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INTRODUCTION

Mental imagery is amultimodal cognitive simulation process that enables us to represent perceptual
information in our minds in the absence of actual sensory input (Munzert et al., 2009). Within
this construct, motor imagery (MI) is a dynamic mental state during which the representation of
a given motor movement is rehearsed in working memory without overt motor output (Decety,
1996). A popular and widely investigated application of MI is “motor imagery practice” (MIP; also
known as “mental practice”) which is a mental simulation process that involves the systematic use
of imagery to covertly rehearse a movement without actually executing it (Di Rienzo et al., 2016).
Research shows that MIP is effective in enhancing skilled performance both in healthy populations
(Driskell et al., 1994) and in clinical groups (e.g., Mateo et al., 2015). It not only improves motor
learning (e.g., Kraeutner et al., 2016) but also induces “neural plasticity” (e.g., Debarnot et al., 2014)
or the capacity of the brain to reshape its physical structure as a direct result of repeated experience.

Despite such findings, relatively little is known about certain cognitive changes induced by,
and/or associated with, MIP. In this opinion piece, we consider four such questions. Firstly, how do
participants inMIP studies construct procedural representations from the instructions presented to
them in imagery scripts? Secondly, what is known about the interaction between working memory
(WM) and MIP? Thirdly, how do cognitive representations of covertly rehearsed skills change
during MIP? Finally, what aspects of MI skills change over time as a function of MIP? Before
addressing these issues, however, we must consider how MIP effects are typically explained.

EXPLAINING MIP EFFECTS: MOTOR SIMULATION THEORY

Motor simulation theory (MST; Jeannerod, 1994, 2001, 2006; see critique by O’Shea and
Moran, 2017) offers an influential attempt to explain the efficacy of MIP. Briefly, this theory
argues that imagined movement involves the internal simulation of actual movement. Three
of its tenets may be summarized as follows. Firstly, actions are held to involve a covert
stage during which they are simulated mentally. This covert stage includes the objective of
the action and its consequences. Thus, it comprises “a representation of the future, which
includes the goal of the action, the means to reach it, and its consequences on the organism
and the external world” (Jeannerod, 2001, p. S103). Secondly, MST proposes that imagined
and executed actions share a motor representation of an intention to act. Whereas, this
intention is converted into an actual physical movement in the case of overt actions, it is not
executed in the case of imagined actions. Thirdly, MST postulates that there is a functional
equivalence between the simulation and execution of actions. The logic here is that since
MI and executed actions are “assigned to the same motor representation vehicle” (Jeannerod,
1994, p. 190), then “motor imagery . . . should involve, in the subject’s motor brain, neural
mechanisms similar to those operating during the real action” (Jeannerod, 2001, pp. S103–S104).
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This latter proposition is the functional equivalence hypothesis
(see review by Moran et al., 2012). It is supported by behavioral
and neuropsychological evidence. For example, behavioral
studies reveal a close correspondence between the durations
of imagined and actual movements (see review by Guillot and
Collet, 2005) and neuroimaging studies suggest that MI activates
brain regions that partially overlap with those engaged in motor
execution. These regions include the supplementary motor area
(SMA), premotor cortex (PMC), primary motor cortex (M1),
posterior parietal regions (e.g., the inferior and superior parietal
lobes), the basal ganglia (BG) and cerebellum (see Hardwick
et al., 2018). Furthermore, evidence demonstrates that MIP
not only activates motor cortical and subcortical regions but
also induces plastic change in motor networks and modulates
synaptic activity at the spinal level (e.g., Debarnot et al., 2014;
Grosprêtre et al., 2019). Interestingly, the latter effect indicates
that motor commands are issued during MI and while they
remain subthreshold for physical movement, they have the
capacity to influence spinal cord activity (Grosprêtre et al., 2018,
2019). In summary, MST claims that imagined movements are
functionally equivalent to executed ones with regard to intention,
planning, and engagement of neural circuitry.

REPRESENTING PROCEDURAL

INSTRUCTIONS IN IMAGERY SCRIPTS

In the traditional MIP paradigm, participants in the cognitive
rehearsal condition receive a scripted sequence of instructions
designed to help them to see and feel the target skill in their
imagination. Surprisingly, little is known about how people
translate such verbal or written instructions into procedural
skill representations. Nevertheless, sport psychology researchers
like Holmes and Collins (2001) and Williams et al. (2013a)
have developed useful, theoretically-based guidelines to improve
MI scripts and interventions. Unfortunately, these guidelines
do not address the processes by which participants create a
mental representation of the instructions provided in imagery
scripts. However, some insights into this latter issue come
indirectly from a recent study by Theeuwes et al. (2018).
Briefly, these authors developed a paradigm to study how
MI affects the selection and retrieval of a novel response
sequence. The paradigm involved a choice reaction time task
in which participants respond to a picture by entering a
designated response sequence. Results showed that MI led
to an improvement in the application of novel instructions.
However, this improvement appeared to be due more to
enhanced response selection than to enhanced movement
execution. Applying this finding to an MIP setting, it would
be interesting to investigate how verbal instructions for a
sporting skill (e.g., golf putting) are procedurally represented
when the task has both perceptual (response selection) and
motor (action execution) components. More generally, although
the neural overlap between language and motor systems has
been explored (e.g., see Pulvermüller, 2018), the supporting
cognitive processes (e.g., the “translation”mechanism underlying
verbal-to-procedural codes) remain unclear. The integration

of semantic (verbal) and procedural (action) information may
occur post-lexically via fast motor simulation (Frak et al., 2010).
Alternatively, motor processing (i.e., simulation)may be inherent
in action-related semantic processing (Pulvermüller, 2005).
Perhaps instructions to respond to a stimulus automatically
bias attention toward that stimulus (Tibboel et al., 2016). By
association, scripted action components may bias attention
toward the action itself. It should be noted, however, that
individual differences and/or differences in processing strategy
may also influence the interactive processing of procedural
and semantic information. For example, research demonstrates
that action context and experience influence the strength of
association between semantic and procedural representations,
with facilitation of linguistic processing being observed with
greater action experience and where action components and
linguistic content are congruently matched (Williams et al.,
2013b; Beauprez et al., 2020). It would be interesting for future
research to explore the effect of motor-related experience on the
encoding of action instructions and whether or not MIP has a
directional influence on this process.

MIP AND WORKING MEMORY (WM)

WM is a cognitive system that stores and manipulates currently
relevant information for short periods of time (D’Esposito
and Postle, 2015). Unfortunately, few studies have addressed
its role in MI. This neglect is curious because during MI,
action-related information is retrieved from long-term memory
(LTM) and temporarily stored and manipulated in order to
achieve intended action goals. In MI, action consequences must
be maintained in mind (generated via simulation), control
must be exerted over execution, and the action must be
terminated (Jeannerod, 2006). So, how does MIP interact
with WM?

In sport, expert performers are adept at prioritizing specific
contextual and motor-relevant information in order to anticipate
opponents’ offensive plays (e.g., see Murphy et al., 2019). Clearly,
expert athletes have developed elaborate mental representations
that facilitate superior WM functioning. They also show superior
WM span for visually presented movements compared to less
skilled counterparts (Moreau, 2013). Interestingly, MIP appears
to increase the neural efficiency of WM systems. For example,
the dorsolateral prefrontal cortex (dlPFC) plays a crucial role in
the maintenance and manipulation of information (Ptak, 2012)
and is active during MI (Hardwick et al., 2018). Research shows
that MIP elicits functional reorganization in neural systems with
reduced activity in the dlPFC (WM center) signaling increased
efficiency (Sauvage et al., 2015). However, because little research
has explored the interaction between MI and memory systems,
it is unclear if WM is actually the primary memory system
supporting MI. Indeed, given recent neuroimaging evidence
that mental imagery mediates the relationship between episodic
information retrieval and divergent thinking (see Zhang et al.,
2019), it may be possible that MIP influences how motor-
related information is processed in WM. As we discuss in
the next section, changes in mental representations occur
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following MIP (Frank et al., 2014). Also, LTM contributes
to the formation of vivid/rich images in WM (Baddeley and
Andrade, 2000). The capacity to form rich images is influenced
by a host of factors such as (i) whether or not the imagery
is dynamic in nature (and hence requires more information
than if static; Baddeley and Andrade, 2000); (ii) whether or
not the imagery contains unknown elements (as the amount
of relevant information held in LTM will be limited); and (iii)
the capacity of semantic memory (necessary to transform verbal
cues into images; Baddeley and Andrade, 2000). Overall, given
the link between MIP and memory, it seems important to
investigate the relative role of WM compared with that of LTM
in MIP and how MIP might influence these memory systems
(e.g., Lauber et al., 2019).

MIP AND CHANGES IN MENTAL

REPRESENTATION

A key tenet of modern cognitive psychology is the assumption
that human behavior is causally related to “mental
representations”—knowledge structures in memory that
correspond to objects of thought. Accordingly, Schack and
Ritter (2009) cognitive action architecture approach postulated
that actions are represented in LTM as networks comprising
hierarchically organized clusters of “basic action concepts.”
These concepts “chunk” movements/body postures and
their corresponding perceptual effects as tools to achieve
specific action goals (Frank et al., 2016). Typically, they
correspond to functionally meaningful elements of a given
skill. Overall, the cognitive action architecture approach
proposes that repeated execution of a skill—whether actual
or imagined—produces modification of basic action concepts
in LTM.

What effect does MIP have on mental representation
development in skill learners? Frank et al. (2014) investigated
the influence of MIP and physical practice on the development
of mental representations in novice golfers. These novices were
required to practice a golf putt mentally, physically, or in a
combination of both modes of training over 3 days, while
a control group did not practice at all. Participants’ putting
performance and mental representation structures were tested
before and after the MIP intervention as well as after a 3 day
retention interval. Results showed that participants who had
practiced mentally, either solely or in combination with physical
practice, developed mental representation structures that were
more functional (i.e., were more similar to those of experts)
than were those of participants who had not practiced mentally.
Interestingly, Meier et al. (2020) showed recently that athletes’
mental representations of the tennis serve changed over time
as a function of coaching instructions (explicit or analogy-
based). The findings of Frank et al. (2014, 2016) suggest that
MIP operates at a relatively high level in the motor system—
refining and elaborating athletes’ mental representations of
action during early stages of skill acquisition. Previously,
Debarnot et al. (2014) concluded that expert and novice
movement performance are distinguishable in terms of the neural

substrates of relevant motor plans. Other studies suggest that
the movement representations of experts capture more faithfully
the biomechanical components of domain-specific movement
than do those of novices (for review see Bläsing et al., 2012).
However, even though behavioral changes have been observed
following MIP (Debarnot et al., 2014), the extent and pattern
of representational change following MIP (without physical
practice) have yet to be fully elucidated—particularly in expert
populations (for an examination of representational change over
the course of a MIP program in novice sports performers, see
Kim et al., 2017).

MIP AND CHANGES IN MI ABILITY

There is evidence to suggest that MIP can improve MI ability
(Rodgers et al., 1991; Ruffino et al., 2017). For example, Rodgers
et al. (1991) reported that a 16-week figure skating imagery
training program enhanced figure skaters’ ability to imagine basic
movements. This finding has been replicated in other sporting
contexts such as golf (Williams et al., 2013b) and synchronized
skating (Cumming and Ste-Marie, 2001). More recently, Mateo
et al. (2018) reported that a 5 week MI training program
for people with quadriplegia improved self-rated aspects of
their imagery experience (namely, its vividness). Unfortunately,
this study was descriptive rather than experimental in nature
and did not use a psychometric measure of MI ability both
before and after MI training. Interestingly, subjective indices
of imagery appear to have a distinctive neural signature. For
example, Zabicki et al. (2019) discovered that reports of imagery
vividness are linked to consistent patterns of neural activity in
premotor cortical areas, which may reflect kinesthetic retrieval
of motor representations. Clearly, a systematic program of
theory-driven research is required to identify which specific
components of MI are affected by MIP. To facilitate such a
study, a longitudinal research design is required in which data are
collected using a combination of psychometric, chronometric,
and psychophysiological measures of MI (see Collet et al., 2011;
Williams et al., 2015).

CONCLUSIONS

Although at first glance, thinking and action appear to
lie at opposite ends of the behavioral spectrum, cognition
and action are elaborately interconnected (Rosenbaum et al.,
2012)—as is evident in our discussion of the theoretical
foundations of MI. According to MST, MI activates neural
motor systems via a simulation mechanism that is supported
and supervised by higher cognitive systems (Jeannerod, 2006).
Unfortunately, as this opinion paper has highlighted, many of
the cognitive systems implicated by, and/or associated with, MIP
remain unclear.
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