2 could communicate their intentions with

AT. Their comments were used as labels for trials in the

FreeMode. Note that the scaling of the bitrate is on the right

axis. The patients did not enter the FreeMode in session 3 and

session 4.

(TIF)

Text S1 Session to session transfer.

(TXT)

Text S2 Discussion of the performance of patient 4 in

the FreeMode.

(TXT)
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international 105: 397.

53. Zickler C, Riccio A, Leotta F, Hillian-Tress S, Halder S, et al. (2011) A brain-

computer interface as input channel for a standard assistive technology software.

Clinical EEG and Neuroscience 24: 222.

54. Blankertz B, Curio G, Müller KR (2002) Classifying single trial EEG: Towards

brain computer interfacing. In: Diettrich TG, Becker S, Ghahramani Z, editors,

Advances in Neural Inf. Proc. Systems (NIPS 01). volume 14, pp.157–164.
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