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Abstract: Nowadays, Brain–Computer Interfaces (BCIs) still captivate large interest because of multiple
advantages offered in numerous domains, explicitly assisting people with motor disabilities in
communicating with the surrounding environment. However, challenges of portability, instantaneous
processing time, and accurate data processing remain for numerous BCI system setups. This work
implements an embedded multi-tasks classifier based on motor imagery using the EEGNet network
integrated into the NVIDIA Jetson TX2 card. Therefore, two strategies are developed to select the
most discriminant channels. The former uses the accuracy based-classifier criterion, while the latter
evaluates electrode mutual information to form discriminant channel subsets. Next, the EEGNet
network is implemented to classify discriminant channel signals. Additionally, a cyclic learning
algorithm is implemented at the software level to accelerate the model learning convergence and
fully profit from the NJT2 hardware resources. Finally, motor imagery Electroencephalogram (EEG)
signals provided by HaLT’s public benchmark were used, in addition to the k-fold cross-validation
method. Average accuracies of 83.7% and 81.3% were achieved by classifying EEG signals per subject
and motor imagery task, respectively. Each task was processed with an average latency of 48.7 ms.
This framework offers an alternative for online EEG-BCI systems’ requirements, dealing with short
processing times and reliable classification accuracy.

Keywords: electroencephalogram; motor imagery; EEGNet; NVIDIA Jetson TX2; brain–computer
interface; HaLT dataset

1. Introduction

Applications based on Brain–Computer Interfaces (BCI) are numerous in the recent
literature due to their benefits in various domains [1]. Typically, BCI systems use brain
signals to allow effective communication between a given user and local surroundings.
BCI-based electroencephalographic signals (EEG) are the most implemented because of
recent advances in brain electrical functioning studies and reliable technologies [2,3].
Such EEG signals were used by Fraiwan et al. [4] to evaluate the subjects’ enjoyment
and visual interest in experiencing museum expositions. For instance, BCI-based EEG
signals are used in biomedical applications for mental and cognitive disease diagnoses
and rehabilitation [5,6]. Lastly, Hekmatmanesh et al. [7] proposed a systematic review of
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terrestrial and aerial Brain–Controlled Vehicles (BCVs) based on EEG, Electrooculographic
(EOG), and Electromyographic (EMG) signals. Commonly, for BCI-based control systems,
EEG signal patterns such as Steady-State Evoked Potentials (SSVEP) [8] and their variants
are converted into commands to control wheelchairs, drones, prostheses, and arm robots,
to cite a few.

Motor Imagery EEG signals (MI–EEG) are more interesting for EEG–BCI systems
because the subject under test voluntarily generates such signals; thus, it can be used to
control external applications [9,10] or for medical research [11,12]. Recent advances in
developing BCIs based on MI signals focus on improving classification accuracy while
reducing processing time and processing-unit computational resources [13,14]. This
prevailing tendency is mainly motivated by online application requirements in robotics
and specialized medicine to complete accurate and brief tasks satisfactorily [15]. In this
sense, Huang et al. [16] controlled an integrated wheelchair robotic arm implementing a
hybrid BCI based on EEG and EOG signals. Therefore, the robotic arm and wheelchair
applications needed both high-accuracy classifications of left- and right-hand MI tasks and
system portability to complete reliable actions. In another study, Al-Nuaimi et al. [17]
implemented a controlled drone-based P300 BCI for military use, dealing with high
accuracy, brief processing time, and BCI portability.

Concretely, numerous methods are used in the literature to conjointly address short
processing time, reliable accuracy, and portability challenges. In this sense, channel selection
-based strategies aim to process signals from a few discriminant electrodes instead of using all
electrodes, reducing data size and processing algorithms’ complexity and, consequently, the
processing time. For example, Moctezuma et al. [18] proposed the Non-dominated Sorting
Genetic Algorithm II in the emotion recognition BCI with wearable EEG systems, selecting a
set of 8–10 EEG channels instead of the 32 available. In parallel, various techniques based on
deep learning offer satisfactory results without EEG signal preprocessing or implementing
complex learning acceleration algorithms. Such an approach reduces the processing time
significantly depending on the implemented neural architectures [19,20]. Other strategies
typically work on hardware-based levels using traditionally powerful processing units
despite the robustness of reliable data and algorithms [21,22].

Fortunately, advances in hardware re-configurable design technology have enabled
the development of embedded electronic boards with powerful computing resources [23].
Those embedded boards are microcomputers generally supporting complex data processing,
ensuring portability and reduced signal processing time because of dedicated core resources.
Meanwhile, Majoros and Oniga [24] implemented a MI–EEG classifier based on a deep
learning architecture for BCI applications on a Field-Programmable Gate Arrays (FPGA) card.
Their work achieved an accuracy of 97.7%, classifying imagined tasks of opening and closing
fists or feet into three classes; the neutral task was included. Further, Dabas et al. [25] used
the Arduino Uno board to classify hand-gripping MI trials from channels C3 and C4 using
the Support Vector Machines (SVM) classifier.

On the other hand, deep learning architectures have proven to have high performance
as EEG signal classifiers in recent works, especially the compact convolutional neural
network for EEG-based BCI (EEGNet) and its variants proposed by Lawhern et al. [26].
In this sense, Zhu et al. [27] developed an ensemble learning coupled to the EEGNet
network to improve the ear-EEG signals’ classification for SSVEP-based BCI, achieving an
accuracy of 81.74%. Lastly, Feng et al. [28] implemented a real-time EEGNet classifier on
an FPGA board, using only 2.54% of the board’s resources and consuming 3.66% of the
maximum power available. Similarly, Tsukahara et al. [29] achieved an accuracy of 88.75%,
implementing the EEGNet architecture on a Virtex-7 FPGA platform to classify EEG data
from the MNE dataset.

This work develops an embedded MI tasks classifier for BCI systems based on the
EEGNet network by using the NJT2 board. The framework develops a subject-dependent
classification approach, where data from each subject are processed separately. Therefore,
the MI movements to be classified are the tongue, passive, left and right hands, and left
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and right legs. In the first step, the Accuracy Rating-based Classifier method (ARbC)
and Channels Mutual Information-based Approach (CMIbA) are developed to make up
discriminant channel subsets. Next, MI signals from discriminant channels are processed
to be classified into the six aforementioned classes using the EEGNet network.

The main contributions of this paper are summarized as follows,

1. Results comparison of channel selection between the ARbC method and CMIbA.
2. Reliable accuracy results of the tongue, passive, left and right hands, and left and right

legs MI tasks classification.
3. Processing time reduction using the NJT2 platform resources.
4. Convergence acceleration of the learning process implementing the Cyclic Learning

Rate (CLR) algorithm.

In sum, this work deals with processing time reduction and reliable classification
accuracy for embedded EEG BCI-based applications.

2. Related Works

In the recent literature on embedded BCIs (EBCI) based on MI–EEG signals, numerous
works dealing with brief processing time and high classification accuracy have been
proposed [30,31]. Embedded platform-based BCI designs aim to build low-cost and
low-power consumption systems, meeting user adaptability and dedicating available
resources to application-specific functions. Belwafi et al. [23] proposed a review of EBCI
systems focusing on pathological disorders, functional substitution, and most implemented
architectures. Despite recent advances in embedding computational architectures design,
they reported a few of the EBCI systems presented in the related literature.

Generally, the central processing unit of the EBCI is ported by a microprocessor or
microcontroller integrated into FPGA cards, Arduino boards, Nvidia’s developer cards, or
specifically dedicated platforms. In this sense, Ma et al. [32] implemented a classifier-based
convolutional neural network into a Xilinx FPGA platform to classify MI–EEG signals.
Comparatively, implementing the same model on a portable computer equipped with
the NVIDIA GeForce GTX1070 i7-7700 resources, the configured FPGA was revealed
to be eight times faster than the PC, achieving an average classification accuracy of
over 80%. Lately, EBCI systems-based EEG classifiers have been implemented into the
NJT2 board, taking advantage of the NVIDIA® Jetson™ board deployment [33]. In fact,
Khatwani et al. [34] implemented a convolutional neural network model into Artix-7 FPGA
and NJT2 platforms to detect artifacts carried in EEG signals of multiple channels. Based
on the basic ICA algorithm, their method achieved an average accuracy of 74 %, detecting
seven different artifact types using 64 EEG channels. In another recent framework [35],
convolutional stacked auto-encoder and convolutional long short-term memory models
were proposed to classify MI–EEG signals for drone control using the NJT2 board. A
latency time of 10 ms was reported for generating drone navigation commands based on
left-hand and right-hand imagined movement. Similarly, Ascari et al. [36] implemented a
networked nodes modular architecture hosted on the NJT2 platform for outdoor portability.
The average accuracy of 50% was achieved based on the subject-specific classification
processing EEG signals from Cz, Pz, and {Cz, Pz} channels with an average offset between
streams of 0 ± 0 ms.

On the other hand, the EEGNet has been implemented more frequently on FPGA
boards than on other platforms for EBCI-based EEG signals in the recent literature [37].
Moreover, Hernandez-Ruiz et al. [38] implemented an EEGNet-based architecture into
an FPGA board to classify MI–EEG signals, achieving accuracies of 83.15%, 75.74%, and
65.75% for the defined tasks. Lately, Enériz et al. [39] utilized the Xilinx Zynq FPGA to set
up a real-time EEGNet-based BCI. Table 1 summarizes the recent state-of-the-art focused
on related works.
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Table 1. The state-of-the-art summary of related works. Ch means the number of channels.

Works Platform Dataset Ch Latency
per Task

Khatwani et al. [34] NJT2 Own 64 ≤84.1 ms
Maiti et al. [35] NJT2 BCI competition IV 3 9–10 ms
Ascari et al. [36] NJT2 Own 2 0 ± 0 ms

Finally, regarding the recent literature based on HaLT’s dataset [40], Yan et al. [41] used
the referred public dataset to improve classification accuracy by designing an attention
mechanism and global features aggregation based on deep learning. They reported an
average accuracy of 76.7% for classifying EEG signals of twelve subjects with the EEGNet
network. In another work, Keerthi Krishnan and Soman [42] proposed a variational
mode-decomposed EEG-spectrum image model for MI classification using the dataset
provided by [40]. Their work achieved an average accuracy of 90.2 ± 4.34% with the
EEGNet network converting EEG signals from C3, Cz, and C4 channels into spectrum
images by using the variational mode decomposition (VMD) and the short-time Fourier
transform (STFT). Likewise, a generative adversarial network (GAN) was proposed by
An et al. [43] to denoise MI-EEG signals using the same dataset. Lately, the EEGNet
network has been implemented to classify MI–EEG signal-based BCI utilizing HaLT’s
benchmark [44]. An average classification accuracy of 80.9± 8.6% was achieved by classifying
EEG signals from eight channels. In sum, taking advantage of more than five BCI interaction
paradigms, Kaya’s dataset offers a wide range of BCI implementation possibilities to the
related literature. Table 2 presents Kaya’s experiment’s data organization related to six
mental imagery tasks. The referred BCI interaction paradigm contemplates 6 MI tasks
executed by 12 subjects, each with a determined number of sessions.

Table 2. Summary of BCI interaction paradigm data related to six mental imagery tasks, as presented
in [40].

No. Subject Classes Sessions Samples

1 A 6 3 2877
2 B 6 3 2869
3 C 6 2 1916
4 E 6 3 2855
5 F 6 3 2879
6 G 6 3 2867
7 H 6 2 1912
8 I 6 2 1836
9 J 6 1 946

10 K 6 2 1914
11 L 6 2 1904
12 M 6 3 2866

13 All 6 29 27,641

3. Materials and Methods

The method developed in this work addresses the practical challenge of multi-class
classification and expedited processing of EEG signals on dedicated platforms using
the NJT2 development board and the artificial neural network EEGNet. All developed
processing algorithms are integrated directly into the NJT2 embedded platform to exploit
hardware resources.
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3.1. Overall Flowchart

Figure 1 presents the high-level general diagram of the proposed method. Two main
steps are developed to process MI–EEG signals. The first one aims to select discriminant
channels employing two approaches (ARbC and CMIbA), while the second implements
the EEGNet network to classify discriminant channel features. The ARbC approach also
utilizes the EEGNet architecture but with parameters adapted to single-channel signals.

MI-EEG signals

ARbC approach

CMIbA

EEGNet based
classifier

Channels selection methods Classification Output

1 2

3

4

5

6

Figure 1. The proposed method overall flowchart. EEG signals of six MI tasks are provided by [40].
The red rectangle centered on the circle refers to “Passive” and moves according to the subject’s
MI task. The first step consists of selecting discriminant channels from the 19 provided. Next, two
comparative methods are used: the ARbC method and the CMIbA. Therefore, the EEGNet network
classifies the feature signals into six classes to give the output.

3.2. Referred Public Dataset

The dataset published in [40] was used to implement the proposed method. Explicitly,
this work used EEG data provided by the BCI interaction paradigm related to six mental
imagery states. On a Graphical User Interface (eGUI), a fixation point considered the
neutral starting point for tasks was presented to experiment participants. Each trial began
with an action signal to imagine movements of the right and left hands, closing and opening
the respective fist once, movements of the right and left leg briefly, and movements of the
tongue or a circle as a passive response for 1.0 s. For example, the tongue MI task was
interpreted as the imaginative pronunciation of a distinct letter as “el”. At the same time,
participants did not engage in any voluntary mental imagery until the subsequent trial
began for the passive state. These visual stimuli were presented on the eGUI once to the
participants in each trial and in sequential order, as presented in Table 3.

Table 3. The BCI interaction segment for imagining limbs motion, following the eGUI’s visual stimuli.

Relaxation 1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 6 −→
Left hand Right hand Passive Left leg Tongue Right leg

A total of 29 recording sessions were performed by seven males and five females
aged between 20 and 35 who were declared healthy for the experiment. Each session
contains a sequence of BCI interaction segments recorded with a break of 2.0 min, and each
trial requires an average of 3.0 s. Accordingly, this BCI interaction contains 87 interaction
segments for all 29 sessions in the referred dataset.

MI–EEG signals were recorded using the EEG-1200 JE-921A standard medical equipment.
A total of 19 EEG channels placed according to the standard 10–20 electrodes placement
system (see Figure 2) provided the benchmark EEG signals.
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A1 A2C3

Fp1 Fp2

F3 FzF7 F4 F8

CzT3 C4 T4

P3 PzT5 P4 T6

O1 O2

Figure 2. Channels’ spatial location on the skull in making the referred dataset. According to the
10–20 system, uppercase letters define the brain cortex where an electrode is placed. F for Frontal, T for
temporal, P for parietal, and O for occipital cortex. The lowercase ”z” is utilized to locate electrodes on
the skull’s longitudinal axis. A1 and A2 mean left and right reference voltage electrodes, respectively.

The Neurofax software was used to record data at 200 Hz, and hardware pass-band
filters of 0.53–70 Hz were applied to all recorded EEG signals. It is worth mentioning that
the EEG-1200 equipment integrates a hardware notch filter at 50 or 60 Hz to isolate EEG
signals from electrical grid interference. Figure 3 presents the experimental paradigm’s
data acquisition and processing overview.

MI - EEG Neurofax ASCII File Offline

Analysis

Neurofax DB

eGUI

Figure 3. Overview of the EEG acquisition and processing in the experimental paradigm. The
red rectangle on the eGUI moves over the specific limb icon as a visual stimulus to engage the
respective mental task of imagined movement. MI–EEG signals from six mental states were recorded
by EEG-1200 equipment and processed using Neurofax recording software [40]. In addition, ASCII
data were converted into Matlab files for further processing.

3.3. NVIDIA Jetson TX2 Embedded Board

The NJT2 is a power-efficient embedded computing device mainly designed for
artificial intelligence applications. Building around an NVIDIA PascalTM-family GPU with
8 GB and 59.7 GB/s of memory and bandwidth, respectively, this supercomputer on a
module integrates a wide range of standard hardware interfaces. It is also considered a
fast and power-efficient platform for robust data applications; the NJT2 card has been used
successfully in recent research [34–36].

The NVIDIA SDK manager based on Ubuntu is the operating system used on the
NJT2 card, accessible from [45]. After installing the operating system, a host computer
must load the modules into a Micro-SD card following the steps provided in [46]. Once the
Jetson software with the SDK Manager is installed, the NJT2 card is ready to be used as
an embedded computer. Additionally, the specific libraries are installed according to the
application requirements. Table 4 summarizes the main characteristics of the NJT2 card
used to implement the present project, according to the serial number provided.
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Table 4. NVIDIA Jetson TX2 main characteristics and resources.

Label Characteristics

NJT2 board Serial 0320218091017, model 699-82597-0000-501 C

GPU 256-core NVIDIA PascalTM GPU architecture with
256 NVIDIA CUDA cores

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU Quad-Core ARM®

Cortex®-A57 MPCore
Memory 8 GB 128-bit LPDDR4 Memory 1866 MHx—59.7 GB/s
Storage 32 GB eMMC 5.1
Computing capacity 1.33 TFLOPs
Power consumption 7.5 W/15 W
Mechanical 69.6 mm × 45 mm, 260-pin edge Connector
Networking 10/100/1000 BASE-T, 802.11ac WLAN, Bluetooth

3.4. The EEGNet Network Architecture

EEGNet is a compact convolutional network proposed by Vernon et al. [26]. It
demonstrated its effectiveness in processing EEG signals for BCI-based systems, considering
the numerous related works [47–49]. Three convolutional layers are configured in the
EEGNet. EEG raw data are first convolved in the temporal layer (Part a) using frequency
filters, as shown in Figure 4.

EEG signals 
(Subjects, Channels,

Samples)

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Output

Output

Output

Kernel

Kernel

Kernel

Output

Output

Output

Classification

Input data Conv2D Depthwise Conv2D Separable Conv2D Classification

(Part a) (Part b) (Part c) (Part d)

Figure 4. The encapsulated EEGNet structure. EEG signals were organized by subject, channel, and
sample length. This data matrix was expanded to four dimensions fulfilling the EEGNet input matrix
dimension. In Part (a), temporal features are extracted by Conv2D, and in Part (b), spatial filters are
applied to enhance feature maps. Then, feature maps are combined in Separable Conv2D (Part (c)),
providing the output class probability (Part (d)).

Next, EEG feature maps extracted from the temporal convolutional layer (Part (a))
serve as input for the depthwise convolutional layer (Part (b)), where frequency-specific
spatial filters are applied to each feature map. Finally, the separable convolution layer
(Part (c)) combines the depthwise and pointwise convolutions of feature maps, both
individually and together, to provide an optimal classification (Part (d)). The depthwise and
separable convolution layers are activated by the Exponential Linear Unit (ELU) function,
defined by

f (~xi) =

{
xi for x ≥ 0,

exi − 1 otherwise,
(1)

while the output dense layer uses the Softmax activation function,

σ(~xi) =
exi

∑N
j=1 exj

, ∀~x = [x1, x2, . . . , xN ]
ᵀ, (2)

to predict the output probability of sequence ~xi to be classified in class N. Therefore,
Equation (2) is considered a normalized probability distribution of output feature sequences.
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Consequently, an important key for implementing EEGNet is the number of filters for each
layer and the kernels’ length. Table 5 shows the EEGNet’s input parameters.

Table 5. Configurable input parameters of the EEGNet network, modified from [26].

Parameters Descriptions

nb_classes Number of classes to classify
Chans Number of channels
Samples Number of EEG data time points
DropourRate Dropout fraction

kerneLength Length of temporal convolution in the first layer (Conv2D).

F1, F2 Numbers of temporal filters (F1) and pointwise filters (F2)
to learn.

D Number of spatial filters to learn within each kerneLength
dropoutType Either SpatialDropout2D or Dropout

3.5. Data Processing

Subjects and channels provide EEG data from the referred benchmark. The number
of samples was set to 170, corresponding to the duration of 0.85 s per task, remembering
that dataset signals were recorded at 200 Hz. This allowed the removal of artifacts at
the beginning and the end of each task signal. Therefore, the first signal processing step
consists of channel discrimination to constitute contributing channel subsets. Two strategies
were implemented to select the discriminant channels among the 19 provided. The ARbC
approach uses the EEGNet network to classify signals of each channel, aiming to constitute
the subset of six and eight channels with higher classification accuracy. In contrast, CMIbA
utilizes the channels’ mutual information to evaluate how different the cross-entropy
measurement value is. The channel selection by the above-mentioned methods was made
on the mixed signals of all 12 subjects, i.e., considering signals of the whole dataset. In
fact, the constituted discriminant channel subsets can be more suitable for any subject
considered separately and be served for the subjects’ performance comparison purposes.

Thus, the ARbC method aims to increase the amount of useful training data allowing
the neural network to learn more discriminating features. In fact, the proposed software-level
approach uses a group-utility metric-based channel selection strategy to improve classification
accuracy [50,51]. Hence, the EEGNet network was configured by setting temporal filters
(F1), pointwise filters (F2), and spatial filters (D) to four. This EEGNet filter value choice was
made according to preliminary training tests to find the classifier’s optimal configuration
according to data features. The model was compiled with the categorical cross-entropy
loss function, and the Nadam optimizer was set to 0.001. The network was trained with
2000 epochs, with a batch size of 330, using 10-fold cross-validation. Consequently, two
subsets of six and eight discriminant channels were formed.

According to information theory, the mutual information between two random variables
σ and ρ is given by

I(σ, ρ) = K(σ) + K(ρ)− K(σ, ρ), (3)

where K represents the complexity of information carried by each variable. In the case of
probabilistic variables, (3) can be written as

I(X,Y) = H(X) + H(Y)− H(X,Y), (4)

where H is the self-information entropy. Based on the assumption that independent random
variables should not share mutual information, Kullback–Leibler Divergence (KLD) was
used to assess how far a joint distribution of channel signals is from the distribution of
their products.
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Let P and Q be two probability distributions on the finite channel set
S = [1, i, · · · , j, · · · , 19], clustering channels signals of the nth subject. KLD, or the relative
entropy between P and Q, is given by

KLD(P || Q) = ∑
a ∈ S

P(a) log
P(a)
Q(a)

, (5)

where P(a) is the occurrence probability of the ath datum. Therefore, mutual information is
found evaluating the KLD as,

I(Si ; Sj) = KLD(P(Si , Sj) || P(Si)P(Sj)), (6)

where P(Si) and P(Sj) represent signal distributions of channels i and j, respectively,
and P(Si , Sj) is a joint distribution. Equation (6) was computed by considering a given
channel and its neighbors, two by two, then by pair grouping, based on channel individual
distribution to obtain the discriminating channels subset.

• If Si and Sj are independents,

P(a , b) = P(a)P(b). (7)

Therefore,
KLD(P(a) · P(b)||(P(a) · P(b)) = 0. (8)

• If Si = Sj,

I(Si ; Si) = ∑
a ∈ S

Si(a) log
Si(a)
Si(a)2

= ∑
a ∈ S

Si(a) log
1

Si(a)
= H(Si),

(9)

where H is the self-entropy distribution. Entropy values of two-by-two channel combinations
are calculated, that is, the entropy of 171 combinations considering 19 channels. Next,
channel combinations with entropy values different from zero are combined with the
remaining channels to constitute discriminating channel groups. This process is repeated
until a group of n channels with the same self-entropy distribution is constituted. Finally,
the Discriminant Channel Subset (DCS) is constituted as follows,

DCS = [1, · · · , n], ∀ n ≤ 19 & DCS ⊂ S, (10)

where n is the nth discriminant channel for all subjects’ signals.
In the next stage, signals of discriminant channel subsets were processed by configuring

the EEGNet with new parameters in Keras and TensorFlow, as shown in Table 6. New
parameter configuration changes took into account the number of channels, the optimization
of hyperparameters, and the learning acceleration at the software level.

EEG data were arranged as a four-dimension tensor to meet the EEGNet’s input
dimension [26], receiving the number of samples, the number of channels, the length of
the sample, and the unitary position by the input layer. Parameter k in Table 6 refers
to the number of channels, taking a value of six or eight depending on the channel
discriminant set. The proposed architecture was configured with four temporal filters
(F1) in the Conv2D convolutional layer, using 16 parameters for k set to six or eight. After
the batch normalization, the Depthwise Conv2D layer activated by the ELU function
uses 96 or 128 parameters depending on the discriminating set to learn spatial filters in
the temporal convolution, setting the number of spatial filters (D) to 4. For its part, the
separable Conv2D layer was configured with 16 pointwise filters (F2), and 512 parameters
were used to learn within each kernel length. Both EEGNet configurations for the channel
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selection and processing steps were compiled and trained into the NJT2 board using a batch
size of 330, a categorical cross-entropy loss function, and the Nadam optimizer set to 0.0001.
The CLR algorithm with a triangular window was also set between 10−6 and 5× 10−2

to accelerate the learning process by training the EEGNet model with a low number of
epochs. Thus, the EEGNet model in the classification stage was trained with 1500 instead
of 2000 epochs, using 10 repetitions to validate the results.

Table 6. EEGNet parameters for processing k discriminant channel signals. This study used k = 6
and k = 8 discriminant channels.

Layer (Type) Output Shape Parameters

Input Layer (None, k, 170, 1) 0
Conv2D (None, k, 170, 4) 16
Batch_normalization_1 (None, k, 170, 4) 16
Depthwise_conv2D (None, 1, 170, 16) 96/128
Batch_normalization_2 (None, 1, 170, 16) 64
Activation_1 (None, 1, 170, 16) 0
Average_pooling2D_1 (None, 1, 42, 16) 0
Dropout_1 (None, 1, 42, 16) 0
Separable_conv2D (None, 1, 42, 16) 512
Batch_normalization_3 (None, 1, 42, 64) 64
Activation_2 (None, 1, 42, 16) 0
Average_pooling2D_2 (None, 1, 5, 16) 0
Dropout_2 (None, 1, 5, 16) 0
Flatten (None, 80) 0
Dense (None, 6) 486
Softmax (None, 6) 0

4. Numerical Results

The k-fold cross-validation method was used both in the channel selection and
processing steps to validate the achieved results. Therefore, numerical results were obtained
by setting k to 10, meaning that the dataset was repeatedly partitioned into ten subsets,
where nine were used for training and one for testing each kth iteration. This validation
method allows for checking that the model is efficient for different randomized inputs or
for some data streams, nothing else. In the channel selection steps, for the ARbC method
and CMIbA, training and test sets were formed from signals of all subjects, using nine for
training and one for testing. Once the sets of discriminating channels have been constituted,
the classification process is performed by exploiting the signals of each subject, taken
individually. The proposed model was evaluated using the classification metric given by

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

where TP corresponds to true positive when k features are correctly assigned to class K,
TN means true negative when m features of other classes than K are unassigned to class K,
and FP as false positive are all features erroneously classified into class K. Additionally,
the confusion matrix metric was used to evaluate the implemented classifier performance
discriminating MI tasks.

4.1. Channel Selection Results

Processing EEG signals of all subjects by channel, higher classification accuracies were
obtained in the order reported in Table 7. Hence, discriminant channel subsets for all the
subjects were formed by combining signals of the channel, providing higher accuracy than
those of the seven remaining channels, delivering the best accuracies. In the case of P4 and
O2 channel selection giving the same classification accuracy (36.7%), tests revealed reliable
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accuracies in adding the P4 channel to the seven discriminant channels already constituted
instead of the O2 channel.

Table 7. Achieved classification accuracies by implementing the ARbC approach to constitute
discriminating channel sets. The highest accuracy is highlighted in blue, while the seven highest
accuracies are shown in boldface.

Ref. Channel Brain Area Accuracy (%)

1 Fp1 Frontal (attention) 39.5
2 Fp2 Frontal (Judgment restrains impulses) 39.1
3 F7 Frontal (Verbal expression) 38.4
4 F3 Frontal (Motor planning of left-upper extremity) 36.4
5 Fz Frontal central (Motor planning (midline)) 36.4
6 F4 Frontal (Motor planning of left-upper extremity) 35.1
7 F8 Frontal (Emotional expression) 39.2
8 T3 Temporal (Verbal memory) 34.7
9 C3 Central (sensorimotor integration (right)) 36.5

10 Cz Central (sensorimotor integration (midline)) 37.0
11 C4 Central (sensorimotor integration (left)) 35.9
12 T4 Temporal (Emotional memory) 35.9
13 T5 Temporal (Verbal understanding) 36.3
14 P3 Parietal (cognitive processing special temporal) 37.4
15 Pz Parietal (cognitive processing) 35.7
16 P4 Parietal (“Math word problems”, “Non-verbal reasoning”) 36.7
17 T6 Temporal (Emotional understanding and motivation) 36.4
18 O1 Occipital (visual processing) 37.0
19 O2 Occipital (visual processing) 36.7

Meanwhile, the channel mutual information approach allowed the formation of six
and eight discriminant channel subsets, as presented in Table 8. The number of discriminant
channels was determined according to the algorithm proposed in [47], where 6 discriminant
electrodes were chosen among the 19 available. In addition, the same subjects participated
in the paradigm explored in [47] that was presented in this work, where EEG signals were
recorded with the same equipment. Concisely, channel combination tests revealed reliable
classification accuracy for subsets of six and eight discriminant channels.

The EEG data point distribution was explored using a t-distributed Stochastic
Neighborhood Embedding approach (t-SNE) [52] to visualize data clusters according to the
class labels. In the case of multi-class EEG data, t-SNE distributions help to visualize high
dimensional data considering the nonlinear relationship between features and targeted
classes. Therefore, Figure 5 shows the EEG data clusters after selecting six and eight
discriminant channels using the ARbC method and CMIbA.

Therefore, only MI–EEG signals from discriminant channel subsets were processed to
evaluate the proposed method’s performance.

4.2. Results Processing Discriminant Channel Signals

From a general point of view, the results obtained by developing the ARbC method
and CMIbA revealed differences considering achieved accuracies and the taxonomy of
discriminant channels. The channel selection methods developed refer to whole dataset
signals. Table 7 presents average accuracies using the ARbC to classify all dataset signals by
channel. According to the ARbC selection algorithm, the eight high-accuracy values were
obtained with Fp1, F8, Fp2, F7, P3, Cz, O1, and P4 channel signals, in this order, respectively.
For its part, CMIbA allowed the forming of a discriminant channel subset by selecting
P4, T6, T3, P3, F4, O2, Fp2, and Fz channels. Therefore, {Fp1,F8,Fp2,F7,P3,Cz,O1,P4}
and {P4,T6,T3,P3,F4,O2,Fp2,Fz} discriminant channel subsets were constituted from the
19 provided, proceeding by the ARbC method and CMIbA. Both approaches have the Fp2,
P3, and P4 channels in common, considering the subset of eight discriminant channels,
while five of those are different. The difference in the taxonomy of channel subsets is
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explained by the particularity of metrics used by the ARbC method and CMIbA, and also
by the signal spread of each channel when mixed with data from other channels.
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Figure 5. t-SNE distribution illustrations of selected channels’ signals for all subjects using
the ARbC method and CMIbA before the main processing step. All figures were plotted in
2-D embedded space using the Euclidean metric, setting the nearest neighbors’ number at
10, the number of iterations for the optimization at 1000, and the gradient norm at 0.0001.
(a) ARbC: six-channel combination: distribution of {Fp1,F8,Fp2,F7,P3,Cz} channel signals, (b) CMIbA:
six-channel combination: distribution of {P4,T6,T3,P3,F4,O2} channel signals, (c) ARbC: eight-channel
combination: distribution of {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} channel signals, (d) CMIbA: eight-channel
combination: distribution of {P4,T6,T3,P3,F4,O2,Fp2,Fz} channel signals.

The results of processing MI–EEG signals from the discriminant channel subset are
shown in Table 8. Next, the signals of the selected channels per subject are processed;
subject A performed EEG data classification, achieving 86.8% and 89.0% accuracy with
the ARbC method and CMIbA, respectively. For its part, subject B achieved an accuracy
of 68.0% using the ARbC method using data from eight discriminant channels, compared
to 76.3% with CMIbA. For all subjects, increasing the number of discriminant channels
revealed improvements in classification accuracy, except for subject K using the ARbC
method. According to Table 7, adding two more discriminant channels to subject H
using the ARbC method decreased the classification accuracy compared to other subjects.
The same observation is made for subject J. The best accuracy was achieved by subject J
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combining eight discriminating channels with CMIbA (99.7%), while the lower accuracy of
53.7% was obtained using subject I, processing six channel signals.

Table 8. Results achieved with the implemented channel selection approaches.

Subject Channel Average Accuracies (%) Depending on the Number of Channels

Selection 6 Accuracy 8 Accuracy

A ARbC {Fp1,F8,Fp2,F7,P3,Cz} 80.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 86.8
CMIbA {P4,T6,T3,P3,F4,O2} 86.5 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 89.0

B ARbC {Fp1,F8,Fp2,F7,P3,Cz} 63.9 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 68.0
CMIbA {P4,T6,T3,P3,F4,O2} 68.7 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 76.3

C ARbC {Fp1,F8,Fp2,F7,P3,Cz} 89.1 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 90.9
CMIbA {P4,T6,T3,P3,F4,O2} 83.0 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 92.2

E ARbC {Fp1,F8,Fp2,F7,P3,Cz} 76.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 78.3
CMIbA {P4,T6,T3,P3,F4,O2} 70.8 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 82.5

F ARbC {Fp1,F8,Fp2,F7,P3,Cz} 71.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 79.2
CMIbA {P4,T6,T3,P3,F4,O2} 72.4 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 80.4

G ARbC {Fp1,F8,Fp2,F7,P3,Cz} 84.0 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 86.0
CMIbA {P4,T6,T3,P3,F4,O2} 81.9 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 87.3

H ARbC {Fp1,F8,Fp2,F7,P3,Cz} 57.0 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 57.8
CMIbA {P4,T6,T3,P3,F4,O2} 56.2 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 65.5

I ARbC {Fp1,F8,Fp2,F7,P3,Cz} 56.4 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 57.6
CMIbA {P4,T6,T3,P3,F4,O2} 53.7 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 67.9

J ARbC {Fp1,F8,Fp2,F7,P3,Cz} 99.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 99.5
CMIbA {P4,T6,T3,P3,F4,O2} 98.8 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 99.7

K ARbC {Fp1,F8,Fp2,F7,P3,Cz} 83.0 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 79.4
CMIbA {P4,T6,T3,P3,F4,O2} 76.8 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 79.3

L ARbC {Fp1,F8,Fp2,F7,P3,Cz} 85.7 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 93.9
CMIbA {P4,T6,T3,P3,F4,O2} 90.4 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 98.0

M ARbC {Fp1,F8,Fp2,F7,P3,Cz} 78.7 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 83.7
CMIbA {P4,T6,T3,P3,F4,O2} 79.5 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 81.9

{A,B, . . ., M} ARbC {Fp1,F8,Fp2,F7,P3,Cz} 55.5 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 59.3
CMIbA {P4,T6,T3,P3,F4,O2} 52.2 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 55.2

Finally, concerning the classification accuracy per MI task, Table 9 summarizes the
confusion matrix average results by classifying each mental imagery task. Confusion
matrices diagonal results reported in the aforementioned table represent the coincidence
percentage between the predicted and the true labels for a given output data sequence.

For illustration purposes, Figure 6 presents EEG data related to the described imagined
movements for subject J’s Fp1 channel signals. It can be observed that signals corresponding
to the passive task are relatively close to magnitude zero before classifying.
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Table 9. Summary of confusion matrices’ diagonal results classifying MI tasks separately. The average
accuracies per MI task do not include “{A,B, . . ., M}” subjects. The CMIbA was used for that purpose.

Subject Average Accuracies (%) per MI Task

Left Hand Right Hand Passive Left Leg Tongue Right Leg

A 80 80 80 80 80 80
B 75 75 75 75 75 75
C 90 90 90 90 90 90
E 75 75 75 75 75 75
F 77 77 77 77 77 77
G 85 85 85 85 85 85
H 67 67 67 67 67 67
I 67 67 67 67 67 67
J 100 100 100 100 100 100
K 80 80 80 80 80 80
L 100 100 100 100 100 100
M 80 80 80 80 80 80

Average 81.3 81.3 81.3 81.3 81.3 81.3
{A, B, . . ., M} 57 57 57 57 57 57
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Figure 6. Illustration of MI–EEG features before and after the classification using the EEGNet network.
In this example, subject J’s data are provided by the Fp1 channel. The window was set to 170 samples,
corresponding to task duration. The normalized magnitude is given in µV, while SPS and ρ mean
the number of samples per second and feature magnitude, respectively. (a) MI–EEG signals before
classification. (b) MI–EEG features after classification.
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5. Discussions

Two EEG channel-selection methods are evaluated on how each affects the classification
accuracy by increasing the number of channels, considering the same test subject and
network architecture. Regarding the cerebral cortices’ spatial activation and for all database
signals, almost all brain areas are activated during the experience paradigm. This behavior
does not mean that a particular subject would not have had a more activated cortex than
others, only that channels were selected based on all subjects’ signals. Further, classifying
the set of signals as indicated in Table 8 was carried out illustratively to provide information
on the classifier’s average performance (59.3% and 55.2%). However, practically, a BCI
system can exclusively be used by one subject at a time; what matters more is each subject’s
performance. The results demonstrate that one selection approach can be more effective
than the other, depending on the EEG data provided by each subject and on the number
of channels.

For subjects K and M, the ARbC method is efficient. In contrast, the CMIbA is suitable
for subjects A, B, C, E, F, G, H, I, J, and L. For subjects, C, E, G, H, I, J, and M, either the ARbC
method or CMIbA may be recommended depending on the number of discriminating
channels. For six discriminant channels, the ARbC method is suitable, while for eight
discriminant channels, the CMIbA is desirable.

Regarding classification accuracies, results achieved in this work are compared to
those published in the recent related works, as presented in Table 10. In [42], a VMD
mode approach to extract EEG features was implemented before using the EEGNet in
the classification step. Their work also implemented a subject-dependent classification
approach using the referred dataset. Comparing their results with those achieved in this
work, subjects A, C, J, and L performed data classification, while the remaining subjects
obtained the best results with the approach developed in [42]. This difference in the
accuracy evaluation is essentially due to the implemented strategies in the preprocessing
before classifying EEG signals. Lately, Yan et al. [41] proposed a similar work based on
Kaya’s benchmark. They reported an average accuracy of 76.79% in classifying MI-EEG
signals from 19 channels. This work achieved an average accuracy of 83.7% using eight
channel features.

Table 10. Comparison with other state-of-the-art methods related to the Halt dataset. Sel.Ch. means
selected channels, and µ is the average classification accuracy.

Subject

Works

Keerthi et al. [42] Yan et al. [41] Proposed Method
VMD + STFT + EEGNet EEGNet CbA/CbMI + EEGNet
Sel.Ch. Acc.(%) Sel.Ch. Acc.(%) Sel.Ch. Acc.(%)

A 3 86.74 19 87.40 8 89.0

B 3 97.42 19 67.22 8 76.3

C 3 82.93 19 82.36 8 92.2

E 3 91.84 19 76.94 8 82.5

F 3 94.27 19 70.32 8 80.4

G 3 89.02 19 89.33 8 87.3

H 3 87.25 19 43.46 8 65.5

I 3 90.18 19 44.25 8 67.9

J 3 88.55 19 98.84 8 99.7

K 3 85.76 19 81.03 6 83.0

L 3 92.49 19 95.35 8 98.0

M 3 96.01 19 84.93 8 83.7

µ – 90.20 – 76.79 – 83.7
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Focusing on the processing unit and the latency, another aspect targeted in this work,
Table 11 presents the latency per MI task per subject. The lower average latency of 36.7 ms
was obtained by subject J while classifying MI tasks; because of the low number of subject
J’s sessions.

Table 11. Summary of average latency per subject for classifying each MI task.

Subject Average Latency (ms) per MI Task

Left Hand Right Hand Passive Left Leg Tongue Right Leg

A 56.1 56.1 56.1 56.1 56.1 56.1
B 55.7 55.7 55.7 55.7 55.7 55.7
C 42.7 42.7 42.7 42.7 42.7 42.7
E 55.2 55.2 55.2 55.2 55.2 55.2
F 57.2 57.2 57.2 57.2 57.2 57.2
G 55.8 55.8 55.8 55.8 55.8 55.8
H 42.3 42.3 42.3 42.3 42.3 42.3
I 43.8 43.8 43.8 43.8 43.8 43.8
J 36.7 36.7 36.7 36.7 36.7 36.7
K 42.1 42.1 42.1 42.1 42.1 42.1
L 41.8 41.8 41.8 41.8 41.8 41.8
M 56.0 56.0 56.0 56.0 56.0 56.0

Average 48.7 48.7 48.7 48.7 48.7 48.7
{A,B, . . ., M} 135 135 135 135 135 135

Therefore, Table 12 compares this framework with similar works in the recent literature.
The purpose is to compare EEGNet network successful implementations on the NJT2 board
with the proposed method. Khatwani et al. [34] achieved a latency inferior to 84.1 ms
using 64 EEG channels to detect an artifact type. The maxima latency was evaluated at
84.1 ms classifying EEG artifacts. In this work, the average latency per task and per subject
was evaluated at 48.7 ms. For their parts, Maiti et al. [35] controlled a drone generating
commands with a maximum latency of 10 ms. From a particular point of view, this latency
improvement is essentially due to the few channels, compared to the number of channels
used in this work. In another work, Ascari et al. [36] processed EEG signals with an
average latency of 0 ± 0 ms using two channels. Despite the size of the datasets used in the
above-mentioned works, the number of channels used is a determinant factor in evaluating
the latency per MI task.

Table 12. Comparison with related works using neural network architectures on the NJT2 board.

Methods Platform Dataset Number of Latency
Channels per Task

Khatwani et al. [34] NJT2 Own 64 ≤84.1 ms
Maiti et al. [35] NJT2 BCI competition IV 3 9–10 ms
Ascari et al. [36] NJT2 Own 2 0 ± 0 ms
Proposed method NJT2 HaLT [40] 6, 8 48.7 ms

Therefore, this framework uses robust EEG data provided by twelve subjects in
comparison to the mentioned works. Each MI task needed 48.7 ms to be classified,
processing signals from eight discriminant channels. Only 7.6% of the proposed method’s
NJT2 resources were used.

6. Conclusions

This work developed a multi-class classification of MI–EEG signals for BCI systems,
implementing EEGNet on the NJT2 platform. Prior to processing signals, two channel
-selection approaches were used to determine the discriminant channel subsets, the ARbC
approach, and CMIbA. Since discriminant channel subsets were made up, the EEGNet



Sensors 2023, 23, 4164 17 of 20

classified MI–EEG signals into six classes. The results obtained prove the classification
accuracy improvement using the two proposed channel selection approaches. Increasing
the number of channels allowed one approach to achieve more reliable accuracies than
the other approach, depending on the subject data. Processing acceleration strategies
implemented by utilizing the NJT2 platform resources and the CLR algorithm allowed
for dealing with the processing time challenge. The highest classification accuracy of
99.7% was achieved with subject J’s signals, processing data with a latency of 36.7 ms
per task. The successful carrying out of the classifier presented in this work is offered
as an alternative for the embedded BCI system’s development. However, based on the
approaches developed in this work, increasing the number of discriminating channels
beyond eight tends to decrease the classification accuracy. In future work, we expect to
control an electric car using the results achieved in this work. Moving forward, backward,
turning right and left, neutral, and accelerating are the expected tasks to be performed. The
framework’s source codes are available from 1 January 2023, on GitHub https://github.
com/Tatyvelu/Motor-Imagery-Multi-Tasks-Classification-for-BCIs-Using-the-Jetson-TX2
-board-and-a-Modified-EEGNet-A.
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STFT Short-Time Fourier Transform
VMD Variational Mode Decomposition
GAN Generative Adversarial Network
ARbC Accuracy Rating-based Classifier
CMIbA Channels Mutual Information-based Approach
CLR Cyclic Learning Rate
EBCI Embedded Brain–Computer Interface
ICA Independent Component Analysis
PC Portable Computer
CNN Convolutional Neural Network
eGUI Graphical User Interface
ASCII American Standard Code for Information Interchange
CPU Central Processing Unit
GPU Graphics Processor Unit
SDK Software Development Kit
LPDDR4 Low Power Double Data Rate
eMMC Embedded Multi-Media Card
TFLOPS Trillion Floating-Point Operations Per Second
WLAN Wireless Local Area Network
ELU Exponential Linear Unit
KLD Kullback–Leibler Divergence
DCS Discriminant Channel Subset
t-SNE t-distributed Stochastic Neighborhood Embedding
LUT Look-Up-Table
SPS Samples Per Second
CLR Cyclical Learning Rate
MFLOPS Million Floating-Point Operations Per Second
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